ll_rw_blk.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/cpu.h>
  29. #include <linux/blktrace_api.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(struct work_struct *work);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  40. /*
  41. * For the allocated request tables
  42. */
  43. static struct kmem_cache *request_cachep;
  44. /*
  45. * For queue allocation
  46. */
  47. static struct kmem_cache *requestq_cachep;
  48. /*
  49. * For io context allocations
  50. */
  51. static struct kmem_cache *iocontext_cachep;
  52. /*
  53. * Controlling structure to kblockd
  54. */
  55. static struct workqueue_struct *kblockd_workqueue;
  56. unsigned long blk_max_low_pfn, blk_max_pfn;
  57. EXPORT_SYMBOL(blk_max_low_pfn);
  58. EXPORT_SYMBOL(blk_max_pfn);
  59. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  60. /* Amount of time in which a process may batch requests */
  61. #define BLK_BATCH_TIME (HZ/50UL)
  62. /* Number of requests a "batching" process may submit */
  63. #define BLK_BATCH_REQ 32
  64. /*
  65. * Return the threshold (number of used requests) at which the queue is
  66. * considered to be congested. It include a little hysteresis to keep the
  67. * context switch rate down.
  68. */
  69. static inline int queue_congestion_on_threshold(struct request_queue *q)
  70. {
  71. return q->nr_congestion_on;
  72. }
  73. /*
  74. * The threshold at which a queue is considered to be uncongested
  75. */
  76. static inline int queue_congestion_off_threshold(struct request_queue *q)
  77. {
  78. return q->nr_congestion_off;
  79. }
  80. static void blk_queue_congestion_threshold(struct request_queue *q)
  81. {
  82. int nr;
  83. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  84. if (nr > q->nr_requests)
  85. nr = q->nr_requests;
  86. q->nr_congestion_on = nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  88. if (nr < 1)
  89. nr = 1;
  90. q->nr_congestion_off = nr;
  91. }
  92. /**
  93. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  94. * @bdev: device
  95. *
  96. * Locates the passed device's request queue and returns the address of its
  97. * backing_dev_info
  98. *
  99. * Will return NULL if the request queue cannot be located.
  100. */
  101. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  102. {
  103. struct backing_dev_info *ret = NULL;
  104. request_queue_t *q = bdev_get_queue(bdev);
  105. if (q)
  106. ret = &q->backing_dev_info;
  107. return ret;
  108. }
  109. EXPORT_SYMBOL(blk_get_backing_dev_info);
  110. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  111. {
  112. q->activity_fn = fn;
  113. q->activity_data = data;
  114. }
  115. EXPORT_SYMBOL(blk_queue_activity_fn);
  116. /**
  117. * blk_queue_prep_rq - set a prepare_request function for queue
  118. * @q: queue
  119. * @pfn: prepare_request function
  120. *
  121. * It's possible for a queue to register a prepare_request callback which
  122. * is invoked before the request is handed to the request_fn. The goal of
  123. * the function is to prepare a request for I/O, it can be used to build a
  124. * cdb from the request data for instance.
  125. *
  126. */
  127. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  128. {
  129. q->prep_rq_fn = pfn;
  130. }
  131. EXPORT_SYMBOL(blk_queue_prep_rq);
  132. /**
  133. * blk_queue_merge_bvec - set a merge_bvec function for queue
  134. * @q: queue
  135. * @mbfn: merge_bvec_fn
  136. *
  137. * Usually queues have static limitations on the max sectors or segments that
  138. * we can put in a request. Stacking drivers may have some settings that
  139. * are dynamic, and thus we have to query the queue whether it is ok to
  140. * add a new bio_vec to a bio at a given offset or not. If the block device
  141. * has such limitations, it needs to register a merge_bvec_fn to control
  142. * the size of bio's sent to it. Note that a block device *must* allow a
  143. * single page to be added to an empty bio. The block device driver may want
  144. * to use the bio_split() function to deal with these bio's. By default
  145. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  146. * honored.
  147. */
  148. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  149. {
  150. q->merge_bvec_fn = mbfn;
  151. }
  152. EXPORT_SYMBOL(blk_queue_merge_bvec);
  153. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  154. {
  155. q->softirq_done_fn = fn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_softirq_done);
  158. /**
  159. * blk_queue_make_request - define an alternate make_request function for a device
  160. * @q: the request queue for the device to be affected
  161. * @mfn: the alternate make_request function
  162. *
  163. * Description:
  164. * The normal way for &struct bios to be passed to a device
  165. * driver is for them to be collected into requests on a request
  166. * queue, and then to allow the device driver to select requests
  167. * off that queue when it is ready. This works well for many block
  168. * devices. However some block devices (typically virtual devices
  169. * such as md or lvm) do not benefit from the processing on the
  170. * request queue, and are served best by having the requests passed
  171. * directly to them. This can be achieved by providing a function
  172. * to blk_queue_make_request().
  173. *
  174. * Caveat:
  175. * The driver that does this *must* be able to deal appropriately
  176. * with buffers in "highmemory". This can be accomplished by either calling
  177. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  178. * blk_queue_bounce() to create a buffer in normal memory.
  179. **/
  180. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  181. {
  182. /*
  183. * set defaults
  184. */
  185. q->nr_requests = BLKDEV_MAX_RQ;
  186. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  187. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  188. q->make_request_fn = mfn;
  189. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  190. q->backing_dev_info.state = 0;
  191. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  192. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  193. blk_queue_hardsect_size(q, 512);
  194. blk_queue_dma_alignment(q, 511);
  195. blk_queue_congestion_threshold(q);
  196. q->nr_batching = BLK_BATCH_REQ;
  197. q->unplug_thresh = 4; /* hmm */
  198. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  199. if (q->unplug_delay == 0)
  200. q->unplug_delay = 1;
  201. INIT_WORK(&q->unplug_work, blk_unplug_work);
  202. q->unplug_timer.function = blk_unplug_timeout;
  203. q->unplug_timer.data = (unsigned long)q;
  204. /*
  205. * by default assume old behaviour and bounce for any highmem page
  206. */
  207. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  208. blk_queue_activity_fn(q, NULL, NULL);
  209. }
  210. EXPORT_SYMBOL(blk_queue_make_request);
  211. static void rq_init(request_queue_t *q, struct request *rq)
  212. {
  213. INIT_LIST_HEAD(&rq->queuelist);
  214. INIT_LIST_HEAD(&rq->donelist);
  215. rq->errors = 0;
  216. rq->bio = rq->biotail = NULL;
  217. INIT_HLIST_NODE(&rq->hash);
  218. RB_CLEAR_NODE(&rq->rb_node);
  219. rq->ioprio = 0;
  220. rq->buffer = NULL;
  221. rq->ref_count = 1;
  222. rq->q = q;
  223. rq->special = NULL;
  224. rq->data_len = 0;
  225. rq->data = NULL;
  226. rq->nr_phys_segments = 0;
  227. rq->sense = NULL;
  228. rq->end_io = NULL;
  229. rq->end_io_data = NULL;
  230. rq->completion_data = NULL;
  231. }
  232. /**
  233. * blk_queue_ordered - does this queue support ordered writes
  234. * @q: the request queue
  235. * @ordered: one of QUEUE_ORDERED_*
  236. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  237. *
  238. * Description:
  239. * For journalled file systems, doing ordered writes on a commit
  240. * block instead of explicitly doing wait_on_buffer (which is bad
  241. * for performance) can be a big win. Block drivers supporting this
  242. * feature should call this function and indicate so.
  243. *
  244. **/
  245. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  246. prepare_flush_fn *prepare_flush_fn)
  247. {
  248. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  249. prepare_flush_fn == NULL) {
  250. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  251. return -EINVAL;
  252. }
  253. if (ordered != QUEUE_ORDERED_NONE &&
  254. ordered != QUEUE_ORDERED_DRAIN &&
  255. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  256. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  257. ordered != QUEUE_ORDERED_TAG &&
  258. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  259. ordered != QUEUE_ORDERED_TAG_FUA) {
  260. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  261. return -EINVAL;
  262. }
  263. q->ordered = ordered;
  264. q->next_ordered = ordered;
  265. q->prepare_flush_fn = prepare_flush_fn;
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(blk_queue_ordered);
  269. /**
  270. * blk_queue_issue_flush_fn - set function for issuing a flush
  271. * @q: the request queue
  272. * @iff: the function to be called issuing the flush
  273. *
  274. * Description:
  275. * If a driver supports issuing a flush command, the support is notified
  276. * to the block layer by defining it through this call.
  277. *
  278. **/
  279. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  280. {
  281. q->issue_flush_fn = iff;
  282. }
  283. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  284. /*
  285. * Cache flushing for ordered writes handling
  286. */
  287. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  288. {
  289. if (!q->ordseq)
  290. return 0;
  291. return 1 << ffz(q->ordseq);
  292. }
  293. unsigned blk_ordered_req_seq(struct request *rq)
  294. {
  295. request_queue_t *q = rq->q;
  296. BUG_ON(q->ordseq == 0);
  297. if (rq == &q->pre_flush_rq)
  298. return QUEUE_ORDSEQ_PREFLUSH;
  299. if (rq == &q->bar_rq)
  300. return QUEUE_ORDSEQ_BAR;
  301. if (rq == &q->post_flush_rq)
  302. return QUEUE_ORDSEQ_POSTFLUSH;
  303. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  304. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  305. return QUEUE_ORDSEQ_DRAIN;
  306. else
  307. return QUEUE_ORDSEQ_DONE;
  308. }
  309. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  310. {
  311. struct request *rq;
  312. int uptodate;
  313. if (error && !q->orderr)
  314. q->orderr = error;
  315. BUG_ON(q->ordseq & seq);
  316. q->ordseq |= seq;
  317. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  318. return;
  319. /*
  320. * Okay, sequence complete.
  321. */
  322. rq = q->orig_bar_rq;
  323. uptodate = q->orderr ? q->orderr : 1;
  324. q->ordseq = 0;
  325. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  326. end_that_request_last(rq, uptodate);
  327. }
  328. static void pre_flush_end_io(struct request *rq, int error)
  329. {
  330. elv_completed_request(rq->q, rq);
  331. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  332. }
  333. static void bar_end_io(struct request *rq, int error)
  334. {
  335. elv_completed_request(rq->q, rq);
  336. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  337. }
  338. static void post_flush_end_io(struct request *rq, int error)
  339. {
  340. elv_completed_request(rq->q, rq);
  341. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  342. }
  343. static void queue_flush(request_queue_t *q, unsigned which)
  344. {
  345. struct request *rq;
  346. rq_end_io_fn *end_io;
  347. if (which == QUEUE_ORDERED_PREFLUSH) {
  348. rq = &q->pre_flush_rq;
  349. end_io = pre_flush_end_io;
  350. } else {
  351. rq = &q->post_flush_rq;
  352. end_io = post_flush_end_io;
  353. }
  354. rq->cmd_flags = REQ_HARDBARRIER;
  355. rq_init(q, rq);
  356. rq->elevator_private = NULL;
  357. rq->elevator_private2 = NULL;
  358. rq->rq_disk = q->bar_rq.rq_disk;
  359. rq->end_io = end_io;
  360. q->prepare_flush_fn(q, rq);
  361. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  362. }
  363. static inline struct request *start_ordered(request_queue_t *q,
  364. struct request *rq)
  365. {
  366. q->bi_size = 0;
  367. q->orderr = 0;
  368. q->ordered = q->next_ordered;
  369. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  370. /*
  371. * Prep proxy barrier request.
  372. */
  373. blkdev_dequeue_request(rq);
  374. q->orig_bar_rq = rq;
  375. rq = &q->bar_rq;
  376. rq->cmd_flags = 0;
  377. rq_init(q, rq);
  378. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  379. rq->cmd_flags |= REQ_RW;
  380. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  381. rq->elevator_private = NULL;
  382. rq->elevator_private2 = NULL;
  383. init_request_from_bio(rq, q->orig_bar_rq->bio);
  384. rq->end_io = bar_end_io;
  385. /*
  386. * Queue ordered sequence. As we stack them at the head, we
  387. * need to queue in reverse order. Note that we rely on that
  388. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  389. * request gets inbetween ordered sequence.
  390. */
  391. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  392. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  393. else
  394. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  395. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  396. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  397. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  398. rq = &q->pre_flush_rq;
  399. } else
  400. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  401. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  402. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  403. else
  404. rq = NULL;
  405. return rq;
  406. }
  407. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  408. {
  409. struct request *rq = *rqp;
  410. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  411. if (!q->ordseq) {
  412. if (!is_barrier)
  413. return 1;
  414. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  415. *rqp = start_ordered(q, rq);
  416. return 1;
  417. } else {
  418. /*
  419. * This can happen when the queue switches to
  420. * ORDERED_NONE while this request is on it.
  421. */
  422. blkdev_dequeue_request(rq);
  423. end_that_request_first(rq, -EOPNOTSUPP,
  424. rq->hard_nr_sectors);
  425. end_that_request_last(rq, -EOPNOTSUPP);
  426. *rqp = NULL;
  427. return 0;
  428. }
  429. }
  430. /*
  431. * Ordered sequence in progress
  432. */
  433. /* Special requests are not subject to ordering rules. */
  434. if (!blk_fs_request(rq) &&
  435. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  436. return 1;
  437. if (q->ordered & QUEUE_ORDERED_TAG) {
  438. /* Ordered by tag. Blocking the next barrier is enough. */
  439. if (is_barrier && rq != &q->bar_rq)
  440. *rqp = NULL;
  441. } else {
  442. /* Ordered by draining. Wait for turn. */
  443. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  444. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  445. *rqp = NULL;
  446. }
  447. return 1;
  448. }
  449. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  450. {
  451. request_queue_t *q = bio->bi_private;
  452. struct bio_vec *bvec;
  453. int i;
  454. /*
  455. * This is dry run, restore bio_sector and size. We'll finish
  456. * this request again with the original bi_end_io after an
  457. * error occurs or post flush is complete.
  458. */
  459. q->bi_size += bytes;
  460. if (bio->bi_size)
  461. return 1;
  462. /* Rewind bvec's */
  463. bio->bi_idx = 0;
  464. bio_for_each_segment(bvec, bio, i) {
  465. bvec->bv_len += bvec->bv_offset;
  466. bvec->bv_offset = 0;
  467. }
  468. /* Reset bio */
  469. set_bit(BIO_UPTODATE, &bio->bi_flags);
  470. bio->bi_size = q->bi_size;
  471. bio->bi_sector -= (q->bi_size >> 9);
  472. q->bi_size = 0;
  473. return 0;
  474. }
  475. static int ordered_bio_endio(struct request *rq, struct bio *bio,
  476. unsigned int nbytes, int error)
  477. {
  478. request_queue_t *q = rq->q;
  479. bio_end_io_t *endio;
  480. void *private;
  481. if (&q->bar_rq != rq)
  482. return 0;
  483. /*
  484. * Okay, this is the barrier request in progress, dry finish it.
  485. */
  486. if (error && !q->orderr)
  487. q->orderr = error;
  488. endio = bio->bi_end_io;
  489. private = bio->bi_private;
  490. bio->bi_end_io = flush_dry_bio_endio;
  491. bio->bi_private = q;
  492. bio_endio(bio, nbytes, error);
  493. bio->bi_end_io = endio;
  494. bio->bi_private = private;
  495. return 1;
  496. }
  497. /**
  498. * blk_queue_bounce_limit - set bounce buffer limit for queue
  499. * @q: the request queue for the device
  500. * @dma_addr: bus address limit
  501. *
  502. * Description:
  503. * Different hardware can have different requirements as to what pages
  504. * it can do I/O directly to. A low level driver can call
  505. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  506. * buffers for doing I/O to pages residing above @page.
  507. **/
  508. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  509. {
  510. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  511. int dma = 0;
  512. q->bounce_gfp = GFP_NOIO;
  513. #if BITS_PER_LONG == 64
  514. /* Assume anything <= 4GB can be handled by IOMMU.
  515. Actually some IOMMUs can handle everything, but I don't
  516. know of a way to test this here. */
  517. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  518. dma = 1;
  519. q->bounce_pfn = max_low_pfn;
  520. #else
  521. if (bounce_pfn < blk_max_low_pfn)
  522. dma = 1;
  523. q->bounce_pfn = bounce_pfn;
  524. #endif
  525. if (dma) {
  526. init_emergency_isa_pool();
  527. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  528. q->bounce_pfn = bounce_pfn;
  529. }
  530. }
  531. EXPORT_SYMBOL(blk_queue_bounce_limit);
  532. /**
  533. * blk_queue_max_sectors - set max sectors for a request for this queue
  534. * @q: the request queue for the device
  535. * @max_sectors: max sectors in the usual 512b unit
  536. *
  537. * Description:
  538. * Enables a low level driver to set an upper limit on the size of
  539. * received requests.
  540. **/
  541. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  542. {
  543. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  544. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  545. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  546. }
  547. if (BLK_DEF_MAX_SECTORS > max_sectors)
  548. q->max_hw_sectors = q->max_sectors = max_sectors;
  549. else {
  550. q->max_sectors = BLK_DEF_MAX_SECTORS;
  551. q->max_hw_sectors = max_sectors;
  552. }
  553. }
  554. EXPORT_SYMBOL(blk_queue_max_sectors);
  555. /**
  556. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  557. * @q: the request queue for the device
  558. * @max_segments: max number of segments
  559. *
  560. * Description:
  561. * Enables a low level driver to set an upper limit on the number of
  562. * physical data segments in a request. This would be the largest sized
  563. * scatter list the driver could handle.
  564. **/
  565. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  566. {
  567. if (!max_segments) {
  568. max_segments = 1;
  569. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  570. }
  571. q->max_phys_segments = max_segments;
  572. }
  573. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  574. /**
  575. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  576. * @q: the request queue for the device
  577. * @max_segments: max number of segments
  578. *
  579. * Description:
  580. * Enables a low level driver to set an upper limit on the number of
  581. * hw data segments in a request. This would be the largest number of
  582. * address/length pairs the host adapter can actually give as once
  583. * to the device.
  584. **/
  585. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  586. {
  587. if (!max_segments) {
  588. max_segments = 1;
  589. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  590. }
  591. q->max_hw_segments = max_segments;
  592. }
  593. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  594. /**
  595. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  596. * @q: the request queue for the device
  597. * @max_size: max size of segment in bytes
  598. *
  599. * Description:
  600. * Enables a low level driver to set an upper limit on the size of a
  601. * coalesced segment
  602. **/
  603. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  604. {
  605. if (max_size < PAGE_CACHE_SIZE) {
  606. max_size = PAGE_CACHE_SIZE;
  607. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  608. }
  609. q->max_segment_size = max_size;
  610. }
  611. EXPORT_SYMBOL(blk_queue_max_segment_size);
  612. /**
  613. * blk_queue_hardsect_size - set hardware sector size for the queue
  614. * @q: the request queue for the device
  615. * @size: the hardware sector size, in bytes
  616. *
  617. * Description:
  618. * This should typically be set to the lowest possible sector size
  619. * that the hardware can operate on (possible without reverting to
  620. * even internal read-modify-write operations). Usually the default
  621. * of 512 covers most hardware.
  622. **/
  623. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  624. {
  625. q->hardsect_size = size;
  626. }
  627. EXPORT_SYMBOL(blk_queue_hardsect_size);
  628. /*
  629. * Returns the minimum that is _not_ zero, unless both are zero.
  630. */
  631. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  632. /**
  633. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  634. * @t: the stacking driver (top)
  635. * @b: the underlying device (bottom)
  636. **/
  637. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  638. {
  639. /* zero is "infinity" */
  640. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  641. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  642. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  643. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  644. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  645. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  646. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  647. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  648. }
  649. EXPORT_SYMBOL(blk_queue_stack_limits);
  650. /**
  651. * blk_queue_segment_boundary - set boundary rules for segment merging
  652. * @q: the request queue for the device
  653. * @mask: the memory boundary mask
  654. **/
  655. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  656. {
  657. if (mask < PAGE_CACHE_SIZE - 1) {
  658. mask = PAGE_CACHE_SIZE - 1;
  659. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  660. }
  661. q->seg_boundary_mask = mask;
  662. }
  663. EXPORT_SYMBOL(blk_queue_segment_boundary);
  664. /**
  665. * blk_queue_dma_alignment - set dma length and memory alignment
  666. * @q: the request queue for the device
  667. * @mask: alignment mask
  668. *
  669. * description:
  670. * set required memory and length aligment for direct dma transactions.
  671. * this is used when buiding direct io requests for the queue.
  672. *
  673. **/
  674. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  675. {
  676. q->dma_alignment = mask;
  677. }
  678. EXPORT_SYMBOL(blk_queue_dma_alignment);
  679. /**
  680. * blk_queue_find_tag - find a request by its tag and queue
  681. * @q: The request queue for the device
  682. * @tag: The tag of the request
  683. *
  684. * Notes:
  685. * Should be used when a device returns a tag and you want to match
  686. * it with a request.
  687. *
  688. * no locks need be held.
  689. **/
  690. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  691. {
  692. return blk_map_queue_find_tag(q->queue_tags, tag);
  693. }
  694. EXPORT_SYMBOL(blk_queue_find_tag);
  695. /**
  696. * __blk_free_tags - release a given set of tag maintenance info
  697. * @bqt: the tag map to free
  698. *
  699. * Tries to free the specified @bqt@. Returns true if it was
  700. * actually freed and false if there are still references using it
  701. */
  702. static int __blk_free_tags(struct blk_queue_tag *bqt)
  703. {
  704. int retval;
  705. retval = atomic_dec_and_test(&bqt->refcnt);
  706. if (retval) {
  707. BUG_ON(bqt->busy);
  708. BUG_ON(!list_empty(&bqt->busy_list));
  709. kfree(bqt->tag_index);
  710. bqt->tag_index = NULL;
  711. kfree(bqt->tag_map);
  712. bqt->tag_map = NULL;
  713. kfree(bqt);
  714. }
  715. return retval;
  716. }
  717. /**
  718. * __blk_queue_free_tags - release tag maintenance info
  719. * @q: the request queue for the device
  720. *
  721. * Notes:
  722. * blk_cleanup_queue() will take care of calling this function, if tagging
  723. * has been used. So there's no need to call this directly.
  724. **/
  725. static void __blk_queue_free_tags(request_queue_t *q)
  726. {
  727. struct blk_queue_tag *bqt = q->queue_tags;
  728. if (!bqt)
  729. return;
  730. __blk_free_tags(bqt);
  731. q->queue_tags = NULL;
  732. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  733. }
  734. /**
  735. * blk_free_tags - release a given set of tag maintenance info
  736. * @bqt: the tag map to free
  737. *
  738. * For externally managed @bqt@ frees the map. Callers of this
  739. * function must guarantee to have released all the queues that
  740. * might have been using this tag map.
  741. */
  742. void blk_free_tags(struct blk_queue_tag *bqt)
  743. {
  744. if (unlikely(!__blk_free_tags(bqt)))
  745. BUG();
  746. }
  747. EXPORT_SYMBOL(blk_free_tags);
  748. /**
  749. * blk_queue_free_tags - release tag maintenance info
  750. * @q: the request queue for the device
  751. *
  752. * Notes:
  753. * This is used to disabled tagged queuing to a device, yet leave
  754. * queue in function.
  755. **/
  756. void blk_queue_free_tags(request_queue_t *q)
  757. {
  758. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  759. }
  760. EXPORT_SYMBOL(blk_queue_free_tags);
  761. static int
  762. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  763. {
  764. struct request **tag_index;
  765. unsigned long *tag_map;
  766. int nr_ulongs;
  767. if (q && depth > q->nr_requests * 2) {
  768. depth = q->nr_requests * 2;
  769. printk(KERN_ERR "%s: adjusted depth to %d\n",
  770. __FUNCTION__, depth);
  771. }
  772. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  773. if (!tag_index)
  774. goto fail;
  775. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  776. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  777. if (!tag_map)
  778. goto fail;
  779. tags->real_max_depth = depth;
  780. tags->max_depth = depth;
  781. tags->tag_index = tag_index;
  782. tags->tag_map = tag_map;
  783. return 0;
  784. fail:
  785. kfree(tag_index);
  786. return -ENOMEM;
  787. }
  788. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  789. int depth)
  790. {
  791. struct blk_queue_tag *tags;
  792. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  793. if (!tags)
  794. goto fail;
  795. if (init_tag_map(q, tags, depth))
  796. goto fail;
  797. INIT_LIST_HEAD(&tags->busy_list);
  798. tags->busy = 0;
  799. atomic_set(&tags->refcnt, 1);
  800. return tags;
  801. fail:
  802. kfree(tags);
  803. return NULL;
  804. }
  805. /**
  806. * blk_init_tags - initialize the tag info for an external tag map
  807. * @depth: the maximum queue depth supported
  808. * @tags: the tag to use
  809. **/
  810. struct blk_queue_tag *blk_init_tags(int depth)
  811. {
  812. return __blk_queue_init_tags(NULL, depth);
  813. }
  814. EXPORT_SYMBOL(blk_init_tags);
  815. /**
  816. * blk_queue_init_tags - initialize the queue tag info
  817. * @q: the request queue for the device
  818. * @depth: the maximum queue depth supported
  819. * @tags: the tag to use
  820. **/
  821. int blk_queue_init_tags(request_queue_t *q, int depth,
  822. struct blk_queue_tag *tags)
  823. {
  824. int rc;
  825. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  826. if (!tags && !q->queue_tags) {
  827. tags = __blk_queue_init_tags(q, depth);
  828. if (!tags)
  829. goto fail;
  830. } else if (q->queue_tags) {
  831. if ((rc = blk_queue_resize_tags(q, depth)))
  832. return rc;
  833. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  834. return 0;
  835. } else
  836. atomic_inc(&tags->refcnt);
  837. /*
  838. * assign it, all done
  839. */
  840. q->queue_tags = tags;
  841. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  842. return 0;
  843. fail:
  844. kfree(tags);
  845. return -ENOMEM;
  846. }
  847. EXPORT_SYMBOL(blk_queue_init_tags);
  848. /**
  849. * blk_queue_resize_tags - change the queueing depth
  850. * @q: the request queue for the device
  851. * @new_depth: the new max command queueing depth
  852. *
  853. * Notes:
  854. * Must be called with the queue lock held.
  855. **/
  856. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  857. {
  858. struct blk_queue_tag *bqt = q->queue_tags;
  859. struct request **tag_index;
  860. unsigned long *tag_map;
  861. int max_depth, nr_ulongs;
  862. if (!bqt)
  863. return -ENXIO;
  864. /*
  865. * if we already have large enough real_max_depth. just
  866. * adjust max_depth. *NOTE* as requests with tag value
  867. * between new_depth and real_max_depth can be in-flight, tag
  868. * map can not be shrunk blindly here.
  869. */
  870. if (new_depth <= bqt->real_max_depth) {
  871. bqt->max_depth = new_depth;
  872. return 0;
  873. }
  874. /*
  875. * Currently cannot replace a shared tag map with a new
  876. * one, so error out if this is the case
  877. */
  878. if (atomic_read(&bqt->refcnt) != 1)
  879. return -EBUSY;
  880. /*
  881. * save the old state info, so we can copy it back
  882. */
  883. tag_index = bqt->tag_index;
  884. tag_map = bqt->tag_map;
  885. max_depth = bqt->real_max_depth;
  886. if (init_tag_map(q, bqt, new_depth))
  887. return -ENOMEM;
  888. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  889. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  890. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  891. kfree(tag_index);
  892. kfree(tag_map);
  893. return 0;
  894. }
  895. EXPORT_SYMBOL(blk_queue_resize_tags);
  896. /**
  897. * blk_queue_end_tag - end tag operations for a request
  898. * @q: the request queue for the device
  899. * @rq: the request that has completed
  900. *
  901. * Description:
  902. * Typically called when end_that_request_first() returns 0, meaning
  903. * all transfers have been done for a request. It's important to call
  904. * this function before end_that_request_last(), as that will put the
  905. * request back on the free list thus corrupting the internal tag list.
  906. *
  907. * Notes:
  908. * queue lock must be held.
  909. **/
  910. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  911. {
  912. struct blk_queue_tag *bqt = q->queue_tags;
  913. int tag = rq->tag;
  914. BUG_ON(tag == -1);
  915. if (unlikely(tag >= bqt->real_max_depth))
  916. /*
  917. * This can happen after tag depth has been reduced.
  918. * FIXME: how about a warning or info message here?
  919. */
  920. return;
  921. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  922. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  923. __FUNCTION__, tag);
  924. return;
  925. }
  926. list_del_init(&rq->queuelist);
  927. rq->cmd_flags &= ~REQ_QUEUED;
  928. rq->tag = -1;
  929. if (unlikely(bqt->tag_index[tag] == NULL))
  930. printk(KERN_ERR "%s: tag %d is missing\n",
  931. __FUNCTION__, tag);
  932. bqt->tag_index[tag] = NULL;
  933. bqt->busy--;
  934. }
  935. EXPORT_SYMBOL(blk_queue_end_tag);
  936. /**
  937. * blk_queue_start_tag - find a free tag and assign it
  938. * @q: the request queue for the device
  939. * @rq: the block request that needs tagging
  940. *
  941. * Description:
  942. * This can either be used as a stand-alone helper, or possibly be
  943. * assigned as the queue &prep_rq_fn (in which case &struct request
  944. * automagically gets a tag assigned). Note that this function
  945. * assumes that any type of request can be queued! if this is not
  946. * true for your device, you must check the request type before
  947. * calling this function. The request will also be removed from
  948. * the request queue, so it's the drivers responsibility to readd
  949. * it if it should need to be restarted for some reason.
  950. *
  951. * Notes:
  952. * queue lock must be held.
  953. **/
  954. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  955. {
  956. struct blk_queue_tag *bqt = q->queue_tags;
  957. int tag;
  958. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  959. printk(KERN_ERR
  960. "%s: request %p for device [%s] already tagged %d",
  961. __FUNCTION__, rq,
  962. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  963. BUG();
  964. }
  965. /*
  966. * Protect against shared tag maps, as we may not have exclusive
  967. * access to the tag map.
  968. */
  969. do {
  970. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  971. if (tag >= bqt->max_depth)
  972. return 1;
  973. } while (test_and_set_bit(tag, bqt->tag_map));
  974. rq->cmd_flags |= REQ_QUEUED;
  975. rq->tag = tag;
  976. bqt->tag_index[tag] = rq;
  977. blkdev_dequeue_request(rq);
  978. list_add(&rq->queuelist, &bqt->busy_list);
  979. bqt->busy++;
  980. return 0;
  981. }
  982. EXPORT_SYMBOL(blk_queue_start_tag);
  983. /**
  984. * blk_queue_invalidate_tags - invalidate all pending tags
  985. * @q: the request queue for the device
  986. *
  987. * Description:
  988. * Hardware conditions may dictate a need to stop all pending requests.
  989. * In this case, we will safely clear the block side of the tag queue and
  990. * readd all requests to the request queue in the right order.
  991. *
  992. * Notes:
  993. * queue lock must be held.
  994. **/
  995. void blk_queue_invalidate_tags(request_queue_t *q)
  996. {
  997. struct blk_queue_tag *bqt = q->queue_tags;
  998. struct list_head *tmp, *n;
  999. struct request *rq;
  1000. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1001. rq = list_entry_rq(tmp);
  1002. if (rq->tag == -1) {
  1003. printk(KERN_ERR
  1004. "%s: bad tag found on list\n", __FUNCTION__);
  1005. list_del_init(&rq->queuelist);
  1006. rq->cmd_flags &= ~REQ_QUEUED;
  1007. } else
  1008. blk_queue_end_tag(q, rq);
  1009. rq->cmd_flags &= ~REQ_STARTED;
  1010. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1011. }
  1012. }
  1013. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1014. void blk_dump_rq_flags(struct request *rq, char *msg)
  1015. {
  1016. int bit;
  1017. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1018. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1019. rq->cmd_flags);
  1020. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1021. rq->nr_sectors,
  1022. rq->current_nr_sectors);
  1023. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1024. if (blk_pc_request(rq)) {
  1025. printk("cdb: ");
  1026. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1027. printk("%02x ", rq->cmd[bit]);
  1028. printk("\n");
  1029. }
  1030. }
  1031. EXPORT_SYMBOL(blk_dump_rq_flags);
  1032. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1033. {
  1034. struct bio_vec *bv, *bvprv = NULL;
  1035. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1036. int high, highprv = 1;
  1037. if (unlikely(!bio->bi_io_vec))
  1038. return;
  1039. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1040. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1041. bio_for_each_segment(bv, bio, i) {
  1042. /*
  1043. * the trick here is making sure that a high page is never
  1044. * considered part of another segment, since that might
  1045. * change with the bounce page.
  1046. */
  1047. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1048. if (high || highprv)
  1049. goto new_hw_segment;
  1050. if (cluster) {
  1051. if (seg_size + bv->bv_len > q->max_segment_size)
  1052. goto new_segment;
  1053. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1054. goto new_segment;
  1055. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1056. goto new_segment;
  1057. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1058. goto new_hw_segment;
  1059. seg_size += bv->bv_len;
  1060. hw_seg_size += bv->bv_len;
  1061. bvprv = bv;
  1062. continue;
  1063. }
  1064. new_segment:
  1065. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1066. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1067. hw_seg_size += bv->bv_len;
  1068. } else {
  1069. new_hw_segment:
  1070. if (hw_seg_size > bio->bi_hw_front_size)
  1071. bio->bi_hw_front_size = hw_seg_size;
  1072. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1073. nr_hw_segs++;
  1074. }
  1075. nr_phys_segs++;
  1076. bvprv = bv;
  1077. seg_size = bv->bv_len;
  1078. highprv = high;
  1079. }
  1080. if (hw_seg_size > bio->bi_hw_back_size)
  1081. bio->bi_hw_back_size = hw_seg_size;
  1082. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1083. bio->bi_hw_front_size = hw_seg_size;
  1084. bio->bi_phys_segments = nr_phys_segs;
  1085. bio->bi_hw_segments = nr_hw_segs;
  1086. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1087. }
  1088. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1089. struct bio *nxt)
  1090. {
  1091. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1092. return 0;
  1093. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1094. return 0;
  1095. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1096. return 0;
  1097. /*
  1098. * bio and nxt are contigous in memory, check if the queue allows
  1099. * these two to be merged into one
  1100. */
  1101. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1102. return 1;
  1103. return 0;
  1104. }
  1105. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1106. struct bio *nxt)
  1107. {
  1108. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1109. blk_recount_segments(q, bio);
  1110. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1111. blk_recount_segments(q, nxt);
  1112. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1113. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1114. return 0;
  1115. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1116. return 0;
  1117. return 1;
  1118. }
  1119. /*
  1120. * map a request to scatterlist, return number of sg entries setup. Caller
  1121. * must make sure sg can hold rq->nr_phys_segments entries
  1122. */
  1123. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1124. {
  1125. struct bio_vec *bvec, *bvprv;
  1126. struct bio *bio;
  1127. int nsegs, i, cluster;
  1128. nsegs = 0;
  1129. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1130. /*
  1131. * for each bio in rq
  1132. */
  1133. bvprv = NULL;
  1134. rq_for_each_bio(bio, rq) {
  1135. /*
  1136. * for each segment in bio
  1137. */
  1138. bio_for_each_segment(bvec, bio, i) {
  1139. int nbytes = bvec->bv_len;
  1140. if (bvprv && cluster) {
  1141. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1142. goto new_segment;
  1143. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1144. goto new_segment;
  1145. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1146. goto new_segment;
  1147. sg[nsegs - 1].length += nbytes;
  1148. } else {
  1149. new_segment:
  1150. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1151. sg[nsegs].page = bvec->bv_page;
  1152. sg[nsegs].length = nbytes;
  1153. sg[nsegs].offset = bvec->bv_offset;
  1154. nsegs++;
  1155. }
  1156. bvprv = bvec;
  1157. } /* segments in bio */
  1158. } /* bios in rq */
  1159. return nsegs;
  1160. }
  1161. EXPORT_SYMBOL(blk_rq_map_sg);
  1162. /*
  1163. * the standard queue merge functions, can be overridden with device
  1164. * specific ones if so desired
  1165. */
  1166. static inline int ll_new_mergeable(request_queue_t *q,
  1167. struct request *req,
  1168. struct bio *bio)
  1169. {
  1170. int nr_phys_segs = bio_phys_segments(q, bio);
  1171. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1172. req->cmd_flags |= REQ_NOMERGE;
  1173. if (req == q->last_merge)
  1174. q->last_merge = NULL;
  1175. return 0;
  1176. }
  1177. /*
  1178. * A hw segment is just getting larger, bump just the phys
  1179. * counter.
  1180. */
  1181. req->nr_phys_segments += nr_phys_segs;
  1182. return 1;
  1183. }
  1184. static inline int ll_new_hw_segment(request_queue_t *q,
  1185. struct request *req,
  1186. struct bio *bio)
  1187. {
  1188. int nr_hw_segs = bio_hw_segments(q, bio);
  1189. int nr_phys_segs = bio_phys_segments(q, bio);
  1190. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1191. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1192. req->cmd_flags |= REQ_NOMERGE;
  1193. if (req == q->last_merge)
  1194. q->last_merge = NULL;
  1195. return 0;
  1196. }
  1197. /*
  1198. * This will form the start of a new hw segment. Bump both
  1199. * counters.
  1200. */
  1201. req->nr_hw_segments += nr_hw_segs;
  1202. req->nr_phys_segments += nr_phys_segs;
  1203. return 1;
  1204. }
  1205. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1206. struct bio *bio)
  1207. {
  1208. unsigned short max_sectors;
  1209. int len;
  1210. if (unlikely(blk_pc_request(req)))
  1211. max_sectors = q->max_hw_sectors;
  1212. else
  1213. max_sectors = q->max_sectors;
  1214. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1215. req->cmd_flags |= REQ_NOMERGE;
  1216. if (req == q->last_merge)
  1217. q->last_merge = NULL;
  1218. return 0;
  1219. }
  1220. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1221. blk_recount_segments(q, req->biotail);
  1222. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1223. blk_recount_segments(q, bio);
  1224. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1225. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1226. !BIOVEC_VIRT_OVERSIZE(len)) {
  1227. int mergeable = ll_new_mergeable(q, req, bio);
  1228. if (mergeable) {
  1229. if (req->nr_hw_segments == 1)
  1230. req->bio->bi_hw_front_size = len;
  1231. if (bio->bi_hw_segments == 1)
  1232. bio->bi_hw_back_size = len;
  1233. }
  1234. return mergeable;
  1235. }
  1236. return ll_new_hw_segment(q, req, bio);
  1237. }
  1238. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1239. struct bio *bio)
  1240. {
  1241. unsigned short max_sectors;
  1242. int len;
  1243. if (unlikely(blk_pc_request(req)))
  1244. max_sectors = q->max_hw_sectors;
  1245. else
  1246. max_sectors = q->max_sectors;
  1247. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1248. req->cmd_flags |= REQ_NOMERGE;
  1249. if (req == q->last_merge)
  1250. q->last_merge = NULL;
  1251. return 0;
  1252. }
  1253. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1254. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1255. blk_recount_segments(q, bio);
  1256. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1257. blk_recount_segments(q, req->bio);
  1258. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1259. !BIOVEC_VIRT_OVERSIZE(len)) {
  1260. int mergeable = ll_new_mergeable(q, req, bio);
  1261. if (mergeable) {
  1262. if (bio->bi_hw_segments == 1)
  1263. bio->bi_hw_front_size = len;
  1264. if (req->nr_hw_segments == 1)
  1265. req->biotail->bi_hw_back_size = len;
  1266. }
  1267. return mergeable;
  1268. }
  1269. return ll_new_hw_segment(q, req, bio);
  1270. }
  1271. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1272. struct request *next)
  1273. {
  1274. int total_phys_segments;
  1275. int total_hw_segments;
  1276. /*
  1277. * First check if the either of the requests are re-queued
  1278. * requests. Can't merge them if they are.
  1279. */
  1280. if (req->special || next->special)
  1281. return 0;
  1282. /*
  1283. * Will it become too large?
  1284. */
  1285. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1286. return 0;
  1287. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1288. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1289. total_phys_segments--;
  1290. if (total_phys_segments > q->max_phys_segments)
  1291. return 0;
  1292. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1293. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1294. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1295. /*
  1296. * propagate the combined length to the end of the requests
  1297. */
  1298. if (req->nr_hw_segments == 1)
  1299. req->bio->bi_hw_front_size = len;
  1300. if (next->nr_hw_segments == 1)
  1301. next->biotail->bi_hw_back_size = len;
  1302. total_hw_segments--;
  1303. }
  1304. if (total_hw_segments > q->max_hw_segments)
  1305. return 0;
  1306. /* Merge is OK... */
  1307. req->nr_phys_segments = total_phys_segments;
  1308. req->nr_hw_segments = total_hw_segments;
  1309. return 1;
  1310. }
  1311. /*
  1312. * "plug" the device if there are no outstanding requests: this will
  1313. * force the transfer to start only after we have put all the requests
  1314. * on the list.
  1315. *
  1316. * This is called with interrupts off and no requests on the queue and
  1317. * with the queue lock held.
  1318. */
  1319. void blk_plug_device(request_queue_t *q)
  1320. {
  1321. WARN_ON(!irqs_disabled());
  1322. /*
  1323. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1324. * which will restart the queueing
  1325. */
  1326. if (blk_queue_stopped(q))
  1327. return;
  1328. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1329. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1330. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1331. }
  1332. }
  1333. EXPORT_SYMBOL(blk_plug_device);
  1334. /*
  1335. * remove the queue from the plugged list, if present. called with
  1336. * queue lock held and interrupts disabled.
  1337. */
  1338. int blk_remove_plug(request_queue_t *q)
  1339. {
  1340. WARN_ON(!irqs_disabled());
  1341. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1342. return 0;
  1343. del_timer(&q->unplug_timer);
  1344. return 1;
  1345. }
  1346. EXPORT_SYMBOL(blk_remove_plug);
  1347. /*
  1348. * remove the plug and let it rip..
  1349. */
  1350. void __generic_unplug_device(request_queue_t *q)
  1351. {
  1352. if (unlikely(blk_queue_stopped(q)))
  1353. return;
  1354. if (!blk_remove_plug(q))
  1355. return;
  1356. q->request_fn(q);
  1357. }
  1358. EXPORT_SYMBOL(__generic_unplug_device);
  1359. /**
  1360. * generic_unplug_device - fire a request queue
  1361. * @q: The &request_queue_t in question
  1362. *
  1363. * Description:
  1364. * Linux uses plugging to build bigger requests queues before letting
  1365. * the device have at them. If a queue is plugged, the I/O scheduler
  1366. * is still adding and merging requests on the queue. Once the queue
  1367. * gets unplugged, the request_fn defined for the queue is invoked and
  1368. * transfers started.
  1369. **/
  1370. void generic_unplug_device(request_queue_t *q)
  1371. {
  1372. spin_lock_irq(q->queue_lock);
  1373. __generic_unplug_device(q);
  1374. spin_unlock_irq(q->queue_lock);
  1375. }
  1376. EXPORT_SYMBOL(generic_unplug_device);
  1377. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1378. struct page *page)
  1379. {
  1380. request_queue_t *q = bdi->unplug_io_data;
  1381. /*
  1382. * devices don't necessarily have an ->unplug_fn defined
  1383. */
  1384. if (q->unplug_fn) {
  1385. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1386. q->rq.count[READ] + q->rq.count[WRITE]);
  1387. q->unplug_fn(q);
  1388. }
  1389. }
  1390. static void blk_unplug_work(struct work_struct *work)
  1391. {
  1392. request_queue_t *q = container_of(work, request_queue_t, unplug_work);
  1393. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1394. q->rq.count[READ] + q->rq.count[WRITE]);
  1395. q->unplug_fn(q);
  1396. }
  1397. static void blk_unplug_timeout(unsigned long data)
  1398. {
  1399. request_queue_t *q = (request_queue_t *)data;
  1400. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1401. q->rq.count[READ] + q->rq.count[WRITE]);
  1402. kblockd_schedule_work(&q->unplug_work);
  1403. }
  1404. /**
  1405. * blk_start_queue - restart a previously stopped queue
  1406. * @q: The &request_queue_t in question
  1407. *
  1408. * Description:
  1409. * blk_start_queue() will clear the stop flag on the queue, and call
  1410. * the request_fn for the queue if it was in a stopped state when
  1411. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1412. **/
  1413. void blk_start_queue(request_queue_t *q)
  1414. {
  1415. WARN_ON(!irqs_disabled());
  1416. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1417. /*
  1418. * one level of recursion is ok and is much faster than kicking
  1419. * the unplug handling
  1420. */
  1421. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1422. q->request_fn(q);
  1423. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1424. } else {
  1425. blk_plug_device(q);
  1426. kblockd_schedule_work(&q->unplug_work);
  1427. }
  1428. }
  1429. EXPORT_SYMBOL(blk_start_queue);
  1430. /**
  1431. * blk_stop_queue - stop a queue
  1432. * @q: The &request_queue_t in question
  1433. *
  1434. * Description:
  1435. * The Linux block layer assumes that a block driver will consume all
  1436. * entries on the request queue when the request_fn strategy is called.
  1437. * Often this will not happen, because of hardware limitations (queue
  1438. * depth settings). If a device driver gets a 'queue full' response,
  1439. * or if it simply chooses not to queue more I/O at one point, it can
  1440. * call this function to prevent the request_fn from being called until
  1441. * the driver has signalled it's ready to go again. This happens by calling
  1442. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1443. **/
  1444. void blk_stop_queue(request_queue_t *q)
  1445. {
  1446. blk_remove_plug(q);
  1447. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1448. }
  1449. EXPORT_SYMBOL(blk_stop_queue);
  1450. /**
  1451. * blk_sync_queue - cancel any pending callbacks on a queue
  1452. * @q: the queue
  1453. *
  1454. * Description:
  1455. * The block layer may perform asynchronous callback activity
  1456. * on a queue, such as calling the unplug function after a timeout.
  1457. * A block device may call blk_sync_queue to ensure that any
  1458. * such activity is cancelled, thus allowing it to release resources
  1459. * the the callbacks might use. The caller must already have made sure
  1460. * that its ->make_request_fn will not re-add plugging prior to calling
  1461. * this function.
  1462. *
  1463. */
  1464. void blk_sync_queue(struct request_queue *q)
  1465. {
  1466. del_timer_sync(&q->unplug_timer);
  1467. kblockd_flush();
  1468. }
  1469. EXPORT_SYMBOL(blk_sync_queue);
  1470. /**
  1471. * blk_run_queue - run a single device queue
  1472. * @q: The queue to run
  1473. */
  1474. void blk_run_queue(struct request_queue *q)
  1475. {
  1476. unsigned long flags;
  1477. spin_lock_irqsave(q->queue_lock, flags);
  1478. blk_remove_plug(q);
  1479. /*
  1480. * Only recurse once to avoid overrunning the stack, let the unplug
  1481. * handling reinvoke the handler shortly if we already got there.
  1482. */
  1483. if (!elv_queue_empty(q)) {
  1484. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1485. q->request_fn(q);
  1486. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1487. } else {
  1488. blk_plug_device(q);
  1489. kblockd_schedule_work(&q->unplug_work);
  1490. }
  1491. }
  1492. spin_unlock_irqrestore(q->queue_lock, flags);
  1493. }
  1494. EXPORT_SYMBOL(blk_run_queue);
  1495. /**
  1496. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1497. * @kobj: the kobj belonging of the request queue to be released
  1498. *
  1499. * Description:
  1500. * blk_cleanup_queue is the pair to blk_init_queue() or
  1501. * blk_queue_make_request(). It should be called when a request queue is
  1502. * being released; typically when a block device is being de-registered.
  1503. * Currently, its primary task it to free all the &struct request
  1504. * structures that were allocated to the queue and the queue itself.
  1505. *
  1506. * Caveat:
  1507. * Hopefully the low level driver will have finished any
  1508. * outstanding requests first...
  1509. **/
  1510. static void blk_release_queue(struct kobject *kobj)
  1511. {
  1512. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1513. struct request_list *rl = &q->rq;
  1514. blk_sync_queue(q);
  1515. if (rl->rq_pool)
  1516. mempool_destroy(rl->rq_pool);
  1517. if (q->queue_tags)
  1518. __blk_queue_free_tags(q);
  1519. blk_trace_shutdown(q);
  1520. kmem_cache_free(requestq_cachep, q);
  1521. }
  1522. void blk_put_queue(request_queue_t *q)
  1523. {
  1524. kobject_put(&q->kobj);
  1525. }
  1526. EXPORT_SYMBOL(blk_put_queue);
  1527. void blk_cleanup_queue(request_queue_t * q)
  1528. {
  1529. mutex_lock(&q->sysfs_lock);
  1530. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1531. mutex_unlock(&q->sysfs_lock);
  1532. if (q->elevator)
  1533. elevator_exit(q->elevator);
  1534. blk_put_queue(q);
  1535. }
  1536. EXPORT_SYMBOL(blk_cleanup_queue);
  1537. static int blk_init_free_list(request_queue_t *q)
  1538. {
  1539. struct request_list *rl = &q->rq;
  1540. rl->count[READ] = rl->count[WRITE] = 0;
  1541. rl->starved[READ] = rl->starved[WRITE] = 0;
  1542. rl->elvpriv = 0;
  1543. init_waitqueue_head(&rl->wait[READ]);
  1544. init_waitqueue_head(&rl->wait[WRITE]);
  1545. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1546. mempool_free_slab, request_cachep, q->node);
  1547. if (!rl->rq_pool)
  1548. return -ENOMEM;
  1549. return 0;
  1550. }
  1551. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1552. {
  1553. return blk_alloc_queue_node(gfp_mask, -1);
  1554. }
  1555. EXPORT_SYMBOL(blk_alloc_queue);
  1556. static struct kobj_type queue_ktype;
  1557. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1558. {
  1559. request_queue_t *q;
  1560. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1561. if (!q)
  1562. return NULL;
  1563. memset(q, 0, sizeof(*q));
  1564. init_timer(&q->unplug_timer);
  1565. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1566. q->kobj.ktype = &queue_ktype;
  1567. kobject_init(&q->kobj);
  1568. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1569. q->backing_dev_info.unplug_io_data = q;
  1570. mutex_init(&q->sysfs_lock);
  1571. return q;
  1572. }
  1573. EXPORT_SYMBOL(blk_alloc_queue_node);
  1574. /**
  1575. * blk_init_queue - prepare a request queue for use with a block device
  1576. * @rfn: The function to be called to process requests that have been
  1577. * placed on the queue.
  1578. * @lock: Request queue spin lock
  1579. *
  1580. * Description:
  1581. * If a block device wishes to use the standard request handling procedures,
  1582. * which sorts requests and coalesces adjacent requests, then it must
  1583. * call blk_init_queue(). The function @rfn will be called when there
  1584. * are requests on the queue that need to be processed. If the device
  1585. * supports plugging, then @rfn may not be called immediately when requests
  1586. * are available on the queue, but may be called at some time later instead.
  1587. * Plugged queues are generally unplugged when a buffer belonging to one
  1588. * of the requests on the queue is needed, or due to memory pressure.
  1589. *
  1590. * @rfn is not required, or even expected, to remove all requests off the
  1591. * queue, but only as many as it can handle at a time. If it does leave
  1592. * requests on the queue, it is responsible for arranging that the requests
  1593. * get dealt with eventually.
  1594. *
  1595. * The queue spin lock must be held while manipulating the requests on the
  1596. * request queue; this lock will be taken also from interrupt context, so irq
  1597. * disabling is needed for it.
  1598. *
  1599. * Function returns a pointer to the initialized request queue, or NULL if
  1600. * it didn't succeed.
  1601. *
  1602. * Note:
  1603. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1604. * when the block device is deactivated (such as at module unload).
  1605. **/
  1606. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1607. {
  1608. return blk_init_queue_node(rfn, lock, -1);
  1609. }
  1610. EXPORT_SYMBOL(blk_init_queue);
  1611. request_queue_t *
  1612. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1613. {
  1614. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1615. if (!q)
  1616. return NULL;
  1617. q->node = node_id;
  1618. if (blk_init_free_list(q)) {
  1619. kmem_cache_free(requestq_cachep, q);
  1620. return NULL;
  1621. }
  1622. /*
  1623. * if caller didn't supply a lock, they get per-queue locking with
  1624. * our embedded lock
  1625. */
  1626. if (!lock) {
  1627. spin_lock_init(&q->__queue_lock);
  1628. lock = &q->__queue_lock;
  1629. }
  1630. q->request_fn = rfn;
  1631. q->back_merge_fn = ll_back_merge_fn;
  1632. q->front_merge_fn = ll_front_merge_fn;
  1633. q->merge_requests_fn = ll_merge_requests_fn;
  1634. q->prep_rq_fn = NULL;
  1635. q->unplug_fn = generic_unplug_device;
  1636. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1637. q->queue_lock = lock;
  1638. blk_queue_segment_boundary(q, 0xffffffff);
  1639. blk_queue_make_request(q, __make_request);
  1640. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1641. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1642. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1643. /*
  1644. * all done
  1645. */
  1646. if (!elevator_init(q, NULL)) {
  1647. blk_queue_congestion_threshold(q);
  1648. return q;
  1649. }
  1650. blk_put_queue(q);
  1651. return NULL;
  1652. }
  1653. EXPORT_SYMBOL(blk_init_queue_node);
  1654. int blk_get_queue(request_queue_t *q)
  1655. {
  1656. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1657. kobject_get(&q->kobj);
  1658. return 0;
  1659. }
  1660. return 1;
  1661. }
  1662. EXPORT_SYMBOL(blk_get_queue);
  1663. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1664. {
  1665. if (rq->cmd_flags & REQ_ELVPRIV)
  1666. elv_put_request(q, rq);
  1667. mempool_free(rq, q->rq.rq_pool);
  1668. }
  1669. static struct request *
  1670. blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
  1671. {
  1672. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1673. if (!rq)
  1674. return NULL;
  1675. /*
  1676. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1677. * see bio.h and blkdev.h
  1678. */
  1679. rq->cmd_flags = rw | REQ_ALLOCED;
  1680. if (priv) {
  1681. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1682. mempool_free(rq, q->rq.rq_pool);
  1683. return NULL;
  1684. }
  1685. rq->cmd_flags |= REQ_ELVPRIV;
  1686. }
  1687. return rq;
  1688. }
  1689. /*
  1690. * ioc_batching returns true if the ioc is a valid batching request and
  1691. * should be given priority access to a request.
  1692. */
  1693. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1694. {
  1695. if (!ioc)
  1696. return 0;
  1697. /*
  1698. * Make sure the process is able to allocate at least 1 request
  1699. * even if the batch times out, otherwise we could theoretically
  1700. * lose wakeups.
  1701. */
  1702. return ioc->nr_batch_requests == q->nr_batching ||
  1703. (ioc->nr_batch_requests > 0
  1704. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1705. }
  1706. /*
  1707. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1708. * will cause the process to be a "batcher" on all queues in the system. This
  1709. * is the behaviour we want though - once it gets a wakeup it should be given
  1710. * a nice run.
  1711. */
  1712. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1713. {
  1714. if (!ioc || ioc_batching(q, ioc))
  1715. return;
  1716. ioc->nr_batch_requests = q->nr_batching;
  1717. ioc->last_waited = jiffies;
  1718. }
  1719. static void __freed_request(request_queue_t *q, int rw)
  1720. {
  1721. struct request_list *rl = &q->rq;
  1722. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1723. blk_clear_queue_congested(q, rw);
  1724. if (rl->count[rw] + 1 <= q->nr_requests) {
  1725. if (waitqueue_active(&rl->wait[rw]))
  1726. wake_up(&rl->wait[rw]);
  1727. blk_clear_queue_full(q, rw);
  1728. }
  1729. }
  1730. /*
  1731. * A request has just been released. Account for it, update the full and
  1732. * congestion status, wake up any waiters. Called under q->queue_lock.
  1733. */
  1734. static void freed_request(request_queue_t *q, int rw, int priv)
  1735. {
  1736. struct request_list *rl = &q->rq;
  1737. rl->count[rw]--;
  1738. if (priv)
  1739. rl->elvpriv--;
  1740. __freed_request(q, rw);
  1741. if (unlikely(rl->starved[rw ^ 1]))
  1742. __freed_request(q, rw ^ 1);
  1743. }
  1744. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1745. /*
  1746. * Get a free request, queue_lock must be held.
  1747. * Returns NULL on failure, with queue_lock held.
  1748. * Returns !NULL on success, with queue_lock *not held*.
  1749. */
  1750. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1751. gfp_t gfp_mask)
  1752. {
  1753. struct request *rq = NULL;
  1754. struct request_list *rl = &q->rq;
  1755. struct io_context *ioc = NULL;
  1756. int may_queue, priv;
  1757. may_queue = elv_may_queue(q, rw);
  1758. if (may_queue == ELV_MQUEUE_NO)
  1759. goto rq_starved;
  1760. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1761. if (rl->count[rw]+1 >= q->nr_requests) {
  1762. ioc = current_io_context(GFP_ATOMIC, q->node);
  1763. /*
  1764. * The queue will fill after this allocation, so set
  1765. * it as full, and mark this process as "batching".
  1766. * This process will be allowed to complete a batch of
  1767. * requests, others will be blocked.
  1768. */
  1769. if (!blk_queue_full(q, rw)) {
  1770. ioc_set_batching(q, ioc);
  1771. blk_set_queue_full(q, rw);
  1772. } else {
  1773. if (may_queue != ELV_MQUEUE_MUST
  1774. && !ioc_batching(q, ioc)) {
  1775. /*
  1776. * The queue is full and the allocating
  1777. * process is not a "batcher", and not
  1778. * exempted by the IO scheduler
  1779. */
  1780. goto out;
  1781. }
  1782. }
  1783. }
  1784. blk_set_queue_congested(q, rw);
  1785. }
  1786. /*
  1787. * Only allow batching queuers to allocate up to 50% over the defined
  1788. * limit of requests, otherwise we could have thousands of requests
  1789. * allocated with any setting of ->nr_requests
  1790. */
  1791. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1792. goto out;
  1793. rl->count[rw]++;
  1794. rl->starved[rw] = 0;
  1795. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1796. if (priv)
  1797. rl->elvpriv++;
  1798. spin_unlock_irq(q->queue_lock);
  1799. rq = blk_alloc_request(q, rw, priv, gfp_mask);
  1800. if (unlikely(!rq)) {
  1801. /*
  1802. * Allocation failed presumably due to memory. Undo anything
  1803. * we might have messed up.
  1804. *
  1805. * Allocating task should really be put onto the front of the
  1806. * wait queue, but this is pretty rare.
  1807. */
  1808. spin_lock_irq(q->queue_lock);
  1809. freed_request(q, rw, priv);
  1810. /*
  1811. * in the very unlikely event that allocation failed and no
  1812. * requests for this direction was pending, mark us starved
  1813. * so that freeing of a request in the other direction will
  1814. * notice us. another possible fix would be to split the
  1815. * rq mempool into READ and WRITE
  1816. */
  1817. rq_starved:
  1818. if (unlikely(rl->count[rw] == 0))
  1819. rl->starved[rw] = 1;
  1820. goto out;
  1821. }
  1822. /*
  1823. * ioc may be NULL here, and ioc_batching will be false. That's
  1824. * OK, if the queue is under the request limit then requests need
  1825. * not count toward the nr_batch_requests limit. There will always
  1826. * be some limit enforced by BLK_BATCH_TIME.
  1827. */
  1828. if (ioc_batching(q, ioc))
  1829. ioc->nr_batch_requests--;
  1830. rq_init(q, rq);
  1831. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1832. out:
  1833. return rq;
  1834. }
  1835. /*
  1836. * No available requests for this queue, unplug the device and wait for some
  1837. * requests to become available.
  1838. *
  1839. * Called with q->queue_lock held, and returns with it unlocked.
  1840. */
  1841. static struct request *get_request_wait(request_queue_t *q, int rw,
  1842. struct bio *bio)
  1843. {
  1844. struct request *rq;
  1845. rq = get_request(q, rw, bio, GFP_NOIO);
  1846. while (!rq) {
  1847. DEFINE_WAIT(wait);
  1848. struct request_list *rl = &q->rq;
  1849. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1850. TASK_UNINTERRUPTIBLE);
  1851. rq = get_request(q, rw, bio, GFP_NOIO);
  1852. if (!rq) {
  1853. struct io_context *ioc;
  1854. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1855. __generic_unplug_device(q);
  1856. spin_unlock_irq(q->queue_lock);
  1857. io_schedule();
  1858. /*
  1859. * After sleeping, we become a "batching" process and
  1860. * will be able to allocate at least one request, and
  1861. * up to a big batch of them for a small period time.
  1862. * See ioc_batching, ioc_set_batching
  1863. */
  1864. ioc = current_io_context(GFP_NOIO, q->node);
  1865. ioc_set_batching(q, ioc);
  1866. spin_lock_irq(q->queue_lock);
  1867. }
  1868. finish_wait(&rl->wait[rw], &wait);
  1869. }
  1870. return rq;
  1871. }
  1872. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1873. {
  1874. struct request *rq;
  1875. BUG_ON(rw != READ && rw != WRITE);
  1876. spin_lock_irq(q->queue_lock);
  1877. if (gfp_mask & __GFP_WAIT) {
  1878. rq = get_request_wait(q, rw, NULL);
  1879. } else {
  1880. rq = get_request(q, rw, NULL, gfp_mask);
  1881. if (!rq)
  1882. spin_unlock_irq(q->queue_lock);
  1883. }
  1884. /* q->queue_lock is unlocked at this point */
  1885. return rq;
  1886. }
  1887. EXPORT_SYMBOL(blk_get_request);
  1888. /**
  1889. * blk_start_queueing - initiate dispatch of requests to device
  1890. * @q: request queue to kick into gear
  1891. *
  1892. * This is basically a helper to remove the need to know whether a queue
  1893. * is plugged or not if someone just wants to initiate dispatch of requests
  1894. * for this queue.
  1895. *
  1896. * The queue lock must be held with interrupts disabled.
  1897. */
  1898. void blk_start_queueing(request_queue_t *q)
  1899. {
  1900. if (!blk_queue_plugged(q))
  1901. q->request_fn(q);
  1902. else
  1903. __generic_unplug_device(q);
  1904. }
  1905. EXPORT_SYMBOL(blk_start_queueing);
  1906. /**
  1907. * blk_requeue_request - put a request back on queue
  1908. * @q: request queue where request should be inserted
  1909. * @rq: request to be inserted
  1910. *
  1911. * Description:
  1912. * Drivers often keep queueing requests until the hardware cannot accept
  1913. * more, when that condition happens we need to put the request back
  1914. * on the queue. Must be called with queue lock held.
  1915. */
  1916. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1917. {
  1918. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1919. if (blk_rq_tagged(rq))
  1920. blk_queue_end_tag(q, rq);
  1921. elv_requeue_request(q, rq);
  1922. }
  1923. EXPORT_SYMBOL(blk_requeue_request);
  1924. /**
  1925. * blk_insert_request - insert a special request in to a request queue
  1926. * @q: request queue where request should be inserted
  1927. * @rq: request to be inserted
  1928. * @at_head: insert request at head or tail of queue
  1929. * @data: private data
  1930. *
  1931. * Description:
  1932. * Many block devices need to execute commands asynchronously, so they don't
  1933. * block the whole kernel from preemption during request execution. This is
  1934. * accomplished normally by inserting aritficial requests tagged as
  1935. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1936. * scheduled for actual execution by the request queue.
  1937. *
  1938. * We have the option of inserting the head or the tail of the queue.
  1939. * Typically we use the tail for new ioctls and so forth. We use the head
  1940. * of the queue for things like a QUEUE_FULL message from a device, or a
  1941. * host that is unable to accept a particular command.
  1942. */
  1943. void blk_insert_request(request_queue_t *q, struct request *rq,
  1944. int at_head, void *data)
  1945. {
  1946. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1947. unsigned long flags;
  1948. /*
  1949. * tell I/O scheduler that this isn't a regular read/write (ie it
  1950. * must not attempt merges on this) and that it acts as a soft
  1951. * barrier
  1952. */
  1953. rq->cmd_type = REQ_TYPE_SPECIAL;
  1954. rq->cmd_flags |= REQ_SOFTBARRIER;
  1955. rq->special = data;
  1956. spin_lock_irqsave(q->queue_lock, flags);
  1957. /*
  1958. * If command is tagged, release the tag
  1959. */
  1960. if (blk_rq_tagged(rq))
  1961. blk_queue_end_tag(q, rq);
  1962. drive_stat_acct(rq, rq->nr_sectors, 1);
  1963. __elv_add_request(q, rq, where, 0);
  1964. blk_start_queueing(q);
  1965. spin_unlock_irqrestore(q->queue_lock, flags);
  1966. }
  1967. EXPORT_SYMBOL(blk_insert_request);
  1968. static int __blk_rq_unmap_user(struct bio *bio)
  1969. {
  1970. int ret = 0;
  1971. if (bio) {
  1972. if (bio_flagged(bio, BIO_USER_MAPPED))
  1973. bio_unmap_user(bio);
  1974. else
  1975. ret = bio_uncopy_user(bio);
  1976. }
  1977. return ret;
  1978. }
  1979. static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
  1980. void __user *ubuf, unsigned int len)
  1981. {
  1982. unsigned long uaddr;
  1983. struct bio *bio, *orig_bio;
  1984. int reading, ret;
  1985. reading = rq_data_dir(rq) == READ;
  1986. /*
  1987. * if alignment requirement is satisfied, map in user pages for
  1988. * direct dma. else, set up kernel bounce buffers
  1989. */
  1990. uaddr = (unsigned long) ubuf;
  1991. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1992. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1993. else
  1994. bio = bio_copy_user(q, uaddr, len, reading);
  1995. if (IS_ERR(bio)) {
  1996. return PTR_ERR(bio);
  1997. }
  1998. orig_bio = bio;
  1999. blk_queue_bounce(q, &bio);
  2000. /*
  2001. * We link the bounce buffer in and could have to traverse it
  2002. * later so we have to get a ref to prevent it from being freed
  2003. */
  2004. bio_get(bio);
  2005. /*
  2006. * for most (all? don't know of any) queues we could
  2007. * skip grabbing the queue lock here. only drivers with
  2008. * funky private ->back_merge_fn() function could be
  2009. * problematic.
  2010. */
  2011. spin_lock_irq(q->queue_lock);
  2012. if (!rq->bio)
  2013. blk_rq_bio_prep(q, rq, bio);
  2014. else if (!q->back_merge_fn(q, rq, bio)) {
  2015. ret = -EINVAL;
  2016. spin_unlock_irq(q->queue_lock);
  2017. goto unmap_bio;
  2018. } else {
  2019. rq->biotail->bi_next = bio;
  2020. rq->biotail = bio;
  2021. rq->nr_sectors += bio_sectors(bio);
  2022. rq->hard_nr_sectors = rq->nr_sectors;
  2023. rq->data_len += bio->bi_size;
  2024. }
  2025. spin_unlock_irq(q->queue_lock);
  2026. return bio->bi_size;
  2027. unmap_bio:
  2028. /* if it was boucned we must call the end io function */
  2029. bio_endio(bio, bio->bi_size, 0);
  2030. __blk_rq_unmap_user(orig_bio);
  2031. bio_put(bio);
  2032. return ret;
  2033. }
  2034. /**
  2035. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2036. * @q: request queue where request should be inserted
  2037. * @rq: request structure to fill
  2038. * @ubuf: the user buffer
  2039. * @len: length of user data
  2040. *
  2041. * Description:
  2042. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2043. * a kernel bounce buffer is used.
  2044. *
  2045. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2046. * still in process context.
  2047. *
  2048. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2049. * before being submitted to the device, as pages mapped may be out of
  2050. * reach. It's the callers responsibility to make sure this happens. The
  2051. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2052. * unmapping.
  2053. */
  2054. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  2055. unsigned long len)
  2056. {
  2057. unsigned long bytes_read = 0;
  2058. int ret;
  2059. if (len > (q->max_hw_sectors << 9))
  2060. return -EINVAL;
  2061. if (!len || !ubuf)
  2062. return -EINVAL;
  2063. while (bytes_read != len) {
  2064. unsigned long map_len, end, start;
  2065. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2066. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2067. >> PAGE_SHIFT;
  2068. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2069. /*
  2070. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2071. * pages. If this happens we just lower the requested
  2072. * mapping len by a page so that we can fit
  2073. */
  2074. if (end - start > BIO_MAX_PAGES)
  2075. map_len -= PAGE_SIZE;
  2076. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2077. if (ret < 0)
  2078. goto unmap_rq;
  2079. bytes_read += ret;
  2080. ubuf += ret;
  2081. }
  2082. rq->buffer = rq->data = NULL;
  2083. return 0;
  2084. unmap_rq:
  2085. blk_rq_unmap_user(rq);
  2086. return ret;
  2087. }
  2088. EXPORT_SYMBOL(blk_rq_map_user);
  2089. /**
  2090. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2091. * @q: request queue where request should be inserted
  2092. * @rq: request to map data to
  2093. * @iov: pointer to the iovec
  2094. * @iov_count: number of elements in the iovec
  2095. *
  2096. * Description:
  2097. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2098. * a kernel bounce buffer is used.
  2099. *
  2100. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2101. * still in process context.
  2102. *
  2103. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2104. * before being submitted to the device, as pages mapped may be out of
  2105. * reach. It's the callers responsibility to make sure this happens. The
  2106. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2107. * unmapping.
  2108. */
  2109. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2110. struct sg_iovec *iov, int iov_count, unsigned int len)
  2111. {
  2112. struct bio *bio;
  2113. if (!iov || iov_count <= 0)
  2114. return -EINVAL;
  2115. /* we don't allow misaligned data like bio_map_user() does. If the
  2116. * user is using sg, they're expected to know the alignment constraints
  2117. * and respect them accordingly */
  2118. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2119. if (IS_ERR(bio))
  2120. return PTR_ERR(bio);
  2121. if (bio->bi_size != len) {
  2122. bio_endio(bio, bio->bi_size, 0);
  2123. bio_unmap_user(bio);
  2124. return -EINVAL;
  2125. }
  2126. bio_get(bio);
  2127. blk_rq_bio_prep(q, rq, bio);
  2128. rq->buffer = rq->data = NULL;
  2129. return 0;
  2130. }
  2131. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2132. /**
  2133. * blk_rq_unmap_user - unmap a request with user data
  2134. * @rq: rq to be unmapped
  2135. *
  2136. * Description:
  2137. * Unmap a rq previously mapped by blk_rq_map_user().
  2138. * rq->bio must be set to the original head of the request.
  2139. */
  2140. int blk_rq_unmap_user(struct request *rq)
  2141. {
  2142. struct bio *bio, *mapped_bio;
  2143. while ((bio = rq->bio)) {
  2144. if (bio_flagged(bio, BIO_BOUNCED))
  2145. mapped_bio = bio->bi_private;
  2146. else
  2147. mapped_bio = bio;
  2148. __blk_rq_unmap_user(mapped_bio);
  2149. rq->bio = bio->bi_next;
  2150. bio_put(bio);
  2151. }
  2152. return 0;
  2153. }
  2154. EXPORT_SYMBOL(blk_rq_unmap_user);
  2155. /**
  2156. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2157. * @q: request queue where request should be inserted
  2158. * @rq: request to fill
  2159. * @kbuf: the kernel buffer
  2160. * @len: length of user data
  2161. * @gfp_mask: memory allocation flags
  2162. */
  2163. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2164. unsigned int len, gfp_t gfp_mask)
  2165. {
  2166. struct bio *bio;
  2167. if (len > (q->max_hw_sectors << 9))
  2168. return -EINVAL;
  2169. if (!len || !kbuf)
  2170. return -EINVAL;
  2171. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2172. if (IS_ERR(bio))
  2173. return PTR_ERR(bio);
  2174. if (rq_data_dir(rq) == WRITE)
  2175. bio->bi_rw |= (1 << BIO_RW);
  2176. blk_rq_bio_prep(q, rq, bio);
  2177. rq->buffer = rq->data = NULL;
  2178. return 0;
  2179. }
  2180. EXPORT_SYMBOL(blk_rq_map_kern);
  2181. /**
  2182. * blk_execute_rq_nowait - insert a request into queue for execution
  2183. * @q: queue to insert the request in
  2184. * @bd_disk: matching gendisk
  2185. * @rq: request to insert
  2186. * @at_head: insert request at head or tail of queue
  2187. * @done: I/O completion handler
  2188. *
  2189. * Description:
  2190. * Insert a fully prepared request at the back of the io scheduler queue
  2191. * for execution. Don't wait for completion.
  2192. */
  2193. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2194. struct request *rq, int at_head,
  2195. rq_end_io_fn *done)
  2196. {
  2197. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2198. rq->rq_disk = bd_disk;
  2199. rq->cmd_flags |= REQ_NOMERGE;
  2200. rq->end_io = done;
  2201. WARN_ON(irqs_disabled());
  2202. spin_lock_irq(q->queue_lock);
  2203. __elv_add_request(q, rq, where, 1);
  2204. __generic_unplug_device(q);
  2205. spin_unlock_irq(q->queue_lock);
  2206. }
  2207. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2208. /**
  2209. * blk_execute_rq - insert a request into queue for execution
  2210. * @q: queue to insert the request in
  2211. * @bd_disk: matching gendisk
  2212. * @rq: request to insert
  2213. * @at_head: insert request at head or tail of queue
  2214. *
  2215. * Description:
  2216. * Insert a fully prepared request at the back of the io scheduler queue
  2217. * for execution and wait for completion.
  2218. */
  2219. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2220. struct request *rq, int at_head)
  2221. {
  2222. DECLARE_COMPLETION_ONSTACK(wait);
  2223. char sense[SCSI_SENSE_BUFFERSIZE];
  2224. int err = 0;
  2225. /*
  2226. * we need an extra reference to the request, so we can look at
  2227. * it after io completion
  2228. */
  2229. rq->ref_count++;
  2230. if (!rq->sense) {
  2231. memset(sense, 0, sizeof(sense));
  2232. rq->sense = sense;
  2233. rq->sense_len = 0;
  2234. }
  2235. rq->end_io_data = &wait;
  2236. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2237. wait_for_completion(&wait);
  2238. if (rq->errors)
  2239. err = -EIO;
  2240. return err;
  2241. }
  2242. EXPORT_SYMBOL(blk_execute_rq);
  2243. /**
  2244. * blkdev_issue_flush - queue a flush
  2245. * @bdev: blockdev to issue flush for
  2246. * @error_sector: error sector
  2247. *
  2248. * Description:
  2249. * Issue a flush for the block device in question. Caller can supply
  2250. * room for storing the error offset in case of a flush error, if they
  2251. * wish to. Caller must run wait_for_completion() on its own.
  2252. */
  2253. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2254. {
  2255. request_queue_t *q;
  2256. if (bdev->bd_disk == NULL)
  2257. return -ENXIO;
  2258. q = bdev_get_queue(bdev);
  2259. if (!q)
  2260. return -ENXIO;
  2261. if (!q->issue_flush_fn)
  2262. return -EOPNOTSUPP;
  2263. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2264. }
  2265. EXPORT_SYMBOL(blkdev_issue_flush);
  2266. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2267. {
  2268. int rw = rq_data_dir(rq);
  2269. if (!blk_fs_request(rq) || !rq->rq_disk)
  2270. return;
  2271. if (!new_io) {
  2272. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2273. } else {
  2274. disk_round_stats(rq->rq_disk);
  2275. rq->rq_disk->in_flight++;
  2276. }
  2277. }
  2278. /*
  2279. * add-request adds a request to the linked list.
  2280. * queue lock is held and interrupts disabled, as we muck with the
  2281. * request queue list.
  2282. */
  2283. static inline void add_request(request_queue_t * q, struct request * req)
  2284. {
  2285. drive_stat_acct(req, req->nr_sectors, 1);
  2286. if (q->activity_fn)
  2287. q->activity_fn(q->activity_data, rq_data_dir(req));
  2288. /*
  2289. * elevator indicated where it wants this request to be
  2290. * inserted at elevator_merge time
  2291. */
  2292. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2293. }
  2294. /*
  2295. * disk_round_stats() - Round off the performance stats on a struct
  2296. * disk_stats.
  2297. *
  2298. * The average IO queue length and utilisation statistics are maintained
  2299. * by observing the current state of the queue length and the amount of
  2300. * time it has been in this state for.
  2301. *
  2302. * Normally, that accounting is done on IO completion, but that can result
  2303. * in more than a second's worth of IO being accounted for within any one
  2304. * second, leading to >100% utilisation. To deal with that, we call this
  2305. * function to do a round-off before returning the results when reading
  2306. * /proc/diskstats. This accounts immediately for all queue usage up to
  2307. * the current jiffies and restarts the counters again.
  2308. */
  2309. void disk_round_stats(struct gendisk *disk)
  2310. {
  2311. unsigned long now = jiffies;
  2312. if (now == disk->stamp)
  2313. return;
  2314. if (disk->in_flight) {
  2315. __disk_stat_add(disk, time_in_queue,
  2316. disk->in_flight * (now - disk->stamp));
  2317. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2318. }
  2319. disk->stamp = now;
  2320. }
  2321. EXPORT_SYMBOL_GPL(disk_round_stats);
  2322. /*
  2323. * queue lock must be held
  2324. */
  2325. void __blk_put_request(request_queue_t *q, struct request *req)
  2326. {
  2327. if (unlikely(!q))
  2328. return;
  2329. if (unlikely(--req->ref_count))
  2330. return;
  2331. elv_completed_request(q, req);
  2332. /*
  2333. * Request may not have originated from ll_rw_blk. if not,
  2334. * it didn't come out of our reserved rq pools
  2335. */
  2336. if (req->cmd_flags & REQ_ALLOCED) {
  2337. int rw = rq_data_dir(req);
  2338. int priv = req->cmd_flags & REQ_ELVPRIV;
  2339. BUG_ON(!list_empty(&req->queuelist));
  2340. BUG_ON(!hlist_unhashed(&req->hash));
  2341. blk_free_request(q, req);
  2342. freed_request(q, rw, priv);
  2343. }
  2344. }
  2345. EXPORT_SYMBOL_GPL(__blk_put_request);
  2346. void blk_put_request(struct request *req)
  2347. {
  2348. unsigned long flags;
  2349. request_queue_t *q = req->q;
  2350. /*
  2351. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2352. * following if (q) test.
  2353. */
  2354. if (q) {
  2355. spin_lock_irqsave(q->queue_lock, flags);
  2356. __blk_put_request(q, req);
  2357. spin_unlock_irqrestore(q->queue_lock, flags);
  2358. }
  2359. }
  2360. EXPORT_SYMBOL(blk_put_request);
  2361. /**
  2362. * blk_end_sync_rq - executes a completion event on a request
  2363. * @rq: request to complete
  2364. * @error: end io status of the request
  2365. */
  2366. void blk_end_sync_rq(struct request *rq, int error)
  2367. {
  2368. struct completion *waiting = rq->end_io_data;
  2369. rq->end_io_data = NULL;
  2370. __blk_put_request(rq->q, rq);
  2371. /*
  2372. * complete last, if this is a stack request the process (and thus
  2373. * the rq pointer) could be invalid right after this complete()
  2374. */
  2375. complete(waiting);
  2376. }
  2377. EXPORT_SYMBOL(blk_end_sync_rq);
  2378. /*
  2379. * Has to be called with the request spinlock acquired
  2380. */
  2381. static int attempt_merge(request_queue_t *q, struct request *req,
  2382. struct request *next)
  2383. {
  2384. if (!rq_mergeable(req) || !rq_mergeable(next))
  2385. return 0;
  2386. /*
  2387. * not contiguous
  2388. */
  2389. if (req->sector + req->nr_sectors != next->sector)
  2390. return 0;
  2391. if (rq_data_dir(req) != rq_data_dir(next)
  2392. || req->rq_disk != next->rq_disk
  2393. || next->special)
  2394. return 0;
  2395. /*
  2396. * If we are allowed to merge, then append bio list
  2397. * from next to rq and release next. merge_requests_fn
  2398. * will have updated segment counts, update sector
  2399. * counts here.
  2400. */
  2401. if (!q->merge_requests_fn(q, req, next))
  2402. return 0;
  2403. /*
  2404. * At this point we have either done a back merge
  2405. * or front merge. We need the smaller start_time of
  2406. * the merged requests to be the current request
  2407. * for accounting purposes.
  2408. */
  2409. if (time_after(req->start_time, next->start_time))
  2410. req->start_time = next->start_time;
  2411. req->biotail->bi_next = next->bio;
  2412. req->biotail = next->biotail;
  2413. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2414. elv_merge_requests(q, req, next);
  2415. if (req->rq_disk) {
  2416. disk_round_stats(req->rq_disk);
  2417. req->rq_disk->in_flight--;
  2418. }
  2419. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2420. __blk_put_request(q, next);
  2421. return 1;
  2422. }
  2423. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2424. {
  2425. struct request *next = elv_latter_request(q, rq);
  2426. if (next)
  2427. return attempt_merge(q, rq, next);
  2428. return 0;
  2429. }
  2430. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2431. {
  2432. struct request *prev = elv_former_request(q, rq);
  2433. if (prev)
  2434. return attempt_merge(q, prev, rq);
  2435. return 0;
  2436. }
  2437. static void init_request_from_bio(struct request *req, struct bio *bio)
  2438. {
  2439. req->cmd_type = REQ_TYPE_FS;
  2440. /*
  2441. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2442. */
  2443. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2444. req->cmd_flags |= REQ_FAILFAST;
  2445. /*
  2446. * REQ_BARRIER implies no merging, but lets make it explicit
  2447. */
  2448. if (unlikely(bio_barrier(bio)))
  2449. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2450. if (bio_sync(bio))
  2451. req->cmd_flags |= REQ_RW_SYNC;
  2452. if (bio_rw_meta(bio))
  2453. req->cmd_flags |= REQ_RW_META;
  2454. req->errors = 0;
  2455. req->hard_sector = req->sector = bio->bi_sector;
  2456. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2457. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2458. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2459. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2460. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2461. req->bio = req->biotail = bio;
  2462. req->ioprio = bio_prio(bio);
  2463. req->rq_disk = bio->bi_bdev->bd_disk;
  2464. req->start_time = jiffies;
  2465. }
  2466. static int __make_request(request_queue_t *q, struct bio *bio)
  2467. {
  2468. struct request *req;
  2469. int el_ret, nr_sectors, barrier, err;
  2470. const unsigned short prio = bio_prio(bio);
  2471. const int sync = bio_sync(bio);
  2472. nr_sectors = bio_sectors(bio);
  2473. /*
  2474. * low level driver can indicate that it wants pages above a
  2475. * certain limit bounced to low memory (ie for highmem, or even
  2476. * ISA dma in theory)
  2477. */
  2478. blk_queue_bounce(q, &bio);
  2479. barrier = bio_barrier(bio);
  2480. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2481. err = -EOPNOTSUPP;
  2482. goto end_io;
  2483. }
  2484. spin_lock_irq(q->queue_lock);
  2485. if (unlikely(barrier) || elv_queue_empty(q))
  2486. goto get_rq;
  2487. el_ret = elv_merge(q, &req, bio);
  2488. switch (el_ret) {
  2489. case ELEVATOR_BACK_MERGE:
  2490. BUG_ON(!rq_mergeable(req));
  2491. if (!q->back_merge_fn(q, req, bio))
  2492. break;
  2493. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2494. req->biotail->bi_next = bio;
  2495. req->biotail = bio;
  2496. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2497. req->ioprio = ioprio_best(req->ioprio, prio);
  2498. drive_stat_acct(req, nr_sectors, 0);
  2499. if (!attempt_back_merge(q, req))
  2500. elv_merged_request(q, req, el_ret);
  2501. goto out;
  2502. case ELEVATOR_FRONT_MERGE:
  2503. BUG_ON(!rq_mergeable(req));
  2504. if (!q->front_merge_fn(q, req, bio))
  2505. break;
  2506. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2507. bio->bi_next = req->bio;
  2508. req->bio = bio;
  2509. /*
  2510. * may not be valid. if the low level driver said
  2511. * it didn't need a bounce buffer then it better
  2512. * not touch req->buffer either...
  2513. */
  2514. req->buffer = bio_data(bio);
  2515. req->current_nr_sectors = bio_cur_sectors(bio);
  2516. req->hard_cur_sectors = req->current_nr_sectors;
  2517. req->sector = req->hard_sector = bio->bi_sector;
  2518. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2519. req->ioprio = ioprio_best(req->ioprio, prio);
  2520. drive_stat_acct(req, nr_sectors, 0);
  2521. if (!attempt_front_merge(q, req))
  2522. elv_merged_request(q, req, el_ret);
  2523. goto out;
  2524. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2525. default:
  2526. ;
  2527. }
  2528. get_rq:
  2529. /*
  2530. * Grab a free request. This is might sleep but can not fail.
  2531. * Returns with the queue unlocked.
  2532. */
  2533. req = get_request_wait(q, bio_data_dir(bio), bio);
  2534. /*
  2535. * After dropping the lock and possibly sleeping here, our request
  2536. * may now be mergeable after it had proven unmergeable (above).
  2537. * We don't worry about that case for efficiency. It won't happen
  2538. * often, and the elevators are able to handle it.
  2539. */
  2540. init_request_from_bio(req, bio);
  2541. spin_lock_irq(q->queue_lock);
  2542. if (elv_queue_empty(q))
  2543. blk_plug_device(q);
  2544. add_request(q, req);
  2545. out:
  2546. if (sync)
  2547. __generic_unplug_device(q);
  2548. spin_unlock_irq(q->queue_lock);
  2549. return 0;
  2550. end_io:
  2551. bio_endio(bio, nr_sectors << 9, err);
  2552. return 0;
  2553. }
  2554. /*
  2555. * If bio->bi_dev is a partition, remap the location
  2556. */
  2557. static inline void blk_partition_remap(struct bio *bio)
  2558. {
  2559. struct block_device *bdev = bio->bi_bdev;
  2560. if (bdev != bdev->bd_contains) {
  2561. struct hd_struct *p = bdev->bd_part;
  2562. const int rw = bio_data_dir(bio);
  2563. p->sectors[rw] += bio_sectors(bio);
  2564. p->ios[rw]++;
  2565. bio->bi_sector += p->start_sect;
  2566. bio->bi_bdev = bdev->bd_contains;
  2567. }
  2568. }
  2569. static void handle_bad_sector(struct bio *bio)
  2570. {
  2571. char b[BDEVNAME_SIZE];
  2572. printk(KERN_INFO "attempt to access beyond end of device\n");
  2573. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2574. bdevname(bio->bi_bdev, b),
  2575. bio->bi_rw,
  2576. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2577. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2578. set_bit(BIO_EOF, &bio->bi_flags);
  2579. }
  2580. /**
  2581. * generic_make_request: hand a buffer to its device driver for I/O
  2582. * @bio: The bio describing the location in memory and on the device.
  2583. *
  2584. * generic_make_request() is used to make I/O requests of block
  2585. * devices. It is passed a &struct bio, which describes the I/O that needs
  2586. * to be done.
  2587. *
  2588. * generic_make_request() does not return any status. The
  2589. * success/failure status of the request, along with notification of
  2590. * completion, is delivered asynchronously through the bio->bi_end_io
  2591. * function described (one day) else where.
  2592. *
  2593. * The caller of generic_make_request must make sure that bi_io_vec
  2594. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2595. * set to describe the device address, and the
  2596. * bi_end_io and optionally bi_private are set to describe how
  2597. * completion notification should be signaled.
  2598. *
  2599. * generic_make_request and the drivers it calls may use bi_next if this
  2600. * bio happens to be merged with someone else, and may change bi_dev and
  2601. * bi_sector for remaps as it sees fit. So the values of these fields
  2602. * should NOT be depended on after the call to generic_make_request.
  2603. */
  2604. void generic_make_request(struct bio *bio)
  2605. {
  2606. request_queue_t *q;
  2607. sector_t maxsector;
  2608. sector_t old_sector;
  2609. int ret, nr_sectors = bio_sectors(bio);
  2610. dev_t old_dev;
  2611. might_sleep();
  2612. /* Test device or partition size, when known. */
  2613. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2614. if (maxsector) {
  2615. sector_t sector = bio->bi_sector;
  2616. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2617. /*
  2618. * This may well happen - the kernel calls bread()
  2619. * without checking the size of the device, e.g., when
  2620. * mounting a device.
  2621. */
  2622. handle_bad_sector(bio);
  2623. goto end_io;
  2624. }
  2625. }
  2626. /*
  2627. * Resolve the mapping until finished. (drivers are
  2628. * still free to implement/resolve their own stacking
  2629. * by explicitly returning 0)
  2630. *
  2631. * NOTE: we don't repeat the blk_size check for each new device.
  2632. * Stacking drivers are expected to know what they are doing.
  2633. */
  2634. old_sector = -1;
  2635. old_dev = 0;
  2636. do {
  2637. char b[BDEVNAME_SIZE];
  2638. q = bdev_get_queue(bio->bi_bdev);
  2639. if (!q) {
  2640. printk(KERN_ERR
  2641. "generic_make_request: Trying to access "
  2642. "nonexistent block-device %s (%Lu)\n",
  2643. bdevname(bio->bi_bdev, b),
  2644. (long long) bio->bi_sector);
  2645. end_io:
  2646. bio_endio(bio, bio->bi_size, -EIO);
  2647. break;
  2648. }
  2649. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2650. printk("bio too big device %s (%u > %u)\n",
  2651. bdevname(bio->bi_bdev, b),
  2652. bio_sectors(bio),
  2653. q->max_hw_sectors);
  2654. goto end_io;
  2655. }
  2656. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2657. goto end_io;
  2658. /*
  2659. * If this device has partitions, remap block n
  2660. * of partition p to block n+start(p) of the disk.
  2661. */
  2662. blk_partition_remap(bio);
  2663. if (old_sector != -1)
  2664. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2665. old_sector);
  2666. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2667. old_sector = bio->bi_sector;
  2668. old_dev = bio->bi_bdev->bd_dev;
  2669. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2670. if (maxsector) {
  2671. sector_t sector = bio->bi_sector;
  2672. if (maxsector < nr_sectors ||
  2673. maxsector - nr_sectors < sector) {
  2674. /*
  2675. * This may well happen - partitions are not
  2676. * checked to make sure they are within the size
  2677. * of the whole device.
  2678. */
  2679. handle_bad_sector(bio);
  2680. goto end_io;
  2681. }
  2682. }
  2683. ret = q->make_request_fn(q, bio);
  2684. } while (ret);
  2685. }
  2686. EXPORT_SYMBOL(generic_make_request);
  2687. /**
  2688. * submit_bio: submit a bio to the block device layer for I/O
  2689. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2690. * @bio: The &struct bio which describes the I/O
  2691. *
  2692. * submit_bio() is very similar in purpose to generic_make_request(), and
  2693. * uses that function to do most of the work. Both are fairly rough
  2694. * interfaces, @bio must be presetup and ready for I/O.
  2695. *
  2696. */
  2697. void submit_bio(int rw, struct bio *bio)
  2698. {
  2699. int count = bio_sectors(bio);
  2700. BIO_BUG_ON(!bio->bi_size);
  2701. BIO_BUG_ON(!bio->bi_io_vec);
  2702. bio->bi_rw |= rw;
  2703. if (rw & WRITE)
  2704. count_vm_events(PGPGOUT, count);
  2705. else
  2706. count_vm_events(PGPGIN, count);
  2707. if (unlikely(block_dump)) {
  2708. char b[BDEVNAME_SIZE];
  2709. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2710. current->comm, current->pid,
  2711. (rw & WRITE) ? "WRITE" : "READ",
  2712. (unsigned long long)bio->bi_sector,
  2713. bdevname(bio->bi_bdev,b));
  2714. }
  2715. generic_make_request(bio);
  2716. }
  2717. EXPORT_SYMBOL(submit_bio);
  2718. static void blk_recalc_rq_segments(struct request *rq)
  2719. {
  2720. struct bio *bio, *prevbio = NULL;
  2721. int nr_phys_segs, nr_hw_segs;
  2722. unsigned int phys_size, hw_size;
  2723. request_queue_t *q = rq->q;
  2724. if (!rq->bio)
  2725. return;
  2726. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2727. rq_for_each_bio(bio, rq) {
  2728. /* Force bio hw/phys segs to be recalculated. */
  2729. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2730. nr_phys_segs += bio_phys_segments(q, bio);
  2731. nr_hw_segs += bio_hw_segments(q, bio);
  2732. if (prevbio) {
  2733. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2734. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2735. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2736. pseg <= q->max_segment_size) {
  2737. nr_phys_segs--;
  2738. phys_size += prevbio->bi_size + bio->bi_size;
  2739. } else
  2740. phys_size = 0;
  2741. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2742. hseg <= q->max_segment_size) {
  2743. nr_hw_segs--;
  2744. hw_size += prevbio->bi_size + bio->bi_size;
  2745. } else
  2746. hw_size = 0;
  2747. }
  2748. prevbio = bio;
  2749. }
  2750. rq->nr_phys_segments = nr_phys_segs;
  2751. rq->nr_hw_segments = nr_hw_segs;
  2752. }
  2753. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2754. {
  2755. if (blk_fs_request(rq)) {
  2756. rq->hard_sector += nsect;
  2757. rq->hard_nr_sectors -= nsect;
  2758. /*
  2759. * Move the I/O submission pointers ahead if required.
  2760. */
  2761. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2762. (rq->sector <= rq->hard_sector)) {
  2763. rq->sector = rq->hard_sector;
  2764. rq->nr_sectors = rq->hard_nr_sectors;
  2765. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2766. rq->current_nr_sectors = rq->hard_cur_sectors;
  2767. rq->buffer = bio_data(rq->bio);
  2768. }
  2769. /*
  2770. * if total number of sectors is less than the first segment
  2771. * size, something has gone terribly wrong
  2772. */
  2773. if (rq->nr_sectors < rq->current_nr_sectors) {
  2774. printk("blk: request botched\n");
  2775. rq->nr_sectors = rq->current_nr_sectors;
  2776. }
  2777. }
  2778. }
  2779. static int __end_that_request_first(struct request *req, int uptodate,
  2780. int nr_bytes)
  2781. {
  2782. int total_bytes, bio_nbytes, error, next_idx = 0;
  2783. struct bio *bio;
  2784. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2785. /*
  2786. * extend uptodate bool to allow < 0 value to be direct io error
  2787. */
  2788. error = 0;
  2789. if (end_io_error(uptodate))
  2790. error = !uptodate ? -EIO : uptodate;
  2791. /*
  2792. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2793. * sense key with us all the way through
  2794. */
  2795. if (!blk_pc_request(req))
  2796. req->errors = 0;
  2797. if (!uptodate) {
  2798. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2799. printk("end_request: I/O error, dev %s, sector %llu\n",
  2800. req->rq_disk ? req->rq_disk->disk_name : "?",
  2801. (unsigned long long)req->sector);
  2802. }
  2803. if (blk_fs_request(req) && req->rq_disk) {
  2804. const int rw = rq_data_dir(req);
  2805. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2806. }
  2807. total_bytes = bio_nbytes = 0;
  2808. while ((bio = req->bio) != NULL) {
  2809. int nbytes;
  2810. if (nr_bytes >= bio->bi_size) {
  2811. req->bio = bio->bi_next;
  2812. nbytes = bio->bi_size;
  2813. if (!ordered_bio_endio(req, bio, nbytes, error))
  2814. bio_endio(bio, nbytes, error);
  2815. next_idx = 0;
  2816. bio_nbytes = 0;
  2817. } else {
  2818. int idx = bio->bi_idx + next_idx;
  2819. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2820. blk_dump_rq_flags(req, "__end_that");
  2821. printk("%s: bio idx %d >= vcnt %d\n",
  2822. __FUNCTION__,
  2823. bio->bi_idx, bio->bi_vcnt);
  2824. break;
  2825. }
  2826. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2827. BIO_BUG_ON(nbytes > bio->bi_size);
  2828. /*
  2829. * not a complete bvec done
  2830. */
  2831. if (unlikely(nbytes > nr_bytes)) {
  2832. bio_nbytes += nr_bytes;
  2833. total_bytes += nr_bytes;
  2834. break;
  2835. }
  2836. /*
  2837. * advance to the next vector
  2838. */
  2839. next_idx++;
  2840. bio_nbytes += nbytes;
  2841. }
  2842. total_bytes += nbytes;
  2843. nr_bytes -= nbytes;
  2844. if ((bio = req->bio)) {
  2845. /*
  2846. * end more in this run, or just return 'not-done'
  2847. */
  2848. if (unlikely(nr_bytes <= 0))
  2849. break;
  2850. }
  2851. }
  2852. /*
  2853. * completely done
  2854. */
  2855. if (!req->bio)
  2856. return 0;
  2857. /*
  2858. * if the request wasn't completed, update state
  2859. */
  2860. if (bio_nbytes) {
  2861. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2862. bio_endio(bio, bio_nbytes, error);
  2863. bio->bi_idx += next_idx;
  2864. bio_iovec(bio)->bv_offset += nr_bytes;
  2865. bio_iovec(bio)->bv_len -= nr_bytes;
  2866. }
  2867. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2868. blk_recalc_rq_segments(req);
  2869. return 1;
  2870. }
  2871. /**
  2872. * end_that_request_first - end I/O on a request
  2873. * @req: the request being processed
  2874. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2875. * @nr_sectors: number of sectors to end I/O on
  2876. *
  2877. * Description:
  2878. * Ends I/O on a number of sectors attached to @req, and sets it up
  2879. * for the next range of segments (if any) in the cluster.
  2880. *
  2881. * Return:
  2882. * 0 - we are done with this request, call end_that_request_last()
  2883. * 1 - still buffers pending for this request
  2884. **/
  2885. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2886. {
  2887. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2888. }
  2889. EXPORT_SYMBOL(end_that_request_first);
  2890. /**
  2891. * end_that_request_chunk - end I/O on a request
  2892. * @req: the request being processed
  2893. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2894. * @nr_bytes: number of bytes to complete
  2895. *
  2896. * Description:
  2897. * Ends I/O on a number of bytes attached to @req, and sets it up
  2898. * for the next range of segments (if any). Like end_that_request_first(),
  2899. * but deals with bytes instead of sectors.
  2900. *
  2901. * Return:
  2902. * 0 - we are done with this request, call end_that_request_last()
  2903. * 1 - still buffers pending for this request
  2904. **/
  2905. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2906. {
  2907. return __end_that_request_first(req, uptodate, nr_bytes);
  2908. }
  2909. EXPORT_SYMBOL(end_that_request_chunk);
  2910. /*
  2911. * splice the completion data to a local structure and hand off to
  2912. * process_completion_queue() to complete the requests
  2913. */
  2914. static void blk_done_softirq(struct softirq_action *h)
  2915. {
  2916. struct list_head *cpu_list, local_list;
  2917. local_irq_disable();
  2918. cpu_list = &__get_cpu_var(blk_cpu_done);
  2919. list_replace_init(cpu_list, &local_list);
  2920. local_irq_enable();
  2921. while (!list_empty(&local_list)) {
  2922. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2923. list_del_init(&rq->donelist);
  2924. rq->q->softirq_done_fn(rq);
  2925. }
  2926. }
  2927. #ifdef CONFIG_HOTPLUG_CPU
  2928. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2929. void *hcpu)
  2930. {
  2931. /*
  2932. * If a CPU goes away, splice its entries to the current CPU
  2933. * and trigger a run of the softirq
  2934. */
  2935. if (action == CPU_DEAD) {
  2936. int cpu = (unsigned long) hcpu;
  2937. local_irq_disable();
  2938. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2939. &__get_cpu_var(blk_cpu_done));
  2940. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2941. local_irq_enable();
  2942. }
  2943. return NOTIFY_OK;
  2944. }
  2945. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2946. .notifier_call = blk_cpu_notify,
  2947. };
  2948. #endif /* CONFIG_HOTPLUG_CPU */
  2949. /**
  2950. * blk_complete_request - end I/O on a request
  2951. * @req: the request being processed
  2952. *
  2953. * Description:
  2954. * Ends all I/O on a request. It does not handle partial completions,
  2955. * unless the driver actually implements this in its completion callback
  2956. * through requeueing. Theh actual completion happens out-of-order,
  2957. * through a softirq handler. The user must have registered a completion
  2958. * callback through blk_queue_softirq_done().
  2959. **/
  2960. void blk_complete_request(struct request *req)
  2961. {
  2962. struct list_head *cpu_list;
  2963. unsigned long flags;
  2964. BUG_ON(!req->q->softirq_done_fn);
  2965. local_irq_save(flags);
  2966. cpu_list = &__get_cpu_var(blk_cpu_done);
  2967. list_add_tail(&req->donelist, cpu_list);
  2968. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2969. local_irq_restore(flags);
  2970. }
  2971. EXPORT_SYMBOL(blk_complete_request);
  2972. /*
  2973. * queue lock must be held
  2974. */
  2975. void end_that_request_last(struct request *req, int uptodate)
  2976. {
  2977. struct gendisk *disk = req->rq_disk;
  2978. int error;
  2979. /*
  2980. * extend uptodate bool to allow < 0 value to be direct io error
  2981. */
  2982. error = 0;
  2983. if (end_io_error(uptodate))
  2984. error = !uptodate ? -EIO : uptodate;
  2985. if (unlikely(laptop_mode) && blk_fs_request(req))
  2986. laptop_io_completion();
  2987. /*
  2988. * Account IO completion. bar_rq isn't accounted as a normal
  2989. * IO on queueing nor completion. Accounting the containing
  2990. * request is enough.
  2991. */
  2992. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  2993. unsigned long duration = jiffies - req->start_time;
  2994. const int rw = rq_data_dir(req);
  2995. __disk_stat_inc(disk, ios[rw]);
  2996. __disk_stat_add(disk, ticks[rw], duration);
  2997. disk_round_stats(disk);
  2998. disk->in_flight--;
  2999. }
  3000. if (req->end_io)
  3001. req->end_io(req, error);
  3002. else
  3003. __blk_put_request(req->q, req);
  3004. }
  3005. EXPORT_SYMBOL(end_that_request_last);
  3006. void end_request(struct request *req, int uptodate)
  3007. {
  3008. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  3009. add_disk_randomness(req->rq_disk);
  3010. blkdev_dequeue_request(req);
  3011. end_that_request_last(req, uptodate);
  3012. }
  3013. }
  3014. EXPORT_SYMBOL(end_request);
  3015. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  3016. {
  3017. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3018. rq->cmd_flags |= (bio->bi_rw & 3);
  3019. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3020. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3021. rq->current_nr_sectors = bio_cur_sectors(bio);
  3022. rq->hard_cur_sectors = rq->current_nr_sectors;
  3023. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3024. rq->buffer = bio_data(bio);
  3025. rq->data_len = bio->bi_size;
  3026. rq->bio = rq->biotail = bio;
  3027. }
  3028. EXPORT_SYMBOL(blk_rq_bio_prep);
  3029. int kblockd_schedule_work(struct work_struct *work)
  3030. {
  3031. return queue_work(kblockd_workqueue, work);
  3032. }
  3033. EXPORT_SYMBOL(kblockd_schedule_work);
  3034. void kblockd_flush(void)
  3035. {
  3036. flush_workqueue(kblockd_workqueue);
  3037. }
  3038. EXPORT_SYMBOL(kblockd_flush);
  3039. int __init blk_dev_init(void)
  3040. {
  3041. int i;
  3042. kblockd_workqueue = create_workqueue("kblockd");
  3043. if (!kblockd_workqueue)
  3044. panic("Failed to create kblockd\n");
  3045. request_cachep = kmem_cache_create("blkdev_requests",
  3046. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  3047. requestq_cachep = kmem_cache_create("blkdev_queue",
  3048. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  3049. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3050. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  3051. for_each_possible_cpu(i)
  3052. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3053. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3054. register_hotcpu_notifier(&blk_cpu_notifier);
  3055. blk_max_low_pfn = max_low_pfn;
  3056. blk_max_pfn = max_pfn;
  3057. return 0;
  3058. }
  3059. /*
  3060. * IO Context helper functions
  3061. */
  3062. void put_io_context(struct io_context *ioc)
  3063. {
  3064. if (ioc == NULL)
  3065. return;
  3066. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3067. if (atomic_dec_and_test(&ioc->refcount)) {
  3068. struct cfq_io_context *cic;
  3069. rcu_read_lock();
  3070. if (ioc->aic && ioc->aic->dtor)
  3071. ioc->aic->dtor(ioc->aic);
  3072. if (ioc->cic_root.rb_node != NULL) {
  3073. struct rb_node *n = rb_first(&ioc->cic_root);
  3074. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3075. cic->dtor(ioc);
  3076. }
  3077. rcu_read_unlock();
  3078. kmem_cache_free(iocontext_cachep, ioc);
  3079. }
  3080. }
  3081. EXPORT_SYMBOL(put_io_context);
  3082. /* Called by the exitting task */
  3083. void exit_io_context(void)
  3084. {
  3085. struct io_context *ioc;
  3086. struct cfq_io_context *cic;
  3087. task_lock(current);
  3088. ioc = current->io_context;
  3089. current->io_context = NULL;
  3090. task_unlock(current);
  3091. ioc->task = NULL;
  3092. if (ioc->aic && ioc->aic->exit)
  3093. ioc->aic->exit(ioc->aic);
  3094. if (ioc->cic_root.rb_node != NULL) {
  3095. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3096. cic->exit(ioc);
  3097. }
  3098. put_io_context(ioc);
  3099. }
  3100. /*
  3101. * If the current task has no IO context then create one and initialise it.
  3102. * Otherwise, return its existing IO context.
  3103. *
  3104. * This returned IO context doesn't have a specifically elevated refcount,
  3105. * but since the current task itself holds a reference, the context can be
  3106. * used in general code, so long as it stays within `current` context.
  3107. */
  3108. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3109. {
  3110. struct task_struct *tsk = current;
  3111. struct io_context *ret;
  3112. ret = tsk->io_context;
  3113. if (likely(ret))
  3114. return ret;
  3115. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3116. if (ret) {
  3117. atomic_set(&ret->refcount, 1);
  3118. ret->task = current;
  3119. ret->ioprio_changed = 0;
  3120. ret->last_waited = jiffies; /* doesn't matter... */
  3121. ret->nr_batch_requests = 0; /* because this is 0 */
  3122. ret->aic = NULL;
  3123. ret->cic_root.rb_node = NULL;
  3124. /* make sure set_task_ioprio() sees the settings above */
  3125. smp_wmb();
  3126. tsk->io_context = ret;
  3127. }
  3128. return ret;
  3129. }
  3130. EXPORT_SYMBOL(current_io_context);
  3131. /*
  3132. * If the current task has no IO context then create one and initialise it.
  3133. * If it does have a context, take a ref on it.
  3134. *
  3135. * This is always called in the context of the task which submitted the I/O.
  3136. */
  3137. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3138. {
  3139. struct io_context *ret;
  3140. ret = current_io_context(gfp_flags, node);
  3141. if (likely(ret))
  3142. atomic_inc(&ret->refcount);
  3143. return ret;
  3144. }
  3145. EXPORT_SYMBOL(get_io_context);
  3146. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3147. {
  3148. struct io_context *src = *psrc;
  3149. struct io_context *dst = *pdst;
  3150. if (src) {
  3151. BUG_ON(atomic_read(&src->refcount) == 0);
  3152. atomic_inc(&src->refcount);
  3153. put_io_context(dst);
  3154. *pdst = src;
  3155. }
  3156. }
  3157. EXPORT_SYMBOL(copy_io_context);
  3158. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3159. {
  3160. struct io_context *temp;
  3161. temp = *ioc1;
  3162. *ioc1 = *ioc2;
  3163. *ioc2 = temp;
  3164. }
  3165. EXPORT_SYMBOL(swap_io_context);
  3166. /*
  3167. * sysfs parts below
  3168. */
  3169. struct queue_sysfs_entry {
  3170. struct attribute attr;
  3171. ssize_t (*show)(struct request_queue *, char *);
  3172. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3173. };
  3174. static ssize_t
  3175. queue_var_show(unsigned int var, char *page)
  3176. {
  3177. return sprintf(page, "%d\n", var);
  3178. }
  3179. static ssize_t
  3180. queue_var_store(unsigned long *var, const char *page, size_t count)
  3181. {
  3182. char *p = (char *) page;
  3183. *var = simple_strtoul(p, &p, 10);
  3184. return count;
  3185. }
  3186. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3187. {
  3188. return queue_var_show(q->nr_requests, (page));
  3189. }
  3190. static ssize_t
  3191. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3192. {
  3193. struct request_list *rl = &q->rq;
  3194. unsigned long nr;
  3195. int ret = queue_var_store(&nr, page, count);
  3196. if (nr < BLKDEV_MIN_RQ)
  3197. nr = BLKDEV_MIN_RQ;
  3198. spin_lock_irq(q->queue_lock);
  3199. q->nr_requests = nr;
  3200. blk_queue_congestion_threshold(q);
  3201. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3202. blk_set_queue_congested(q, READ);
  3203. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3204. blk_clear_queue_congested(q, READ);
  3205. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3206. blk_set_queue_congested(q, WRITE);
  3207. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3208. blk_clear_queue_congested(q, WRITE);
  3209. if (rl->count[READ] >= q->nr_requests) {
  3210. blk_set_queue_full(q, READ);
  3211. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3212. blk_clear_queue_full(q, READ);
  3213. wake_up(&rl->wait[READ]);
  3214. }
  3215. if (rl->count[WRITE] >= q->nr_requests) {
  3216. blk_set_queue_full(q, WRITE);
  3217. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3218. blk_clear_queue_full(q, WRITE);
  3219. wake_up(&rl->wait[WRITE]);
  3220. }
  3221. spin_unlock_irq(q->queue_lock);
  3222. return ret;
  3223. }
  3224. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3225. {
  3226. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3227. return queue_var_show(ra_kb, (page));
  3228. }
  3229. static ssize_t
  3230. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3231. {
  3232. unsigned long ra_kb;
  3233. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3234. spin_lock_irq(q->queue_lock);
  3235. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3236. spin_unlock_irq(q->queue_lock);
  3237. return ret;
  3238. }
  3239. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3240. {
  3241. int max_sectors_kb = q->max_sectors >> 1;
  3242. return queue_var_show(max_sectors_kb, (page));
  3243. }
  3244. static ssize_t
  3245. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3246. {
  3247. unsigned long max_sectors_kb,
  3248. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3249. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3250. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3251. int ra_kb;
  3252. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3253. return -EINVAL;
  3254. /*
  3255. * Take the queue lock to update the readahead and max_sectors
  3256. * values synchronously:
  3257. */
  3258. spin_lock_irq(q->queue_lock);
  3259. /*
  3260. * Trim readahead window as well, if necessary:
  3261. */
  3262. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3263. if (ra_kb > max_sectors_kb)
  3264. q->backing_dev_info.ra_pages =
  3265. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3266. q->max_sectors = max_sectors_kb << 1;
  3267. spin_unlock_irq(q->queue_lock);
  3268. return ret;
  3269. }
  3270. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3271. {
  3272. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3273. return queue_var_show(max_hw_sectors_kb, (page));
  3274. }
  3275. static struct queue_sysfs_entry queue_requests_entry = {
  3276. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3277. .show = queue_requests_show,
  3278. .store = queue_requests_store,
  3279. };
  3280. static struct queue_sysfs_entry queue_ra_entry = {
  3281. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3282. .show = queue_ra_show,
  3283. .store = queue_ra_store,
  3284. };
  3285. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3286. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3287. .show = queue_max_sectors_show,
  3288. .store = queue_max_sectors_store,
  3289. };
  3290. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3291. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3292. .show = queue_max_hw_sectors_show,
  3293. };
  3294. static struct queue_sysfs_entry queue_iosched_entry = {
  3295. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3296. .show = elv_iosched_show,
  3297. .store = elv_iosched_store,
  3298. };
  3299. static struct attribute *default_attrs[] = {
  3300. &queue_requests_entry.attr,
  3301. &queue_ra_entry.attr,
  3302. &queue_max_hw_sectors_entry.attr,
  3303. &queue_max_sectors_entry.attr,
  3304. &queue_iosched_entry.attr,
  3305. NULL,
  3306. };
  3307. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3308. static ssize_t
  3309. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3310. {
  3311. struct queue_sysfs_entry *entry = to_queue(attr);
  3312. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3313. ssize_t res;
  3314. if (!entry->show)
  3315. return -EIO;
  3316. mutex_lock(&q->sysfs_lock);
  3317. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3318. mutex_unlock(&q->sysfs_lock);
  3319. return -ENOENT;
  3320. }
  3321. res = entry->show(q, page);
  3322. mutex_unlock(&q->sysfs_lock);
  3323. return res;
  3324. }
  3325. static ssize_t
  3326. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3327. const char *page, size_t length)
  3328. {
  3329. struct queue_sysfs_entry *entry = to_queue(attr);
  3330. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3331. ssize_t res;
  3332. if (!entry->store)
  3333. return -EIO;
  3334. mutex_lock(&q->sysfs_lock);
  3335. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3336. mutex_unlock(&q->sysfs_lock);
  3337. return -ENOENT;
  3338. }
  3339. res = entry->store(q, page, length);
  3340. mutex_unlock(&q->sysfs_lock);
  3341. return res;
  3342. }
  3343. static struct sysfs_ops queue_sysfs_ops = {
  3344. .show = queue_attr_show,
  3345. .store = queue_attr_store,
  3346. };
  3347. static struct kobj_type queue_ktype = {
  3348. .sysfs_ops = &queue_sysfs_ops,
  3349. .default_attrs = default_attrs,
  3350. .release = blk_release_queue,
  3351. };
  3352. int blk_register_queue(struct gendisk *disk)
  3353. {
  3354. int ret;
  3355. request_queue_t *q = disk->queue;
  3356. if (!q || !q->request_fn)
  3357. return -ENXIO;
  3358. q->kobj.parent = kobject_get(&disk->kobj);
  3359. ret = kobject_add(&q->kobj);
  3360. if (ret < 0)
  3361. return ret;
  3362. kobject_uevent(&q->kobj, KOBJ_ADD);
  3363. ret = elv_register_queue(q);
  3364. if (ret) {
  3365. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3366. kobject_del(&q->kobj);
  3367. return ret;
  3368. }
  3369. return 0;
  3370. }
  3371. void blk_unregister_queue(struct gendisk *disk)
  3372. {
  3373. request_queue_t *q = disk->queue;
  3374. if (q && q->request_fn) {
  3375. elv_unregister_queue(q);
  3376. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3377. kobject_del(&q->kobj);
  3378. kobject_put(&disk->kobj);
  3379. }
  3380. }