sched_fair.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (!cfs_rq->curr)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta /= w
  313. */
  314. static inline unsigned long
  315. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  316. {
  317. if (unlikely(se->load.weight != NICE_0_LOAD))
  318. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  319. return delta;
  320. }
  321. /*
  322. * The idea is to set a period in which each task runs once.
  323. *
  324. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  325. * this period because otherwise the slices get too small.
  326. *
  327. * p = (nr <= nl) ? l : l*nr/nl
  328. */
  329. static u64 __sched_period(unsigned long nr_running)
  330. {
  331. u64 period = sysctl_sched_latency;
  332. unsigned long nr_latency = sched_nr_latency;
  333. if (unlikely(nr_running > nr_latency)) {
  334. period = sysctl_sched_min_granularity;
  335. period *= nr_running;
  336. }
  337. return period;
  338. }
  339. /*
  340. * We calculate the wall-time slice from the period by taking a part
  341. * proportional to the weight.
  342. *
  343. * s = p*P[w/rw]
  344. */
  345. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  346. {
  347. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  348. for_each_sched_entity(se) {
  349. struct load_weight *load = &cfs_rq->load;
  350. if (unlikely(!se->on_rq)) {
  351. struct load_weight lw = cfs_rq->load;
  352. update_load_add(&lw, se->load.weight);
  353. load = &lw;
  354. }
  355. slice = calc_delta_mine(slice, se->load.weight, load);
  356. }
  357. return slice;
  358. }
  359. /*
  360. * We calculate the vruntime slice of a to be inserted task
  361. *
  362. * vs = s/w
  363. */
  364. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  365. {
  366. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  367. }
  368. /*
  369. * Update the current task's runtime statistics. Skip current tasks that
  370. * are not in our scheduling class.
  371. */
  372. static inline void
  373. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  374. unsigned long delta_exec)
  375. {
  376. unsigned long delta_exec_weighted;
  377. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  378. curr->sum_exec_runtime += delta_exec;
  379. schedstat_add(cfs_rq, exec_clock, delta_exec);
  380. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  381. curr->vruntime += delta_exec_weighted;
  382. update_min_vruntime(cfs_rq);
  383. }
  384. static void update_curr(struct cfs_rq *cfs_rq)
  385. {
  386. struct sched_entity *curr = cfs_rq->curr;
  387. u64 now = rq_of(cfs_rq)->clock;
  388. unsigned long delta_exec;
  389. if (unlikely(!curr))
  390. return;
  391. /*
  392. * Get the amount of time the current task was running
  393. * since the last time we changed load (this cannot
  394. * overflow on 32 bits):
  395. */
  396. delta_exec = (unsigned long)(now - curr->exec_start);
  397. if (!delta_exec)
  398. return;
  399. __update_curr(cfs_rq, curr, delta_exec);
  400. curr->exec_start = now;
  401. if (entity_is_task(curr)) {
  402. struct task_struct *curtask = task_of(curr);
  403. cpuacct_charge(curtask, delta_exec);
  404. account_group_exec_runtime(curtask, delta_exec);
  405. }
  406. }
  407. static inline void
  408. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  409. {
  410. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  411. }
  412. /*
  413. * Task is being enqueued - update stats:
  414. */
  415. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  416. {
  417. /*
  418. * Are we enqueueing a waiting task? (for current tasks
  419. * a dequeue/enqueue event is a NOP)
  420. */
  421. if (se != cfs_rq->curr)
  422. update_stats_wait_start(cfs_rq, se);
  423. }
  424. static void
  425. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  426. {
  427. schedstat_set(se->wait_max, max(se->wait_max,
  428. rq_of(cfs_rq)->clock - se->wait_start));
  429. schedstat_set(se->wait_count, se->wait_count + 1);
  430. schedstat_set(se->wait_sum, se->wait_sum +
  431. rq_of(cfs_rq)->clock - se->wait_start);
  432. schedstat_set(se->wait_start, 0);
  433. }
  434. static inline void
  435. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  436. {
  437. /*
  438. * Mark the end of the wait period if dequeueing a
  439. * waiting task:
  440. */
  441. if (se != cfs_rq->curr)
  442. update_stats_wait_end(cfs_rq, se);
  443. }
  444. /*
  445. * We are picking a new current task - update its stats:
  446. */
  447. static inline void
  448. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  449. {
  450. /*
  451. * We are starting a new run period:
  452. */
  453. se->exec_start = rq_of(cfs_rq)->clock;
  454. }
  455. /**************************************************
  456. * Scheduling class queueing methods:
  457. */
  458. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  459. static void
  460. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  461. {
  462. cfs_rq->task_weight += weight;
  463. }
  464. #else
  465. static inline void
  466. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  467. {
  468. }
  469. #endif
  470. static void
  471. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  472. {
  473. update_load_add(&cfs_rq->load, se->load.weight);
  474. if (!parent_entity(se))
  475. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  476. if (entity_is_task(se)) {
  477. add_cfs_task_weight(cfs_rq, se->load.weight);
  478. list_add(&se->group_node, &cfs_rq->tasks);
  479. }
  480. cfs_rq->nr_running++;
  481. se->on_rq = 1;
  482. }
  483. static void
  484. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  485. {
  486. update_load_sub(&cfs_rq->load, se->load.weight);
  487. if (!parent_entity(se))
  488. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  489. if (entity_is_task(se)) {
  490. add_cfs_task_weight(cfs_rq, -se->load.weight);
  491. list_del_init(&se->group_node);
  492. }
  493. cfs_rq->nr_running--;
  494. se->on_rq = 0;
  495. }
  496. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. #ifdef CONFIG_SCHEDSTATS
  499. if (se->sleep_start) {
  500. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  501. struct task_struct *tsk = task_of(se);
  502. if ((s64)delta < 0)
  503. delta = 0;
  504. if (unlikely(delta > se->sleep_max))
  505. se->sleep_max = delta;
  506. se->sleep_start = 0;
  507. se->sum_sleep_runtime += delta;
  508. account_scheduler_latency(tsk, delta >> 10, 1);
  509. }
  510. if (se->block_start) {
  511. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  512. struct task_struct *tsk = task_of(se);
  513. if ((s64)delta < 0)
  514. delta = 0;
  515. if (unlikely(delta > se->block_max))
  516. se->block_max = delta;
  517. se->block_start = 0;
  518. se->sum_sleep_runtime += delta;
  519. /*
  520. * Blocking time is in units of nanosecs, so shift by 20 to
  521. * get a milliseconds-range estimation of the amount of
  522. * time that the task spent sleeping:
  523. */
  524. if (unlikely(prof_on == SLEEP_PROFILING)) {
  525. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  526. delta >> 20);
  527. }
  528. account_scheduler_latency(tsk, delta >> 10, 0);
  529. }
  530. #endif
  531. }
  532. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  533. {
  534. #ifdef CONFIG_SCHED_DEBUG
  535. s64 d = se->vruntime - cfs_rq->min_vruntime;
  536. if (d < 0)
  537. d = -d;
  538. if (d > 3*sysctl_sched_latency)
  539. schedstat_inc(cfs_rq, nr_spread_over);
  540. #endif
  541. }
  542. static void
  543. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  544. {
  545. u64 vruntime = cfs_rq->min_vruntime;
  546. /*
  547. * The 'current' period is already promised to the current tasks,
  548. * however the extra weight of the new task will slow them down a
  549. * little, place the new task so that it fits in the slot that
  550. * stays open at the end.
  551. */
  552. if (initial && sched_feat(START_DEBIT))
  553. vruntime += sched_vslice(cfs_rq, se);
  554. if (!initial) {
  555. /* sleeps upto a single latency don't count. */
  556. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  557. unsigned long thresh = sysctl_sched_latency;
  558. /*
  559. * Convert the sleeper threshold into virtual time.
  560. * SCHED_IDLE is a special sub-class. We care about
  561. * fairness only relative to other SCHED_IDLE tasks,
  562. * all of which have the same weight.
  563. */
  564. if (sched_feat(NORMALIZED_SLEEPER) &&
  565. task_of(se)->policy != SCHED_IDLE)
  566. thresh = calc_delta_fair(thresh, se);
  567. vruntime -= thresh;
  568. }
  569. /* ensure we never gain time by being placed backwards. */
  570. vruntime = max_vruntime(se->vruntime, vruntime);
  571. }
  572. se->vruntime = vruntime;
  573. }
  574. static void
  575. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  576. {
  577. /*
  578. * Update run-time statistics of the 'current'.
  579. */
  580. update_curr(cfs_rq);
  581. account_entity_enqueue(cfs_rq, se);
  582. if (wakeup) {
  583. place_entity(cfs_rq, se, 0);
  584. enqueue_sleeper(cfs_rq, se);
  585. }
  586. update_stats_enqueue(cfs_rq, se);
  587. check_spread(cfs_rq, se);
  588. if (se != cfs_rq->curr)
  589. __enqueue_entity(cfs_rq, se);
  590. }
  591. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  592. {
  593. if (cfs_rq->last == se)
  594. cfs_rq->last = NULL;
  595. if (cfs_rq->next == se)
  596. cfs_rq->next = NULL;
  597. }
  598. static void
  599. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  600. {
  601. /*
  602. * Update run-time statistics of the 'current'.
  603. */
  604. update_curr(cfs_rq);
  605. update_stats_dequeue(cfs_rq, se);
  606. if (sleep) {
  607. #ifdef CONFIG_SCHEDSTATS
  608. if (entity_is_task(se)) {
  609. struct task_struct *tsk = task_of(se);
  610. if (tsk->state & TASK_INTERRUPTIBLE)
  611. se->sleep_start = rq_of(cfs_rq)->clock;
  612. if (tsk->state & TASK_UNINTERRUPTIBLE)
  613. se->block_start = rq_of(cfs_rq)->clock;
  614. }
  615. #endif
  616. }
  617. clear_buddies(cfs_rq, se);
  618. if (se != cfs_rq->curr)
  619. __dequeue_entity(cfs_rq, se);
  620. account_entity_dequeue(cfs_rq, se);
  621. update_min_vruntime(cfs_rq);
  622. }
  623. /*
  624. * Preempt the current task with a newly woken task if needed:
  625. */
  626. static void
  627. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  628. {
  629. unsigned long ideal_runtime, delta_exec;
  630. ideal_runtime = sched_slice(cfs_rq, curr);
  631. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  632. if (delta_exec > ideal_runtime)
  633. resched_task(rq_of(cfs_rq)->curr);
  634. }
  635. static void
  636. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  637. {
  638. /* 'current' is not kept within the tree. */
  639. if (se->on_rq) {
  640. /*
  641. * Any task has to be enqueued before it get to execute on
  642. * a CPU. So account for the time it spent waiting on the
  643. * runqueue.
  644. */
  645. update_stats_wait_end(cfs_rq, se);
  646. __dequeue_entity(cfs_rq, se);
  647. }
  648. update_stats_curr_start(cfs_rq, se);
  649. cfs_rq->curr = se;
  650. #ifdef CONFIG_SCHEDSTATS
  651. /*
  652. * Track our maximum slice length, if the CPU's load is at
  653. * least twice that of our own weight (i.e. dont track it
  654. * when there are only lesser-weight tasks around):
  655. */
  656. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  657. se->slice_max = max(se->slice_max,
  658. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  659. }
  660. #endif
  661. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  662. }
  663. static int
  664. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  665. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  666. {
  667. struct sched_entity *se = __pick_next_entity(cfs_rq);
  668. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  669. return cfs_rq->next;
  670. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  671. return cfs_rq->last;
  672. return se;
  673. }
  674. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  675. {
  676. /*
  677. * If still on the runqueue then deactivate_task()
  678. * was not called and update_curr() has to be done:
  679. */
  680. if (prev->on_rq)
  681. update_curr(cfs_rq);
  682. check_spread(cfs_rq, prev);
  683. if (prev->on_rq) {
  684. update_stats_wait_start(cfs_rq, prev);
  685. /* Put 'current' back into the tree. */
  686. __enqueue_entity(cfs_rq, prev);
  687. }
  688. cfs_rq->curr = NULL;
  689. }
  690. static void
  691. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  692. {
  693. /*
  694. * Update run-time statistics of the 'current'.
  695. */
  696. update_curr(cfs_rq);
  697. #ifdef CONFIG_SCHED_HRTICK
  698. /*
  699. * queued ticks are scheduled to match the slice, so don't bother
  700. * validating it and just reschedule.
  701. */
  702. if (queued) {
  703. resched_task(rq_of(cfs_rq)->curr);
  704. return;
  705. }
  706. /*
  707. * don't let the period tick interfere with the hrtick preemption
  708. */
  709. if (!sched_feat(DOUBLE_TICK) &&
  710. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  711. return;
  712. #endif
  713. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  714. check_preempt_tick(cfs_rq, curr);
  715. }
  716. /**************************************************
  717. * CFS operations on tasks:
  718. */
  719. #ifdef CONFIG_SCHED_HRTICK
  720. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  721. {
  722. struct sched_entity *se = &p->se;
  723. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  724. WARN_ON(task_rq(p) != rq);
  725. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  726. u64 slice = sched_slice(cfs_rq, se);
  727. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  728. s64 delta = slice - ran;
  729. if (delta < 0) {
  730. if (rq->curr == p)
  731. resched_task(p);
  732. return;
  733. }
  734. /*
  735. * Don't schedule slices shorter than 10000ns, that just
  736. * doesn't make sense. Rely on vruntime for fairness.
  737. */
  738. if (rq->curr != p)
  739. delta = max_t(s64, 10000LL, delta);
  740. hrtick_start(rq, delta);
  741. }
  742. }
  743. /*
  744. * called from enqueue/dequeue and updates the hrtick when the
  745. * current task is from our class and nr_running is low enough
  746. * to matter.
  747. */
  748. static void hrtick_update(struct rq *rq)
  749. {
  750. struct task_struct *curr = rq->curr;
  751. if (curr->sched_class != &fair_sched_class)
  752. return;
  753. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  754. hrtick_start_fair(rq, curr);
  755. }
  756. #else /* !CONFIG_SCHED_HRTICK */
  757. static inline void
  758. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  759. {
  760. }
  761. static inline void hrtick_update(struct rq *rq)
  762. {
  763. }
  764. #endif
  765. /*
  766. * The enqueue_task method is called before nr_running is
  767. * increased. Here we update the fair scheduling stats and
  768. * then put the task into the rbtree:
  769. */
  770. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  771. {
  772. struct cfs_rq *cfs_rq;
  773. struct sched_entity *se = &p->se;
  774. for_each_sched_entity(se) {
  775. if (se->on_rq)
  776. break;
  777. cfs_rq = cfs_rq_of(se);
  778. enqueue_entity(cfs_rq, se, wakeup);
  779. wakeup = 1;
  780. }
  781. hrtick_update(rq);
  782. }
  783. /*
  784. * The dequeue_task method is called before nr_running is
  785. * decreased. We remove the task from the rbtree and
  786. * update the fair scheduling stats:
  787. */
  788. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  789. {
  790. struct cfs_rq *cfs_rq;
  791. struct sched_entity *se = &p->se;
  792. for_each_sched_entity(se) {
  793. cfs_rq = cfs_rq_of(se);
  794. dequeue_entity(cfs_rq, se, sleep);
  795. /* Don't dequeue parent if it has other entities besides us */
  796. if (cfs_rq->load.weight)
  797. break;
  798. sleep = 1;
  799. }
  800. hrtick_update(rq);
  801. }
  802. /*
  803. * sched_yield() support is very simple - we dequeue and enqueue.
  804. *
  805. * If compat_yield is turned on then we requeue to the end of the tree.
  806. */
  807. static void yield_task_fair(struct rq *rq)
  808. {
  809. struct task_struct *curr = rq->curr;
  810. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  811. struct sched_entity *rightmost, *se = &curr->se;
  812. /*
  813. * Are we the only task in the tree?
  814. */
  815. if (unlikely(cfs_rq->nr_running == 1))
  816. return;
  817. clear_buddies(cfs_rq, se);
  818. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  819. update_rq_clock(rq);
  820. /*
  821. * Update run-time statistics of the 'current'.
  822. */
  823. update_curr(cfs_rq);
  824. return;
  825. }
  826. /*
  827. * Find the rightmost entry in the rbtree:
  828. */
  829. rightmost = __pick_last_entity(cfs_rq);
  830. /*
  831. * Already in the rightmost position?
  832. */
  833. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  834. return;
  835. /*
  836. * Minimally necessary key value to be last in the tree:
  837. * Upon rescheduling, sched_class::put_prev_task() will place
  838. * 'current' within the tree based on its new key value.
  839. */
  840. se->vruntime = rightmost->vruntime + 1;
  841. }
  842. /*
  843. * wake_idle() will wake a task on an idle cpu if task->cpu is
  844. * not idle and an idle cpu is available. The span of cpus to
  845. * search starts with cpus closest then further out as needed,
  846. * so we always favor a closer, idle cpu.
  847. * Domains may include CPUs that are not usable for migration,
  848. * hence we need to mask them out (cpu_active_mask)
  849. *
  850. * Returns the CPU we should wake onto.
  851. */
  852. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  853. static int wake_idle(int cpu, struct task_struct *p)
  854. {
  855. struct sched_domain *sd;
  856. int i;
  857. unsigned int chosen_wakeup_cpu;
  858. int this_cpu;
  859. /*
  860. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  861. * are idle and this is not a kernel thread and this task's affinity
  862. * allows it to be moved to preferred cpu, then just move!
  863. */
  864. this_cpu = smp_processor_id();
  865. chosen_wakeup_cpu =
  866. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  867. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  868. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  869. p->mm && !(p->flags & PF_KTHREAD) &&
  870. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  871. return chosen_wakeup_cpu;
  872. /*
  873. * If it is idle, then it is the best cpu to run this task.
  874. *
  875. * This cpu is also the best, if it has more than one task already.
  876. * Siblings must be also busy(in most cases) as they didn't already
  877. * pickup the extra load from this cpu and hence we need not check
  878. * sibling runqueue info. This will avoid the checks and cache miss
  879. * penalities associated with that.
  880. */
  881. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  882. return cpu;
  883. for_each_domain(cpu, sd) {
  884. if ((sd->flags & SD_WAKE_IDLE)
  885. || ((sd->flags & SD_WAKE_IDLE_FAR)
  886. && !task_hot(p, task_rq(p)->clock, sd))) {
  887. for_each_cpu_and(i, sched_domain_span(sd),
  888. &p->cpus_allowed) {
  889. if (cpu_active(i) && idle_cpu(i)) {
  890. if (i != task_cpu(p)) {
  891. schedstat_inc(p,
  892. se.nr_wakeups_idle);
  893. }
  894. return i;
  895. }
  896. }
  897. } else {
  898. break;
  899. }
  900. }
  901. return cpu;
  902. }
  903. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  904. static inline int wake_idle(int cpu, struct task_struct *p)
  905. {
  906. return cpu;
  907. }
  908. #endif
  909. #ifdef CONFIG_SMP
  910. #ifdef CONFIG_FAIR_GROUP_SCHED
  911. /*
  912. * effective_load() calculates the load change as seen from the root_task_group
  913. *
  914. * Adding load to a group doesn't make a group heavier, but can cause movement
  915. * of group shares between cpus. Assuming the shares were perfectly aligned one
  916. * can calculate the shift in shares.
  917. *
  918. * The problem is that perfectly aligning the shares is rather expensive, hence
  919. * we try to avoid doing that too often - see update_shares(), which ratelimits
  920. * this change.
  921. *
  922. * We compensate this by not only taking the current delta into account, but
  923. * also considering the delta between when the shares were last adjusted and
  924. * now.
  925. *
  926. * We still saw a performance dip, some tracing learned us that between
  927. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  928. * significantly. Therefore try to bias the error in direction of failing
  929. * the affine wakeup.
  930. *
  931. */
  932. static long effective_load(struct task_group *tg, int cpu,
  933. long wl, long wg)
  934. {
  935. struct sched_entity *se = tg->se[cpu];
  936. if (!tg->parent)
  937. return wl;
  938. /*
  939. * By not taking the decrease of shares on the other cpu into
  940. * account our error leans towards reducing the affine wakeups.
  941. */
  942. if (!wl && sched_feat(ASYM_EFF_LOAD))
  943. return wl;
  944. for_each_sched_entity(se) {
  945. long S, rw, s, a, b;
  946. long more_w;
  947. /*
  948. * Instead of using this increment, also add the difference
  949. * between when the shares were last updated and now.
  950. */
  951. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  952. wl += more_w;
  953. wg += more_w;
  954. S = se->my_q->tg->shares;
  955. s = se->my_q->shares;
  956. rw = se->my_q->rq_weight;
  957. a = S*(rw + wl);
  958. b = S*rw + s*wg;
  959. wl = s*(a-b);
  960. if (likely(b))
  961. wl /= b;
  962. /*
  963. * Assume the group is already running and will
  964. * thus already be accounted for in the weight.
  965. *
  966. * That is, moving shares between CPUs, does not
  967. * alter the group weight.
  968. */
  969. wg = 0;
  970. }
  971. return wl;
  972. }
  973. #else
  974. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  975. unsigned long wl, unsigned long wg)
  976. {
  977. return wl;
  978. }
  979. #endif
  980. static int
  981. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  982. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  983. int idx, unsigned long load, unsigned long this_load,
  984. unsigned int imbalance)
  985. {
  986. struct task_struct *curr = this_rq->curr;
  987. struct task_group *tg;
  988. unsigned long tl = this_load;
  989. unsigned long tl_per_task;
  990. unsigned long weight;
  991. int balanced;
  992. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  993. return 0;
  994. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  995. p->se.avg_overlap > sysctl_sched_migration_cost))
  996. sync = 0;
  997. /*
  998. * If sync wakeup then subtract the (maximum possible)
  999. * effect of the currently running task from the load
  1000. * of the current CPU:
  1001. */
  1002. if (sync) {
  1003. tg = task_group(current);
  1004. weight = current->se.load.weight;
  1005. tl += effective_load(tg, this_cpu, -weight, -weight);
  1006. load += effective_load(tg, prev_cpu, 0, -weight);
  1007. }
  1008. tg = task_group(p);
  1009. weight = p->se.load.weight;
  1010. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1011. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1012. /*
  1013. * If the currently running task will sleep within
  1014. * a reasonable amount of time then attract this newly
  1015. * woken task:
  1016. */
  1017. if (sync && balanced)
  1018. return 1;
  1019. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1020. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1021. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1022. tl_per_task)) {
  1023. /*
  1024. * This domain has SD_WAKE_AFFINE and
  1025. * p is cache cold in this domain, and
  1026. * there is no bad imbalance.
  1027. */
  1028. schedstat_inc(this_sd, ttwu_move_affine);
  1029. schedstat_inc(p, se.nr_wakeups_affine);
  1030. return 1;
  1031. }
  1032. return 0;
  1033. }
  1034. static int select_task_rq_fair(struct task_struct *p, int sync)
  1035. {
  1036. struct sched_domain *sd, *this_sd = NULL;
  1037. int prev_cpu, this_cpu, new_cpu;
  1038. unsigned long load, this_load;
  1039. struct rq *this_rq;
  1040. unsigned int imbalance;
  1041. int idx;
  1042. prev_cpu = task_cpu(p);
  1043. this_cpu = smp_processor_id();
  1044. this_rq = cpu_rq(this_cpu);
  1045. new_cpu = prev_cpu;
  1046. if (prev_cpu == this_cpu)
  1047. goto out;
  1048. /*
  1049. * 'this_sd' is the first domain that both
  1050. * this_cpu and prev_cpu are present in:
  1051. */
  1052. for_each_domain(this_cpu, sd) {
  1053. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1054. this_sd = sd;
  1055. break;
  1056. }
  1057. }
  1058. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1059. goto out;
  1060. /*
  1061. * Check for affine wakeup and passive balancing possibilities.
  1062. */
  1063. if (!this_sd)
  1064. goto out;
  1065. idx = this_sd->wake_idx;
  1066. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1067. load = source_load(prev_cpu, idx);
  1068. this_load = target_load(this_cpu, idx);
  1069. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1070. load, this_load, imbalance))
  1071. return this_cpu;
  1072. /*
  1073. * Start passive balancing when half the imbalance_pct
  1074. * limit is reached.
  1075. */
  1076. if (this_sd->flags & SD_WAKE_BALANCE) {
  1077. if (imbalance*this_load <= 100*load) {
  1078. schedstat_inc(this_sd, ttwu_move_balance);
  1079. schedstat_inc(p, se.nr_wakeups_passive);
  1080. return this_cpu;
  1081. }
  1082. }
  1083. out:
  1084. return wake_idle(new_cpu, p);
  1085. }
  1086. #endif /* CONFIG_SMP */
  1087. static unsigned long wakeup_gran(struct sched_entity *se)
  1088. {
  1089. unsigned long gran = sysctl_sched_wakeup_granularity;
  1090. /*
  1091. * More easily preempt - nice tasks, while not making it harder for
  1092. * + nice tasks.
  1093. */
  1094. if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
  1095. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  1096. return gran;
  1097. }
  1098. /*
  1099. * Should 'se' preempt 'curr'.
  1100. *
  1101. * |s1
  1102. * |s2
  1103. * |s3
  1104. * g
  1105. * |<--->|c
  1106. *
  1107. * w(c, s1) = -1
  1108. * w(c, s2) = 0
  1109. * w(c, s3) = 1
  1110. *
  1111. */
  1112. static int
  1113. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1114. {
  1115. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1116. if (vdiff <= 0)
  1117. return -1;
  1118. gran = wakeup_gran(curr);
  1119. if (vdiff > gran)
  1120. return 1;
  1121. return 0;
  1122. }
  1123. static void set_last_buddy(struct sched_entity *se)
  1124. {
  1125. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1126. for_each_sched_entity(se)
  1127. cfs_rq_of(se)->last = se;
  1128. }
  1129. }
  1130. static void set_next_buddy(struct sched_entity *se)
  1131. {
  1132. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1133. for_each_sched_entity(se)
  1134. cfs_rq_of(se)->next = se;
  1135. }
  1136. }
  1137. /*
  1138. * Preempt the current task with a newly woken task if needed:
  1139. */
  1140. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1141. {
  1142. struct task_struct *curr = rq->curr;
  1143. struct sched_entity *se = &curr->se, *pse = &p->se;
  1144. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1145. update_curr(cfs_rq);
  1146. if (unlikely(rt_prio(p->prio))) {
  1147. resched_task(curr);
  1148. return;
  1149. }
  1150. if (unlikely(p->sched_class != &fair_sched_class))
  1151. return;
  1152. if (unlikely(se == pse))
  1153. return;
  1154. /*
  1155. * Only set the backward buddy when the current task is still on the
  1156. * rq. This can happen when a wakeup gets interleaved with schedule on
  1157. * the ->pre_schedule() or idle_balance() point, either of which can
  1158. * drop the rq lock.
  1159. *
  1160. * Also, during early boot the idle thread is in the fair class, for
  1161. * obvious reasons its a bad idea to schedule back to the idle thread.
  1162. */
  1163. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1164. set_last_buddy(se);
  1165. set_next_buddy(pse);
  1166. /*
  1167. * We can come here with TIF_NEED_RESCHED already set from new task
  1168. * wake up path.
  1169. */
  1170. if (test_tsk_need_resched(curr))
  1171. return;
  1172. /*
  1173. * Batch and idle tasks do not preempt (their preemption is driven by
  1174. * the tick):
  1175. */
  1176. if (unlikely(p->policy != SCHED_NORMAL))
  1177. return;
  1178. /* Idle tasks are by definition preempted by everybody. */
  1179. if (unlikely(curr->policy == SCHED_IDLE)) {
  1180. resched_task(curr);
  1181. return;
  1182. }
  1183. if (!sched_feat(WAKEUP_PREEMPT))
  1184. return;
  1185. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1186. (se->avg_overlap < sysctl_sched_migration_cost &&
  1187. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1188. resched_task(curr);
  1189. return;
  1190. }
  1191. find_matching_se(&se, &pse);
  1192. while (se) {
  1193. BUG_ON(!pse);
  1194. if (wakeup_preempt_entity(se, pse) == 1) {
  1195. resched_task(curr);
  1196. break;
  1197. }
  1198. se = parent_entity(se);
  1199. pse = parent_entity(pse);
  1200. }
  1201. }
  1202. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1203. {
  1204. struct task_struct *p;
  1205. struct cfs_rq *cfs_rq = &rq->cfs;
  1206. struct sched_entity *se;
  1207. if (unlikely(!cfs_rq->nr_running))
  1208. return NULL;
  1209. do {
  1210. se = pick_next_entity(cfs_rq);
  1211. set_next_entity(cfs_rq, se);
  1212. cfs_rq = group_cfs_rq(se);
  1213. } while (cfs_rq);
  1214. p = task_of(se);
  1215. hrtick_start_fair(rq, p);
  1216. return p;
  1217. }
  1218. /*
  1219. * Account for a descheduled task:
  1220. */
  1221. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1222. {
  1223. struct sched_entity *se = &prev->se;
  1224. struct cfs_rq *cfs_rq;
  1225. for_each_sched_entity(se) {
  1226. cfs_rq = cfs_rq_of(se);
  1227. put_prev_entity(cfs_rq, se);
  1228. }
  1229. }
  1230. #ifdef CONFIG_SMP
  1231. /**************************************************
  1232. * Fair scheduling class load-balancing methods:
  1233. */
  1234. /*
  1235. * Load-balancing iterator. Note: while the runqueue stays locked
  1236. * during the whole iteration, the current task might be
  1237. * dequeued so the iterator has to be dequeue-safe. Here we
  1238. * achieve that by always pre-iterating before returning
  1239. * the current task:
  1240. */
  1241. static struct task_struct *
  1242. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1243. {
  1244. struct task_struct *p = NULL;
  1245. struct sched_entity *se;
  1246. if (next == &cfs_rq->tasks)
  1247. return NULL;
  1248. se = list_entry(next, struct sched_entity, group_node);
  1249. p = task_of(se);
  1250. cfs_rq->balance_iterator = next->next;
  1251. return p;
  1252. }
  1253. static struct task_struct *load_balance_start_fair(void *arg)
  1254. {
  1255. struct cfs_rq *cfs_rq = arg;
  1256. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1257. }
  1258. static struct task_struct *load_balance_next_fair(void *arg)
  1259. {
  1260. struct cfs_rq *cfs_rq = arg;
  1261. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1262. }
  1263. static unsigned long
  1264. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1265. unsigned long max_load_move, struct sched_domain *sd,
  1266. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1267. struct cfs_rq *cfs_rq)
  1268. {
  1269. struct rq_iterator cfs_rq_iterator;
  1270. cfs_rq_iterator.start = load_balance_start_fair;
  1271. cfs_rq_iterator.next = load_balance_next_fair;
  1272. cfs_rq_iterator.arg = cfs_rq;
  1273. return balance_tasks(this_rq, this_cpu, busiest,
  1274. max_load_move, sd, idle, all_pinned,
  1275. this_best_prio, &cfs_rq_iterator);
  1276. }
  1277. #ifdef CONFIG_FAIR_GROUP_SCHED
  1278. static unsigned long
  1279. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1280. unsigned long max_load_move,
  1281. struct sched_domain *sd, enum cpu_idle_type idle,
  1282. int *all_pinned, int *this_best_prio)
  1283. {
  1284. long rem_load_move = max_load_move;
  1285. int busiest_cpu = cpu_of(busiest);
  1286. struct task_group *tg;
  1287. rcu_read_lock();
  1288. update_h_load(busiest_cpu);
  1289. list_for_each_entry_rcu(tg, &task_groups, list) {
  1290. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1291. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1292. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1293. u64 rem_load, moved_load;
  1294. /*
  1295. * empty group
  1296. */
  1297. if (!busiest_cfs_rq->task_weight)
  1298. continue;
  1299. rem_load = (u64)rem_load_move * busiest_weight;
  1300. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1301. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1302. rem_load, sd, idle, all_pinned, this_best_prio,
  1303. tg->cfs_rq[busiest_cpu]);
  1304. if (!moved_load)
  1305. continue;
  1306. moved_load *= busiest_h_load;
  1307. moved_load = div_u64(moved_load, busiest_weight + 1);
  1308. rem_load_move -= moved_load;
  1309. if (rem_load_move < 0)
  1310. break;
  1311. }
  1312. rcu_read_unlock();
  1313. return max_load_move - rem_load_move;
  1314. }
  1315. #else
  1316. static unsigned long
  1317. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1318. unsigned long max_load_move,
  1319. struct sched_domain *sd, enum cpu_idle_type idle,
  1320. int *all_pinned, int *this_best_prio)
  1321. {
  1322. return __load_balance_fair(this_rq, this_cpu, busiest,
  1323. max_load_move, sd, idle, all_pinned,
  1324. this_best_prio, &busiest->cfs);
  1325. }
  1326. #endif
  1327. static int
  1328. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1329. struct sched_domain *sd, enum cpu_idle_type idle)
  1330. {
  1331. struct cfs_rq *busy_cfs_rq;
  1332. struct rq_iterator cfs_rq_iterator;
  1333. cfs_rq_iterator.start = load_balance_start_fair;
  1334. cfs_rq_iterator.next = load_balance_next_fair;
  1335. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1336. /*
  1337. * pass busy_cfs_rq argument into
  1338. * load_balance_[start|next]_fair iterators
  1339. */
  1340. cfs_rq_iterator.arg = busy_cfs_rq;
  1341. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1342. &cfs_rq_iterator))
  1343. return 1;
  1344. }
  1345. return 0;
  1346. }
  1347. #endif /* CONFIG_SMP */
  1348. /*
  1349. * scheduler tick hitting a task of our scheduling class:
  1350. */
  1351. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1352. {
  1353. struct cfs_rq *cfs_rq;
  1354. struct sched_entity *se = &curr->se;
  1355. for_each_sched_entity(se) {
  1356. cfs_rq = cfs_rq_of(se);
  1357. entity_tick(cfs_rq, se, queued);
  1358. }
  1359. }
  1360. /*
  1361. * Share the fairness runtime between parent and child, thus the
  1362. * total amount of pressure for CPU stays equal - new tasks
  1363. * get a chance to run but frequent forkers are not allowed to
  1364. * monopolize the CPU. Note: the parent runqueue is locked,
  1365. * the child is not running yet.
  1366. */
  1367. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1368. {
  1369. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1370. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1371. int this_cpu = smp_processor_id();
  1372. sched_info_queued(p);
  1373. update_curr(cfs_rq);
  1374. place_entity(cfs_rq, se, 1);
  1375. /* 'curr' will be NULL if the child belongs to a different group */
  1376. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1377. curr && curr->vruntime < se->vruntime) {
  1378. /*
  1379. * Upon rescheduling, sched_class::put_prev_task() will place
  1380. * 'current' within the tree based on its new key value.
  1381. */
  1382. swap(curr->vruntime, se->vruntime);
  1383. resched_task(rq->curr);
  1384. }
  1385. enqueue_task_fair(rq, p, 0);
  1386. }
  1387. /*
  1388. * Priority of the task has changed. Check to see if we preempt
  1389. * the current task.
  1390. */
  1391. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1392. int oldprio, int running)
  1393. {
  1394. /*
  1395. * Reschedule if we are currently running on this runqueue and
  1396. * our priority decreased, or if we are not currently running on
  1397. * this runqueue and our priority is higher than the current's
  1398. */
  1399. if (running) {
  1400. if (p->prio > oldprio)
  1401. resched_task(rq->curr);
  1402. } else
  1403. check_preempt_curr(rq, p, 0);
  1404. }
  1405. /*
  1406. * We switched to the sched_fair class.
  1407. */
  1408. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1409. int running)
  1410. {
  1411. /*
  1412. * We were most likely switched from sched_rt, so
  1413. * kick off the schedule if running, otherwise just see
  1414. * if we can still preempt the current task.
  1415. */
  1416. if (running)
  1417. resched_task(rq->curr);
  1418. else
  1419. check_preempt_curr(rq, p, 0);
  1420. }
  1421. /* Account for a task changing its policy or group.
  1422. *
  1423. * This routine is mostly called to set cfs_rq->curr field when a task
  1424. * migrates between groups/classes.
  1425. */
  1426. static void set_curr_task_fair(struct rq *rq)
  1427. {
  1428. struct sched_entity *se = &rq->curr->se;
  1429. for_each_sched_entity(se)
  1430. set_next_entity(cfs_rq_of(se), se);
  1431. }
  1432. #ifdef CONFIG_FAIR_GROUP_SCHED
  1433. static void moved_group_fair(struct task_struct *p)
  1434. {
  1435. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1436. update_curr(cfs_rq);
  1437. place_entity(cfs_rq, &p->se, 1);
  1438. }
  1439. #endif
  1440. /*
  1441. * All the scheduling class methods:
  1442. */
  1443. static const struct sched_class fair_sched_class = {
  1444. .next = &idle_sched_class,
  1445. .enqueue_task = enqueue_task_fair,
  1446. .dequeue_task = dequeue_task_fair,
  1447. .yield_task = yield_task_fair,
  1448. .check_preempt_curr = check_preempt_wakeup,
  1449. .pick_next_task = pick_next_task_fair,
  1450. .put_prev_task = put_prev_task_fair,
  1451. #ifdef CONFIG_SMP
  1452. .select_task_rq = select_task_rq_fair,
  1453. .load_balance = load_balance_fair,
  1454. .move_one_task = move_one_task_fair,
  1455. #endif
  1456. .set_curr_task = set_curr_task_fair,
  1457. .task_tick = task_tick_fair,
  1458. .task_new = task_new_fair,
  1459. .prio_changed = prio_changed_fair,
  1460. .switched_to = switched_to_fair,
  1461. #ifdef CONFIG_FAIR_GROUP_SCHED
  1462. .moved_group = moved_group_fair,
  1463. #endif
  1464. };
  1465. #ifdef CONFIG_SCHED_DEBUG
  1466. static void print_cfs_stats(struct seq_file *m, int cpu)
  1467. {
  1468. struct cfs_rq *cfs_rq;
  1469. rcu_read_lock();
  1470. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1471. print_cfs_rq(m, cpu, cfs_rq);
  1472. rcu_read_unlock();
  1473. }
  1474. #endif