huge_memory.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static unsigned long huge_zero_pfn __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static int __init init_huge_zero_page(void)
  144. {
  145. struct page *hpage;
  146. hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  147. HPAGE_PMD_ORDER);
  148. if (!hpage)
  149. return -ENOMEM;
  150. huge_zero_pfn = page_to_pfn(hpage);
  151. return 0;
  152. }
  153. static inline bool is_huge_zero_pfn(unsigned long pfn)
  154. {
  155. return pfn == huge_zero_pfn;
  156. }
  157. static inline bool is_huge_zero_pmd(pmd_t pmd)
  158. {
  159. return is_huge_zero_pfn(pmd_pfn(pmd));
  160. }
  161. #ifdef CONFIG_SYSFS
  162. static ssize_t double_flag_show(struct kobject *kobj,
  163. struct kobj_attribute *attr, char *buf,
  164. enum transparent_hugepage_flag enabled,
  165. enum transparent_hugepage_flag req_madv)
  166. {
  167. if (test_bit(enabled, &transparent_hugepage_flags)) {
  168. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  169. return sprintf(buf, "[always] madvise never\n");
  170. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  171. return sprintf(buf, "always [madvise] never\n");
  172. else
  173. return sprintf(buf, "always madvise [never]\n");
  174. }
  175. static ssize_t double_flag_store(struct kobject *kobj,
  176. struct kobj_attribute *attr,
  177. const char *buf, size_t count,
  178. enum transparent_hugepage_flag enabled,
  179. enum transparent_hugepage_flag req_madv)
  180. {
  181. if (!memcmp("always", buf,
  182. min(sizeof("always")-1, count))) {
  183. set_bit(enabled, &transparent_hugepage_flags);
  184. clear_bit(req_madv, &transparent_hugepage_flags);
  185. } else if (!memcmp("madvise", buf,
  186. min(sizeof("madvise")-1, count))) {
  187. clear_bit(enabled, &transparent_hugepage_flags);
  188. set_bit(req_madv, &transparent_hugepage_flags);
  189. } else if (!memcmp("never", buf,
  190. min(sizeof("never")-1, count))) {
  191. clear_bit(enabled, &transparent_hugepage_flags);
  192. clear_bit(req_madv, &transparent_hugepage_flags);
  193. } else
  194. return -EINVAL;
  195. return count;
  196. }
  197. static ssize_t enabled_show(struct kobject *kobj,
  198. struct kobj_attribute *attr, char *buf)
  199. {
  200. return double_flag_show(kobj, attr, buf,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. }
  204. static ssize_t enabled_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. ssize_t ret;
  209. ret = double_flag_store(kobj, attr, buf, count,
  210. TRANSPARENT_HUGEPAGE_FLAG,
  211. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  212. if (ret > 0) {
  213. int err;
  214. mutex_lock(&khugepaged_mutex);
  215. err = start_khugepaged();
  216. mutex_unlock(&khugepaged_mutex);
  217. if (err)
  218. ret = err;
  219. }
  220. return ret;
  221. }
  222. static struct kobj_attribute enabled_attr =
  223. __ATTR(enabled, 0644, enabled_show, enabled_store);
  224. static ssize_t single_flag_show(struct kobject *kobj,
  225. struct kobj_attribute *attr, char *buf,
  226. enum transparent_hugepage_flag flag)
  227. {
  228. return sprintf(buf, "%d\n",
  229. !!test_bit(flag, &transparent_hugepage_flags));
  230. }
  231. static ssize_t single_flag_store(struct kobject *kobj,
  232. struct kobj_attribute *attr,
  233. const char *buf, size_t count,
  234. enum transparent_hugepage_flag flag)
  235. {
  236. unsigned long value;
  237. int ret;
  238. ret = kstrtoul(buf, 10, &value);
  239. if (ret < 0)
  240. return ret;
  241. if (value > 1)
  242. return -EINVAL;
  243. if (value)
  244. set_bit(flag, &transparent_hugepage_flags);
  245. else
  246. clear_bit(flag, &transparent_hugepage_flags);
  247. return count;
  248. }
  249. /*
  250. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  251. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  252. * memory just to allocate one more hugepage.
  253. */
  254. static ssize_t defrag_show(struct kobject *kobj,
  255. struct kobj_attribute *attr, char *buf)
  256. {
  257. return double_flag_show(kobj, attr, buf,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  260. }
  261. static ssize_t defrag_store(struct kobject *kobj,
  262. struct kobj_attribute *attr,
  263. const char *buf, size_t count)
  264. {
  265. return double_flag_store(kobj, attr, buf, count,
  266. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  267. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  268. }
  269. static struct kobj_attribute defrag_attr =
  270. __ATTR(defrag, 0644, defrag_show, defrag_store);
  271. #ifdef CONFIG_DEBUG_VM
  272. static ssize_t debug_cow_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf)
  274. {
  275. return single_flag_show(kobj, attr, buf,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static ssize_t debug_cow_store(struct kobject *kobj,
  279. struct kobj_attribute *attr,
  280. const char *buf, size_t count)
  281. {
  282. return single_flag_store(kobj, attr, buf, count,
  283. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  284. }
  285. static struct kobj_attribute debug_cow_attr =
  286. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  287. #endif /* CONFIG_DEBUG_VM */
  288. static struct attribute *hugepage_attr[] = {
  289. &enabled_attr.attr,
  290. &defrag_attr.attr,
  291. #ifdef CONFIG_DEBUG_VM
  292. &debug_cow_attr.attr,
  293. #endif
  294. NULL,
  295. };
  296. static struct attribute_group hugepage_attr_group = {
  297. .attrs = hugepage_attr,
  298. };
  299. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. char *buf)
  302. {
  303. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  304. }
  305. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  306. struct kobj_attribute *attr,
  307. const char *buf, size_t count)
  308. {
  309. unsigned long msecs;
  310. int err;
  311. err = strict_strtoul(buf, 10, &msecs);
  312. if (err || msecs > UINT_MAX)
  313. return -EINVAL;
  314. khugepaged_scan_sleep_millisecs = msecs;
  315. wake_up_interruptible(&khugepaged_wait);
  316. return count;
  317. }
  318. static struct kobj_attribute scan_sleep_millisecs_attr =
  319. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  320. scan_sleep_millisecs_store);
  321. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. char *buf)
  324. {
  325. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  326. }
  327. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  328. struct kobj_attribute *attr,
  329. const char *buf, size_t count)
  330. {
  331. unsigned long msecs;
  332. int err;
  333. err = strict_strtoul(buf, 10, &msecs);
  334. if (err || msecs > UINT_MAX)
  335. return -EINVAL;
  336. khugepaged_alloc_sleep_millisecs = msecs;
  337. wake_up_interruptible(&khugepaged_wait);
  338. return count;
  339. }
  340. static struct kobj_attribute alloc_sleep_millisecs_attr =
  341. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  342. alloc_sleep_millisecs_store);
  343. static ssize_t pages_to_scan_show(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. char *buf)
  346. {
  347. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  348. }
  349. static ssize_t pages_to_scan_store(struct kobject *kobj,
  350. struct kobj_attribute *attr,
  351. const char *buf, size_t count)
  352. {
  353. int err;
  354. unsigned long pages;
  355. err = strict_strtoul(buf, 10, &pages);
  356. if (err || !pages || pages > UINT_MAX)
  357. return -EINVAL;
  358. khugepaged_pages_to_scan = pages;
  359. return count;
  360. }
  361. static struct kobj_attribute pages_to_scan_attr =
  362. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  363. pages_to_scan_store);
  364. static ssize_t pages_collapsed_show(struct kobject *kobj,
  365. struct kobj_attribute *attr,
  366. char *buf)
  367. {
  368. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  369. }
  370. static struct kobj_attribute pages_collapsed_attr =
  371. __ATTR_RO(pages_collapsed);
  372. static ssize_t full_scans_show(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. char *buf)
  375. {
  376. return sprintf(buf, "%u\n", khugepaged_full_scans);
  377. }
  378. static struct kobj_attribute full_scans_attr =
  379. __ATTR_RO(full_scans);
  380. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  381. struct kobj_attribute *attr, char *buf)
  382. {
  383. return single_flag_show(kobj, attr, buf,
  384. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  385. }
  386. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  387. struct kobj_attribute *attr,
  388. const char *buf, size_t count)
  389. {
  390. return single_flag_store(kobj, attr, buf, count,
  391. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  392. }
  393. static struct kobj_attribute khugepaged_defrag_attr =
  394. __ATTR(defrag, 0644, khugepaged_defrag_show,
  395. khugepaged_defrag_store);
  396. /*
  397. * max_ptes_none controls if khugepaged should collapse hugepages over
  398. * any unmapped ptes in turn potentially increasing the memory
  399. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  400. * reduce the available free memory in the system as it
  401. * runs. Increasing max_ptes_none will instead potentially reduce the
  402. * free memory in the system during the khugepaged scan.
  403. */
  404. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  409. }
  410. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long max_ptes_none;
  416. err = strict_strtoul(buf, 10, &max_ptes_none);
  417. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  418. return -EINVAL;
  419. khugepaged_max_ptes_none = max_ptes_none;
  420. return count;
  421. }
  422. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  423. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  424. khugepaged_max_ptes_none_store);
  425. static struct attribute *khugepaged_attr[] = {
  426. &khugepaged_defrag_attr.attr,
  427. &khugepaged_max_ptes_none_attr.attr,
  428. &pages_to_scan_attr.attr,
  429. &pages_collapsed_attr.attr,
  430. &full_scans_attr.attr,
  431. &scan_sleep_millisecs_attr.attr,
  432. &alloc_sleep_millisecs_attr.attr,
  433. NULL,
  434. };
  435. static struct attribute_group khugepaged_attr_group = {
  436. .attrs = khugepaged_attr,
  437. .name = "khugepaged",
  438. };
  439. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  440. {
  441. int err;
  442. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  443. if (unlikely(!*hugepage_kobj)) {
  444. printk(KERN_ERR "hugepage: failed kobject create\n");
  445. return -ENOMEM;
  446. }
  447. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  448. if (err) {
  449. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  450. goto delete_obj;
  451. }
  452. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  453. if (err) {
  454. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  455. goto remove_hp_group;
  456. }
  457. return 0;
  458. remove_hp_group:
  459. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  460. delete_obj:
  461. kobject_put(*hugepage_kobj);
  462. return err;
  463. }
  464. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  465. {
  466. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  467. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  468. kobject_put(hugepage_kobj);
  469. }
  470. #else
  471. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  472. {
  473. return 0;
  474. }
  475. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  476. {
  477. }
  478. #endif /* CONFIG_SYSFS */
  479. static int __init hugepage_init(void)
  480. {
  481. int err;
  482. struct kobject *hugepage_kobj;
  483. if (!has_transparent_hugepage()) {
  484. transparent_hugepage_flags = 0;
  485. return -EINVAL;
  486. }
  487. err = hugepage_init_sysfs(&hugepage_kobj);
  488. if (err)
  489. return err;
  490. err = init_huge_zero_page();
  491. if (err)
  492. goto out;
  493. err = khugepaged_slab_init();
  494. if (err)
  495. goto out;
  496. err = mm_slots_hash_init();
  497. if (err) {
  498. khugepaged_slab_free();
  499. goto out;
  500. }
  501. /*
  502. * By default disable transparent hugepages on smaller systems,
  503. * where the extra memory used could hurt more than TLB overhead
  504. * is likely to save. The admin can still enable it through /sys.
  505. */
  506. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  507. transparent_hugepage_flags = 0;
  508. start_khugepaged();
  509. return 0;
  510. out:
  511. if (huge_zero_pfn)
  512. __free_page(pfn_to_page(huge_zero_pfn));
  513. hugepage_exit_sysfs(hugepage_kobj);
  514. return err;
  515. }
  516. module_init(hugepage_init)
  517. static int __init setup_transparent_hugepage(char *str)
  518. {
  519. int ret = 0;
  520. if (!str)
  521. goto out;
  522. if (!strcmp(str, "always")) {
  523. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  524. &transparent_hugepage_flags);
  525. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  526. &transparent_hugepage_flags);
  527. ret = 1;
  528. } else if (!strcmp(str, "madvise")) {
  529. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  530. &transparent_hugepage_flags);
  531. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  532. &transparent_hugepage_flags);
  533. ret = 1;
  534. } else if (!strcmp(str, "never")) {
  535. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  536. &transparent_hugepage_flags);
  537. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  538. &transparent_hugepage_flags);
  539. ret = 1;
  540. }
  541. out:
  542. if (!ret)
  543. printk(KERN_WARNING
  544. "transparent_hugepage= cannot parse, ignored\n");
  545. return ret;
  546. }
  547. __setup("transparent_hugepage=", setup_transparent_hugepage);
  548. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  549. {
  550. if (likely(vma->vm_flags & VM_WRITE))
  551. pmd = pmd_mkwrite(pmd);
  552. return pmd;
  553. }
  554. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  555. {
  556. pmd_t entry;
  557. entry = mk_pmd(page, vma->vm_page_prot);
  558. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  559. entry = pmd_mkhuge(entry);
  560. return entry;
  561. }
  562. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  563. struct vm_area_struct *vma,
  564. unsigned long haddr, pmd_t *pmd,
  565. struct page *page)
  566. {
  567. pgtable_t pgtable;
  568. VM_BUG_ON(!PageCompound(page));
  569. pgtable = pte_alloc_one(mm, haddr);
  570. if (unlikely(!pgtable))
  571. return VM_FAULT_OOM;
  572. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  573. __SetPageUptodate(page);
  574. spin_lock(&mm->page_table_lock);
  575. if (unlikely(!pmd_none(*pmd))) {
  576. spin_unlock(&mm->page_table_lock);
  577. mem_cgroup_uncharge_page(page);
  578. put_page(page);
  579. pte_free(mm, pgtable);
  580. } else {
  581. pmd_t entry;
  582. entry = mk_huge_pmd(page, vma);
  583. /*
  584. * The spinlocking to take the lru_lock inside
  585. * page_add_new_anon_rmap() acts as a full memory
  586. * barrier to be sure clear_huge_page writes become
  587. * visible after the set_pmd_at() write.
  588. */
  589. page_add_new_anon_rmap(page, vma, haddr);
  590. set_pmd_at(mm, haddr, pmd, entry);
  591. pgtable_trans_huge_deposit(mm, pgtable);
  592. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  593. mm->nr_ptes++;
  594. spin_unlock(&mm->page_table_lock);
  595. }
  596. return 0;
  597. }
  598. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  599. {
  600. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  601. }
  602. static inline struct page *alloc_hugepage_vma(int defrag,
  603. struct vm_area_struct *vma,
  604. unsigned long haddr, int nd,
  605. gfp_t extra_gfp)
  606. {
  607. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  608. HPAGE_PMD_ORDER, vma, haddr, nd);
  609. }
  610. #ifndef CONFIG_NUMA
  611. static inline struct page *alloc_hugepage(int defrag)
  612. {
  613. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  614. HPAGE_PMD_ORDER);
  615. }
  616. #endif
  617. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  618. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
  619. {
  620. pmd_t entry;
  621. entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
  622. entry = pmd_wrprotect(entry);
  623. entry = pmd_mkhuge(entry);
  624. set_pmd_at(mm, haddr, pmd, entry);
  625. pgtable_trans_huge_deposit(mm, pgtable);
  626. mm->nr_ptes++;
  627. }
  628. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  629. unsigned long address, pmd_t *pmd,
  630. unsigned int flags)
  631. {
  632. struct page *page;
  633. unsigned long haddr = address & HPAGE_PMD_MASK;
  634. pte_t *pte;
  635. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  636. if (unlikely(anon_vma_prepare(vma)))
  637. return VM_FAULT_OOM;
  638. if (unlikely(khugepaged_enter(vma)))
  639. return VM_FAULT_OOM;
  640. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  641. vma, haddr, numa_node_id(), 0);
  642. if (unlikely(!page)) {
  643. count_vm_event(THP_FAULT_FALLBACK);
  644. goto out;
  645. }
  646. count_vm_event(THP_FAULT_ALLOC);
  647. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  648. put_page(page);
  649. goto out;
  650. }
  651. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  652. page))) {
  653. mem_cgroup_uncharge_page(page);
  654. put_page(page);
  655. goto out;
  656. }
  657. return 0;
  658. }
  659. out:
  660. /*
  661. * Use __pte_alloc instead of pte_alloc_map, because we can't
  662. * run pte_offset_map on the pmd, if an huge pmd could
  663. * materialize from under us from a different thread.
  664. */
  665. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  666. return VM_FAULT_OOM;
  667. /* if an huge pmd materialized from under us just retry later */
  668. if (unlikely(pmd_trans_huge(*pmd)))
  669. return 0;
  670. /*
  671. * A regular pmd is established and it can't morph into a huge pmd
  672. * from under us anymore at this point because we hold the mmap_sem
  673. * read mode and khugepaged takes it in write mode. So now it's
  674. * safe to run pte_offset_map().
  675. */
  676. pte = pte_offset_map(pmd, address);
  677. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  678. }
  679. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  680. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  681. struct vm_area_struct *vma)
  682. {
  683. struct page *src_page;
  684. pmd_t pmd;
  685. pgtable_t pgtable;
  686. int ret;
  687. ret = -ENOMEM;
  688. pgtable = pte_alloc_one(dst_mm, addr);
  689. if (unlikely(!pgtable))
  690. goto out;
  691. spin_lock(&dst_mm->page_table_lock);
  692. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  693. ret = -EAGAIN;
  694. pmd = *src_pmd;
  695. if (unlikely(!pmd_trans_huge(pmd))) {
  696. pte_free(dst_mm, pgtable);
  697. goto out_unlock;
  698. }
  699. /*
  700. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  701. * under splitting since we don't split the page itself, only pmd to
  702. * a page table.
  703. */
  704. if (is_huge_zero_pmd(pmd)) {
  705. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
  706. ret = 0;
  707. goto out_unlock;
  708. }
  709. if (unlikely(pmd_trans_splitting(pmd))) {
  710. /* split huge page running from under us */
  711. spin_unlock(&src_mm->page_table_lock);
  712. spin_unlock(&dst_mm->page_table_lock);
  713. pte_free(dst_mm, pgtable);
  714. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  715. goto out;
  716. }
  717. src_page = pmd_page(pmd);
  718. VM_BUG_ON(!PageHead(src_page));
  719. get_page(src_page);
  720. page_dup_rmap(src_page);
  721. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  722. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  723. pmd = pmd_mkold(pmd_wrprotect(pmd));
  724. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  725. pgtable_trans_huge_deposit(dst_mm, pgtable);
  726. dst_mm->nr_ptes++;
  727. ret = 0;
  728. out_unlock:
  729. spin_unlock(&src_mm->page_table_lock);
  730. spin_unlock(&dst_mm->page_table_lock);
  731. out:
  732. return ret;
  733. }
  734. void huge_pmd_set_accessed(struct mm_struct *mm,
  735. struct vm_area_struct *vma,
  736. unsigned long address,
  737. pmd_t *pmd, pmd_t orig_pmd,
  738. int dirty)
  739. {
  740. pmd_t entry;
  741. unsigned long haddr;
  742. spin_lock(&mm->page_table_lock);
  743. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  744. goto unlock;
  745. entry = pmd_mkyoung(orig_pmd);
  746. haddr = address & HPAGE_PMD_MASK;
  747. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  748. update_mmu_cache_pmd(vma, address, pmd);
  749. unlock:
  750. spin_unlock(&mm->page_table_lock);
  751. }
  752. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  753. struct vm_area_struct *vma, unsigned long address,
  754. pmd_t *pmd, unsigned long haddr)
  755. {
  756. pgtable_t pgtable;
  757. pmd_t _pmd;
  758. struct page *page;
  759. int i, ret = 0;
  760. unsigned long mmun_start; /* For mmu_notifiers */
  761. unsigned long mmun_end; /* For mmu_notifiers */
  762. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  763. if (!page) {
  764. ret |= VM_FAULT_OOM;
  765. goto out;
  766. }
  767. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  768. put_page(page);
  769. ret |= VM_FAULT_OOM;
  770. goto out;
  771. }
  772. clear_user_highpage(page, address);
  773. __SetPageUptodate(page);
  774. mmun_start = haddr;
  775. mmun_end = haddr + HPAGE_PMD_SIZE;
  776. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  777. spin_lock(&mm->page_table_lock);
  778. pmdp_clear_flush(vma, haddr, pmd);
  779. /* leave pmd empty until pte is filled */
  780. pgtable = pgtable_trans_huge_withdraw(mm);
  781. pmd_populate(mm, &_pmd, pgtable);
  782. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  783. pte_t *pte, entry;
  784. if (haddr == (address & PAGE_MASK)) {
  785. entry = mk_pte(page, vma->vm_page_prot);
  786. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  787. page_add_new_anon_rmap(page, vma, haddr);
  788. } else {
  789. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  790. entry = pte_mkspecial(entry);
  791. }
  792. pte = pte_offset_map(&_pmd, haddr);
  793. VM_BUG_ON(!pte_none(*pte));
  794. set_pte_at(mm, haddr, pte, entry);
  795. pte_unmap(pte);
  796. }
  797. smp_wmb(); /* make pte visible before pmd */
  798. pmd_populate(mm, pmd, pgtable);
  799. spin_unlock(&mm->page_table_lock);
  800. inc_mm_counter(mm, MM_ANONPAGES);
  801. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  802. ret |= VM_FAULT_WRITE;
  803. out:
  804. return ret;
  805. }
  806. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  807. struct vm_area_struct *vma,
  808. unsigned long address,
  809. pmd_t *pmd, pmd_t orig_pmd,
  810. struct page *page,
  811. unsigned long haddr)
  812. {
  813. pgtable_t pgtable;
  814. pmd_t _pmd;
  815. int ret = 0, i;
  816. struct page **pages;
  817. unsigned long mmun_start; /* For mmu_notifiers */
  818. unsigned long mmun_end; /* For mmu_notifiers */
  819. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  820. GFP_KERNEL);
  821. if (unlikely(!pages)) {
  822. ret |= VM_FAULT_OOM;
  823. goto out;
  824. }
  825. for (i = 0; i < HPAGE_PMD_NR; i++) {
  826. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  827. __GFP_OTHER_NODE,
  828. vma, address, page_to_nid(page));
  829. if (unlikely(!pages[i] ||
  830. mem_cgroup_newpage_charge(pages[i], mm,
  831. GFP_KERNEL))) {
  832. if (pages[i])
  833. put_page(pages[i]);
  834. mem_cgroup_uncharge_start();
  835. while (--i >= 0) {
  836. mem_cgroup_uncharge_page(pages[i]);
  837. put_page(pages[i]);
  838. }
  839. mem_cgroup_uncharge_end();
  840. kfree(pages);
  841. ret |= VM_FAULT_OOM;
  842. goto out;
  843. }
  844. }
  845. for (i = 0; i < HPAGE_PMD_NR; i++) {
  846. copy_user_highpage(pages[i], page + i,
  847. haddr + PAGE_SIZE * i, vma);
  848. __SetPageUptodate(pages[i]);
  849. cond_resched();
  850. }
  851. mmun_start = haddr;
  852. mmun_end = haddr + HPAGE_PMD_SIZE;
  853. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  854. spin_lock(&mm->page_table_lock);
  855. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  856. goto out_free_pages;
  857. VM_BUG_ON(!PageHead(page));
  858. pmdp_clear_flush(vma, haddr, pmd);
  859. /* leave pmd empty until pte is filled */
  860. pgtable = pgtable_trans_huge_withdraw(mm);
  861. pmd_populate(mm, &_pmd, pgtable);
  862. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  863. pte_t *pte, entry;
  864. entry = mk_pte(pages[i], vma->vm_page_prot);
  865. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  866. page_add_new_anon_rmap(pages[i], vma, haddr);
  867. pte = pte_offset_map(&_pmd, haddr);
  868. VM_BUG_ON(!pte_none(*pte));
  869. set_pte_at(mm, haddr, pte, entry);
  870. pte_unmap(pte);
  871. }
  872. kfree(pages);
  873. smp_wmb(); /* make pte visible before pmd */
  874. pmd_populate(mm, pmd, pgtable);
  875. page_remove_rmap(page);
  876. spin_unlock(&mm->page_table_lock);
  877. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  878. ret |= VM_FAULT_WRITE;
  879. put_page(page);
  880. out:
  881. return ret;
  882. out_free_pages:
  883. spin_unlock(&mm->page_table_lock);
  884. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  885. mem_cgroup_uncharge_start();
  886. for (i = 0; i < HPAGE_PMD_NR; i++) {
  887. mem_cgroup_uncharge_page(pages[i]);
  888. put_page(pages[i]);
  889. }
  890. mem_cgroup_uncharge_end();
  891. kfree(pages);
  892. goto out;
  893. }
  894. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  895. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  896. {
  897. int ret = 0;
  898. struct page *page = NULL, *new_page;
  899. unsigned long haddr;
  900. unsigned long mmun_start; /* For mmu_notifiers */
  901. unsigned long mmun_end; /* For mmu_notifiers */
  902. VM_BUG_ON(!vma->anon_vma);
  903. haddr = address & HPAGE_PMD_MASK;
  904. if (is_huge_zero_pmd(orig_pmd))
  905. goto alloc;
  906. spin_lock(&mm->page_table_lock);
  907. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  908. goto out_unlock;
  909. page = pmd_page(orig_pmd);
  910. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  911. if (page_mapcount(page) == 1) {
  912. pmd_t entry;
  913. entry = pmd_mkyoung(orig_pmd);
  914. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  915. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  916. update_mmu_cache_pmd(vma, address, pmd);
  917. ret |= VM_FAULT_WRITE;
  918. goto out_unlock;
  919. }
  920. get_page(page);
  921. spin_unlock(&mm->page_table_lock);
  922. alloc:
  923. if (transparent_hugepage_enabled(vma) &&
  924. !transparent_hugepage_debug_cow())
  925. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  926. vma, haddr, numa_node_id(), 0);
  927. else
  928. new_page = NULL;
  929. if (unlikely(!new_page)) {
  930. count_vm_event(THP_FAULT_FALLBACK);
  931. if (is_huge_zero_pmd(orig_pmd)) {
  932. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  933. address, pmd, haddr);
  934. } else {
  935. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  936. pmd, orig_pmd, page, haddr);
  937. if (ret & VM_FAULT_OOM)
  938. split_huge_page(page);
  939. put_page(page);
  940. }
  941. goto out;
  942. }
  943. count_vm_event(THP_FAULT_ALLOC);
  944. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  945. put_page(new_page);
  946. if (page) {
  947. split_huge_page(page);
  948. put_page(page);
  949. }
  950. ret |= VM_FAULT_OOM;
  951. goto out;
  952. }
  953. if (is_huge_zero_pmd(orig_pmd))
  954. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  955. else
  956. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  957. __SetPageUptodate(new_page);
  958. mmun_start = haddr;
  959. mmun_end = haddr + HPAGE_PMD_SIZE;
  960. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  961. spin_lock(&mm->page_table_lock);
  962. if (page)
  963. put_page(page);
  964. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  965. spin_unlock(&mm->page_table_lock);
  966. mem_cgroup_uncharge_page(new_page);
  967. put_page(new_page);
  968. goto out_mn;
  969. } else {
  970. pmd_t entry;
  971. entry = mk_huge_pmd(new_page, vma);
  972. pmdp_clear_flush(vma, haddr, pmd);
  973. page_add_new_anon_rmap(new_page, vma, haddr);
  974. set_pmd_at(mm, haddr, pmd, entry);
  975. update_mmu_cache_pmd(vma, address, pmd);
  976. if (is_huge_zero_pmd(orig_pmd))
  977. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  978. else {
  979. VM_BUG_ON(!PageHead(page));
  980. page_remove_rmap(page);
  981. put_page(page);
  982. }
  983. ret |= VM_FAULT_WRITE;
  984. }
  985. spin_unlock(&mm->page_table_lock);
  986. out_mn:
  987. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  988. out:
  989. return ret;
  990. out_unlock:
  991. spin_unlock(&mm->page_table_lock);
  992. return ret;
  993. }
  994. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  995. unsigned long addr,
  996. pmd_t *pmd,
  997. unsigned int flags)
  998. {
  999. struct mm_struct *mm = vma->vm_mm;
  1000. struct page *page = NULL;
  1001. assert_spin_locked(&mm->page_table_lock);
  1002. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1003. goto out;
  1004. page = pmd_page(*pmd);
  1005. VM_BUG_ON(!PageHead(page));
  1006. if (flags & FOLL_TOUCH) {
  1007. pmd_t _pmd;
  1008. /*
  1009. * We should set the dirty bit only for FOLL_WRITE but
  1010. * for now the dirty bit in the pmd is meaningless.
  1011. * And if the dirty bit will become meaningful and
  1012. * we'll only set it with FOLL_WRITE, an atomic
  1013. * set_bit will be required on the pmd to set the
  1014. * young bit, instead of the current set_pmd_at.
  1015. */
  1016. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1017. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1018. }
  1019. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1020. if (page->mapping && trylock_page(page)) {
  1021. lru_add_drain();
  1022. if (page->mapping)
  1023. mlock_vma_page(page);
  1024. unlock_page(page);
  1025. }
  1026. }
  1027. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1028. VM_BUG_ON(!PageCompound(page));
  1029. if (flags & FOLL_GET)
  1030. get_page_foll(page);
  1031. out:
  1032. return page;
  1033. }
  1034. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1035. pmd_t *pmd, unsigned long addr)
  1036. {
  1037. int ret = 0;
  1038. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1039. struct page *page;
  1040. pgtable_t pgtable;
  1041. pmd_t orig_pmd;
  1042. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1043. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1044. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1045. if (is_huge_zero_pmd(orig_pmd)) {
  1046. tlb->mm->nr_ptes--;
  1047. spin_unlock(&tlb->mm->page_table_lock);
  1048. } else {
  1049. page = pmd_page(orig_pmd);
  1050. page_remove_rmap(page);
  1051. VM_BUG_ON(page_mapcount(page) < 0);
  1052. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1053. VM_BUG_ON(!PageHead(page));
  1054. tlb->mm->nr_ptes--;
  1055. spin_unlock(&tlb->mm->page_table_lock);
  1056. tlb_remove_page(tlb, page);
  1057. }
  1058. pte_free(tlb->mm, pgtable);
  1059. ret = 1;
  1060. }
  1061. return ret;
  1062. }
  1063. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1064. unsigned long addr, unsigned long end,
  1065. unsigned char *vec)
  1066. {
  1067. int ret = 0;
  1068. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1069. /*
  1070. * All logical pages in the range are present
  1071. * if backed by a huge page.
  1072. */
  1073. spin_unlock(&vma->vm_mm->page_table_lock);
  1074. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1075. ret = 1;
  1076. }
  1077. return ret;
  1078. }
  1079. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1080. unsigned long old_addr,
  1081. unsigned long new_addr, unsigned long old_end,
  1082. pmd_t *old_pmd, pmd_t *new_pmd)
  1083. {
  1084. int ret = 0;
  1085. pmd_t pmd;
  1086. struct mm_struct *mm = vma->vm_mm;
  1087. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1088. (new_addr & ~HPAGE_PMD_MASK) ||
  1089. old_end - old_addr < HPAGE_PMD_SIZE ||
  1090. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1091. goto out;
  1092. /*
  1093. * The destination pmd shouldn't be established, free_pgtables()
  1094. * should have release it.
  1095. */
  1096. if (WARN_ON(!pmd_none(*new_pmd))) {
  1097. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1098. goto out;
  1099. }
  1100. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1101. if (ret == 1) {
  1102. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1103. VM_BUG_ON(!pmd_none(*new_pmd));
  1104. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1105. spin_unlock(&mm->page_table_lock);
  1106. }
  1107. out:
  1108. return ret;
  1109. }
  1110. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1111. unsigned long addr, pgprot_t newprot)
  1112. {
  1113. struct mm_struct *mm = vma->vm_mm;
  1114. int ret = 0;
  1115. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1116. pmd_t entry;
  1117. entry = pmdp_get_and_clear(mm, addr, pmd);
  1118. entry = pmd_modify(entry, newprot);
  1119. BUG_ON(pmd_write(entry));
  1120. set_pmd_at(mm, addr, pmd, entry);
  1121. spin_unlock(&vma->vm_mm->page_table_lock);
  1122. ret = 1;
  1123. }
  1124. return ret;
  1125. }
  1126. /*
  1127. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1128. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1129. *
  1130. * Note that if it returns 1, this routine returns without unlocking page
  1131. * table locks. So callers must unlock them.
  1132. */
  1133. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1134. {
  1135. spin_lock(&vma->vm_mm->page_table_lock);
  1136. if (likely(pmd_trans_huge(*pmd))) {
  1137. if (unlikely(pmd_trans_splitting(*pmd))) {
  1138. spin_unlock(&vma->vm_mm->page_table_lock);
  1139. wait_split_huge_page(vma->anon_vma, pmd);
  1140. return -1;
  1141. } else {
  1142. /* Thp mapped by 'pmd' is stable, so we can
  1143. * handle it as it is. */
  1144. return 1;
  1145. }
  1146. }
  1147. spin_unlock(&vma->vm_mm->page_table_lock);
  1148. return 0;
  1149. }
  1150. pmd_t *page_check_address_pmd(struct page *page,
  1151. struct mm_struct *mm,
  1152. unsigned long address,
  1153. enum page_check_address_pmd_flag flag)
  1154. {
  1155. pmd_t *pmd, *ret = NULL;
  1156. if (address & ~HPAGE_PMD_MASK)
  1157. goto out;
  1158. pmd = mm_find_pmd(mm, address);
  1159. if (!pmd)
  1160. goto out;
  1161. if (pmd_none(*pmd))
  1162. goto out;
  1163. if (pmd_page(*pmd) != page)
  1164. goto out;
  1165. /*
  1166. * split_vma() may create temporary aliased mappings. There is
  1167. * no risk as long as all huge pmd are found and have their
  1168. * splitting bit set before __split_huge_page_refcount
  1169. * runs. Finding the same huge pmd more than once during the
  1170. * same rmap walk is not a problem.
  1171. */
  1172. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1173. pmd_trans_splitting(*pmd))
  1174. goto out;
  1175. if (pmd_trans_huge(*pmd)) {
  1176. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1177. !pmd_trans_splitting(*pmd));
  1178. ret = pmd;
  1179. }
  1180. out:
  1181. return ret;
  1182. }
  1183. static int __split_huge_page_splitting(struct page *page,
  1184. struct vm_area_struct *vma,
  1185. unsigned long address)
  1186. {
  1187. struct mm_struct *mm = vma->vm_mm;
  1188. pmd_t *pmd;
  1189. int ret = 0;
  1190. /* For mmu_notifiers */
  1191. const unsigned long mmun_start = address;
  1192. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1193. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1194. spin_lock(&mm->page_table_lock);
  1195. pmd = page_check_address_pmd(page, mm, address,
  1196. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1197. if (pmd) {
  1198. /*
  1199. * We can't temporarily set the pmd to null in order
  1200. * to split it, the pmd must remain marked huge at all
  1201. * times or the VM won't take the pmd_trans_huge paths
  1202. * and it won't wait on the anon_vma->root->mutex to
  1203. * serialize against split_huge_page*.
  1204. */
  1205. pmdp_splitting_flush(vma, address, pmd);
  1206. ret = 1;
  1207. }
  1208. spin_unlock(&mm->page_table_lock);
  1209. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1210. return ret;
  1211. }
  1212. static void __split_huge_page_refcount(struct page *page)
  1213. {
  1214. int i;
  1215. struct zone *zone = page_zone(page);
  1216. struct lruvec *lruvec;
  1217. int tail_count = 0;
  1218. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1219. spin_lock_irq(&zone->lru_lock);
  1220. lruvec = mem_cgroup_page_lruvec(page, zone);
  1221. compound_lock(page);
  1222. /* complete memcg works before add pages to LRU */
  1223. mem_cgroup_split_huge_fixup(page);
  1224. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1225. struct page *page_tail = page + i;
  1226. /* tail_page->_mapcount cannot change */
  1227. BUG_ON(page_mapcount(page_tail) < 0);
  1228. tail_count += page_mapcount(page_tail);
  1229. /* check for overflow */
  1230. BUG_ON(tail_count < 0);
  1231. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1232. /*
  1233. * tail_page->_count is zero and not changing from
  1234. * under us. But get_page_unless_zero() may be running
  1235. * from under us on the tail_page. If we used
  1236. * atomic_set() below instead of atomic_add(), we
  1237. * would then run atomic_set() concurrently with
  1238. * get_page_unless_zero(), and atomic_set() is
  1239. * implemented in C not using locked ops. spin_unlock
  1240. * on x86 sometime uses locked ops because of PPro
  1241. * errata 66, 92, so unless somebody can guarantee
  1242. * atomic_set() here would be safe on all archs (and
  1243. * not only on x86), it's safer to use atomic_add().
  1244. */
  1245. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1246. &page_tail->_count);
  1247. /* after clearing PageTail the gup refcount can be released */
  1248. smp_mb();
  1249. /*
  1250. * retain hwpoison flag of the poisoned tail page:
  1251. * fix for the unsuitable process killed on Guest Machine(KVM)
  1252. * by the memory-failure.
  1253. */
  1254. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1255. page_tail->flags |= (page->flags &
  1256. ((1L << PG_referenced) |
  1257. (1L << PG_swapbacked) |
  1258. (1L << PG_mlocked) |
  1259. (1L << PG_uptodate)));
  1260. page_tail->flags |= (1L << PG_dirty);
  1261. /* clear PageTail before overwriting first_page */
  1262. smp_wmb();
  1263. /*
  1264. * __split_huge_page_splitting() already set the
  1265. * splitting bit in all pmd that could map this
  1266. * hugepage, that will ensure no CPU can alter the
  1267. * mapcount on the head page. The mapcount is only
  1268. * accounted in the head page and it has to be
  1269. * transferred to all tail pages in the below code. So
  1270. * for this code to be safe, the split the mapcount
  1271. * can't change. But that doesn't mean userland can't
  1272. * keep changing and reading the page contents while
  1273. * we transfer the mapcount, so the pmd splitting
  1274. * status is achieved setting a reserved bit in the
  1275. * pmd, not by clearing the present bit.
  1276. */
  1277. page_tail->_mapcount = page->_mapcount;
  1278. BUG_ON(page_tail->mapping);
  1279. page_tail->mapping = page->mapping;
  1280. page_tail->index = page->index + i;
  1281. BUG_ON(!PageAnon(page_tail));
  1282. BUG_ON(!PageUptodate(page_tail));
  1283. BUG_ON(!PageDirty(page_tail));
  1284. BUG_ON(!PageSwapBacked(page_tail));
  1285. lru_add_page_tail(page, page_tail, lruvec);
  1286. }
  1287. atomic_sub(tail_count, &page->_count);
  1288. BUG_ON(atomic_read(&page->_count) <= 0);
  1289. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1290. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1291. ClearPageCompound(page);
  1292. compound_unlock(page);
  1293. spin_unlock_irq(&zone->lru_lock);
  1294. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1295. struct page *page_tail = page + i;
  1296. BUG_ON(page_count(page_tail) <= 0);
  1297. /*
  1298. * Tail pages may be freed if there wasn't any mapping
  1299. * like if add_to_swap() is running on a lru page that
  1300. * had its mapping zapped. And freeing these pages
  1301. * requires taking the lru_lock so we do the put_page
  1302. * of the tail pages after the split is complete.
  1303. */
  1304. put_page(page_tail);
  1305. }
  1306. /*
  1307. * Only the head page (now become a regular page) is required
  1308. * to be pinned by the caller.
  1309. */
  1310. BUG_ON(page_count(page) <= 0);
  1311. }
  1312. static int __split_huge_page_map(struct page *page,
  1313. struct vm_area_struct *vma,
  1314. unsigned long address)
  1315. {
  1316. struct mm_struct *mm = vma->vm_mm;
  1317. pmd_t *pmd, _pmd;
  1318. int ret = 0, i;
  1319. pgtable_t pgtable;
  1320. unsigned long haddr;
  1321. spin_lock(&mm->page_table_lock);
  1322. pmd = page_check_address_pmd(page, mm, address,
  1323. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1324. if (pmd) {
  1325. pgtable = pgtable_trans_huge_withdraw(mm);
  1326. pmd_populate(mm, &_pmd, pgtable);
  1327. haddr = address;
  1328. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1329. pte_t *pte, entry;
  1330. BUG_ON(PageCompound(page+i));
  1331. entry = mk_pte(page + i, vma->vm_page_prot);
  1332. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1333. if (!pmd_write(*pmd))
  1334. entry = pte_wrprotect(entry);
  1335. else
  1336. BUG_ON(page_mapcount(page) != 1);
  1337. if (!pmd_young(*pmd))
  1338. entry = pte_mkold(entry);
  1339. pte = pte_offset_map(&_pmd, haddr);
  1340. BUG_ON(!pte_none(*pte));
  1341. set_pte_at(mm, haddr, pte, entry);
  1342. pte_unmap(pte);
  1343. }
  1344. smp_wmb(); /* make pte visible before pmd */
  1345. /*
  1346. * Up to this point the pmd is present and huge and
  1347. * userland has the whole access to the hugepage
  1348. * during the split (which happens in place). If we
  1349. * overwrite the pmd with the not-huge version
  1350. * pointing to the pte here (which of course we could
  1351. * if all CPUs were bug free), userland could trigger
  1352. * a small page size TLB miss on the small sized TLB
  1353. * while the hugepage TLB entry is still established
  1354. * in the huge TLB. Some CPU doesn't like that. See
  1355. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1356. * Erratum 383 on page 93. Intel should be safe but is
  1357. * also warns that it's only safe if the permission
  1358. * and cache attributes of the two entries loaded in
  1359. * the two TLB is identical (which should be the case
  1360. * here). But it is generally safer to never allow
  1361. * small and huge TLB entries for the same virtual
  1362. * address to be loaded simultaneously. So instead of
  1363. * doing "pmd_populate(); flush_tlb_range();" we first
  1364. * mark the current pmd notpresent (atomically because
  1365. * here the pmd_trans_huge and pmd_trans_splitting
  1366. * must remain set at all times on the pmd until the
  1367. * split is complete for this pmd), then we flush the
  1368. * SMP TLB and finally we write the non-huge version
  1369. * of the pmd entry with pmd_populate.
  1370. */
  1371. pmdp_invalidate(vma, address, pmd);
  1372. pmd_populate(mm, pmd, pgtable);
  1373. ret = 1;
  1374. }
  1375. spin_unlock(&mm->page_table_lock);
  1376. return ret;
  1377. }
  1378. /* must be called with anon_vma->root->mutex hold */
  1379. static void __split_huge_page(struct page *page,
  1380. struct anon_vma *anon_vma)
  1381. {
  1382. int mapcount, mapcount2;
  1383. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1384. struct anon_vma_chain *avc;
  1385. BUG_ON(!PageHead(page));
  1386. BUG_ON(PageTail(page));
  1387. mapcount = 0;
  1388. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1389. struct vm_area_struct *vma = avc->vma;
  1390. unsigned long addr = vma_address(page, vma);
  1391. BUG_ON(is_vma_temporary_stack(vma));
  1392. mapcount += __split_huge_page_splitting(page, vma, addr);
  1393. }
  1394. /*
  1395. * It is critical that new vmas are added to the tail of the
  1396. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1397. * and establishes a child pmd before
  1398. * __split_huge_page_splitting() freezes the parent pmd (so if
  1399. * we fail to prevent copy_huge_pmd() from running until the
  1400. * whole __split_huge_page() is complete), we will still see
  1401. * the newly established pmd of the child later during the
  1402. * walk, to be able to set it as pmd_trans_splitting too.
  1403. */
  1404. if (mapcount != page_mapcount(page))
  1405. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1406. mapcount, page_mapcount(page));
  1407. BUG_ON(mapcount != page_mapcount(page));
  1408. __split_huge_page_refcount(page);
  1409. mapcount2 = 0;
  1410. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1411. struct vm_area_struct *vma = avc->vma;
  1412. unsigned long addr = vma_address(page, vma);
  1413. BUG_ON(is_vma_temporary_stack(vma));
  1414. mapcount2 += __split_huge_page_map(page, vma, addr);
  1415. }
  1416. if (mapcount != mapcount2)
  1417. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1418. mapcount, mapcount2, page_mapcount(page));
  1419. BUG_ON(mapcount != mapcount2);
  1420. }
  1421. int split_huge_page(struct page *page)
  1422. {
  1423. struct anon_vma *anon_vma;
  1424. int ret = 1;
  1425. BUG_ON(!PageAnon(page));
  1426. anon_vma = page_lock_anon_vma(page);
  1427. if (!anon_vma)
  1428. goto out;
  1429. ret = 0;
  1430. if (!PageCompound(page))
  1431. goto out_unlock;
  1432. BUG_ON(!PageSwapBacked(page));
  1433. __split_huge_page(page, anon_vma);
  1434. count_vm_event(THP_SPLIT);
  1435. BUG_ON(PageCompound(page));
  1436. out_unlock:
  1437. page_unlock_anon_vma(anon_vma);
  1438. out:
  1439. return ret;
  1440. }
  1441. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1442. int hugepage_madvise(struct vm_area_struct *vma,
  1443. unsigned long *vm_flags, int advice)
  1444. {
  1445. struct mm_struct *mm = vma->vm_mm;
  1446. switch (advice) {
  1447. case MADV_HUGEPAGE:
  1448. /*
  1449. * Be somewhat over-protective like KSM for now!
  1450. */
  1451. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1452. return -EINVAL;
  1453. if (mm->def_flags & VM_NOHUGEPAGE)
  1454. return -EINVAL;
  1455. *vm_flags &= ~VM_NOHUGEPAGE;
  1456. *vm_flags |= VM_HUGEPAGE;
  1457. /*
  1458. * If the vma become good for khugepaged to scan,
  1459. * register it here without waiting a page fault that
  1460. * may not happen any time soon.
  1461. */
  1462. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1463. return -ENOMEM;
  1464. break;
  1465. case MADV_NOHUGEPAGE:
  1466. /*
  1467. * Be somewhat over-protective like KSM for now!
  1468. */
  1469. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1470. return -EINVAL;
  1471. *vm_flags &= ~VM_HUGEPAGE;
  1472. *vm_flags |= VM_NOHUGEPAGE;
  1473. /*
  1474. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1475. * this vma even if we leave the mm registered in khugepaged if
  1476. * it got registered before VM_NOHUGEPAGE was set.
  1477. */
  1478. break;
  1479. }
  1480. return 0;
  1481. }
  1482. static int __init khugepaged_slab_init(void)
  1483. {
  1484. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1485. sizeof(struct mm_slot),
  1486. __alignof__(struct mm_slot), 0, NULL);
  1487. if (!mm_slot_cache)
  1488. return -ENOMEM;
  1489. return 0;
  1490. }
  1491. static void __init khugepaged_slab_free(void)
  1492. {
  1493. kmem_cache_destroy(mm_slot_cache);
  1494. mm_slot_cache = NULL;
  1495. }
  1496. static inline struct mm_slot *alloc_mm_slot(void)
  1497. {
  1498. if (!mm_slot_cache) /* initialization failed */
  1499. return NULL;
  1500. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1501. }
  1502. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1503. {
  1504. kmem_cache_free(mm_slot_cache, mm_slot);
  1505. }
  1506. static int __init mm_slots_hash_init(void)
  1507. {
  1508. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1509. GFP_KERNEL);
  1510. if (!mm_slots_hash)
  1511. return -ENOMEM;
  1512. return 0;
  1513. }
  1514. #if 0
  1515. static void __init mm_slots_hash_free(void)
  1516. {
  1517. kfree(mm_slots_hash);
  1518. mm_slots_hash = NULL;
  1519. }
  1520. #endif
  1521. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1522. {
  1523. struct mm_slot *mm_slot;
  1524. struct hlist_head *bucket;
  1525. struct hlist_node *node;
  1526. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1527. % MM_SLOTS_HASH_HEADS];
  1528. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1529. if (mm == mm_slot->mm)
  1530. return mm_slot;
  1531. }
  1532. return NULL;
  1533. }
  1534. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1535. struct mm_slot *mm_slot)
  1536. {
  1537. struct hlist_head *bucket;
  1538. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1539. % MM_SLOTS_HASH_HEADS];
  1540. mm_slot->mm = mm;
  1541. hlist_add_head(&mm_slot->hash, bucket);
  1542. }
  1543. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1544. {
  1545. return atomic_read(&mm->mm_users) == 0;
  1546. }
  1547. int __khugepaged_enter(struct mm_struct *mm)
  1548. {
  1549. struct mm_slot *mm_slot;
  1550. int wakeup;
  1551. mm_slot = alloc_mm_slot();
  1552. if (!mm_slot)
  1553. return -ENOMEM;
  1554. /* __khugepaged_exit() must not run from under us */
  1555. VM_BUG_ON(khugepaged_test_exit(mm));
  1556. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1557. free_mm_slot(mm_slot);
  1558. return 0;
  1559. }
  1560. spin_lock(&khugepaged_mm_lock);
  1561. insert_to_mm_slots_hash(mm, mm_slot);
  1562. /*
  1563. * Insert just behind the scanning cursor, to let the area settle
  1564. * down a little.
  1565. */
  1566. wakeup = list_empty(&khugepaged_scan.mm_head);
  1567. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1568. spin_unlock(&khugepaged_mm_lock);
  1569. atomic_inc(&mm->mm_count);
  1570. if (wakeup)
  1571. wake_up_interruptible(&khugepaged_wait);
  1572. return 0;
  1573. }
  1574. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1575. {
  1576. unsigned long hstart, hend;
  1577. if (!vma->anon_vma)
  1578. /*
  1579. * Not yet faulted in so we will register later in the
  1580. * page fault if needed.
  1581. */
  1582. return 0;
  1583. if (vma->vm_ops)
  1584. /* khugepaged not yet working on file or special mappings */
  1585. return 0;
  1586. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1587. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1588. hend = vma->vm_end & HPAGE_PMD_MASK;
  1589. if (hstart < hend)
  1590. return khugepaged_enter(vma);
  1591. return 0;
  1592. }
  1593. void __khugepaged_exit(struct mm_struct *mm)
  1594. {
  1595. struct mm_slot *mm_slot;
  1596. int free = 0;
  1597. spin_lock(&khugepaged_mm_lock);
  1598. mm_slot = get_mm_slot(mm);
  1599. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1600. hlist_del(&mm_slot->hash);
  1601. list_del(&mm_slot->mm_node);
  1602. free = 1;
  1603. }
  1604. spin_unlock(&khugepaged_mm_lock);
  1605. if (free) {
  1606. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1607. free_mm_slot(mm_slot);
  1608. mmdrop(mm);
  1609. } else if (mm_slot) {
  1610. /*
  1611. * This is required to serialize against
  1612. * khugepaged_test_exit() (which is guaranteed to run
  1613. * under mmap sem read mode). Stop here (after we
  1614. * return all pagetables will be destroyed) until
  1615. * khugepaged has finished working on the pagetables
  1616. * under the mmap_sem.
  1617. */
  1618. down_write(&mm->mmap_sem);
  1619. up_write(&mm->mmap_sem);
  1620. }
  1621. }
  1622. static void release_pte_page(struct page *page)
  1623. {
  1624. /* 0 stands for page_is_file_cache(page) == false */
  1625. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1626. unlock_page(page);
  1627. putback_lru_page(page);
  1628. }
  1629. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1630. {
  1631. while (--_pte >= pte) {
  1632. pte_t pteval = *_pte;
  1633. if (!pte_none(pteval))
  1634. release_pte_page(pte_page(pteval));
  1635. }
  1636. }
  1637. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1638. unsigned long address,
  1639. pte_t *pte)
  1640. {
  1641. struct page *page;
  1642. pte_t *_pte;
  1643. int referenced = 0, none = 0;
  1644. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1645. _pte++, address += PAGE_SIZE) {
  1646. pte_t pteval = *_pte;
  1647. if (pte_none(pteval)) {
  1648. if (++none <= khugepaged_max_ptes_none)
  1649. continue;
  1650. else
  1651. goto out;
  1652. }
  1653. if (!pte_present(pteval) || !pte_write(pteval))
  1654. goto out;
  1655. page = vm_normal_page(vma, address, pteval);
  1656. if (unlikely(!page))
  1657. goto out;
  1658. VM_BUG_ON(PageCompound(page));
  1659. BUG_ON(!PageAnon(page));
  1660. VM_BUG_ON(!PageSwapBacked(page));
  1661. /* cannot use mapcount: can't collapse if there's a gup pin */
  1662. if (page_count(page) != 1)
  1663. goto out;
  1664. /*
  1665. * We can do it before isolate_lru_page because the
  1666. * page can't be freed from under us. NOTE: PG_lock
  1667. * is needed to serialize against split_huge_page
  1668. * when invoked from the VM.
  1669. */
  1670. if (!trylock_page(page))
  1671. goto out;
  1672. /*
  1673. * Isolate the page to avoid collapsing an hugepage
  1674. * currently in use by the VM.
  1675. */
  1676. if (isolate_lru_page(page)) {
  1677. unlock_page(page);
  1678. goto out;
  1679. }
  1680. /* 0 stands for page_is_file_cache(page) == false */
  1681. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1682. VM_BUG_ON(!PageLocked(page));
  1683. VM_BUG_ON(PageLRU(page));
  1684. /* If there is no mapped pte young don't collapse the page */
  1685. if (pte_young(pteval) || PageReferenced(page) ||
  1686. mmu_notifier_test_young(vma->vm_mm, address))
  1687. referenced = 1;
  1688. }
  1689. if (likely(referenced))
  1690. return 1;
  1691. out:
  1692. release_pte_pages(pte, _pte);
  1693. return 0;
  1694. }
  1695. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1696. struct vm_area_struct *vma,
  1697. unsigned long address,
  1698. spinlock_t *ptl)
  1699. {
  1700. pte_t *_pte;
  1701. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1702. pte_t pteval = *_pte;
  1703. struct page *src_page;
  1704. if (pte_none(pteval)) {
  1705. clear_user_highpage(page, address);
  1706. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1707. } else {
  1708. src_page = pte_page(pteval);
  1709. copy_user_highpage(page, src_page, address, vma);
  1710. VM_BUG_ON(page_mapcount(src_page) != 1);
  1711. release_pte_page(src_page);
  1712. /*
  1713. * ptl mostly unnecessary, but preempt has to
  1714. * be disabled to update the per-cpu stats
  1715. * inside page_remove_rmap().
  1716. */
  1717. spin_lock(ptl);
  1718. /*
  1719. * paravirt calls inside pte_clear here are
  1720. * superfluous.
  1721. */
  1722. pte_clear(vma->vm_mm, address, _pte);
  1723. page_remove_rmap(src_page);
  1724. spin_unlock(ptl);
  1725. free_page_and_swap_cache(src_page);
  1726. }
  1727. address += PAGE_SIZE;
  1728. page++;
  1729. }
  1730. }
  1731. static void khugepaged_alloc_sleep(void)
  1732. {
  1733. wait_event_freezable_timeout(khugepaged_wait, false,
  1734. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1735. }
  1736. #ifdef CONFIG_NUMA
  1737. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1738. {
  1739. if (IS_ERR(*hpage)) {
  1740. if (!*wait)
  1741. return false;
  1742. *wait = false;
  1743. *hpage = NULL;
  1744. khugepaged_alloc_sleep();
  1745. } else if (*hpage) {
  1746. put_page(*hpage);
  1747. *hpage = NULL;
  1748. }
  1749. return true;
  1750. }
  1751. static struct page
  1752. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1753. struct vm_area_struct *vma, unsigned long address,
  1754. int node)
  1755. {
  1756. VM_BUG_ON(*hpage);
  1757. /*
  1758. * Allocate the page while the vma is still valid and under
  1759. * the mmap_sem read mode so there is no memory allocation
  1760. * later when we take the mmap_sem in write mode. This is more
  1761. * friendly behavior (OTOH it may actually hide bugs) to
  1762. * filesystems in userland with daemons allocating memory in
  1763. * the userland I/O paths. Allocating memory with the
  1764. * mmap_sem in read mode is good idea also to allow greater
  1765. * scalability.
  1766. */
  1767. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1768. node, __GFP_OTHER_NODE);
  1769. /*
  1770. * After allocating the hugepage, release the mmap_sem read lock in
  1771. * preparation for taking it in write mode.
  1772. */
  1773. up_read(&mm->mmap_sem);
  1774. if (unlikely(!*hpage)) {
  1775. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1776. *hpage = ERR_PTR(-ENOMEM);
  1777. return NULL;
  1778. }
  1779. count_vm_event(THP_COLLAPSE_ALLOC);
  1780. return *hpage;
  1781. }
  1782. #else
  1783. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1784. {
  1785. struct page *hpage;
  1786. do {
  1787. hpage = alloc_hugepage(khugepaged_defrag());
  1788. if (!hpage) {
  1789. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1790. if (!*wait)
  1791. return NULL;
  1792. *wait = false;
  1793. khugepaged_alloc_sleep();
  1794. } else
  1795. count_vm_event(THP_COLLAPSE_ALLOC);
  1796. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1797. return hpage;
  1798. }
  1799. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1800. {
  1801. if (!*hpage)
  1802. *hpage = khugepaged_alloc_hugepage(wait);
  1803. if (unlikely(!*hpage))
  1804. return false;
  1805. return true;
  1806. }
  1807. static struct page
  1808. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1809. struct vm_area_struct *vma, unsigned long address,
  1810. int node)
  1811. {
  1812. up_read(&mm->mmap_sem);
  1813. VM_BUG_ON(!*hpage);
  1814. return *hpage;
  1815. }
  1816. #endif
  1817. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1818. {
  1819. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1820. (vma->vm_flags & VM_NOHUGEPAGE))
  1821. return false;
  1822. if (!vma->anon_vma || vma->vm_ops)
  1823. return false;
  1824. if (is_vma_temporary_stack(vma))
  1825. return false;
  1826. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1827. return true;
  1828. }
  1829. static void collapse_huge_page(struct mm_struct *mm,
  1830. unsigned long address,
  1831. struct page **hpage,
  1832. struct vm_area_struct *vma,
  1833. int node)
  1834. {
  1835. pmd_t *pmd, _pmd;
  1836. pte_t *pte;
  1837. pgtable_t pgtable;
  1838. struct page *new_page;
  1839. spinlock_t *ptl;
  1840. int isolated;
  1841. unsigned long hstart, hend;
  1842. unsigned long mmun_start; /* For mmu_notifiers */
  1843. unsigned long mmun_end; /* For mmu_notifiers */
  1844. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1845. /* release the mmap_sem read lock. */
  1846. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1847. if (!new_page)
  1848. return;
  1849. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1850. return;
  1851. /*
  1852. * Prevent all access to pagetables with the exception of
  1853. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1854. * handled by the anon_vma lock + PG_lock.
  1855. */
  1856. down_write(&mm->mmap_sem);
  1857. if (unlikely(khugepaged_test_exit(mm)))
  1858. goto out;
  1859. vma = find_vma(mm, address);
  1860. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1861. hend = vma->vm_end & HPAGE_PMD_MASK;
  1862. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1863. goto out;
  1864. if (!hugepage_vma_check(vma))
  1865. goto out;
  1866. pmd = mm_find_pmd(mm, address);
  1867. if (!pmd)
  1868. goto out;
  1869. if (pmd_trans_huge(*pmd))
  1870. goto out;
  1871. anon_vma_lock(vma->anon_vma);
  1872. pte = pte_offset_map(pmd, address);
  1873. ptl = pte_lockptr(mm, pmd);
  1874. mmun_start = address;
  1875. mmun_end = address + HPAGE_PMD_SIZE;
  1876. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1877. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1878. /*
  1879. * After this gup_fast can't run anymore. This also removes
  1880. * any huge TLB entry from the CPU so we won't allow
  1881. * huge and small TLB entries for the same virtual address
  1882. * to avoid the risk of CPU bugs in that area.
  1883. */
  1884. _pmd = pmdp_clear_flush(vma, address, pmd);
  1885. spin_unlock(&mm->page_table_lock);
  1886. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1887. spin_lock(ptl);
  1888. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1889. spin_unlock(ptl);
  1890. if (unlikely(!isolated)) {
  1891. pte_unmap(pte);
  1892. spin_lock(&mm->page_table_lock);
  1893. BUG_ON(!pmd_none(*pmd));
  1894. set_pmd_at(mm, address, pmd, _pmd);
  1895. spin_unlock(&mm->page_table_lock);
  1896. anon_vma_unlock(vma->anon_vma);
  1897. goto out;
  1898. }
  1899. /*
  1900. * All pages are isolated and locked so anon_vma rmap
  1901. * can't run anymore.
  1902. */
  1903. anon_vma_unlock(vma->anon_vma);
  1904. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1905. pte_unmap(pte);
  1906. __SetPageUptodate(new_page);
  1907. pgtable = pmd_pgtable(_pmd);
  1908. _pmd = mk_huge_pmd(new_page, vma);
  1909. /*
  1910. * spin_lock() below is not the equivalent of smp_wmb(), so
  1911. * this is needed to avoid the copy_huge_page writes to become
  1912. * visible after the set_pmd_at() write.
  1913. */
  1914. smp_wmb();
  1915. spin_lock(&mm->page_table_lock);
  1916. BUG_ON(!pmd_none(*pmd));
  1917. page_add_new_anon_rmap(new_page, vma, address);
  1918. set_pmd_at(mm, address, pmd, _pmd);
  1919. update_mmu_cache_pmd(vma, address, pmd);
  1920. pgtable_trans_huge_deposit(mm, pgtable);
  1921. spin_unlock(&mm->page_table_lock);
  1922. *hpage = NULL;
  1923. khugepaged_pages_collapsed++;
  1924. out_up_write:
  1925. up_write(&mm->mmap_sem);
  1926. return;
  1927. out:
  1928. mem_cgroup_uncharge_page(new_page);
  1929. goto out_up_write;
  1930. }
  1931. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1932. struct vm_area_struct *vma,
  1933. unsigned long address,
  1934. struct page **hpage)
  1935. {
  1936. pmd_t *pmd;
  1937. pte_t *pte, *_pte;
  1938. int ret = 0, referenced = 0, none = 0;
  1939. struct page *page;
  1940. unsigned long _address;
  1941. spinlock_t *ptl;
  1942. int node = -1;
  1943. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1944. pmd = mm_find_pmd(mm, address);
  1945. if (!pmd)
  1946. goto out;
  1947. if (pmd_trans_huge(*pmd))
  1948. goto out;
  1949. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1950. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1951. _pte++, _address += PAGE_SIZE) {
  1952. pte_t pteval = *_pte;
  1953. if (pte_none(pteval)) {
  1954. if (++none <= khugepaged_max_ptes_none)
  1955. continue;
  1956. else
  1957. goto out_unmap;
  1958. }
  1959. if (!pte_present(pteval) || !pte_write(pteval))
  1960. goto out_unmap;
  1961. page = vm_normal_page(vma, _address, pteval);
  1962. if (unlikely(!page))
  1963. goto out_unmap;
  1964. /*
  1965. * Chose the node of the first page. This could
  1966. * be more sophisticated and look at more pages,
  1967. * but isn't for now.
  1968. */
  1969. if (node == -1)
  1970. node = page_to_nid(page);
  1971. VM_BUG_ON(PageCompound(page));
  1972. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1973. goto out_unmap;
  1974. /* cannot use mapcount: can't collapse if there's a gup pin */
  1975. if (page_count(page) != 1)
  1976. goto out_unmap;
  1977. if (pte_young(pteval) || PageReferenced(page) ||
  1978. mmu_notifier_test_young(vma->vm_mm, address))
  1979. referenced = 1;
  1980. }
  1981. if (referenced)
  1982. ret = 1;
  1983. out_unmap:
  1984. pte_unmap_unlock(pte, ptl);
  1985. if (ret)
  1986. /* collapse_huge_page will return with the mmap_sem released */
  1987. collapse_huge_page(mm, address, hpage, vma, node);
  1988. out:
  1989. return ret;
  1990. }
  1991. static void collect_mm_slot(struct mm_slot *mm_slot)
  1992. {
  1993. struct mm_struct *mm = mm_slot->mm;
  1994. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1995. if (khugepaged_test_exit(mm)) {
  1996. /* free mm_slot */
  1997. hlist_del(&mm_slot->hash);
  1998. list_del(&mm_slot->mm_node);
  1999. /*
  2000. * Not strictly needed because the mm exited already.
  2001. *
  2002. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2003. */
  2004. /* khugepaged_mm_lock actually not necessary for the below */
  2005. free_mm_slot(mm_slot);
  2006. mmdrop(mm);
  2007. }
  2008. }
  2009. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2010. struct page **hpage)
  2011. __releases(&khugepaged_mm_lock)
  2012. __acquires(&khugepaged_mm_lock)
  2013. {
  2014. struct mm_slot *mm_slot;
  2015. struct mm_struct *mm;
  2016. struct vm_area_struct *vma;
  2017. int progress = 0;
  2018. VM_BUG_ON(!pages);
  2019. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2020. if (khugepaged_scan.mm_slot)
  2021. mm_slot = khugepaged_scan.mm_slot;
  2022. else {
  2023. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2024. struct mm_slot, mm_node);
  2025. khugepaged_scan.address = 0;
  2026. khugepaged_scan.mm_slot = mm_slot;
  2027. }
  2028. spin_unlock(&khugepaged_mm_lock);
  2029. mm = mm_slot->mm;
  2030. down_read(&mm->mmap_sem);
  2031. if (unlikely(khugepaged_test_exit(mm)))
  2032. vma = NULL;
  2033. else
  2034. vma = find_vma(mm, khugepaged_scan.address);
  2035. progress++;
  2036. for (; vma; vma = vma->vm_next) {
  2037. unsigned long hstart, hend;
  2038. cond_resched();
  2039. if (unlikely(khugepaged_test_exit(mm))) {
  2040. progress++;
  2041. break;
  2042. }
  2043. if (!hugepage_vma_check(vma)) {
  2044. skip:
  2045. progress++;
  2046. continue;
  2047. }
  2048. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2049. hend = vma->vm_end & HPAGE_PMD_MASK;
  2050. if (hstart >= hend)
  2051. goto skip;
  2052. if (khugepaged_scan.address > hend)
  2053. goto skip;
  2054. if (khugepaged_scan.address < hstart)
  2055. khugepaged_scan.address = hstart;
  2056. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2057. while (khugepaged_scan.address < hend) {
  2058. int ret;
  2059. cond_resched();
  2060. if (unlikely(khugepaged_test_exit(mm)))
  2061. goto breakouterloop;
  2062. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2063. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2064. hend);
  2065. ret = khugepaged_scan_pmd(mm, vma,
  2066. khugepaged_scan.address,
  2067. hpage);
  2068. /* move to next address */
  2069. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2070. progress += HPAGE_PMD_NR;
  2071. if (ret)
  2072. /* we released mmap_sem so break loop */
  2073. goto breakouterloop_mmap_sem;
  2074. if (progress >= pages)
  2075. goto breakouterloop;
  2076. }
  2077. }
  2078. breakouterloop:
  2079. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2080. breakouterloop_mmap_sem:
  2081. spin_lock(&khugepaged_mm_lock);
  2082. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2083. /*
  2084. * Release the current mm_slot if this mm is about to die, or
  2085. * if we scanned all vmas of this mm.
  2086. */
  2087. if (khugepaged_test_exit(mm) || !vma) {
  2088. /*
  2089. * Make sure that if mm_users is reaching zero while
  2090. * khugepaged runs here, khugepaged_exit will find
  2091. * mm_slot not pointing to the exiting mm.
  2092. */
  2093. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2094. khugepaged_scan.mm_slot = list_entry(
  2095. mm_slot->mm_node.next,
  2096. struct mm_slot, mm_node);
  2097. khugepaged_scan.address = 0;
  2098. } else {
  2099. khugepaged_scan.mm_slot = NULL;
  2100. khugepaged_full_scans++;
  2101. }
  2102. collect_mm_slot(mm_slot);
  2103. }
  2104. return progress;
  2105. }
  2106. static int khugepaged_has_work(void)
  2107. {
  2108. return !list_empty(&khugepaged_scan.mm_head) &&
  2109. khugepaged_enabled();
  2110. }
  2111. static int khugepaged_wait_event(void)
  2112. {
  2113. return !list_empty(&khugepaged_scan.mm_head) ||
  2114. kthread_should_stop();
  2115. }
  2116. static void khugepaged_do_scan(void)
  2117. {
  2118. struct page *hpage = NULL;
  2119. unsigned int progress = 0, pass_through_head = 0;
  2120. unsigned int pages = khugepaged_pages_to_scan;
  2121. bool wait = true;
  2122. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2123. while (progress < pages) {
  2124. if (!khugepaged_prealloc_page(&hpage, &wait))
  2125. break;
  2126. cond_resched();
  2127. if (unlikely(kthread_should_stop() || freezing(current)))
  2128. break;
  2129. spin_lock(&khugepaged_mm_lock);
  2130. if (!khugepaged_scan.mm_slot)
  2131. pass_through_head++;
  2132. if (khugepaged_has_work() &&
  2133. pass_through_head < 2)
  2134. progress += khugepaged_scan_mm_slot(pages - progress,
  2135. &hpage);
  2136. else
  2137. progress = pages;
  2138. spin_unlock(&khugepaged_mm_lock);
  2139. }
  2140. if (!IS_ERR_OR_NULL(hpage))
  2141. put_page(hpage);
  2142. }
  2143. static void khugepaged_wait_work(void)
  2144. {
  2145. try_to_freeze();
  2146. if (khugepaged_has_work()) {
  2147. if (!khugepaged_scan_sleep_millisecs)
  2148. return;
  2149. wait_event_freezable_timeout(khugepaged_wait,
  2150. kthread_should_stop(),
  2151. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2152. return;
  2153. }
  2154. if (khugepaged_enabled())
  2155. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2156. }
  2157. static int khugepaged(void *none)
  2158. {
  2159. struct mm_slot *mm_slot;
  2160. set_freezable();
  2161. set_user_nice(current, 19);
  2162. while (!kthread_should_stop()) {
  2163. khugepaged_do_scan();
  2164. khugepaged_wait_work();
  2165. }
  2166. spin_lock(&khugepaged_mm_lock);
  2167. mm_slot = khugepaged_scan.mm_slot;
  2168. khugepaged_scan.mm_slot = NULL;
  2169. if (mm_slot)
  2170. collect_mm_slot(mm_slot);
  2171. spin_unlock(&khugepaged_mm_lock);
  2172. return 0;
  2173. }
  2174. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2175. pmd_t *pmd)
  2176. {
  2177. struct page *page;
  2178. unsigned long haddr = address & HPAGE_PMD_MASK;
  2179. struct mm_struct *mm = vma->vm_mm;
  2180. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2181. spin_lock(&mm->page_table_lock);
  2182. if (unlikely(!pmd_trans_huge(*pmd))) {
  2183. spin_unlock(&mm->page_table_lock);
  2184. return;
  2185. }
  2186. page = pmd_page(*pmd);
  2187. VM_BUG_ON(!page_count(page));
  2188. get_page(page);
  2189. spin_unlock(&mm->page_table_lock);
  2190. split_huge_page(page);
  2191. put_page(page);
  2192. BUG_ON(pmd_trans_huge(*pmd));
  2193. }
  2194. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2195. pmd_t *pmd)
  2196. {
  2197. struct vm_area_struct *vma;
  2198. vma = find_vma(mm, address);
  2199. BUG_ON(vma == NULL);
  2200. split_huge_page_pmd(vma, address, pmd);
  2201. }
  2202. static void split_huge_page_address(struct mm_struct *mm,
  2203. unsigned long address)
  2204. {
  2205. pmd_t *pmd;
  2206. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2207. pmd = mm_find_pmd(mm, address);
  2208. if (!pmd)
  2209. return;
  2210. /*
  2211. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2212. * materialize from under us.
  2213. */
  2214. split_huge_page_pmd_mm(mm, address, pmd);
  2215. }
  2216. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2217. unsigned long start,
  2218. unsigned long end,
  2219. long adjust_next)
  2220. {
  2221. /*
  2222. * If the new start address isn't hpage aligned and it could
  2223. * previously contain an hugepage: check if we need to split
  2224. * an huge pmd.
  2225. */
  2226. if (start & ~HPAGE_PMD_MASK &&
  2227. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2228. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2229. split_huge_page_address(vma->vm_mm, start);
  2230. /*
  2231. * If the new end address isn't hpage aligned and it could
  2232. * previously contain an hugepage: check if we need to split
  2233. * an huge pmd.
  2234. */
  2235. if (end & ~HPAGE_PMD_MASK &&
  2236. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2237. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2238. split_huge_page_address(vma->vm_mm, end);
  2239. /*
  2240. * If we're also updating the vma->vm_next->vm_start, if the new
  2241. * vm_next->vm_start isn't page aligned and it could previously
  2242. * contain an hugepage: check if we need to split an huge pmd.
  2243. */
  2244. if (adjust_next > 0) {
  2245. struct vm_area_struct *next = vma->vm_next;
  2246. unsigned long nstart = next->vm_start;
  2247. nstart += adjust_next << PAGE_SHIFT;
  2248. if (nstart & ~HPAGE_PMD_MASK &&
  2249. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2250. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2251. split_huge_page_address(next->vm_mm, nstart);
  2252. }
  2253. }