security.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  121. {
  122. #ifdef CONFIG_SECURITY_YAMA_STACKED
  123. int rc;
  124. rc = yama_ptrace_access_check(child, mode);
  125. if (rc)
  126. return rc;
  127. #endif
  128. return security_ops->ptrace_access_check(child, mode);
  129. }
  130. int security_ptrace_traceme(struct task_struct *parent)
  131. {
  132. #ifdef CONFIG_SECURITY_YAMA_STACKED
  133. int rc;
  134. rc = yama_ptrace_traceme(parent);
  135. if (rc)
  136. return rc;
  137. #endif
  138. return security_ops->ptrace_traceme(parent);
  139. }
  140. int security_capget(struct task_struct *target,
  141. kernel_cap_t *effective,
  142. kernel_cap_t *inheritable,
  143. kernel_cap_t *permitted)
  144. {
  145. return security_ops->capget(target, effective, inheritable, permitted);
  146. }
  147. int security_capset(struct cred *new, const struct cred *old,
  148. const kernel_cap_t *effective,
  149. const kernel_cap_t *inheritable,
  150. const kernel_cap_t *permitted)
  151. {
  152. return security_ops->capset(new, old,
  153. effective, inheritable, permitted);
  154. }
  155. int security_capable(const struct cred *cred, struct user_namespace *ns,
  156. int cap)
  157. {
  158. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  159. }
  160. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  161. int cap)
  162. {
  163. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  164. }
  165. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  166. {
  167. return security_ops->quotactl(cmds, type, id, sb);
  168. }
  169. int security_quota_on(struct dentry *dentry)
  170. {
  171. return security_ops->quota_on(dentry);
  172. }
  173. int security_syslog(int type)
  174. {
  175. return security_ops->syslog(type);
  176. }
  177. int security_settime(const struct timespec *ts, const struct timezone *tz)
  178. {
  179. return security_ops->settime(ts, tz);
  180. }
  181. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  182. {
  183. return security_ops->vm_enough_memory(mm, pages);
  184. }
  185. int security_bprm_set_creds(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_creds(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. int ret;
  192. ret = security_ops->bprm_check_security(bprm);
  193. if (ret)
  194. return ret;
  195. return ima_bprm_check(bprm);
  196. }
  197. void security_bprm_committing_creds(struct linux_binprm *bprm)
  198. {
  199. security_ops->bprm_committing_creds(bprm);
  200. }
  201. void security_bprm_committed_creds(struct linux_binprm *bprm)
  202. {
  203. security_ops->bprm_committed_creds(bprm);
  204. }
  205. int security_bprm_secureexec(struct linux_binprm *bprm)
  206. {
  207. return security_ops->bprm_secureexec(bprm);
  208. }
  209. int security_sb_alloc(struct super_block *sb)
  210. {
  211. return security_ops->sb_alloc_security(sb);
  212. }
  213. void security_sb_free(struct super_block *sb)
  214. {
  215. security_ops->sb_free_security(sb);
  216. }
  217. int security_sb_copy_data(char *orig, char *copy)
  218. {
  219. return security_ops->sb_copy_data(orig, copy);
  220. }
  221. EXPORT_SYMBOL(security_sb_copy_data);
  222. int security_sb_remount(struct super_block *sb, void *data)
  223. {
  224. return security_ops->sb_remount(sb, data);
  225. }
  226. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  227. {
  228. return security_ops->sb_kern_mount(sb, flags, data);
  229. }
  230. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  231. {
  232. return security_ops->sb_show_options(m, sb);
  233. }
  234. int security_sb_statfs(struct dentry *dentry)
  235. {
  236. return security_ops->sb_statfs(dentry);
  237. }
  238. int security_sb_mount(const char *dev_name, struct path *path,
  239. const char *type, unsigned long flags, void *data)
  240. {
  241. return security_ops->sb_mount(dev_name, path, type, flags, data);
  242. }
  243. int security_sb_umount(struct vfsmount *mnt, int flags)
  244. {
  245. return security_ops->sb_umount(mnt, flags);
  246. }
  247. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  248. {
  249. return security_ops->sb_pivotroot(old_path, new_path);
  250. }
  251. int security_sb_set_mnt_opts(struct super_block *sb,
  252. struct security_mnt_opts *opts,
  253. unsigned long kern_flags,
  254. unsigned long *set_kern_flags)
  255. {
  256. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  257. set_kern_flags);
  258. }
  259. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  260. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  261. struct super_block *newsb)
  262. {
  263. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  264. }
  265. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  266. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  267. {
  268. return security_ops->sb_parse_opts_str(options, opts);
  269. }
  270. EXPORT_SYMBOL(security_sb_parse_opts_str);
  271. int security_inode_alloc(struct inode *inode)
  272. {
  273. inode->i_security = NULL;
  274. return security_ops->inode_alloc_security(inode);
  275. }
  276. void security_inode_free(struct inode *inode)
  277. {
  278. integrity_inode_free(inode);
  279. security_ops->inode_free_security(inode);
  280. }
  281. int security_dentry_init_security(struct dentry *dentry, int mode,
  282. struct qstr *name, void **ctx,
  283. u32 *ctxlen)
  284. {
  285. return security_ops->dentry_init_security(dentry, mode, name,
  286. ctx, ctxlen);
  287. }
  288. EXPORT_SYMBOL(security_dentry_init_security);
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. const struct qstr *qstr,
  291. const initxattrs initxattrs, void *fs_data)
  292. {
  293. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  294. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  295. int ret;
  296. if (unlikely(IS_PRIVATE(inode)))
  297. return 0;
  298. if (!initxattrs)
  299. return security_ops->inode_init_security(inode, dir, qstr,
  300. NULL, NULL, NULL);
  301. memset(new_xattrs, 0, sizeof(new_xattrs));
  302. lsm_xattr = new_xattrs;
  303. ret = security_ops->inode_init_security(inode, dir, qstr,
  304. &lsm_xattr->name,
  305. &lsm_xattr->value,
  306. &lsm_xattr->value_len);
  307. if (ret)
  308. goto out;
  309. evm_xattr = lsm_xattr + 1;
  310. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  311. if (ret)
  312. goto out;
  313. ret = initxattrs(inode, new_xattrs, fs_data);
  314. out:
  315. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  316. kfree(xattr->value);
  317. return (ret == -EOPNOTSUPP) ? 0 : ret;
  318. }
  319. EXPORT_SYMBOL(security_inode_init_security);
  320. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  321. const struct qstr *qstr, const char **name,
  322. void **value, size_t *len)
  323. {
  324. if (unlikely(IS_PRIVATE(inode)))
  325. return -EOPNOTSUPP;
  326. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  327. len);
  328. }
  329. EXPORT_SYMBOL(security_old_inode_init_security);
  330. #ifdef CONFIG_SECURITY_PATH
  331. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  332. unsigned int dev)
  333. {
  334. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  335. return 0;
  336. return security_ops->path_mknod(dir, dentry, mode, dev);
  337. }
  338. EXPORT_SYMBOL(security_path_mknod);
  339. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  340. {
  341. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  342. return 0;
  343. return security_ops->path_mkdir(dir, dentry, mode);
  344. }
  345. EXPORT_SYMBOL(security_path_mkdir);
  346. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  347. {
  348. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  349. return 0;
  350. return security_ops->path_rmdir(dir, dentry);
  351. }
  352. int security_path_unlink(struct path *dir, struct dentry *dentry)
  353. {
  354. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  355. return 0;
  356. return security_ops->path_unlink(dir, dentry);
  357. }
  358. EXPORT_SYMBOL(security_path_unlink);
  359. int security_path_symlink(struct path *dir, struct dentry *dentry,
  360. const char *old_name)
  361. {
  362. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  363. return 0;
  364. return security_ops->path_symlink(dir, dentry, old_name);
  365. }
  366. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  367. struct dentry *new_dentry)
  368. {
  369. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  370. return 0;
  371. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  372. }
  373. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  374. struct path *new_dir, struct dentry *new_dentry)
  375. {
  376. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  377. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  378. return 0;
  379. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  380. new_dentry);
  381. }
  382. EXPORT_SYMBOL(security_path_rename);
  383. int security_path_truncate(struct path *path)
  384. {
  385. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  386. return 0;
  387. return security_ops->path_truncate(path);
  388. }
  389. int security_path_chmod(struct path *path, umode_t mode)
  390. {
  391. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  392. return 0;
  393. return security_ops->path_chmod(path, mode);
  394. }
  395. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  396. {
  397. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  398. return 0;
  399. return security_ops->path_chown(path, uid, gid);
  400. }
  401. int security_path_chroot(struct path *path)
  402. {
  403. return security_ops->path_chroot(path);
  404. }
  405. #endif
  406. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  407. {
  408. if (unlikely(IS_PRIVATE(dir)))
  409. return 0;
  410. return security_ops->inode_create(dir, dentry, mode);
  411. }
  412. EXPORT_SYMBOL_GPL(security_inode_create);
  413. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  414. struct dentry *new_dentry)
  415. {
  416. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  417. return 0;
  418. return security_ops->inode_link(old_dentry, dir, new_dentry);
  419. }
  420. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  421. {
  422. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  423. return 0;
  424. return security_ops->inode_unlink(dir, dentry);
  425. }
  426. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  427. const char *old_name)
  428. {
  429. if (unlikely(IS_PRIVATE(dir)))
  430. return 0;
  431. return security_ops->inode_symlink(dir, dentry, old_name);
  432. }
  433. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  434. {
  435. if (unlikely(IS_PRIVATE(dir)))
  436. return 0;
  437. return security_ops->inode_mkdir(dir, dentry, mode);
  438. }
  439. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  440. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  441. {
  442. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  443. return 0;
  444. return security_ops->inode_rmdir(dir, dentry);
  445. }
  446. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  447. {
  448. if (unlikely(IS_PRIVATE(dir)))
  449. return 0;
  450. return security_ops->inode_mknod(dir, dentry, mode, dev);
  451. }
  452. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  453. struct inode *new_dir, struct dentry *new_dentry)
  454. {
  455. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  456. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  457. return 0;
  458. return security_ops->inode_rename(old_dir, old_dentry,
  459. new_dir, new_dentry);
  460. }
  461. int security_inode_readlink(struct dentry *dentry)
  462. {
  463. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  464. return 0;
  465. return security_ops->inode_readlink(dentry);
  466. }
  467. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  468. {
  469. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  470. return 0;
  471. return security_ops->inode_follow_link(dentry, nd);
  472. }
  473. int security_inode_permission(struct inode *inode, int mask)
  474. {
  475. if (unlikely(IS_PRIVATE(inode)))
  476. return 0;
  477. return security_ops->inode_permission(inode, mask);
  478. }
  479. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  480. {
  481. int ret;
  482. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  483. return 0;
  484. ret = security_ops->inode_setattr(dentry, attr);
  485. if (ret)
  486. return ret;
  487. return evm_inode_setattr(dentry, attr);
  488. }
  489. EXPORT_SYMBOL_GPL(security_inode_setattr);
  490. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  491. {
  492. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  493. return 0;
  494. return security_ops->inode_getattr(mnt, dentry);
  495. }
  496. int security_inode_setxattr(struct dentry *dentry, const char *name,
  497. const void *value, size_t size, int flags)
  498. {
  499. int ret;
  500. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  501. return 0;
  502. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  503. if (ret)
  504. return ret;
  505. ret = ima_inode_setxattr(dentry, name, value, size);
  506. if (ret)
  507. return ret;
  508. return evm_inode_setxattr(dentry, name, value, size);
  509. }
  510. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  511. const void *value, size_t size, int flags)
  512. {
  513. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  514. return;
  515. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  516. evm_inode_post_setxattr(dentry, name, value, size);
  517. }
  518. int security_inode_getxattr(struct dentry *dentry, const char *name)
  519. {
  520. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  521. return 0;
  522. return security_ops->inode_getxattr(dentry, name);
  523. }
  524. int security_inode_listxattr(struct dentry *dentry)
  525. {
  526. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  527. return 0;
  528. return security_ops->inode_listxattr(dentry);
  529. }
  530. int security_inode_removexattr(struct dentry *dentry, const char *name)
  531. {
  532. int ret;
  533. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  534. return 0;
  535. ret = security_ops->inode_removexattr(dentry, name);
  536. if (ret)
  537. return ret;
  538. ret = ima_inode_removexattr(dentry, name);
  539. if (ret)
  540. return ret;
  541. return evm_inode_removexattr(dentry, name);
  542. }
  543. int security_inode_need_killpriv(struct dentry *dentry)
  544. {
  545. return security_ops->inode_need_killpriv(dentry);
  546. }
  547. int security_inode_killpriv(struct dentry *dentry)
  548. {
  549. return security_ops->inode_killpriv(dentry);
  550. }
  551. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  552. {
  553. if (unlikely(IS_PRIVATE(inode)))
  554. return -EOPNOTSUPP;
  555. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  556. }
  557. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  558. {
  559. if (unlikely(IS_PRIVATE(inode)))
  560. return -EOPNOTSUPP;
  561. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  562. }
  563. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  564. {
  565. if (unlikely(IS_PRIVATE(inode)))
  566. return 0;
  567. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  568. }
  569. EXPORT_SYMBOL(security_inode_listsecurity);
  570. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  571. {
  572. security_ops->inode_getsecid(inode, secid);
  573. }
  574. int security_file_permission(struct file *file, int mask)
  575. {
  576. int ret;
  577. ret = security_ops->file_permission(file, mask);
  578. if (ret)
  579. return ret;
  580. return fsnotify_perm(file, mask);
  581. }
  582. int security_file_alloc(struct file *file)
  583. {
  584. return security_ops->file_alloc_security(file);
  585. }
  586. void security_file_free(struct file *file)
  587. {
  588. security_ops->file_free_security(file);
  589. }
  590. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  591. {
  592. return security_ops->file_ioctl(file, cmd, arg);
  593. }
  594. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  595. {
  596. /*
  597. * Does we have PROT_READ and does the application expect
  598. * it to imply PROT_EXEC? If not, nothing to talk about...
  599. */
  600. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  601. return prot;
  602. if (!(current->personality & READ_IMPLIES_EXEC))
  603. return prot;
  604. /*
  605. * if that's an anonymous mapping, let it.
  606. */
  607. if (!file)
  608. return prot | PROT_EXEC;
  609. /*
  610. * ditto if it's not on noexec mount, except that on !MMU we need
  611. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  612. */
  613. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  614. #ifndef CONFIG_MMU
  615. unsigned long caps = 0;
  616. struct address_space *mapping = file->f_mapping;
  617. if (mapping && mapping->backing_dev_info)
  618. caps = mapping->backing_dev_info->capabilities;
  619. if (!(caps & BDI_CAP_EXEC_MAP))
  620. return prot;
  621. #endif
  622. return prot | PROT_EXEC;
  623. }
  624. /* anything on noexec mount won't get PROT_EXEC */
  625. return prot;
  626. }
  627. int security_mmap_file(struct file *file, unsigned long prot,
  628. unsigned long flags)
  629. {
  630. int ret;
  631. ret = security_ops->mmap_file(file, prot,
  632. mmap_prot(file, prot), flags);
  633. if (ret)
  634. return ret;
  635. return ima_file_mmap(file, prot);
  636. }
  637. int security_mmap_addr(unsigned long addr)
  638. {
  639. return security_ops->mmap_addr(addr);
  640. }
  641. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  642. unsigned long prot)
  643. {
  644. return security_ops->file_mprotect(vma, reqprot, prot);
  645. }
  646. int security_file_lock(struct file *file, unsigned int cmd)
  647. {
  648. return security_ops->file_lock(file, cmd);
  649. }
  650. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  651. {
  652. return security_ops->file_fcntl(file, cmd, arg);
  653. }
  654. int security_file_set_fowner(struct file *file)
  655. {
  656. return security_ops->file_set_fowner(file);
  657. }
  658. int security_file_send_sigiotask(struct task_struct *tsk,
  659. struct fown_struct *fown, int sig)
  660. {
  661. return security_ops->file_send_sigiotask(tsk, fown, sig);
  662. }
  663. int security_file_receive(struct file *file)
  664. {
  665. return security_ops->file_receive(file);
  666. }
  667. int security_file_open(struct file *file, const struct cred *cred)
  668. {
  669. int ret;
  670. ret = security_ops->file_open(file, cred);
  671. if (ret)
  672. return ret;
  673. return fsnotify_perm(file, MAY_OPEN);
  674. }
  675. int security_task_create(unsigned long clone_flags)
  676. {
  677. return security_ops->task_create(clone_flags);
  678. }
  679. void security_task_free(struct task_struct *task)
  680. {
  681. #ifdef CONFIG_SECURITY_YAMA_STACKED
  682. yama_task_free(task);
  683. #endif
  684. security_ops->task_free(task);
  685. }
  686. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  687. {
  688. return security_ops->cred_alloc_blank(cred, gfp);
  689. }
  690. void security_cred_free(struct cred *cred)
  691. {
  692. security_ops->cred_free(cred);
  693. }
  694. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  695. {
  696. return security_ops->cred_prepare(new, old, gfp);
  697. }
  698. void security_transfer_creds(struct cred *new, const struct cred *old)
  699. {
  700. security_ops->cred_transfer(new, old);
  701. }
  702. int security_kernel_act_as(struct cred *new, u32 secid)
  703. {
  704. return security_ops->kernel_act_as(new, secid);
  705. }
  706. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  707. {
  708. return security_ops->kernel_create_files_as(new, inode);
  709. }
  710. int security_kernel_module_request(char *kmod_name)
  711. {
  712. return security_ops->kernel_module_request(kmod_name);
  713. }
  714. int security_kernel_module_from_file(struct file *file)
  715. {
  716. int ret;
  717. ret = security_ops->kernel_module_from_file(file);
  718. if (ret)
  719. return ret;
  720. return ima_module_check(file);
  721. }
  722. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  723. int flags)
  724. {
  725. return security_ops->task_fix_setuid(new, old, flags);
  726. }
  727. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  728. {
  729. return security_ops->task_setpgid(p, pgid);
  730. }
  731. int security_task_getpgid(struct task_struct *p)
  732. {
  733. return security_ops->task_getpgid(p);
  734. }
  735. int security_task_getsid(struct task_struct *p)
  736. {
  737. return security_ops->task_getsid(p);
  738. }
  739. void security_task_getsecid(struct task_struct *p, u32 *secid)
  740. {
  741. security_ops->task_getsecid(p, secid);
  742. }
  743. EXPORT_SYMBOL(security_task_getsecid);
  744. int security_task_setnice(struct task_struct *p, int nice)
  745. {
  746. return security_ops->task_setnice(p, nice);
  747. }
  748. int security_task_setioprio(struct task_struct *p, int ioprio)
  749. {
  750. return security_ops->task_setioprio(p, ioprio);
  751. }
  752. int security_task_getioprio(struct task_struct *p)
  753. {
  754. return security_ops->task_getioprio(p);
  755. }
  756. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  757. struct rlimit *new_rlim)
  758. {
  759. return security_ops->task_setrlimit(p, resource, new_rlim);
  760. }
  761. int security_task_setscheduler(struct task_struct *p)
  762. {
  763. return security_ops->task_setscheduler(p);
  764. }
  765. int security_task_getscheduler(struct task_struct *p)
  766. {
  767. return security_ops->task_getscheduler(p);
  768. }
  769. int security_task_movememory(struct task_struct *p)
  770. {
  771. return security_ops->task_movememory(p);
  772. }
  773. int security_task_kill(struct task_struct *p, struct siginfo *info,
  774. int sig, u32 secid)
  775. {
  776. return security_ops->task_kill(p, info, sig, secid);
  777. }
  778. int security_task_wait(struct task_struct *p)
  779. {
  780. return security_ops->task_wait(p);
  781. }
  782. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  783. unsigned long arg4, unsigned long arg5)
  784. {
  785. #ifdef CONFIG_SECURITY_YAMA_STACKED
  786. int rc;
  787. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  788. if (rc != -ENOSYS)
  789. return rc;
  790. #endif
  791. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  792. }
  793. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  794. {
  795. security_ops->task_to_inode(p, inode);
  796. }
  797. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  798. {
  799. return security_ops->ipc_permission(ipcp, flag);
  800. }
  801. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  802. {
  803. security_ops->ipc_getsecid(ipcp, secid);
  804. }
  805. int security_msg_msg_alloc(struct msg_msg *msg)
  806. {
  807. return security_ops->msg_msg_alloc_security(msg);
  808. }
  809. void security_msg_msg_free(struct msg_msg *msg)
  810. {
  811. security_ops->msg_msg_free_security(msg);
  812. }
  813. int security_msg_queue_alloc(struct msg_queue *msq)
  814. {
  815. return security_ops->msg_queue_alloc_security(msq);
  816. }
  817. void security_msg_queue_free(struct msg_queue *msq)
  818. {
  819. security_ops->msg_queue_free_security(msq);
  820. }
  821. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  822. {
  823. return security_ops->msg_queue_associate(msq, msqflg);
  824. }
  825. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  826. {
  827. return security_ops->msg_queue_msgctl(msq, cmd);
  828. }
  829. int security_msg_queue_msgsnd(struct msg_queue *msq,
  830. struct msg_msg *msg, int msqflg)
  831. {
  832. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  833. }
  834. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  835. struct task_struct *target, long type, int mode)
  836. {
  837. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  838. }
  839. int security_shm_alloc(struct shmid_kernel *shp)
  840. {
  841. return security_ops->shm_alloc_security(shp);
  842. }
  843. void security_shm_free(struct shmid_kernel *shp)
  844. {
  845. security_ops->shm_free_security(shp);
  846. }
  847. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  848. {
  849. return security_ops->shm_associate(shp, shmflg);
  850. }
  851. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  852. {
  853. return security_ops->shm_shmctl(shp, cmd);
  854. }
  855. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  856. {
  857. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  858. }
  859. int security_sem_alloc(struct sem_array *sma)
  860. {
  861. return security_ops->sem_alloc_security(sma);
  862. }
  863. void security_sem_free(struct sem_array *sma)
  864. {
  865. security_ops->sem_free_security(sma);
  866. }
  867. int security_sem_associate(struct sem_array *sma, int semflg)
  868. {
  869. return security_ops->sem_associate(sma, semflg);
  870. }
  871. int security_sem_semctl(struct sem_array *sma, int cmd)
  872. {
  873. return security_ops->sem_semctl(sma, cmd);
  874. }
  875. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  876. unsigned nsops, int alter)
  877. {
  878. return security_ops->sem_semop(sma, sops, nsops, alter);
  879. }
  880. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  881. {
  882. if (unlikely(inode && IS_PRIVATE(inode)))
  883. return;
  884. security_ops->d_instantiate(dentry, inode);
  885. }
  886. EXPORT_SYMBOL(security_d_instantiate);
  887. int security_getprocattr(struct task_struct *p, char *name, char **value)
  888. {
  889. return security_ops->getprocattr(p, name, value);
  890. }
  891. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  892. {
  893. return security_ops->setprocattr(p, name, value, size);
  894. }
  895. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  896. {
  897. return security_ops->netlink_send(sk, skb);
  898. }
  899. int security_ismaclabel(const char *name)
  900. {
  901. return security_ops->ismaclabel(name);
  902. }
  903. EXPORT_SYMBOL(security_ismaclabel);
  904. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  905. {
  906. return security_ops->secid_to_secctx(secid, secdata, seclen);
  907. }
  908. EXPORT_SYMBOL(security_secid_to_secctx);
  909. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  910. {
  911. return security_ops->secctx_to_secid(secdata, seclen, secid);
  912. }
  913. EXPORT_SYMBOL(security_secctx_to_secid);
  914. void security_release_secctx(char *secdata, u32 seclen)
  915. {
  916. security_ops->release_secctx(secdata, seclen);
  917. }
  918. EXPORT_SYMBOL(security_release_secctx);
  919. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  920. {
  921. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  922. }
  923. EXPORT_SYMBOL(security_inode_notifysecctx);
  924. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  925. {
  926. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  927. }
  928. EXPORT_SYMBOL(security_inode_setsecctx);
  929. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  930. {
  931. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  932. }
  933. EXPORT_SYMBOL(security_inode_getsecctx);
  934. #ifdef CONFIG_SECURITY_NETWORK
  935. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  936. {
  937. return security_ops->unix_stream_connect(sock, other, newsk);
  938. }
  939. EXPORT_SYMBOL(security_unix_stream_connect);
  940. int security_unix_may_send(struct socket *sock, struct socket *other)
  941. {
  942. return security_ops->unix_may_send(sock, other);
  943. }
  944. EXPORT_SYMBOL(security_unix_may_send);
  945. int security_socket_create(int family, int type, int protocol, int kern)
  946. {
  947. return security_ops->socket_create(family, type, protocol, kern);
  948. }
  949. int security_socket_post_create(struct socket *sock, int family,
  950. int type, int protocol, int kern)
  951. {
  952. return security_ops->socket_post_create(sock, family, type,
  953. protocol, kern);
  954. }
  955. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  956. {
  957. return security_ops->socket_bind(sock, address, addrlen);
  958. }
  959. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  960. {
  961. return security_ops->socket_connect(sock, address, addrlen);
  962. }
  963. int security_socket_listen(struct socket *sock, int backlog)
  964. {
  965. return security_ops->socket_listen(sock, backlog);
  966. }
  967. int security_socket_accept(struct socket *sock, struct socket *newsock)
  968. {
  969. return security_ops->socket_accept(sock, newsock);
  970. }
  971. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  972. {
  973. return security_ops->socket_sendmsg(sock, msg, size);
  974. }
  975. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  976. int size, int flags)
  977. {
  978. return security_ops->socket_recvmsg(sock, msg, size, flags);
  979. }
  980. int security_socket_getsockname(struct socket *sock)
  981. {
  982. return security_ops->socket_getsockname(sock);
  983. }
  984. int security_socket_getpeername(struct socket *sock)
  985. {
  986. return security_ops->socket_getpeername(sock);
  987. }
  988. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  989. {
  990. return security_ops->socket_getsockopt(sock, level, optname);
  991. }
  992. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  993. {
  994. return security_ops->socket_setsockopt(sock, level, optname);
  995. }
  996. int security_socket_shutdown(struct socket *sock, int how)
  997. {
  998. return security_ops->socket_shutdown(sock, how);
  999. }
  1000. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1001. {
  1002. return security_ops->socket_sock_rcv_skb(sk, skb);
  1003. }
  1004. EXPORT_SYMBOL(security_sock_rcv_skb);
  1005. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1006. int __user *optlen, unsigned len)
  1007. {
  1008. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1009. }
  1010. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1011. {
  1012. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1013. }
  1014. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1015. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1016. {
  1017. return security_ops->sk_alloc_security(sk, family, priority);
  1018. }
  1019. void security_sk_free(struct sock *sk)
  1020. {
  1021. security_ops->sk_free_security(sk);
  1022. }
  1023. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1024. {
  1025. security_ops->sk_clone_security(sk, newsk);
  1026. }
  1027. EXPORT_SYMBOL(security_sk_clone);
  1028. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1029. {
  1030. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1031. }
  1032. EXPORT_SYMBOL(security_sk_classify_flow);
  1033. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1034. {
  1035. security_ops->req_classify_flow(req, fl);
  1036. }
  1037. EXPORT_SYMBOL(security_req_classify_flow);
  1038. void security_sock_graft(struct sock *sk, struct socket *parent)
  1039. {
  1040. security_ops->sock_graft(sk, parent);
  1041. }
  1042. EXPORT_SYMBOL(security_sock_graft);
  1043. int security_inet_conn_request(struct sock *sk,
  1044. struct sk_buff *skb, struct request_sock *req)
  1045. {
  1046. return security_ops->inet_conn_request(sk, skb, req);
  1047. }
  1048. EXPORT_SYMBOL(security_inet_conn_request);
  1049. void security_inet_csk_clone(struct sock *newsk,
  1050. const struct request_sock *req)
  1051. {
  1052. security_ops->inet_csk_clone(newsk, req);
  1053. }
  1054. void security_inet_conn_established(struct sock *sk,
  1055. struct sk_buff *skb)
  1056. {
  1057. security_ops->inet_conn_established(sk, skb);
  1058. }
  1059. int security_secmark_relabel_packet(u32 secid)
  1060. {
  1061. return security_ops->secmark_relabel_packet(secid);
  1062. }
  1063. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1064. void security_secmark_refcount_inc(void)
  1065. {
  1066. security_ops->secmark_refcount_inc();
  1067. }
  1068. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1069. void security_secmark_refcount_dec(void)
  1070. {
  1071. security_ops->secmark_refcount_dec();
  1072. }
  1073. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1074. int security_tun_dev_alloc_security(void **security)
  1075. {
  1076. return security_ops->tun_dev_alloc_security(security);
  1077. }
  1078. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1079. void security_tun_dev_free_security(void *security)
  1080. {
  1081. security_ops->tun_dev_free_security(security);
  1082. }
  1083. EXPORT_SYMBOL(security_tun_dev_free_security);
  1084. int security_tun_dev_create(void)
  1085. {
  1086. return security_ops->tun_dev_create();
  1087. }
  1088. EXPORT_SYMBOL(security_tun_dev_create);
  1089. int security_tun_dev_attach_queue(void *security)
  1090. {
  1091. return security_ops->tun_dev_attach_queue(security);
  1092. }
  1093. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1094. int security_tun_dev_attach(struct sock *sk, void *security)
  1095. {
  1096. return security_ops->tun_dev_attach(sk, security);
  1097. }
  1098. EXPORT_SYMBOL(security_tun_dev_attach);
  1099. int security_tun_dev_open(void *security)
  1100. {
  1101. return security_ops->tun_dev_open(security);
  1102. }
  1103. EXPORT_SYMBOL(security_tun_dev_open);
  1104. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1105. {
  1106. security_ops->skb_owned_by(skb, sk);
  1107. }
  1108. #endif /* CONFIG_SECURITY_NETWORK */
  1109. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1110. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1111. {
  1112. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1113. }
  1114. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1115. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1116. struct xfrm_sec_ctx **new_ctxp)
  1117. {
  1118. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1119. }
  1120. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1121. {
  1122. security_ops->xfrm_policy_free_security(ctx);
  1123. }
  1124. EXPORT_SYMBOL(security_xfrm_policy_free);
  1125. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1126. {
  1127. return security_ops->xfrm_policy_delete_security(ctx);
  1128. }
  1129. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1130. {
  1131. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1132. }
  1133. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1134. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1135. struct xfrm_sec_ctx *polsec, u32 secid)
  1136. {
  1137. if (!polsec)
  1138. return 0;
  1139. /*
  1140. * We want the context to be taken from secid which is usually
  1141. * from the sock.
  1142. */
  1143. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1144. }
  1145. int security_xfrm_state_delete(struct xfrm_state *x)
  1146. {
  1147. return security_ops->xfrm_state_delete_security(x);
  1148. }
  1149. EXPORT_SYMBOL(security_xfrm_state_delete);
  1150. void security_xfrm_state_free(struct xfrm_state *x)
  1151. {
  1152. security_ops->xfrm_state_free_security(x);
  1153. }
  1154. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1155. {
  1156. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1157. }
  1158. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1159. struct xfrm_policy *xp,
  1160. const struct flowi *fl)
  1161. {
  1162. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1163. }
  1164. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1165. {
  1166. return security_ops->xfrm_decode_session(skb, secid, 1);
  1167. }
  1168. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1169. {
  1170. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1171. BUG_ON(rc);
  1172. }
  1173. EXPORT_SYMBOL(security_skb_classify_flow);
  1174. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1175. #ifdef CONFIG_KEYS
  1176. int security_key_alloc(struct key *key, const struct cred *cred,
  1177. unsigned long flags)
  1178. {
  1179. return security_ops->key_alloc(key, cred, flags);
  1180. }
  1181. void security_key_free(struct key *key)
  1182. {
  1183. security_ops->key_free(key);
  1184. }
  1185. int security_key_permission(key_ref_t key_ref,
  1186. const struct cred *cred, key_perm_t perm)
  1187. {
  1188. return security_ops->key_permission(key_ref, cred, perm);
  1189. }
  1190. int security_key_getsecurity(struct key *key, char **_buffer)
  1191. {
  1192. return security_ops->key_getsecurity(key, _buffer);
  1193. }
  1194. #endif /* CONFIG_KEYS */
  1195. #ifdef CONFIG_AUDIT
  1196. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1197. {
  1198. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1199. }
  1200. int security_audit_rule_known(struct audit_krule *krule)
  1201. {
  1202. return security_ops->audit_rule_known(krule);
  1203. }
  1204. void security_audit_rule_free(void *lsmrule)
  1205. {
  1206. security_ops->audit_rule_free(lsmrule);
  1207. }
  1208. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1209. struct audit_context *actx)
  1210. {
  1211. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1212. }
  1213. #endif /* CONFIG_AUDIT */