elevator.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@suse.de> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/config.h>
  31. #include <linux/module.h>
  32. #include <linux/slab.h>
  33. #include <linux/init.h>
  34. #include <linux/compiler.h>
  35. #include <linux/delay.h>
  36. #include <asm/uaccess.h>
  37. static DEFINE_SPINLOCK(elv_list_lock);
  38. static LIST_HEAD(elv_list);
  39. /*
  40. * can we safely merge with this request?
  41. */
  42. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  43. {
  44. if (!rq_mergeable(rq))
  45. return 0;
  46. /*
  47. * different data direction or already started, don't merge
  48. */
  49. if (bio_data_dir(bio) != rq_data_dir(rq))
  50. return 0;
  51. /*
  52. * same device and no special stuff set, merge is ok
  53. */
  54. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  55. !rq->waiting && !rq->special)
  56. return 1;
  57. return 0;
  58. }
  59. EXPORT_SYMBOL(elv_rq_merge_ok);
  60. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  61. {
  62. int ret = ELEVATOR_NO_MERGE;
  63. /*
  64. * we can merge and sequence is ok, check if it's possible
  65. */
  66. if (elv_rq_merge_ok(__rq, bio)) {
  67. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  68. ret = ELEVATOR_BACK_MERGE;
  69. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  70. ret = ELEVATOR_FRONT_MERGE;
  71. }
  72. return ret;
  73. }
  74. static struct elevator_type *elevator_find(const char *name)
  75. {
  76. struct elevator_type *e = NULL;
  77. struct list_head *entry;
  78. list_for_each(entry, &elv_list) {
  79. struct elevator_type *__e;
  80. __e = list_entry(entry, struct elevator_type, list);
  81. if (!strcmp(__e->elevator_name, name)) {
  82. e = __e;
  83. break;
  84. }
  85. }
  86. return e;
  87. }
  88. static void elevator_put(struct elevator_type *e)
  89. {
  90. module_put(e->elevator_owner);
  91. }
  92. static struct elevator_type *elevator_get(const char *name)
  93. {
  94. struct elevator_type *e;
  95. spin_lock_irq(&elv_list_lock);
  96. e = elevator_find(name);
  97. if (e && !try_module_get(e->elevator_owner))
  98. e = NULL;
  99. spin_unlock_irq(&elv_list_lock);
  100. return e;
  101. }
  102. static int elevator_attach(request_queue_t *q, struct elevator_type *e,
  103. struct elevator_queue *eq)
  104. {
  105. int ret = 0;
  106. memset(eq, 0, sizeof(*eq));
  107. eq->ops = &e->ops;
  108. eq->elevator_type = e;
  109. q->elevator = eq;
  110. if (eq->ops->elevator_init_fn)
  111. ret = eq->ops->elevator_init_fn(q, eq);
  112. return ret;
  113. }
  114. static char chosen_elevator[16];
  115. static int __init elevator_setup(char *str)
  116. {
  117. /*
  118. * Be backwards-compatible with previous kernels, so users
  119. * won't get the wrong elevator.
  120. */
  121. if (!strcmp(str, "as"))
  122. strcpy(chosen_elevator, "anticipatory");
  123. else
  124. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  125. return 0;
  126. }
  127. __setup("elevator=", elevator_setup);
  128. int elevator_init(request_queue_t *q, char *name)
  129. {
  130. struct elevator_type *e = NULL;
  131. struct elevator_queue *eq;
  132. int ret = 0;
  133. INIT_LIST_HEAD(&q->queue_head);
  134. q->last_merge = NULL;
  135. q->end_sector = 0;
  136. q->boundary_rq = NULL;
  137. if (name && !(e = elevator_get(name)))
  138. return -EINVAL;
  139. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  140. printk("I/O scheduler %s not found\n", chosen_elevator);
  141. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  142. printk("Default I/O scheduler not found, using no-op\n");
  143. e = elevator_get("noop");
  144. }
  145. eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
  146. if (!eq) {
  147. elevator_put(e);
  148. return -ENOMEM;
  149. }
  150. ret = elevator_attach(q, e, eq);
  151. if (ret) {
  152. kfree(eq);
  153. elevator_put(e);
  154. }
  155. return ret;
  156. }
  157. void elevator_exit(elevator_t *e)
  158. {
  159. if (e->ops->elevator_exit_fn)
  160. e->ops->elevator_exit_fn(e);
  161. elevator_put(e->elevator_type);
  162. e->elevator_type = NULL;
  163. kfree(e);
  164. }
  165. /*
  166. * Insert rq into dispatch queue of q. Queue lock must be held on
  167. * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
  168. * appended to the dispatch queue. To be used by specific elevators.
  169. */
  170. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  171. {
  172. sector_t boundary;
  173. struct list_head *entry;
  174. if (q->last_merge == rq)
  175. q->last_merge = NULL;
  176. q->nr_sorted--;
  177. boundary = q->end_sector;
  178. list_for_each_prev(entry, &q->queue_head) {
  179. struct request *pos = list_entry_rq(entry);
  180. if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  181. break;
  182. if (rq->sector >= boundary) {
  183. if (pos->sector < boundary)
  184. continue;
  185. } else {
  186. if (pos->sector >= boundary)
  187. break;
  188. }
  189. if (rq->sector >= pos->sector)
  190. break;
  191. }
  192. list_add(&rq->queuelist, entry);
  193. }
  194. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  195. {
  196. elevator_t *e = q->elevator;
  197. int ret;
  198. if (q->last_merge) {
  199. ret = elv_try_merge(q->last_merge, bio);
  200. if (ret != ELEVATOR_NO_MERGE) {
  201. *req = q->last_merge;
  202. return ret;
  203. }
  204. }
  205. if (e->ops->elevator_merge_fn)
  206. return e->ops->elevator_merge_fn(q, req, bio);
  207. return ELEVATOR_NO_MERGE;
  208. }
  209. void elv_merged_request(request_queue_t *q, struct request *rq)
  210. {
  211. elevator_t *e = q->elevator;
  212. if (e->ops->elevator_merged_fn)
  213. e->ops->elevator_merged_fn(q, rq);
  214. q->last_merge = rq;
  215. }
  216. void elv_merge_requests(request_queue_t *q, struct request *rq,
  217. struct request *next)
  218. {
  219. elevator_t *e = q->elevator;
  220. if (e->ops->elevator_merge_req_fn)
  221. e->ops->elevator_merge_req_fn(q, rq, next);
  222. q->nr_sorted--;
  223. q->last_merge = rq;
  224. }
  225. void elv_requeue_request(request_queue_t *q, struct request *rq)
  226. {
  227. elevator_t *e = q->elevator;
  228. /*
  229. * it already went through dequeue, we need to decrement the
  230. * in_flight count again
  231. */
  232. if (blk_account_rq(rq)) {
  233. q->in_flight--;
  234. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  235. e->ops->elevator_deactivate_req_fn(q, rq);
  236. }
  237. rq->flags &= ~REQ_STARTED;
  238. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  239. }
  240. static void elv_drain_elevator(request_queue_t *q)
  241. {
  242. static int printed;
  243. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  244. ;
  245. if (q->nr_sorted == 0)
  246. return;
  247. if (printed++ < 10) {
  248. printk(KERN_ERR "%s: forced dispatching is broken "
  249. "(nr_sorted=%u), please report this\n",
  250. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  251. }
  252. }
  253. void elv_insert(request_queue_t *q, struct request *rq, int where)
  254. {
  255. struct list_head *pos;
  256. unsigned ordseq;
  257. rq->q = q;
  258. switch (where) {
  259. case ELEVATOR_INSERT_FRONT:
  260. rq->flags |= REQ_SOFTBARRIER;
  261. list_add(&rq->queuelist, &q->queue_head);
  262. break;
  263. case ELEVATOR_INSERT_BACK:
  264. rq->flags |= REQ_SOFTBARRIER;
  265. elv_drain_elevator(q);
  266. list_add_tail(&rq->queuelist, &q->queue_head);
  267. /*
  268. * We kick the queue here for the following reasons.
  269. * - The elevator might have returned NULL previously
  270. * to delay requests and returned them now. As the
  271. * queue wasn't empty before this request, ll_rw_blk
  272. * won't run the queue on return, resulting in hang.
  273. * - Usually, back inserted requests won't be merged
  274. * with anything. There's no point in delaying queue
  275. * processing.
  276. */
  277. blk_remove_plug(q);
  278. q->request_fn(q);
  279. break;
  280. case ELEVATOR_INSERT_SORT:
  281. BUG_ON(!blk_fs_request(rq));
  282. rq->flags |= REQ_SORTED;
  283. q->nr_sorted++;
  284. if (q->last_merge == NULL && rq_mergeable(rq))
  285. q->last_merge = rq;
  286. /*
  287. * Some ioscheds (cfq) run q->request_fn directly, so
  288. * rq cannot be accessed after calling
  289. * elevator_add_req_fn.
  290. */
  291. q->elevator->ops->elevator_add_req_fn(q, rq);
  292. break;
  293. case ELEVATOR_INSERT_REQUEUE:
  294. /*
  295. * If ordered flush isn't in progress, we do front
  296. * insertion; otherwise, requests should be requeued
  297. * in ordseq order.
  298. */
  299. rq->flags |= REQ_SOFTBARRIER;
  300. if (q->ordseq == 0) {
  301. list_add(&rq->queuelist, &q->queue_head);
  302. break;
  303. }
  304. ordseq = blk_ordered_req_seq(rq);
  305. list_for_each(pos, &q->queue_head) {
  306. struct request *pos_rq = list_entry_rq(pos);
  307. if (ordseq <= blk_ordered_req_seq(pos_rq))
  308. break;
  309. }
  310. list_add_tail(&rq->queuelist, pos);
  311. break;
  312. default:
  313. printk(KERN_ERR "%s: bad insertion point %d\n",
  314. __FUNCTION__, where);
  315. BUG();
  316. }
  317. if (blk_queue_plugged(q)) {
  318. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  319. - q->in_flight;
  320. if (nrq >= q->unplug_thresh)
  321. __generic_unplug_device(q);
  322. }
  323. }
  324. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  325. int plug)
  326. {
  327. if (q->ordcolor)
  328. rq->flags |= REQ_ORDERED_COLOR;
  329. if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  330. /*
  331. * toggle ordered color
  332. */
  333. if (blk_barrier_rq(rq))
  334. q->ordcolor ^= 1;
  335. /*
  336. * barriers implicitly indicate back insertion
  337. */
  338. if (where == ELEVATOR_INSERT_SORT)
  339. where = ELEVATOR_INSERT_BACK;
  340. /*
  341. * this request is scheduling boundary, update
  342. * end_sector
  343. */
  344. if (blk_fs_request(rq)) {
  345. q->end_sector = rq_end_sector(rq);
  346. q->boundary_rq = rq;
  347. }
  348. } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  349. where = ELEVATOR_INSERT_BACK;
  350. if (plug)
  351. blk_plug_device(q);
  352. elv_insert(q, rq, where);
  353. }
  354. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  355. int plug)
  356. {
  357. unsigned long flags;
  358. spin_lock_irqsave(q->queue_lock, flags);
  359. __elv_add_request(q, rq, where, plug);
  360. spin_unlock_irqrestore(q->queue_lock, flags);
  361. }
  362. static inline struct request *__elv_next_request(request_queue_t *q)
  363. {
  364. struct request *rq;
  365. while (1) {
  366. while (!list_empty(&q->queue_head)) {
  367. rq = list_entry_rq(q->queue_head.next);
  368. if (blk_do_ordered(q, &rq))
  369. return rq;
  370. }
  371. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  372. return NULL;
  373. }
  374. }
  375. struct request *elv_next_request(request_queue_t *q)
  376. {
  377. struct request *rq;
  378. int ret;
  379. while ((rq = __elv_next_request(q)) != NULL) {
  380. if (!(rq->flags & REQ_STARTED)) {
  381. elevator_t *e = q->elevator;
  382. /*
  383. * This is the first time the device driver
  384. * sees this request (possibly after
  385. * requeueing). Notify IO scheduler.
  386. */
  387. if (blk_sorted_rq(rq) &&
  388. e->ops->elevator_activate_req_fn)
  389. e->ops->elevator_activate_req_fn(q, rq);
  390. /*
  391. * just mark as started even if we don't start
  392. * it, a request that has been delayed should
  393. * not be passed by new incoming requests
  394. */
  395. rq->flags |= REQ_STARTED;
  396. }
  397. if (!q->boundary_rq || q->boundary_rq == rq) {
  398. q->end_sector = rq_end_sector(rq);
  399. q->boundary_rq = NULL;
  400. }
  401. if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
  402. break;
  403. ret = q->prep_rq_fn(q, rq);
  404. if (ret == BLKPREP_OK) {
  405. break;
  406. } else if (ret == BLKPREP_DEFER) {
  407. /*
  408. * the request may have been (partially) prepped.
  409. * we need to keep this request in the front to
  410. * avoid resource deadlock. REQ_STARTED will
  411. * prevent other fs requests from passing this one.
  412. */
  413. rq = NULL;
  414. break;
  415. } else if (ret == BLKPREP_KILL) {
  416. int nr_bytes = rq->hard_nr_sectors << 9;
  417. if (!nr_bytes)
  418. nr_bytes = rq->data_len;
  419. blkdev_dequeue_request(rq);
  420. rq->flags |= REQ_QUIET;
  421. end_that_request_chunk(rq, 0, nr_bytes);
  422. end_that_request_last(rq, 0);
  423. } else {
  424. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  425. ret);
  426. break;
  427. }
  428. }
  429. return rq;
  430. }
  431. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  432. {
  433. BUG_ON(list_empty(&rq->queuelist));
  434. list_del_init(&rq->queuelist);
  435. /*
  436. * the time frame between a request being removed from the lists
  437. * and to it is freed is accounted as io that is in progress at
  438. * the driver side.
  439. */
  440. if (blk_account_rq(rq))
  441. q->in_flight++;
  442. }
  443. int elv_queue_empty(request_queue_t *q)
  444. {
  445. elevator_t *e = q->elevator;
  446. if (!list_empty(&q->queue_head))
  447. return 0;
  448. if (e->ops->elevator_queue_empty_fn)
  449. return e->ops->elevator_queue_empty_fn(q);
  450. return 1;
  451. }
  452. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  453. {
  454. elevator_t *e = q->elevator;
  455. if (e->ops->elevator_latter_req_fn)
  456. return e->ops->elevator_latter_req_fn(q, rq);
  457. return NULL;
  458. }
  459. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  460. {
  461. elevator_t *e = q->elevator;
  462. if (e->ops->elevator_former_req_fn)
  463. return e->ops->elevator_former_req_fn(q, rq);
  464. return NULL;
  465. }
  466. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  467. gfp_t gfp_mask)
  468. {
  469. elevator_t *e = q->elevator;
  470. if (e->ops->elevator_set_req_fn)
  471. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  472. rq->elevator_private = NULL;
  473. return 0;
  474. }
  475. void elv_put_request(request_queue_t *q, struct request *rq)
  476. {
  477. elevator_t *e = q->elevator;
  478. if (e->ops->elevator_put_req_fn)
  479. e->ops->elevator_put_req_fn(q, rq);
  480. }
  481. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  482. {
  483. elevator_t *e = q->elevator;
  484. if (e->ops->elevator_may_queue_fn)
  485. return e->ops->elevator_may_queue_fn(q, rw, bio);
  486. return ELV_MQUEUE_MAY;
  487. }
  488. void elv_completed_request(request_queue_t *q, struct request *rq)
  489. {
  490. elevator_t *e = q->elevator;
  491. /*
  492. * request is released from the driver, io must be done
  493. */
  494. if (blk_account_rq(rq)) {
  495. q->in_flight--;
  496. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  497. e->ops->elevator_completed_req_fn(q, rq);
  498. }
  499. /*
  500. * Check if the queue is waiting for fs requests to be
  501. * drained for flush sequence.
  502. */
  503. if (unlikely(q->ordseq)) {
  504. struct request *first_rq = list_entry_rq(q->queue_head.next);
  505. if (q->in_flight == 0 &&
  506. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  507. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  508. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  509. q->request_fn(q);
  510. }
  511. }
  512. }
  513. int elv_register_queue(struct request_queue *q)
  514. {
  515. elevator_t *e = q->elevator;
  516. e->kobj.parent = kobject_get(&q->kobj);
  517. if (!e->kobj.parent)
  518. return -EBUSY;
  519. snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  520. e->kobj.ktype = e->elevator_type->elevator_ktype;
  521. return kobject_register(&e->kobj);
  522. }
  523. void elv_unregister_queue(struct request_queue *q)
  524. {
  525. if (q) {
  526. elevator_t *e = q->elevator;
  527. kobject_unregister(&e->kobj);
  528. kobject_put(&q->kobj);
  529. }
  530. }
  531. int elv_register(struct elevator_type *e)
  532. {
  533. spin_lock_irq(&elv_list_lock);
  534. if (elevator_find(e->elevator_name))
  535. BUG();
  536. list_add_tail(&e->list, &elv_list);
  537. spin_unlock_irq(&elv_list_lock);
  538. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  539. if (!strcmp(e->elevator_name, chosen_elevator) ||
  540. (!*chosen_elevator &&
  541. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  542. printk(" (default)");
  543. printk("\n");
  544. return 0;
  545. }
  546. EXPORT_SYMBOL_GPL(elv_register);
  547. void elv_unregister(struct elevator_type *e)
  548. {
  549. struct task_struct *g, *p;
  550. /*
  551. * Iterate every thread in the process to remove the io contexts.
  552. */
  553. if (e->ops.trim) {
  554. read_lock(&tasklist_lock);
  555. do_each_thread(g, p) {
  556. task_lock(p);
  557. e->ops.trim(p->io_context);
  558. task_unlock(p);
  559. } while_each_thread(g, p);
  560. read_unlock(&tasklist_lock);
  561. }
  562. spin_lock_irq(&elv_list_lock);
  563. list_del_init(&e->list);
  564. spin_unlock_irq(&elv_list_lock);
  565. }
  566. EXPORT_SYMBOL_GPL(elv_unregister);
  567. /*
  568. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  569. * we don't free the old io scheduler, before we have allocated what we
  570. * need for the new one. this way we have a chance of going back to the old
  571. * one, if the new one fails init for some reason.
  572. */
  573. static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  574. {
  575. elevator_t *old_elevator, *e;
  576. /*
  577. * Allocate new elevator
  578. */
  579. e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  580. if (!e)
  581. goto error;
  582. /*
  583. * Turn on BYPASS and drain all requests w/ elevator private data
  584. */
  585. spin_lock_irq(q->queue_lock);
  586. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  587. elv_drain_elevator(q);
  588. while (q->rq.elvpriv) {
  589. blk_remove_plug(q);
  590. q->request_fn(q);
  591. spin_unlock_irq(q->queue_lock);
  592. msleep(10);
  593. spin_lock_irq(q->queue_lock);
  594. elv_drain_elevator(q);
  595. }
  596. spin_unlock_irq(q->queue_lock);
  597. /*
  598. * unregister old elevator data
  599. */
  600. elv_unregister_queue(q);
  601. old_elevator = q->elevator;
  602. /*
  603. * attach and start new elevator
  604. */
  605. if (elevator_attach(q, new_e, e))
  606. goto fail;
  607. if (elv_register_queue(q))
  608. goto fail_register;
  609. /*
  610. * finally exit old elevator and turn off BYPASS.
  611. */
  612. elevator_exit(old_elevator);
  613. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  614. return;
  615. fail_register:
  616. /*
  617. * switch failed, exit the new io scheduler and reattach the old
  618. * one again (along with re-adding the sysfs dir)
  619. */
  620. elevator_exit(e);
  621. e = NULL;
  622. fail:
  623. q->elevator = old_elevator;
  624. elv_register_queue(q);
  625. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  626. kfree(e);
  627. error:
  628. elevator_put(new_e);
  629. printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
  630. }
  631. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  632. {
  633. char elevator_name[ELV_NAME_MAX];
  634. size_t len;
  635. struct elevator_type *e;
  636. elevator_name[sizeof(elevator_name) - 1] = '\0';
  637. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  638. len = strlen(elevator_name);
  639. if (len && elevator_name[len - 1] == '\n')
  640. elevator_name[len - 1] = '\0';
  641. e = elevator_get(elevator_name);
  642. if (!e) {
  643. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  644. return -EINVAL;
  645. }
  646. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  647. elevator_put(e);
  648. return count;
  649. }
  650. elevator_switch(q, e);
  651. return count;
  652. }
  653. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  654. {
  655. elevator_t *e = q->elevator;
  656. struct elevator_type *elv = e->elevator_type;
  657. struct list_head *entry;
  658. int len = 0;
  659. spin_lock_irq(q->queue_lock);
  660. list_for_each(entry, &elv_list) {
  661. struct elevator_type *__e;
  662. __e = list_entry(entry, struct elevator_type, list);
  663. if (!strcmp(elv->elevator_name, __e->elevator_name))
  664. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  665. else
  666. len += sprintf(name+len, "%s ", __e->elevator_name);
  667. }
  668. spin_unlock_irq(q->queue_lock);
  669. len += sprintf(len+name, "\n");
  670. return len;
  671. }
  672. EXPORT_SYMBOL(elv_dispatch_sort);
  673. EXPORT_SYMBOL(elv_add_request);
  674. EXPORT_SYMBOL(__elv_add_request);
  675. EXPORT_SYMBOL(elv_requeue_request);
  676. EXPORT_SYMBOL(elv_next_request);
  677. EXPORT_SYMBOL(elv_dequeue_request);
  678. EXPORT_SYMBOL(elv_queue_empty);
  679. EXPORT_SYMBOL(elv_completed_request);
  680. EXPORT_SYMBOL(elevator_exit);
  681. EXPORT_SYMBOL(elevator_init);