evlist.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include <lk/debugfs.h>
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include "debug.h"
  18. #include <unistd.h>
  19. #include "parse-events.h"
  20. #include <sys/mman.h>
  21. #include <linux/bitops.h>
  22. #include <linux/hash.h>
  23. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  24. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  25. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  26. struct thread_map *threads)
  27. {
  28. int i;
  29. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  30. INIT_HLIST_HEAD(&evlist->heads[i]);
  31. INIT_LIST_HEAD(&evlist->entries);
  32. perf_evlist__set_maps(evlist, cpus, threads);
  33. evlist->workload.pid = -1;
  34. }
  35. struct perf_evlist *perf_evlist__new(void)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, NULL, NULL);
  40. return evlist;
  41. }
  42. /**
  43. * perf_evlist__set_id_pos - set the positions of event ids.
  44. * @evlist: selected event list
  45. *
  46. * Events with compatible sample types all have the same id_pos
  47. * and is_pos. For convenience, put a copy on evlist.
  48. */
  49. void perf_evlist__set_id_pos(struct perf_evlist *evlist)
  50. {
  51. struct perf_evsel *first = perf_evlist__first(evlist);
  52. evlist->id_pos = first->id_pos;
  53. evlist->is_pos = first->is_pos;
  54. }
  55. static void perf_evlist__purge(struct perf_evlist *evlist)
  56. {
  57. struct perf_evsel *pos, *n;
  58. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  59. list_del_init(&pos->node);
  60. perf_evsel__delete(pos);
  61. }
  62. evlist->nr_entries = 0;
  63. }
  64. void perf_evlist__exit(struct perf_evlist *evlist)
  65. {
  66. free(evlist->mmap);
  67. free(evlist->pollfd);
  68. evlist->mmap = NULL;
  69. evlist->pollfd = NULL;
  70. }
  71. void perf_evlist__delete(struct perf_evlist *evlist)
  72. {
  73. perf_evlist__purge(evlist);
  74. perf_evlist__exit(evlist);
  75. free(evlist);
  76. }
  77. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  78. {
  79. list_add_tail(&entry->node, &evlist->entries);
  80. if (!evlist->nr_entries++)
  81. perf_evlist__set_id_pos(evlist);
  82. }
  83. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  84. struct list_head *list,
  85. int nr_entries)
  86. {
  87. bool set_id_pos = !evlist->nr_entries;
  88. list_splice_tail(list, &evlist->entries);
  89. evlist->nr_entries += nr_entries;
  90. if (set_id_pos)
  91. perf_evlist__set_id_pos(evlist);
  92. }
  93. void __perf_evlist__set_leader(struct list_head *list)
  94. {
  95. struct perf_evsel *evsel, *leader;
  96. leader = list_entry(list->next, struct perf_evsel, node);
  97. evsel = list_entry(list->prev, struct perf_evsel, node);
  98. leader->nr_members = evsel->idx - leader->idx + 1;
  99. list_for_each_entry(evsel, list, node) {
  100. evsel->leader = leader;
  101. }
  102. }
  103. void perf_evlist__set_leader(struct perf_evlist *evlist)
  104. {
  105. if (evlist->nr_entries) {
  106. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  107. __perf_evlist__set_leader(&evlist->entries);
  108. }
  109. }
  110. int perf_evlist__add_default(struct perf_evlist *evlist)
  111. {
  112. struct perf_event_attr attr = {
  113. .type = PERF_TYPE_HARDWARE,
  114. .config = PERF_COUNT_HW_CPU_CYCLES,
  115. };
  116. struct perf_evsel *evsel;
  117. event_attr_init(&attr);
  118. evsel = perf_evsel__new(&attr, 0);
  119. if (evsel == NULL)
  120. goto error;
  121. /* use strdup() because free(evsel) assumes name is allocated */
  122. evsel->name = strdup("cycles");
  123. if (!evsel->name)
  124. goto error_free;
  125. perf_evlist__add(evlist, evsel);
  126. return 0;
  127. error_free:
  128. perf_evsel__delete(evsel);
  129. error:
  130. return -ENOMEM;
  131. }
  132. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  133. struct perf_event_attr *attrs, size_t nr_attrs)
  134. {
  135. struct perf_evsel *evsel, *n;
  136. LIST_HEAD(head);
  137. size_t i;
  138. for (i = 0; i < nr_attrs; i++) {
  139. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  140. if (evsel == NULL)
  141. goto out_delete_partial_list;
  142. list_add_tail(&evsel->node, &head);
  143. }
  144. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  145. return 0;
  146. out_delete_partial_list:
  147. list_for_each_entry_safe(evsel, n, &head, node)
  148. perf_evsel__delete(evsel);
  149. return -1;
  150. }
  151. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  152. struct perf_event_attr *attrs, size_t nr_attrs)
  153. {
  154. size_t i;
  155. for (i = 0; i < nr_attrs; i++)
  156. event_attr_init(attrs + i);
  157. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  158. }
  159. struct perf_evsel *
  160. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  161. {
  162. struct perf_evsel *evsel;
  163. list_for_each_entry(evsel, &evlist->entries, node) {
  164. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  165. (int)evsel->attr.config == id)
  166. return evsel;
  167. }
  168. return NULL;
  169. }
  170. struct perf_evsel *
  171. perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
  172. const char *name)
  173. {
  174. struct perf_evsel *evsel;
  175. list_for_each_entry(evsel, &evlist->entries, node) {
  176. if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
  177. (strcmp(evsel->name, name) == 0))
  178. return evsel;
  179. }
  180. return NULL;
  181. }
  182. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  183. const char *sys, const char *name, void *handler)
  184. {
  185. struct perf_evsel *evsel;
  186. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  187. if (evsel == NULL)
  188. return -1;
  189. evsel->handler.func = handler;
  190. perf_evlist__add(evlist, evsel);
  191. return 0;
  192. }
  193. void perf_evlist__disable(struct perf_evlist *evlist)
  194. {
  195. int cpu, thread;
  196. struct perf_evsel *pos;
  197. int nr_cpus = cpu_map__nr(evlist->cpus);
  198. int nr_threads = thread_map__nr(evlist->threads);
  199. for (cpu = 0; cpu < nr_cpus; cpu++) {
  200. list_for_each_entry(pos, &evlist->entries, node) {
  201. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  202. continue;
  203. for (thread = 0; thread < nr_threads; thread++)
  204. ioctl(FD(pos, cpu, thread),
  205. PERF_EVENT_IOC_DISABLE, 0);
  206. }
  207. }
  208. }
  209. void perf_evlist__enable(struct perf_evlist *evlist)
  210. {
  211. int cpu, thread;
  212. struct perf_evsel *pos;
  213. int nr_cpus = cpu_map__nr(evlist->cpus);
  214. int nr_threads = thread_map__nr(evlist->threads);
  215. for (cpu = 0; cpu < nr_cpus; cpu++) {
  216. list_for_each_entry(pos, &evlist->entries, node) {
  217. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  218. continue;
  219. for (thread = 0; thread < nr_threads; thread++)
  220. ioctl(FD(pos, cpu, thread),
  221. PERF_EVENT_IOC_ENABLE, 0);
  222. }
  223. }
  224. }
  225. int perf_evlist__disable_event(struct perf_evlist *evlist,
  226. struct perf_evsel *evsel)
  227. {
  228. int cpu, thread, err;
  229. if (!evsel->fd)
  230. return 0;
  231. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  232. for (thread = 0; thread < evlist->threads->nr; thread++) {
  233. err = ioctl(FD(evsel, cpu, thread),
  234. PERF_EVENT_IOC_DISABLE, 0);
  235. if (err)
  236. return err;
  237. }
  238. }
  239. return 0;
  240. }
  241. int perf_evlist__enable_event(struct perf_evlist *evlist,
  242. struct perf_evsel *evsel)
  243. {
  244. int cpu, thread, err;
  245. if (!evsel->fd)
  246. return -EINVAL;
  247. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  248. for (thread = 0; thread < evlist->threads->nr; thread++) {
  249. err = ioctl(FD(evsel, cpu, thread),
  250. PERF_EVENT_IOC_ENABLE, 0);
  251. if (err)
  252. return err;
  253. }
  254. }
  255. return 0;
  256. }
  257. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  258. {
  259. int nr_cpus = cpu_map__nr(evlist->cpus);
  260. int nr_threads = thread_map__nr(evlist->threads);
  261. int nfds = nr_cpus * nr_threads * evlist->nr_entries;
  262. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  263. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  264. }
  265. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  266. {
  267. fcntl(fd, F_SETFL, O_NONBLOCK);
  268. evlist->pollfd[evlist->nr_fds].fd = fd;
  269. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  270. evlist->nr_fds++;
  271. }
  272. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  273. struct perf_evsel *evsel,
  274. int cpu, int thread, u64 id)
  275. {
  276. int hash;
  277. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  278. sid->id = id;
  279. sid->evsel = evsel;
  280. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  281. hlist_add_head(&sid->node, &evlist->heads[hash]);
  282. }
  283. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  284. int cpu, int thread, u64 id)
  285. {
  286. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  287. evsel->id[evsel->ids++] = id;
  288. }
  289. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  290. struct perf_evsel *evsel,
  291. int cpu, int thread, int fd)
  292. {
  293. u64 read_data[4] = { 0, };
  294. int id_idx = 1; /* The first entry is the counter value */
  295. u64 id;
  296. int ret;
  297. ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
  298. if (!ret)
  299. goto add;
  300. if (errno != ENOTTY)
  301. return -1;
  302. /* Legacy way to get event id.. All hail to old kernels! */
  303. /*
  304. * This way does not work with group format read, so bail
  305. * out in that case.
  306. */
  307. if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
  308. return -1;
  309. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  310. read(fd, &read_data, sizeof(read_data)) == -1)
  311. return -1;
  312. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  313. ++id_idx;
  314. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  315. ++id_idx;
  316. id = read_data[id_idx];
  317. add:
  318. perf_evlist__id_add(evlist, evsel, cpu, thread, id);
  319. return 0;
  320. }
  321. struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
  322. {
  323. struct hlist_head *head;
  324. struct perf_sample_id *sid;
  325. int hash;
  326. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  327. head = &evlist->heads[hash];
  328. hlist_for_each_entry(sid, head, node)
  329. if (sid->id == id)
  330. return sid;
  331. return NULL;
  332. }
  333. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  334. {
  335. struct perf_sample_id *sid;
  336. if (evlist->nr_entries == 1)
  337. return perf_evlist__first(evlist);
  338. sid = perf_evlist__id2sid(evlist, id);
  339. if (sid)
  340. return sid->evsel;
  341. if (!perf_evlist__sample_id_all(evlist))
  342. return perf_evlist__first(evlist);
  343. return NULL;
  344. }
  345. static int perf_evlist__event2id(struct perf_evlist *evlist,
  346. union perf_event *event, u64 *id)
  347. {
  348. const u64 *array = event->sample.array;
  349. ssize_t n;
  350. n = (event->header.size - sizeof(event->header)) >> 3;
  351. if (event->header.type == PERF_RECORD_SAMPLE) {
  352. if (evlist->id_pos >= n)
  353. return -1;
  354. *id = array[evlist->id_pos];
  355. } else {
  356. if (evlist->is_pos > n)
  357. return -1;
  358. n -= evlist->is_pos;
  359. *id = array[n];
  360. }
  361. return 0;
  362. }
  363. static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
  364. union perf_event *event)
  365. {
  366. struct hlist_head *head;
  367. struct perf_sample_id *sid;
  368. int hash;
  369. u64 id;
  370. if (evlist->nr_entries == 1)
  371. return perf_evlist__first(evlist);
  372. if (perf_evlist__event2id(evlist, event, &id))
  373. return NULL;
  374. /* Synthesized events have an id of zero */
  375. if (!id)
  376. return perf_evlist__first(evlist);
  377. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  378. head = &evlist->heads[hash];
  379. hlist_for_each_entry(sid, head, node) {
  380. if (sid->id == id)
  381. return sid->evsel;
  382. }
  383. return NULL;
  384. }
  385. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  386. {
  387. struct perf_mmap *md = &evlist->mmap[idx];
  388. unsigned int head = perf_mmap__read_head(md);
  389. unsigned int old = md->prev;
  390. unsigned char *data = md->base + page_size;
  391. union perf_event *event = NULL;
  392. if (evlist->overwrite) {
  393. /*
  394. * If we're further behind than half the buffer, there's a chance
  395. * the writer will bite our tail and mess up the samples under us.
  396. *
  397. * If we somehow ended up ahead of the head, we got messed up.
  398. *
  399. * In either case, truncate and restart at head.
  400. */
  401. int diff = head - old;
  402. if (diff > md->mask / 2 || diff < 0) {
  403. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  404. /*
  405. * head points to a known good entry, start there.
  406. */
  407. old = head;
  408. }
  409. }
  410. if (old != head) {
  411. size_t size;
  412. event = (union perf_event *)&data[old & md->mask];
  413. size = event->header.size;
  414. /*
  415. * Event straddles the mmap boundary -- header should always
  416. * be inside due to u64 alignment of output.
  417. */
  418. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  419. unsigned int offset = old;
  420. unsigned int len = min(sizeof(*event), size), cpy;
  421. void *dst = &md->event_copy;
  422. do {
  423. cpy = min(md->mask + 1 - (offset & md->mask), len);
  424. memcpy(dst, &data[offset & md->mask], cpy);
  425. offset += cpy;
  426. dst += cpy;
  427. len -= cpy;
  428. } while (len);
  429. event = &md->event_copy;
  430. }
  431. old += size;
  432. }
  433. md->prev = old;
  434. if (!evlist->overwrite)
  435. perf_mmap__write_tail(md, old);
  436. return event;
  437. }
  438. static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
  439. {
  440. if (evlist->mmap[idx].base != NULL) {
  441. munmap(evlist->mmap[idx].base, evlist->mmap_len);
  442. evlist->mmap[idx].base = NULL;
  443. }
  444. }
  445. void perf_evlist__munmap(struct perf_evlist *evlist)
  446. {
  447. int i;
  448. for (i = 0; i < evlist->nr_mmaps; i++)
  449. __perf_evlist__munmap(evlist, i);
  450. free(evlist->mmap);
  451. evlist->mmap = NULL;
  452. }
  453. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  454. {
  455. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  456. if (cpu_map__empty(evlist->cpus))
  457. evlist->nr_mmaps = thread_map__nr(evlist->threads);
  458. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  459. return evlist->mmap != NULL ? 0 : -ENOMEM;
  460. }
  461. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  462. int idx, int prot, int mask, int fd)
  463. {
  464. evlist->mmap[idx].prev = 0;
  465. evlist->mmap[idx].mask = mask;
  466. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  467. MAP_SHARED, fd, 0);
  468. if (evlist->mmap[idx].base == MAP_FAILED) {
  469. evlist->mmap[idx].base = NULL;
  470. return -1;
  471. }
  472. perf_evlist__add_pollfd(evlist, fd);
  473. return 0;
  474. }
  475. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  476. {
  477. struct perf_evsel *evsel;
  478. int cpu, thread;
  479. int nr_cpus = cpu_map__nr(evlist->cpus);
  480. int nr_threads = thread_map__nr(evlist->threads);
  481. pr_debug2("perf event ring buffer mmapped per cpu\n");
  482. for (cpu = 0; cpu < nr_cpus; cpu++) {
  483. int output = -1;
  484. for (thread = 0; thread < nr_threads; thread++) {
  485. list_for_each_entry(evsel, &evlist->entries, node) {
  486. int fd = FD(evsel, cpu, thread);
  487. if (output == -1) {
  488. output = fd;
  489. if (__perf_evlist__mmap(evlist, cpu,
  490. prot, mask, output) < 0)
  491. goto out_unmap;
  492. } else {
  493. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  494. goto out_unmap;
  495. }
  496. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  497. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  498. goto out_unmap;
  499. }
  500. }
  501. }
  502. return 0;
  503. out_unmap:
  504. for (cpu = 0; cpu < nr_cpus; cpu++)
  505. __perf_evlist__munmap(evlist, cpu);
  506. return -1;
  507. }
  508. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  509. {
  510. struct perf_evsel *evsel;
  511. int thread;
  512. int nr_threads = thread_map__nr(evlist->threads);
  513. pr_debug2("perf event ring buffer mmapped per thread\n");
  514. for (thread = 0; thread < nr_threads; thread++) {
  515. int output = -1;
  516. list_for_each_entry(evsel, &evlist->entries, node) {
  517. int fd = FD(evsel, 0, thread);
  518. if (output == -1) {
  519. output = fd;
  520. if (__perf_evlist__mmap(evlist, thread,
  521. prot, mask, output) < 0)
  522. goto out_unmap;
  523. } else {
  524. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  525. goto out_unmap;
  526. }
  527. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  528. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  529. goto out_unmap;
  530. }
  531. }
  532. return 0;
  533. out_unmap:
  534. for (thread = 0; thread < nr_threads; thread++)
  535. __perf_evlist__munmap(evlist, thread);
  536. return -1;
  537. }
  538. /** perf_evlist__mmap - Create per cpu maps to receive events
  539. *
  540. * @evlist - list of events
  541. * @pages - map length in pages
  542. * @overwrite - overwrite older events?
  543. *
  544. * If overwrite is false the user needs to signal event consuption using:
  545. *
  546. * struct perf_mmap *m = &evlist->mmap[cpu];
  547. * unsigned int head = perf_mmap__read_head(m);
  548. *
  549. * perf_mmap__write_tail(m, head)
  550. *
  551. * Using perf_evlist__read_on_cpu does this automatically.
  552. */
  553. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  554. bool overwrite)
  555. {
  556. struct perf_evsel *evsel;
  557. const struct cpu_map *cpus = evlist->cpus;
  558. const struct thread_map *threads = evlist->threads;
  559. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  560. /* 512 kiB: default amount of unprivileged mlocked memory */
  561. if (pages == UINT_MAX)
  562. pages = (512 * 1024) / page_size;
  563. else if (!is_power_of_2(pages))
  564. return -EINVAL;
  565. mask = pages * page_size - 1;
  566. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  567. return -ENOMEM;
  568. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  569. return -ENOMEM;
  570. evlist->overwrite = overwrite;
  571. evlist->mmap_len = (pages + 1) * page_size;
  572. list_for_each_entry(evsel, &evlist->entries, node) {
  573. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  574. evsel->sample_id == NULL &&
  575. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  576. return -ENOMEM;
  577. }
  578. if (cpu_map__empty(cpus))
  579. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  580. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  581. }
  582. int perf_evlist__create_maps(struct perf_evlist *evlist,
  583. struct perf_target *target)
  584. {
  585. evlist->threads = thread_map__new_str(target->pid, target->tid,
  586. target->uid);
  587. if (evlist->threads == NULL)
  588. return -1;
  589. if (perf_target__has_task(target))
  590. evlist->cpus = cpu_map__dummy_new();
  591. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  592. evlist->cpus = cpu_map__dummy_new();
  593. else
  594. evlist->cpus = cpu_map__new(target->cpu_list);
  595. if (evlist->cpus == NULL)
  596. goto out_delete_threads;
  597. return 0;
  598. out_delete_threads:
  599. thread_map__delete(evlist->threads);
  600. return -1;
  601. }
  602. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  603. {
  604. cpu_map__delete(evlist->cpus);
  605. thread_map__delete(evlist->threads);
  606. evlist->cpus = NULL;
  607. evlist->threads = NULL;
  608. }
  609. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  610. {
  611. struct perf_evsel *evsel;
  612. int err = 0;
  613. const int ncpus = cpu_map__nr(evlist->cpus),
  614. nthreads = thread_map__nr(evlist->threads);
  615. list_for_each_entry(evsel, &evlist->entries, node) {
  616. if (evsel->filter == NULL)
  617. continue;
  618. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  619. if (err)
  620. break;
  621. }
  622. return err;
  623. }
  624. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  625. {
  626. struct perf_evsel *evsel;
  627. int err = 0;
  628. const int ncpus = cpu_map__nr(evlist->cpus),
  629. nthreads = thread_map__nr(evlist->threads);
  630. list_for_each_entry(evsel, &evlist->entries, node) {
  631. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  632. if (err)
  633. break;
  634. }
  635. return err;
  636. }
  637. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  638. {
  639. struct perf_evsel *pos;
  640. if (evlist->nr_entries == 1)
  641. return true;
  642. if (evlist->id_pos < 0 || evlist->is_pos < 0)
  643. return false;
  644. list_for_each_entry(pos, &evlist->entries, node) {
  645. if (pos->id_pos != evlist->id_pos ||
  646. pos->is_pos != evlist->is_pos)
  647. return false;
  648. }
  649. return true;
  650. }
  651. u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  652. {
  653. struct perf_evsel *evsel;
  654. if (evlist->combined_sample_type)
  655. return evlist->combined_sample_type;
  656. list_for_each_entry(evsel, &evlist->entries, node)
  657. evlist->combined_sample_type |= evsel->attr.sample_type;
  658. return evlist->combined_sample_type;
  659. }
  660. u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  661. {
  662. evlist->combined_sample_type = 0;
  663. return __perf_evlist__combined_sample_type(evlist);
  664. }
  665. bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
  666. {
  667. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  668. u64 read_format = first->attr.read_format;
  669. u64 sample_type = first->attr.sample_type;
  670. list_for_each_entry_continue(pos, &evlist->entries, node) {
  671. if (read_format != pos->attr.read_format)
  672. return false;
  673. }
  674. /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
  675. if ((sample_type & PERF_SAMPLE_READ) &&
  676. !(read_format & PERF_FORMAT_ID)) {
  677. return false;
  678. }
  679. return true;
  680. }
  681. u64 perf_evlist__read_format(struct perf_evlist *evlist)
  682. {
  683. struct perf_evsel *first = perf_evlist__first(evlist);
  684. return first->attr.read_format;
  685. }
  686. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  687. {
  688. struct perf_evsel *first = perf_evlist__first(evlist);
  689. struct perf_sample *data;
  690. u64 sample_type;
  691. u16 size = 0;
  692. if (!first->attr.sample_id_all)
  693. goto out;
  694. sample_type = first->attr.sample_type;
  695. if (sample_type & PERF_SAMPLE_TID)
  696. size += sizeof(data->tid) * 2;
  697. if (sample_type & PERF_SAMPLE_TIME)
  698. size += sizeof(data->time);
  699. if (sample_type & PERF_SAMPLE_ID)
  700. size += sizeof(data->id);
  701. if (sample_type & PERF_SAMPLE_STREAM_ID)
  702. size += sizeof(data->stream_id);
  703. if (sample_type & PERF_SAMPLE_CPU)
  704. size += sizeof(data->cpu) * 2;
  705. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  706. size += sizeof(data->id);
  707. out:
  708. return size;
  709. }
  710. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  711. {
  712. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  713. list_for_each_entry_continue(pos, &evlist->entries, node) {
  714. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  715. return false;
  716. }
  717. return true;
  718. }
  719. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  720. {
  721. struct perf_evsel *first = perf_evlist__first(evlist);
  722. return first->attr.sample_id_all;
  723. }
  724. void perf_evlist__set_selected(struct perf_evlist *evlist,
  725. struct perf_evsel *evsel)
  726. {
  727. evlist->selected = evsel;
  728. }
  729. void perf_evlist__close(struct perf_evlist *evlist)
  730. {
  731. struct perf_evsel *evsel;
  732. int ncpus = cpu_map__nr(evlist->cpus);
  733. int nthreads = thread_map__nr(evlist->threads);
  734. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  735. perf_evsel__close(evsel, ncpus, nthreads);
  736. }
  737. int perf_evlist__open(struct perf_evlist *evlist)
  738. {
  739. struct perf_evsel *evsel;
  740. int err;
  741. list_for_each_entry(evsel, &evlist->entries, node) {
  742. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  743. if (err < 0)
  744. goto out_err;
  745. }
  746. return 0;
  747. out_err:
  748. perf_evlist__close(evlist);
  749. errno = -err;
  750. return err;
  751. }
  752. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  753. struct perf_target *target,
  754. const char *argv[], bool pipe_output,
  755. bool want_signal)
  756. {
  757. int child_ready_pipe[2], go_pipe[2];
  758. char bf;
  759. if (pipe(child_ready_pipe) < 0) {
  760. perror("failed to create 'ready' pipe");
  761. return -1;
  762. }
  763. if (pipe(go_pipe) < 0) {
  764. perror("failed to create 'go' pipe");
  765. goto out_close_ready_pipe;
  766. }
  767. evlist->workload.pid = fork();
  768. if (evlist->workload.pid < 0) {
  769. perror("failed to fork");
  770. goto out_close_pipes;
  771. }
  772. if (!evlist->workload.pid) {
  773. if (pipe_output)
  774. dup2(2, 1);
  775. signal(SIGTERM, SIG_DFL);
  776. close(child_ready_pipe[0]);
  777. close(go_pipe[1]);
  778. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  779. /*
  780. * Tell the parent we're ready to go
  781. */
  782. close(child_ready_pipe[1]);
  783. /*
  784. * Wait until the parent tells us to go.
  785. */
  786. if (read(go_pipe[0], &bf, 1) == -1)
  787. perror("unable to read pipe");
  788. execvp(argv[0], (char **)argv);
  789. perror(argv[0]);
  790. if (want_signal)
  791. kill(getppid(), SIGUSR1);
  792. exit(-1);
  793. }
  794. if (perf_target__none(target))
  795. evlist->threads->map[0] = evlist->workload.pid;
  796. close(child_ready_pipe[1]);
  797. close(go_pipe[0]);
  798. /*
  799. * wait for child to settle
  800. */
  801. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  802. perror("unable to read pipe");
  803. goto out_close_pipes;
  804. }
  805. fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
  806. evlist->workload.cork_fd = go_pipe[1];
  807. close(child_ready_pipe[0]);
  808. return 0;
  809. out_close_pipes:
  810. close(go_pipe[0]);
  811. close(go_pipe[1]);
  812. out_close_ready_pipe:
  813. close(child_ready_pipe[0]);
  814. close(child_ready_pipe[1]);
  815. return -1;
  816. }
  817. int perf_evlist__start_workload(struct perf_evlist *evlist)
  818. {
  819. if (evlist->workload.cork_fd > 0) {
  820. char bf = 0;
  821. int ret;
  822. /*
  823. * Remove the cork, let it rip!
  824. */
  825. ret = write(evlist->workload.cork_fd, &bf, 1);
  826. if (ret < 0)
  827. perror("enable to write to pipe");
  828. close(evlist->workload.cork_fd);
  829. return ret;
  830. }
  831. return 0;
  832. }
  833. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  834. struct perf_sample *sample)
  835. {
  836. struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
  837. if (!evsel)
  838. return -EFAULT;
  839. return perf_evsel__parse_sample(evsel, event, sample);
  840. }
  841. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  842. {
  843. struct perf_evsel *evsel;
  844. size_t printed = 0;
  845. list_for_each_entry(evsel, &evlist->entries, node) {
  846. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  847. perf_evsel__name(evsel));
  848. }
  849. return printed + fprintf(fp, "\n");;
  850. }