af_netlink.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. * Patrick McHardy <kaber@trash.net>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. *
  13. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  14. * added netlink_proto_exit
  15. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  16. * use nlk_sk, as sk->protinfo is on a diet 8)
  17. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  18. * - inc module use count of module that owns
  19. * the kernel socket in case userspace opens
  20. * socket of same protocol
  21. * - remove all module support, since netlink is
  22. * mandatory if CONFIG_NET=y these days
  23. */
  24. #include <linux/module.h>
  25. #include <linux/capability.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/signal.h>
  29. #include <linux/sched.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/stat.h>
  33. #include <linux/socket.h>
  34. #include <linux/un.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/termios.h>
  37. #include <linux/sockios.h>
  38. #include <linux/net.h>
  39. #include <linux/fs.h>
  40. #include <linux/slab.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/rtnetlink.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/notifier.h>
  48. #include <linux/security.h>
  49. #include <linux/jhash.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/random.h>
  52. #include <linux/bitops.h>
  53. #include <linux/mm.h>
  54. #include <linux/types.h>
  55. #include <linux/audit.h>
  56. #include <linux/mutex.h>
  57. #include <linux/vmalloc.h>
  58. #include <linux/if_arp.h>
  59. #include <asm/cacheflush.h>
  60. #include <net/net_namespace.h>
  61. #include <net/sock.h>
  62. #include <net/scm.h>
  63. #include <net/netlink.h>
  64. #include "af_netlink.h"
  65. struct listeners {
  66. struct rcu_head rcu;
  67. unsigned long masks[0];
  68. };
  69. /* state bits */
  70. #define NETLINK_CONGESTED 0x0
  71. /* flags */
  72. #define NETLINK_KERNEL_SOCKET 0x1
  73. #define NETLINK_RECV_PKTINFO 0x2
  74. #define NETLINK_BROADCAST_SEND_ERROR 0x4
  75. #define NETLINK_RECV_NO_ENOBUFS 0x8
  76. static inline int netlink_is_kernel(struct sock *sk)
  77. {
  78. return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
  79. }
  80. struct netlink_table *nl_table;
  81. EXPORT_SYMBOL_GPL(nl_table);
  82. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  83. static int netlink_dump(struct sock *sk);
  84. static void netlink_skb_destructor(struct sk_buff *skb);
  85. DEFINE_RWLOCK(nl_table_lock);
  86. EXPORT_SYMBOL_GPL(nl_table_lock);
  87. static atomic_t nl_table_users = ATOMIC_INIT(0);
  88. #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
  89. static ATOMIC_NOTIFIER_HEAD(netlink_chain);
  90. static DEFINE_SPINLOCK(netlink_tap_lock);
  91. static struct list_head netlink_tap_all __read_mostly;
  92. static inline u32 netlink_group_mask(u32 group)
  93. {
  94. return group ? 1 << (group - 1) : 0;
  95. }
  96. static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid)
  97. {
  98. return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask];
  99. }
  100. int netlink_add_tap(struct netlink_tap *nt)
  101. {
  102. if (unlikely(nt->dev->type != ARPHRD_NETLINK))
  103. return -EINVAL;
  104. spin_lock(&netlink_tap_lock);
  105. list_add_rcu(&nt->list, &netlink_tap_all);
  106. spin_unlock(&netlink_tap_lock);
  107. if (nt->module)
  108. __module_get(nt->module);
  109. return 0;
  110. }
  111. EXPORT_SYMBOL_GPL(netlink_add_tap);
  112. int __netlink_remove_tap(struct netlink_tap *nt)
  113. {
  114. bool found = false;
  115. struct netlink_tap *tmp;
  116. spin_lock(&netlink_tap_lock);
  117. list_for_each_entry(tmp, &netlink_tap_all, list) {
  118. if (nt == tmp) {
  119. list_del_rcu(&nt->list);
  120. found = true;
  121. goto out;
  122. }
  123. }
  124. pr_warn("__netlink_remove_tap: %p not found\n", nt);
  125. out:
  126. spin_unlock(&netlink_tap_lock);
  127. if (found && nt->module)
  128. module_put(nt->module);
  129. return found ? 0 : -ENODEV;
  130. }
  131. EXPORT_SYMBOL_GPL(__netlink_remove_tap);
  132. int netlink_remove_tap(struct netlink_tap *nt)
  133. {
  134. int ret;
  135. ret = __netlink_remove_tap(nt);
  136. synchronize_net();
  137. return ret;
  138. }
  139. EXPORT_SYMBOL_GPL(netlink_remove_tap);
  140. static bool netlink_filter_tap(const struct sk_buff *skb)
  141. {
  142. struct sock *sk = skb->sk;
  143. bool pass = false;
  144. /* We take the more conservative approach and
  145. * whitelist socket protocols that may pass.
  146. */
  147. switch (sk->sk_protocol) {
  148. case NETLINK_ROUTE:
  149. case NETLINK_USERSOCK:
  150. case NETLINK_SOCK_DIAG:
  151. case NETLINK_NFLOG:
  152. case NETLINK_XFRM:
  153. case NETLINK_FIB_LOOKUP:
  154. case NETLINK_NETFILTER:
  155. case NETLINK_GENERIC:
  156. pass = true;
  157. break;
  158. }
  159. return pass;
  160. }
  161. static int __netlink_deliver_tap_skb(struct sk_buff *skb,
  162. struct net_device *dev)
  163. {
  164. struct sk_buff *nskb;
  165. struct sock *sk = skb->sk;
  166. int ret = -ENOMEM;
  167. dev_hold(dev);
  168. nskb = skb_clone(skb, GFP_ATOMIC);
  169. if (nskb) {
  170. nskb->dev = dev;
  171. nskb->protocol = htons((u16) sk->sk_protocol);
  172. ret = dev_queue_xmit(nskb);
  173. if (unlikely(ret > 0))
  174. ret = net_xmit_errno(ret);
  175. }
  176. dev_put(dev);
  177. return ret;
  178. }
  179. static void __netlink_deliver_tap(struct sk_buff *skb)
  180. {
  181. int ret;
  182. struct netlink_tap *tmp;
  183. if (!netlink_filter_tap(skb))
  184. return;
  185. list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
  186. ret = __netlink_deliver_tap_skb(skb, tmp->dev);
  187. if (unlikely(ret))
  188. break;
  189. }
  190. }
  191. static void netlink_deliver_tap(struct sk_buff *skb)
  192. {
  193. rcu_read_lock();
  194. if (unlikely(!list_empty(&netlink_tap_all)))
  195. __netlink_deliver_tap(skb);
  196. rcu_read_unlock();
  197. }
  198. static void netlink_overrun(struct sock *sk)
  199. {
  200. struct netlink_sock *nlk = nlk_sk(sk);
  201. if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
  202. if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
  203. sk->sk_err = ENOBUFS;
  204. sk->sk_error_report(sk);
  205. }
  206. }
  207. atomic_inc(&sk->sk_drops);
  208. }
  209. static void netlink_rcv_wake(struct sock *sk)
  210. {
  211. struct netlink_sock *nlk = nlk_sk(sk);
  212. if (skb_queue_empty(&sk->sk_receive_queue))
  213. clear_bit(NETLINK_CONGESTED, &nlk->state);
  214. if (!test_bit(NETLINK_CONGESTED, &nlk->state))
  215. wake_up_interruptible(&nlk->wait);
  216. }
  217. #ifdef CONFIG_NETLINK_MMAP
  218. static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
  219. {
  220. return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
  221. }
  222. static bool netlink_rx_is_mmaped(struct sock *sk)
  223. {
  224. return nlk_sk(sk)->rx_ring.pg_vec != NULL;
  225. }
  226. static bool netlink_tx_is_mmaped(struct sock *sk)
  227. {
  228. return nlk_sk(sk)->tx_ring.pg_vec != NULL;
  229. }
  230. static __pure struct page *pgvec_to_page(const void *addr)
  231. {
  232. if (is_vmalloc_addr(addr))
  233. return vmalloc_to_page(addr);
  234. else
  235. return virt_to_page(addr);
  236. }
  237. static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
  238. {
  239. unsigned int i;
  240. for (i = 0; i < len; i++) {
  241. if (pg_vec[i] != NULL) {
  242. if (is_vmalloc_addr(pg_vec[i]))
  243. vfree(pg_vec[i]);
  244. else
  245. free_pages((unsigned long)pg_vec[i], order);
  246. }
  247. }
  248. kfree(pg_vec);
  249. }
  250. static void *alloc_one_pg_vec_page(unsigned long order)
  251. {
  252. void *buffer;
  253. gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
  254. __GFP_NOWARN | __GFP_NORETRY;
  255. buffer = (void *)__get_free_pages(gfp_flags, order);
  256. if (buffer != NULL)
  257. return buffer;
  258. buffer = vzalloc((1 << order) * PAGE_SIZE);
  259. if (buffer != NULL)
  260. return buffer;
  261. gfp_flags &= ~__GFP_NORETRY;
  262. return (void *)__get_free_pages(gfp_flags, order);
  263. }
  264. static void **alloc_pg_vec(struct netlink_sock *nlk,
  265. struct nl_mmap_req *req, unsigned int order)
  266. {
  267. unsigned int block_nr = req->nm_block_nr;
  268. unsigned int i;
  269. void **pg_vec;
  270. pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
  271. if (pg_vec == NULL)
  272. return NULL;
  273. for (i = 0; i < block_nr; i++) {
  274. pg_vec[i] = alloc_one_pg_vec_page(order);
  275. if (pg_vec[i] == NULL)
  276. goto err1;
  277. }
  278. return pg_vec;
  279. err1:
  280. free_pg_vec(pg_vec, order, block_nr);
  281. return NULL;
  282. }
  283. static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
  284. bool closing, bool tx_ring)
  285. {
  286. struct netlink_sock *nlk = nlk_sk(sk);
  287. struct netlink_ring *ring;
  288. struct sk_buff_head *queue;
  289. void **pg_vec = NULL;
  290. unsigned int order = 0;
  291. int err;
  292. ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
  293. queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
  294. if (!closing) {
  295. if (atomic_read(&nlk->mapped))
  296. return -EBUSY;
  297. if (atomic_read(&ring->pending))
  298. return -EBUSY;
  299. }
  300. if (req->nm_block_nr) {
  301. if (ring->pg_vec != NULL)
  302. return -EBUSY;
  303. if ((int)req->nm_block_size <= 0)
  304. return -EINVAL;
  305. if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE))
  306. return -EINVAL;
  307. if (req->nm_frame_size < NL_MMAP_HDRLEN)
  308. return -EINVAL;
  309. if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
  310. return -EINVAL;
  311. ring->frames_per_block = req->nm_block_size /
  312. req->nm_frame_size;
  313. if (ring->frames_per_block == 0)
  314. return -EINVAL;
  315. if (ring->frames_per_block * req->nm_block_nr !=
  316. req->nm_frame_nr)
  317. return -EINVAL;
  318. order = get_order(req->nm_block_size);
  319. pg_vec = alloc_pg_vec(nlk, req, order);
  320. if (pg_vec == NULL)
  321. return -ENOMEM;
  322. } else {
  323. if (req->nm_frame_nr)
  324. return -EINVAL;
  325. }
  326. err = -EBUSY;
  327. mutex_lock(&nlk->pg_vec_lock);
  328. if (closing || atomic_read(&nlk->mapped) == 0) {
  329. err = 0;
  330. spin_lock_bh(&queue->lock);
  331. ring->frame_max = req->nm_frame_nr - 1;
  332. ring->head = 0;
  333. ring->frame_size = req->nm_frame_size;
  334. ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
  335. swap(ring->pg_vec_len, req->nm_block_nr);
  336. swap(ring->pg_vec_order, order);
  337. swap(ring->pg_vec, pg_vec);
  338. __skb_queue_purge(queue);
  339. spin_unlock_bh(&queue->lock);
  340. WARN_ON(atomic_read(&nlk->mapped));
  341. }
  342. mutex_unlock(&nlk->pg_vec_lock);
  343. if (pg_vec)
  344. free_pg_vec(pg_vec, order, req->nm_block_nr);
  345. return err;
  346. }
  347. static void netlink_mm_open(struct vm_area_struct *vma)
  348. {
  349. struct file *file = vma->vm_file;
  350. struct socket *sock = file->private_data;
  351. struct sock *sk = sock->sk;
  352. if (sk)
  353. atomic_inc(&nlk_sk(sk)->mapped);
  354. }
  355. static void netlink_mm_close(struct vm_area_struct *vma)
  356. {
  357. struct file *file = vma->vm_file;
  358. struct socket *sock = file->private_data;
  359. struct sock *sk = sock->sk;
  360. if (sk)
  361. atomic_dec(&nlk_sk(sk)->mapped);
  362. }
  363. static const struct vm_operations_struct netlink_mmap_ops = {
  364. .open = netlink_mm_open,
  365. .close = netlink_mm_close,
  366. };
  367. static int netlink_mmap(struct file *file, struct socket *sock,
  368. struct vm_area_struct *vma)
  369. {
  370. struct sock *sk = sock->sk;
  371. struct netlink_sock *nlk = nlk_sk(sk);
  372. struct netlink_ring *ring;
  373. unsigned long start, size, expected;
  374. unsigned int i;
  375. int err = -EINVAL;
  376. if (vma->vm_pgoff)
  377. return -EINVAL;
  378. mutex_lock(&nlk->pg_vec_lock);
  379. expected = 0;
  380. for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
  381. if (ring->pg_vec == NULL)
  382. continue;
  383. expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
  384. }
  385. if (expected == 0)
  386. goto out;
  387. size = vma->vm_end - vma->vm_start;
  388. if (size != expected)
  389. goto out;
  390. start = vma->vm_start;
  391. for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
  392. if (ring->pg_vec == NULL)
  393. continue;
  394. for (i = 0; i < ring->pg_vec_len; i++) {
  395. struct page *page;
  396. void *kaddr = ring->pg_vec[i];
  397. unsigned int pg_num;
  398. for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
  399. page = pgvec_to_page(kaddr);
  400. err = vm_insert_page(vma, start, page);
  401. if (err < 0)
  402. goto out;
  403. start += PAGE_SIZE;
  404. kaddr += PAGE_SIZE;
  405. }
  406. }
  407. }
  408. atomic_inc(&nlk->mapped);
  409. vma->vm_ops = &netlink_mmap_ops;
  410. err = 0;
  411. out:
  412. mutex_unlock(&nlk->pg_vec_lock);
  413. return err;
  414. }
  415. static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
  416. {
  417. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
  418. struct page *p_start, *p_end;
  419. /* First page is flushed through netlink_{get,set}_status */
  420. p_start = pgvec_to_page(hdr + PAGE_SIZE);
  421. p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
  422. while (p_start <= p_end) {
  423. flush_dcache_page(p_start);
  424. p_start++;
  425. }
  426. #endif
  427. }
  428. static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
  429. {
  430. smp_rmb();
  431. flush_dcache_page(pgvec_to_page(hdr));
  432. return hdr->nm_status;
  433. }
  434. static void netlink_set_status(struct nl_mmap_hdr *hdr,
  435. enum nl_mmap_status status)
  436. {
  437. hdr->nm_status = status;
  438. flush_dcache_page(pgvec_to_page(hdr));
  439. smp_wmb();
  440. }
  441. static struct nl_mmap_hdr *
  442. __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
  443. {
  444. unsigned int pg_vec_pos, frame_off;
  445. pg_vec_pos = pos / ring->frames_per_block;
  446. frame_off = pos % ring->frames_per_block;
  447. return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
  448. }
  449. static struct nl_mmap_hdr *
  450. netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
  451. enum nl_mmap_status status)
  452. {
  453. struct nl_mmap_hdr *hdr;
  454. hdr = __netlink_lookup_frame(ring, pos);
  455. if (netlink_get_status(hdr) != status)
  456. return NULL;
  457. return hdr;
  458. }
  459. static struct nl_mmap_hdr *
  460. netlink_current_frame(const struct netlink_ring *ring,
  461. enum nl_mmap_status status)
  462. {
  463. return netlink_lookup_frame(ring, ring->head, status);
  464. }
  465. static struct nl_mmap_hdr *
  466. netlink_previous_frame(const struct netlink_ring *ring,
  467. enum nl_mmap_status status)
  468. {
  469. unsigned int prev;
  470. prev = ring->head ? ring->head - 1 : ring->frame_max;
  471. return netlink_lookup_frame(ring, prev, status);
  472. }
  473. static void netlink_increment_head(struct netlink_ring *ring)
  474. {
  475. ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
  476. }
  477. static void netlink_forward_ring(struct netlink_ring *ring)
  478. {
  479. unsigned int head = ring->head, pos = head;
  480. const struct nl_mmap_hdr *hdr;
  481. do {
  482. hdr = __netlink_lookup_frame(ring, pos);
  483. if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
  484. break;
  485. if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
  486. break;
  487. netlink_increment_head(ring);
  488. } while (ring->head != head);
  489. }
  490. static bool netlink_dump_space(struct netlink_sock *nlk)
  491. {
  492. struct netlink_ring *ring = &nlk->rx_ring;
  493. struct nl_mmap_hdr *hdr;
  494. unsigned int n;
  495. hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
  496. if (hdr == NULL)
  497. return false;
  498. n = ring->head + ring->frame_max / 2;
  499. if (n > ring->frame_max)
  500. n -= ring->frame_max;
  501. hdr = __netlink_lookup_frame(ring, n);
  502. return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
  503. }
  504. static unsigned int netlink_poll(struct file *file, struct socket *sock,
  505. poll_table *wait)
  506. {
  507. struct sock *sk = sock->sk;
  508. struct netlink_sock *nlk = nlk_sk(sk);
  509. unsigned int mask;
  510. int err;
  511. if (nlk->rx_ring.pg_vec != NULL) {
  512. /* Memory mapped sockets don't call recvmsg(), so flow control
  513. * for dumps is performed here. A dump is allowed to continue
  514. * if at least half the ring is unused.
  515. */
  516. while (nlk->cb_running && netlink_dump_space(nlk)) {
  517. err = netlink_dump(sk);
  518. if (err < 0) {
  519. sk->sk_err = err;
  520. sk->sk_error_report(sk);
  521. break;
  522. }
  523. }
  524. netlink_rcv_wake(sk);
  525. }
  526. mask = datagram_poll(file, sock, wait);
  527. spin_lock_bh(&sk->sk_receive_queue.lock);
  528. if (nlk->rx_ring.pg_vec) {
  529. netlink_forward_ring(&nlk->rx_ring);
  530. if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
  531. mask |= POLLIN | POLLRDNORM;
  532. }
  533. spin_unlock_bh(&sk->sk_receive_queue.lock);
  534. spin_lock_bh(&sk->sk_write_queue.lock);
  535. if (nlk->tx_ring.pg_vec) {
  536. if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
  537. mask |= POLLOUT | POLLWRNORM;
  538. }
  539. spin_unlock_bh(&sk->sk_write_queue.lock);
  540. return mask;
  541. }
  542. static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
  543. {
  544. return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
  545. }
  546. static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
  547. struct netlink_ring *ring,
  548. struct nl_mmap_hdr *hdr)
  549. {
  550. unsigned int size;
  551. void *data;
  552. size = ring->frame_size - NL_MMAP_HDRLEN;
  553. data = (void *)hdr + NL_MMAP_HDRLEN;
  554. skb->head = data;
  555. skb->data = data;
  556. skb_reset_tail_pointer(skb);
  557. skb->end = skb->tail + size;
  558. skb->len = 0;
  559. skb->destructor = netlink_skb_destructor;
  560. NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
  561. NETLINK_CB(skb).sk = sk;
  562. }
  563. static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
  564. u32 dst_portid, u32 dst_group,
  565. struct sock_iocb *siocb)
  566. {
  567. struct netlink_sock *nlk = nlk_sk(sk);
  568. struct netlink_ring *ring;
  569. struct nl_mmap_hdr *hdr;
  570. struct sk_buff *skb;
  571. unsigned int maxlen;
  572. bool excl = true;
  573. int err = 0, len = 0;
  574. /* Netlink messages are validated by the receiver before processing.
  575. * In order to avoid userspace changing the contents of the message
  576. * after validation, the socket and the ring may only be used by a
  577. * single process, otherwise we fall back to copying.
  578. */
  579. if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 ||
  580. atomic_read(&nlk->mapped) > 1)
  581. excl = false;
  582. mutex_lock(&nlk->pg_vec_lock);
  583. ring = &nlk->tx_ring;
  584. maxlen = ring->frame_size - NL_MMAP_HDRLEN;
  585. do {
  586. hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
  587. if (hdr == NULL) {
  588. if (!(msg->msg_flags & MSG_DONTWAIT) &&
  589. atomic_read(&nlk->tx_ring.pending))
  590. schedule();
  591. continue;
  592. }
  593. if (hdr->nm_len > maxlen) {
  594. err = -EINVAL;
  595. goto out;
  596. }
  597. netlink_frame_flush_dcache(hdr);
  598. if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
  599. skb = alloc_skb_head(GFP_KERNEL);
  600. if (skb == NULL) {
  601. err = -ENOBUFS;
  602. goto out;
  603. }
  604. sock_hold(sk);
  605. netlink_ring_setup_skb(skb, sk, ring, hdr);
  606. NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
  607. __skb_put(skb, hdr->nm_len);
  608. netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
  609. atomic_inc(&ring->pending);
  610. } else {
  611. skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
  612. if (skb == NULL) {
  613. err = -ENOBUFS;
  614. goto out;
  615. }
  616. __skb_put(skb, hdr->nm_len);
  617. memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
  618. netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
  619. }
  620. netlink_increment_head(ring);
  621. NETLINK_CB(skb).portid = nlk->portid;
  622. NETLINK_CB(skb).dst_group = dst_group;
  623. NETLINK_CB(skb).creds = siocb->scm->creds;
  624. err = security_netlink_send(sk, skb);
  625. if (err) {
  626. kfree_skb(skb);
  627. goto out;
  628. }
  629. if (unlikely(dst_group)) {
  630. atomic_inc(&skb->users);
  631. netlink_broadcast(sk, skb, dst_portid, dst_group,
  632. GFP_KERNEL);
  633. }
  634. err = netlink_unicast(sk, skb, dst_portid,
  635. msg->msg_flags & MSG_DONTWAIT);
  636. if (err < 0)
  637. goto out;
  638. len += err;
  639. } while (hdr != NULL ||
  640. (!(msg->msg_flags & MSG_DONTWAIT) &&
  641. atomic_read(&nlk->tx_ring.pending)));
  642. if (len > 0)
  643. err = len;
  644. out:
  645. mutex_unlock(&nlk->pg_vec_lock);
  646. return err;
  647. }
  648. static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
  649. {
  650. struct nl_mmap_hdr *hdr;
  651. hdr = netlink_mmap_hdr(skb);
  652. hdr->nm_len = skb->len;
  653. hdr->nm_group = NETLINK_CB(skb).dst_group;
  654. hdr->nm_pid = NETLINK_CB(skb).creds.pid;
  655. hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
  656. hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
  657. netlink_frame_flush_dcache(hdr);
  658. netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
  659. NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
  660. kfree_skb(skb);
  661. }
  662. static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
  663. {
  664. struct netlink_sock *nlk = nlk_sk(sk);
  665. struct netlink_ring *ring = &nlk->rx_ring;
  666. struct nl_mmap_hdr *hdr;
  667. spin_lock_bh(&sk->sk_receive_queue.lock);
  668. hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
  669. if (hdr == NULL) {
  670. spin_unlock_bh(&sk->sk_receive_queue.lock);
  671. kfree_skb(skb);
  672. netlink_overrun(sk);
  673. return;
  674. }
  675. netlink_increment_head(ring);
  676. __skb_queue_tail(&sk->sk_receive_queue, skb);
  677. spin_unlock_bh(&sk->sk_receive_queue.lock);
  678. hdr->nm_len = skb->len;
  679. hdr->nm_group = NETLINK_CB(skb).dst_group;
  680. hdr->nm_pid = NETLINK_CB(skb).creds.pid;
  681. hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
  682. hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
  683. netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
  684. }
  685. #else /* CONFIG_NETLINK_MMAP */
  686. #define netlink_skb_is_mmaped(skb) false
  687. #define netlink_rx_is_mmaped(sk) false
  688. #define netlink_tx_is_mmaped(sk) false
  689. #define netlink_mmap sock_no_mmap
  690. #define netlink_poll datagram_poll
  691. #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
  692. #endif /* CONFIG_NETLINK_MMAP */
  693. static void netlink_skb_destructor(struct sk_buff *skb)
  694. {
  695. #ifdef CONFIG_NETLINK_MMAP
  696. struct nl_mmap_hdr *hdr;
  697. struct netlink_ring *ring;
  698. struct sock *sk;
  699. /* If a packet from the kernel to userspace was freed because of an
  700. * error without being delivered to userspace, the kernel must reset
  701. * the status. In the direction userspace to kernel, the status is
  702. * always reset here after the packet was processed and freed.
  703. */
  704. if (netlink_skb_is_mmaped(skb)) {
  705. hdr = netlink_mmap_hdr(skb);
  706. sk = NETLINK_CB(skb).sk;
  707. if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
  708. netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
  709. ring = &nlk_sk(sk)->tx_ring;
  710. } else {
  711. if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
  712. hdr->nm_len = 0;
  713. netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
  714. }
  715. ring = &nlk_sk(sk)->rx_ring;
  716. }
  717. WARN_ON(atomic_read(&ring->pending) == 0);
  718. atomic_dec(&ring->pending);
  719. sock_put(sk);
  720. skb->head = NULL;
  721. }
  722. #endif
  723. if (is_vmalloc_addr(skb->head)) {
  724. if (!skb->cloned ||
  725. !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
  726. vfree(skb->head);
  727. skb->head = NULL;
  728. }
  729. if (skb->sk != NULL)
  730. sock_rfree(skb);
  731. }
  732. static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
  733. {
  734. WARN_ON(skb->sk != NULL);
  735. skb->sk = sk;
  736. skb->destructor = netlink_skb_destructor;
  737. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  738. sk_mem_charge(sk, skb->truesize);
  739. }
  740. static void netlink_sock_destruct(struct sock *sk)
  741. {
  742. struct netlink_sock *nlk = nlk_sk(sk);
  743. if (nlk->cb_running) {
  744. if (nlk->cb.done)
  745. nlk->cb.done(&nlk->cb);
  746. module_put(nlk->cb.module);
  747. kfree_skb(nlk->cb.skb);
  748. }
  749. skb_queue_purge(&sk->sk_receive_queue);
  750. #ifdef CONFIG_NETLINK_MMAP
  751. if (1) {
  752. struct nl_mmap_req req;
  753. memset(&req, 0, sizeof(req));
  754. if (nlk->rx_ring.pg_vec)
  755. netlink_set_ring(sk, &req, true, false);
  756. memset(&req, 0, sizeof(req));
  757. if (nlk->tx_ring.pg_vec)
  758. netlink_set_ring(sk, &req, true, true);
  759. }
  760. #endif /* CONFIG_NETLINK_MMAP */
  761. if (!sock_flag(sk, SOCK_DEAD)) {
  762. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  763. return;
  764. }
  765. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  766. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  767. WARN_ON(nlk_sk(sk)->groups);
  768. }
  769. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  770. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  771. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  772. * this, _but_ remember, it adds useless work on UP machines.
  773. */
  774. void netlink_table_grab(void)
  775. __acquires(nl_table_lock)
  776. {
  777. might_sleep();
  778. write_lock_irq(&nl_table_lock);
  779. if (atomic_read(&nl_table_users)) {
  780. DECLARE_WAITQUEUE(wait, current);
  781. add_wait_queue_exclusive(&nl_table_wait, &wait);
  782. for (;;) {
  783. set_current_state(TASK_UNINTERRUPTIBLE);
  784. if (atomic_read(&nl_table_users) == 0)
  785. break;
  786. write_unlock_irq(&nl_table_lock);
  787. schedule();
  788. write_lock_irq(&nl_table_lock);
  789. }
  790. __set_current_state(TASK_RUNNING);
  791. remove_wait_queue(&nl_table_wait, &wait);
  792. }
  793. }
  794. void netlink_table_ungrab(void)
  795. __releases(nl_table_lock)
  796. {
  797. write_unlock_irq(&nl_table_lock);
  798. wake_up(&nl_table_wait);
  799. }
  800. static inline void
  801. netlink_lock_table(void)
  802. {
  803. /* read_lock() synchronizes us to netlink_table_grab */
  804. read_lock(&nl_table_lock);
  805. atomic_inc(&nl_table_users);
  806. read_unlock(&nl_table_lock);
  807. }
  808. static inline void
  809. netlink_unlock_table(void)
  810. {
  811. if (atomic_dec_and_test(&nl_table_users))
  812. wake_up(&nl_table_wait);
  813. }
  814. static bool netlink_compare(struct net *net, struct sock *sk)
  815. {
  816. return net_eq(sock_net(sk), net);
  817. }
  818. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  819. {
  820. struct netlink_table *table = &nl_table[protocol];
  821. struct nl_portid_hash *hash = &table->hash;
  822. struct hlist_head *head;
  823. struct sock *sk;
  824. read_lock(&nl_table_lock);
  825. head = nl_portid_hashfn(hash, portid);
  826. sk_for_each(sk, head) {
  827. if (table->compare(net, sk) &&
  828. (nlk_sk(sk)->portid == portid)) {
  829. sock_hold(sk);
  830. goto found;
  831. }
  832. }
  833. sk = NULL;
  834. found:
  835. read_unlock(&nl_table_lock);
  836. return sk;
  837. }
  838. static struct hlist_head *nl_portid_hash_zalloc(size_t size)
  839. {
  840. if (size <= PAGE_SIZE)
  841. return kzalloc(size, GFP_ATOMIC);
  842. else
  843. return (struct hlist_head *)
  844. __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
  845. get_order(size));
  846. }
  847. static void nl_portid_hash_free(struct hlist_head *table, size_t size)
  848. {
  849. if (size <= PAGE_SIZE)
  850. kfree(table);
  851. else
  852. free_pages((unsigned long)table, get_order(size));
  853. }
  854. static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow)
  855. {
  856. unsigned int omask, mask, shift;
  857. size_t osize, size;
  858. struct hlist_head *otable, *table;
  859. int i;
  860. omask = mask = hash->mask;
  861. osize = size = (mask + 1) * sizeof(*table);
  862. shift = hash->shift;
  863. if (grow) {
  864. if (++shift > hash->max_shift)
  865. return 0;
  866. mask = mask * 2 + 1;
  867. size *= 2;
  868. }
  869. table = nl_portid_hash_zalloc(size);
  870. if (!table)
  871. return 0;
  872. otable = hash->table;
  873. hash->table = table;
  874. hash->mask = mask;
  875. hash->shift = shift;
  876. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  877. for (i = 0; i <= omask; i++) {
  878. struct sock *sk;
  879. struct hlist_node *tmp;
  880. sk_for_each_safe(sk, tmp, &otable[i])
  881. __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid));
  882. }
  883. nl_portid_hash_free(otable, osize);
  884. hash->rehash_time = jiffies + 10 * 60 * HZ;
  885. return 1;
  886. }
  887. static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len)
  888. {
  889. int avg = hash->entries >> hash->shift;
  890. if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1))
  891. return 1;
  892. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  893. nl_portid_hash_rehash(hash, 0);
  894. return 1;
  895. }
  896. return 0;
  897. }
  898. static const struct proto_ops netlink_ops;
  899. static void
  900. netlink_update_listeners(struct sock *sk)
  901. {
  902. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  903. unsigned long mask;
  904. unsigned int i;
  905. struct listeners *listeners;
  906. listeners = nl_deref_protected(tbl->listeners);
  907. if (!listeners)
  908. return;
  909. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  910. mask = 0;
  911. sk_for_each_bound(sk, &tbl->mc_list) {
  912. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  913. mask |= nlk_sk(sk)->groups[i];
  914. }
  915. listeners->masks[i] = mask;
  916. }
  917. /* this function is only called with the netlink table "grabbed", which
  918. * makes sure updates are visible before bind or setsockopt return. */
  919. }
  920. static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
  921. {
  922. struct netlink_table *table = &nl_table[sk->sk_protocol];
  923. struct nl_portid_hash *hash = &table->hash;
  924. struct hlist_head *head;
  925. int err = -EADDRINUSE;
  926. struct sock *osk;
  927. int len;
  928. netlink_table_grab();
  929. head = nl_portid_hashfn(hash, portid);
  930. len = 0;
  931. sk_for_each(osk, head) {
  932. if (table->compare(net, osk) &&
  933. (nlk_sk(osk)->portid == portid))
  934. break;
  935. len++;
  936. }
  937. if (osk)
  938. goto err;
  939. err = -EBUSY;
  940. if (nlk_sk(sk)->portid)
  941. goto err;
  942. err = -ENOMEM;
  943. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  944. goto err;
  945. if (len && nl_portid_hash_dilute(hash, len))
  946. head = nl_portid_hashfn(hash, portid);
  947. hash->entries++;
  948. nlk_sk(sk)->portid = portid;
  949. sk_add_node(sk, head);
  950. err = 0;
  951. err:
  952. netlink_table_ungrab();
  953. return err;
  954. }
  955. static void netlink_remove(struct sock *sk)
  956. {
  957. netlink_table_grab();
  958. if (sk_del_node_init(sk))
  959. nl_table[sk->sk_protocol].hash.entries--;
  960. if (nlk_sk(sk)->subscriptions)
  961. __sk_del_bind_node(sk);
  962. netlink_table_ungrab();
  963. }
  964. static struct proto netlink_proto = {
  965. .name = "NETLINK",
  966. .owner = THIS_MODULE,
  967. .obj_size = sizeof(struct netlink_sock),
  968. };
  969. static int __netlink_create(struct net *net, struct socket *sock,
  970. struct mutex *cb_mutex, int protocol)
  971. {
  972. struct sock *sk;
  973. struct netlink_sock *nlk;
  974. sock->ops = &netlink_ops;
  975. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
  976. if (!sk)
  977. return -ENOMEM;
  978. sock_init_data(sock, sk);
  979. nlk = nlk_sk(sk);
  980. if (cb_mutex) {
  981. nlk->cb_mutex = cb_mutex;
  982. } else {
  983. nlk->cb_mutex = &nlk->cb_def_mutex;
  984. mutex_init(nlk->cb_mutex);
  985. }
  986. init_waitqueue_head(&nlk->wait);
  987. #ifdef CONFIG_NETLINK_MMAP
  988. mutex_init(&nlk->pg_vec_lock);
  989. #endif
  990. sk->sk_destruct = netlink_sock_destruct;
  991. sk->sk_protocol = protocol;
  992. return 0;
  993. }
  994. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  995. int kern)
  996. {
  997. struct module *module = NULL;
  998. struct mutex *cb_mutex;
  999. struct netlink_sock *nlk;
  1000. void (*bind)(int group);
  1001. int err = 0;
  1002. sock->state = SS_UNCONNECTED;
  1003. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  1004. return -ESOCKTNOSUPPORT;
  1005. if (protocol < 0 || protocol >= MAX_LINKS)
  1006. return -EPROTONOSUPPORT;
  1007. netlink_lock_table();
  1008. #ifdef CONFIG_MODULES
  1009. if (!nl_table[protocol].registered) {
  1010. netlink_unlock_table();
  1011. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  1012. netlink_lock_table();
  1013. }
  1014. #endif
  1015. if (nl_table[protocol].registered &&
  1016. try_module_get(nl_table[protocol].module))
  1017. module = nl_table[protocol].module;
  1018. else
  1019. err = -EPROTONOSUPPORT;
  1020. cb_mutex = nl_table[protocol].cb_mutex;
  1021. bind = nl_table[protocol].bind;
  1022. netlink_unlock_table();
  1023. if (err < 0)
  1024. goto out;
  1025. err = __netlink_create(net, sock, cb_mutex, protocol);
  1026. if (err < 0)
  1027. goto out_module;
  1028. local_bh_disable();
  1029. sock_prot_inuse_add(net, &netlink_proto, 1);
  1030. local_bh_enable();
  1031. nlk = nlk_sk(sock->sk);
  1032. nlk->module = module;
  1033. nlk->netlink_bind = bind;
  1034. out:
  1035. return err;
  1036. out_module:
  1037. module_put(module);
  1038. goto out;
  1039. }
  1040. static int netlink_release(struct socket *sock)
  1041. {
  1042. struct sock *sk = sock->sk;
  1043. struct netlink_sock *nlk;
  1044. if (!sk)
  1045. return 0;
  1046. netlink_remove(sk);
  1047. sock_orphan(sk);
  1048. nlk = nlk_sk(sk);
  1049. /*
  1050. * OK. Socket is unlinked, any packets that arrive now
  1051. * will be purged.
  1052. */
  1053. sock->sk = NULL;
  1054. wake_up_interruptible_all(&nlk->wait);
  1055. skb_queue_purge(&sk->sk_write_queue);
  1056. if (nlk->portid) {
  1057. struct netlink_notify n = {
  1058. .net = sock_net(sk),
  1059. .protocol = sk->sk_protocol,
  1060. .portid = nlk->portid,
  1061. };
  1062. atomic_notifier_call_chain(&netlink_chain,
  1063. NETLINK_URELEASE, &n);
  1064. }
  1065. module_put(nlk->module);
  1066. netlink_table_grab();
  1067. if (netlink_is_kernel(sk)) {
  1068. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  1069. if (--nl_table[sk->sk_protocol].registered == 0) {
  1070. struct listeners *old;
  1071. old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
  1072. RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
  1073. kfree_rcu(old, rcu);
  1074. nl_table[sk->sk_protocol].module = NULL;
  1075. nl_table[sk->sk_protocol].bind = NULL;
  1076. nl_table[sk->sk_protocol].flags = 0;
  1077. nl_table[sk->sk_protocol].registered = 0;
  1078. }
  1079. } else if (nlk->subscriptions) {
  1080. netlink_update_listeners(sk);
  1081. }
  1082. netlink_table_ungrab();
  1083. kfree(nlk->groups);
  1084. nlk->groups = NULL;
  1085. local_bh_disable();
  1086. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  1087. local_bh_enable();
  1088. sock_put(sk);
  1089. return 0;
  1090. }
  1091. static int netlink_autobind(struct socket *sock)
  1092. {
  1093. struct sock *sk = sock->sk;
  1094. struct net *net = sock_net(sk);
  1095. struct netlink_table *table = &nl_table[sk->sk_protocol];
  1096. struct nl_portid_hash *hash = &table->hash;
  1097. struct hlist_head *head;
  1098. struct sock *osk;
  1099. s32 portid = task_tgid_vnr(current);
  1100. int err;
  1101. static s32 rover = -4097;
  1102. retry:
  1103. cond_resched();
  1104. netlink_table_grab();
  1105. head = nl_portid_hashfn(hash, portid);
  1106. sk_for_each(osk, head) {
  1107. if (!table->compare(net, osk))
  1108. continue;
  1109. if (nlk_sk(osk)->portid == portid) {
  1110. /* Bind collision, search negative portid values. */
  1111. portid = rover--;
  1112. if (rover > -4097)
  1113. rover = -4097;
  1114. netlink_table_ungrab();
  1115. goto retry;
  1116. }
  1117. }
  1118. netlink_table_ungrab();
  1119. err = netlink_insert(sk, net, portid);
  1120. if (err == -EADDRINUSE)
  1121. goto retry;
  1122. /* If 2 threads race to autobind, that is fine. */
  1123. if (err == -EBUSY)
  1124. err = 0;
  1125. return err;
  1126. }
  1127. static inline int netlink_capable(const struct socket *sock, unsigned int flag)
  1128. {
  1129. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  1130. ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
  1131. }
  1132. static void
  1133. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  1134. {
  1135. struct netlink_sock *nlk = nlk_sk(sk);
  1136. if (nlk->subscriptions && !subscriptions)
  1137. __sk_del_bind_node(sk);
  1138. else if (!nlk->subscriptions && subscriptions)
  1139. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  1140. nlk->subscriptions = subscriptions;
  1141. }
  1142. static int netlink_realloc_groups(struct sock *sk)
  1143. {
  1144. struct netlink_sock *nlk = nlk_sk(sk);
  1145. unsigned int groups;
  1146. unsigned long *new_groups;
  1147. int err = 0;
  1148. netlink_table_grab();
  1149. groups = nl_table[sk->sk_protocol].groups;
  1150. if (!nl_table[sk->sk_protocol].registered) {
  1151. err = -ENOENT;
  1152. goto out_unlock;
  1153. }
  1154. if (nlk->ngroups >= groups)
  1155. goto out_unlock;
  1156. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  1157. if (new_groups == NULL) {
  1158. err = -ENOMEM;
  1159. goto out_unlock;
  1160. }
  1161. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  1162. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  1163. nlk->groups = new_groups;
  1164. nlk->ngroups = groups;
  1165. out_unlock:
  1166. netlink_table_ungrab();
  1167. return err;
  1168. }
  1169. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  1170. int addr_len)
  1171. {
  1172. struct sock *sk = sock->sk;
  1173. struct net *net = sock_net(sk);
  1174. struct netlink_sock *nlk = nlk_sk(sk);
  1175. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  1176. int err;
  1177. if (addr_len < sizeof(struct sockaddr_nl))
  1178. return -EINVAL;
  1179. if (nladdr->nl_family != AF_NETLINK)
  1180. return -EINVAL;
  1181. /* Only superuser is allowed to listen multicasts */
  1182. if (nladdr->nl_groups) {
  1183. if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
  1184. return -EPERM;
  1185. err = netlink_realloc_groups(sk);
  1186. if (err)
  1187. return err;
  1188. }
  1189. if (nlk->portid) {
  1190. if (nladdr->nl_pid != nlk->portid)
  1191. return -EINVAL;
  1192. } else {
  1193. err = nladdr->nl_pid ?
  1194. netlink_insert(sk, net, nladdr->nl_pid) :
  1195. netlink_autobind(sock);
  1196. if (err)
  1197. return err;
  1198. }
  1199. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  1200. return 0;
  1201. netlink_table_grab();
  1202. netlink_update_subscriptions(sk, nlk->subscriptions +
  1203. hweight32(nladdr->nl_groups) -
  1204. hweight32(nlk->groups[0]));
  1205. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  1206. netlink_update_listeners(sk);
  1207. netlink_table_ungrab();
  1208. if (nlk->netlink_bind && nlk->groups[0]) {
  1209. int i;
  1210. for (i=0; i<nlk->ngroups; i++) {
  1211. if (test_bit(i, nlk->groups))
  1212. nlk->netlink_bind(i);
  1213. }
  1214. }
  1215. return 0;
  1216. }
  1217. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  1218. int alen, int flags)
  1219. {
  1220. int err = 0;
  1221. struct sock *sk = sock->sk;
  1222. struct netlink_sock *nlk = nlk_sk(sk);
  1223. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  1224. if (alen < sizeof(addr->sa_family))
  1225. return -EINVAL;
  1226. if (addr->sa_family == AF_UNSPEC) {
  1227. sk->sk_state = NETLINK_UNCONNECTED;
  1228. nlk->dst_portid = 0;
  1229. nlk->dst_group = 0;
  1230. return 0;
  1231. }
  1232. if (addr->sa_family != AF_NETLINK)
  1233. return -EINVAL;
  1234. /* Only superuser is allowed to send multicasts */
  1235. if (nladdr->nl_groups && !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
  1236. return -EPERM;
  1237. if (!nlk->portid)
  1238. err = netlink_autobind(sock);
  1239. if (err == 0) {
  1240. sk->sk_state = NETLINK_CONNECTED;
  1241. nlk->dst_portid = nladdr->nl_pid;
  1242. nlk->dst_group = ffs(nladdr->nl_groups);
  1243. }
  1244. return err;
  1245. }
  1246. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  1247. int *addr_len, int peer)
  1248. {
  1249. struct sock *sk = sock->sk;
  1250. struct netlink_sock *nlk = nlk_sk(sk);
  1251. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  1252. nladdr->nl_family = AF_NETLINK;
  1253. nladdr->nl_pad = 0;
  1254. *addr_len = sizeof(*nladdr);
  1255. if (peer) {
  1256. nladdr->nl_pid = nlk->dst_portid;
  1257. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  1258. } else {
  1259. nladdr->nl_pid = nlk->portid;
  1260. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  1261. }
  1262. return 0;
  1263. }
  1264. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  1265. {
  1266. struct sock *sock;
  1267. struct netlink_sock *nlk;
  1268. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  1269. if (!sock)
  1270. return ERR_PTR(-ECONNREFUSED);
  1271. /* Don't bother queuing skb if kernel socket has no input function */
  1272. nlk = nlk_sk(sock);
  1273. if (sock->sk_state == NETLINK_CONNECTED &&
  1274. nlk->dst_portid != nlk_sk(ssk)->portid) {
  1275. sock_put(sock);
  1276. return ERR_PTR(-ECONNREFUSED);
  1277. }
  1278. return sock;
  1279. }
  1280. struct sock *netlink_getsockbyfilp(struct file *filp)
  1281. {
  1282. struct inode *inode = file_inode(filp);
  1283. struct sock *sock;
  1284. if (!S_ISSOCK(inode->i_mode))
  1285. return ERR_PTR(-ENOTSOCK);
  1286. sock = SOCKET_I(inode)->sk;
  1287. if (sock->sk_family != AF_NETLINK)
  1288. return ERR_PTR(-EINVAL);
  1289. sock_hold(sock);
  1290. return sock;
  1291. }
  1292. static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
  1293. int broadcast)
  1294. {
  1295. struct sk_buff *skb;
  1296. void *data;
  1297. if (size <= NLMSG_GOODSIZE || broadcast)
  1298. return alloc_skb(size, GFP_KERNEL);
  1299. size = SKB_DATA_ALIGN(size) +
  1300. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  1301. data = vmalloc(size);
  1302. if (data == NULL)
  1303. return NULL;
  1304. skb = build_skb(data, size);
  1305. if (skb == NULL)
  1306. vfree(data);
  1307. else {
  1308. skb->head_frag = 0;
  1309. skb->destructor = netlink_skb_destructor;
  1310. }
  1311. return skb;
  1312. }
  1313. /*
  1314. * Attach a skb to a netlink socket.
  1315. * The caller must hold a reference to the destination socket. On error, the
  1316. * reference is dropped. The skb is not send to the destination, just all
  1317. * all error checks are performed and memory in the queue is reserved.
  1318. * Return values:
  1319. * < 0: error. skb freed, reference to sock dropped.
  1320. * 0: continue
  1321. * 1: repeat lookup - reference dropped while waiting for socket memory.
  1322. */
  1323. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  1324. long *timeo, struct sock *ssk)
  1325. {
  1326. struct netlink_sock *nlk;
  1327. nlk = nlk_sk(sk);
  1328. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1329. test_bit(NETLINK_CONGESTED, &nlk->state)) &&
  1330. !netlink_skb_is_mmaped(skb)) {
  1331. DECLARE_WAITQUEUE(wait, current);
  1332. if (!*timeo) {
  1333. if (!ssk || netlink_is_kernel(ssk))
  1334. netlink_overrun(sk);
  1335. sock_put(sk);
  1336. kfree_skb(skb);
  1337. return -EAGAIN;
  1338. }
  1339. __set_current_state(TASK_INTERRUPTIBLE);
  1340. add_wait_queue(&nlk->wait, &wait);
  1341. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1342. test_bit(NETLINK_CONGESTED, &nlk->state)) &&
  1343. !sock_flag(sk, SOCK_DEAD))
  1344. *timeo = schedule_timeout(*timeo);
  1345. __set_current_state(TASK_RUNNING);
  1346. remove_wait_queue(&nlk->wait, &wait);
  1347. sock_put(sk);
  1348. if (signal_pending(current)) {
  1349. kfree_skb(skb);
  1350. return sock_intr_errno(*timeo);
  1351. }
  1352. return 1;
  1353. }
  1354. netlink_skb_set_owner_r(skb, sk);
  1355. return 0;
  1356. }
  1357. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1358. {
  1359. int len = skb->len;
  1360. netlink_deliver_tap(skb);
  1361. #ifdef CONFIG_NETLINK_MMAP
  1362. if (netlink_skb_is_mmaped(skb))
  1363. netlink_queue_mmaped_skb(sk, skb);
  1364. else if (netlink_rx_is_mmaped(sk))
  1365. netlink_ring_set_copied(sk, skb);
  1366. else
  1367. #endif /* CONFIG_NETLINK_MMAP */
  1368. skb_queue_tail(&sk->sk_receive_queue, skb);
  1369. sk->sk_data_ready(sk, len);
  1370. return len;
  1371. }
  1372. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1373. {
  1374. int len = __netlink_sendskb(sk, skb);
  1375. sock_put(sk);
  1376. return len;
  1377. }
  1378. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  1379. {
  1380. kfree_skb(skb);
  1381. sock_put(sk);
  1382. }
  1383. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  1384. {
  1385. int delta;
  1386. WARN_ON(skb->sk != NULL);
  1387. if (netlink_skb_is_mmaped(skb))
  1388. return skb;
  1389. delta = skb->end - skb->tail;
  1390. if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
  1391. return skb;
  1392. if (skb_shared(skb)) {
  1393. struct sk_buff *nskb = skb_clone(skb, allocation);
  1394. if (!nskb)
  1395. return skb;
  1396. consume_skb(skb);
  1397. skb = nskb;
  1398. }
  1399. if (!pskb_expand_head(skb, 0, -delta, allocation))
  1400. skb->truesize -= delta;
  1401. return skb;
  1402. }
  1403. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  1404. struct sock *ssk)
  1405. {
  1406. int ret;
  1407. struct netlink_sock *nlk = nlk_sk(sk);
  1408. ret = -ECONNREFUSED;
  1409. if (nlk->netlink_rcv != NULL) {
  1410. /* We could do a netlink_deliver_tap(skb) here as well
  1411. * but since this is intended for the kernel only, we
  1412. * should rather let it stay under the hood.
  1413. */
  1414. ret = skb->len;
  1415. netlink_skb_set_owner_r(skb, sk);
  1416. NETLINK_CB(skb).sk = ssk;
  1417. nlk->netlink_rcv(skb);
  1418. consume_skb(skb);
  1419. } else {
  1420. kfree_skb(skb);
  1421. }
  1422. sock_put(sk);
  1423. return ret;
  1424. }
  1425. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  1426. u32 portid, int nonblock)
  1427. {
  1428. struct sock *sk;
  1429. int err;
  1430. long timeo;
  1431. skb = netlink_trim(skb, gfp_any());
  1432. timeo = sock_sndtimeo(ssk, nonblock);
  1433. retry:
  1434. sk = netlink_getsockbyportid(ssk, portid);
  1435. if (IS_ERR(sk)) {
  1436. kfree_skb(skb);
  1437. return PTR_ERR(sk);
  1438. }
  1439. if (netlink_is_kernel(sk))
  1440. return netlink_unicast_kernel(sk, skb, ssk);
  1441. if (sk_filter(sk, skb)) {
  1442. err = skb->len;
  1443. kfree_skb(skb);
  1444. sock_put(sk);
  1445. return err;
  1446. }
  1447. err = netlink_attachskb(sk, skb, &timeo, ssk);
  1448. if (err == 1)
  1449. goto retry;
  1450. if (err)
  1451. return err;
  1452. return netlink_sendskb(sk, skb);
  1453. }
  1454. EXPORT_SYMBOL(netlink_unicast);
  1455. struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
  1456. u32 dst_portid, gfp_t gfp_mask)
  1457. {
  1458. #ifdef CONFIG_NETLINK_MMAP
  1459. struct sock *sk = NULL;
  1460. struct sk_buff *skb;
  1461. struct netlink_ring *ring;
  1462. struct nl_mmap_hdr *hdr;
  1463. unsigned int maxlen;
  1464. sk = netlink_getsockbyportid(ssk, dst_portid);
  1465. if (IS_ERR(sk))
  1466. goto out;
  1467. ring = &nlk_sk(sk)->rx_ring;
  1468. /* fast-path without atomic ops for common case: non-mmaped receiver */
  1469. if (ring->pg_vec == NULL)
  1470. goto out_put;
  1471. skb = alloc_skb_head(gfp_mask);
  1472. if (skb == NULL)
  1473. goto err1;
  1474. spin_lock_bh(&sk->sk_receive_queue.lock);
  1475. /* check again under lock */
  1476. if (ring->pg_vec == NULL)
  1477. goto out_free;
  1478. maxlen = ring->frame_size - NL_MMAP_HDRLEN;
  1479. if (maxlen < size)
  1480. goto out_free;
  1481. netlink_forward_ring(ring);
  1482. hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
  1483. if (hdr == NULL)
  1484. goto err2;
  1485. netlink_ring_setup_skb(skb, sk, ring, hdr);
  1486. netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
  1487. atomic_inc(&ring->pending);
  1488. netlink_increment_head(ring);
  1489. spin_unlock_bh(&sk->sk_receive_queue.lock);
  1490. return skb;
  1491. err2:
  1492. kfree_skb(skb);
  1493. spin_unlock_bh(&sk->sk_receive_queue.lock);
  1494. netlink_overrun(sk);
  1495. err1:
  1496. sock_put(sk);
  1497. return NULL;
  1498. out_free:
  1499. kfree_skb(skb);
  1500. spin_unlock_bh(&sk->sk_receive_queue.lock);
  1501. out_put:
  1502. sock_put(sk);
  1503. out:
  1504. #endif
  1505. return alloc_skb(size, gfp_mask);
  1506. }
  1507. EXPORT_SYMBOL_GPL(netlink_alloc_skb);
  1508. int netlink_has_listeners(struct sock *sk, unsigned int group)
  1509. {
  1510. int res = 0;
  1511. struct listeners *listeners;
  1512. BUG_ON(!netlink_is_kernel(sk));
  1513. rcu_read_lock();
  1514. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  1515. if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
  1516. res = test_bit(group - 1, listeners->masks);
  1517. rcu_read_unlock();
  1518. return res;
  1519. }
  1520. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  1521. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  1522. {
  1523. struct netlink_sock *nlk = nlk_sk(sk);
  1524. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  1525. !test_bit(NETLINK_CONGESTED, &nlk->state)) {
  1526. netlink_skb_set_owner_r(skb, sk);
  1527. __netlink_sendskb(sk, skb);
  1528. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  1529. }
  1530. return -1;
  1531. }
  1532. struct netlink_broadcast_data {
  1533. struct sock *exclude_sk;
  1534. struct net *net;
  1535. u32 portid;
  1536. u32 group;
  1537. int failure;
  1538. int delivery_failure;
  1539. int congested;
  1540. int delivered;
  1541. gfp_t allocation;
  1542. struct sk_buff *skb, *skb2;
  1543. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  1544. void *tx_data;
  1545. };
  1546. static int do_one_broadcast(struct sock *sk,
  1547. struct netlink_broadcast_data *p)
  1548. {
  1549. struct netlink_sock *nlk = nlk_sk(sk);
  1550. int val;
  1551. if (p->exclude_sk == sk)
  1552. goto out;
  1553. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1554. !test_bit(p->group - 1, nlk->groups))
  1555. goto out;
  1556. if (!net_eq(sock_net(sk), p->net))
  1557. goto out;
  1558. if (p->failure) {
  1559. netlink_overrun(sk);
  1560. goto out;
  1561. }
  1562. sock_hold(sk);
  1563. if (p->skb2 == NULL) {
  1564. if (skb_shared(p->skb)) {
  1565. p->skb2 = skb_clone(p->skb, p->allocation);
  1566. } else {
  1567. p->skb2 = skb_get(p->skb);
  1568. /*
  1569. * skb ownership may have been set when
  1570. * delivered to a previous socket.
  1571. */
  1572. skb_orphan(p->skb2);
  1573. }
  1574. }
  1575. if (p->skb2 == NULL) {
  1576. netlink_overrun(sk);
  1577. /* Clone failed. Notify ALL listeners. */
  1578. p->failure = 1;
  1579. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  1580. p->delivery_failure = 1;
  1581. } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  1582. kfree_skb(p->skb2);
  1583. p->skb2 = NULL;
  1584. } else if (sk_filter(sk, p->skb2)) {
  1585. kfree_skb(p->skb2);
  1586. p->skb2 = NULL;
  1587. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  1588. netlink_overrun(sk);
  1589. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  1590. p->delivery_failure = 1;
  1591. } else {
  1592. p->congested |= val;
  1593. p->delivered = 1;
  1594. p->skb2 = NULL;
  1595. }
  1596. sock_put(sk);
  1597. out:
  1598. return 0;
  1599. }
  1600. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1601. u32 group, gfp_t allocation,
  1602. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  1603. void *filter_data)
  1604. {
  1605. struct net *net = sock_net(ssk);
  1606. struct netlink_broadcast_data info;
  1607. struct sock *sk;
  1608. skb = netlink_trim(skb, allocation);
  1609. info.exclude_sk = ssk;
  1610. info.net = net;
  1611. info.portid = portid;
  1612. info.group = group;
  1613. info.failure = 0;
  1614. info.delivery_failure = 0;
  1615. info.congested = 0;
  1616. info.delivered = 0;
  1617. info.allocation = allocation;
  1618. info.skb = skb;
  1619. info.skb2 = NULL;
  1620. info.tx_filter = filter;
  1621. info.tx_data = filter_data;
  1622. /* While we sleep in clone, do not allow to change socket list */
  1623. netlink_lock_table();
  1624. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1625. do_one_broadcast(sk, &info);
  1626. consume_skb(skb);
  1627. netlink_unlock_table();
  1628. if (info.delivery_failure) {
  1629. kfree_skb(info.skb2);
  1630. return -ENOBUFS;
  1631. }
  1632. consume_skb(info.skb2);
  1633. if (info.delivered) {
  1634. if (info.congested && (allocation & __GFP_WAIT))
  1635. yield();
  1636. return 0;
  1637. }
  1638. return -ESRCH;
  1639. }
  1640. EXPORT_SYMBOL(netlink_broadcast_filtered);
  1641. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1642. u32 group, gfp_t allocation)
  1643. {
  1644. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  1645. NULL, NULL);
  1646. }
  1647. EXPORT_SYMBOL(netlink_broadcast);
  1648. struct netlink_set_err_data {
  1649. struct sock *exclude_sk;
  1650. u32 portid;
  1651. u32 group;
  1652. int code;
  1653. };
  1654. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  1655. {
  1656. struct netlink_sock *nlk = nlk_sk(sk);
  1657. int ret = 0;
  1658. if (sk == p->exclude_sk)
  1659. goto out;
  1660. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  1661. goto out;
  1662. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1663. !test_bit(p->group - 1, nlk->groups))
  1664. goto out;
  1665. if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
  1666. ret = 1;
  1667. goto out;
  1668. }
  1669. sk->sk_err = p->code;
  1670. sk->sk_error_report(sk);
  1671. out:
  1672. return ret;
  1673. }
  1674. /**
  1675. * netlink_set_err - report error to broadcast listeners
  1676. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  1677. * @portid: the PORTID of a process that we want to skip (if any)
  1678. * @groups: the broadcast group that will notice the error
  1679. * @code: error code, must be negative (as usual in kernelspace)
  1680. *
  1681. * This function returns the number of broadcast listeners that have set the
  1682. * NETLINK_RECV_NO_ENOBUFS socket option.
  1683. */
  1684. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  1685. {
  1686. struct netlink_set_err_data info;
  1687. struct sock *sk;
  1688. int ret = 0;
  1689. info.exclude_sk = ssk;
  1690. info.portid = portid;
  1691. info.group = group;
  1692. /* sk->sk_err wants a positive error value */
  1693. info.code = -code;
  1694. read_lock(&nl_table_lock);
  1695. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1696. ret += do_one_set_err(sk, &info);
  1697. read_unlock(&nl_table_lock);
  1698. return ret;
  1699. }
  1700. EXPORT_SYMBOL(netlink_set_err);
  1701. /* must be called with netlink table grabbed */
  1702. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1703. unsigned int group,
  1704. int is_new)
  1705. {
  1706. int old, new = !!is_new, subscriptions;
  1707. old = test_bit(group - 1, nlk->groups);
  1708. subscriptions = nlk->subscriptions - old + new;
  1709. if (new)
  1710. __set_bit(group - 1, nlk->groups);
  1711. else
  1712. __clear_bit(group - 1, nlk->groups);
  1713. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1714. netlink_update_listeners(&nlk->sk);
  1715. }
  1716. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1717. char __user *optval, unsigned int optlen)
  1718. {
  1719. struct sock *sk = sock->sk;
  1720. struct netlink_sock *nlk = nlk_sk(sk);
  1721. unsigned int val = 0;
  1722. int err;
  1723. if (level != SOL_NETLINK)
  1724. return -ENOPROTOOPT;
  1725. if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
  1726. optlen >= sizeof(int) &&
  1727. get_user(val, (unsigned int __user *)optval))
  1728. return -EFAULT;
  1729. switch (optname) {
  1730. case NETLINK_PKTINFO:
  1731. if (val)
  1732. nlk->flags |= NETLINK_RECV_PKTINFO;
  1733. else
  1734. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  1735. err = 0;
  1736. break;
  1737. case NETLINK_ADD_MEMBERSHIP:
  1738. case NETLINK_DROP_MEMBERSHIP: {
  1739. if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
  1740. return -EPERM;
  1741. err = netlink_realloc_groups(sk);
  1742. if (err)
  1743. return err;
  1744. if (!val || val - 1 >= nlk->ngroups)
  1745. return -EINVAL;
  1746. netlink_table_grab();
  1747. netlink_update_socket_mc(nlk, val,
  1748. optname == NETLINK_ADD_MEMBERSHIP);
  1749. netlink_table_ungrab();
  1750. if (nlk->netlink_bind)
  1751. nlk->netlink_bind(val);
  1752. err = 0;
  1753. break;
  1754. }
  1755. case NETLINK_BROADCAST_ERROR:
  1756. if (val)
  1757. nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
  1758. else
  1759. nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
  1760. err = 0;
  1761. break;
  1762. case NETLINK_NO_ENOBUFS:
  1763. if (val) {
  1764. nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
  1765. clear_bit(NETLINK_CONGESTED, &nlk->state);
  1766. wake_up_interruptible(&nlk->wait);
  1767. } else {
  1768. nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
  1769. }
  1770. err = 0;
  1771. break;
  1772. #ifdef CONFIG_NETLINK_MMAP
  1773. case NETLINK_RX_RING:
  1774. case NETLINK_TX_RING: {
  1775. struct nl_mmap_req req;
  1776. /* Rings might consume more memory than queue limits, require
  1777. * CAP_NET_ADMIN.
  1778. */
  1779. if (!capable(CAP_NET_ADMIN))
  1780. return -EPERM;
  1781. if (optlen < sizeof(req))
  1782. return -EINVAL;
  1783. if (copy_from_user(&req, optval, sizeof(req)))
  1784. return -EFAULT;
  1785. err = netlink_set_ring(sk, &req, false,
  1786. optname == NETLINK_TX_RING);
  1787. break;
  1788. }
  1789. #endif /* CONFIG_NETLINK_MMAP */
  1790. default:
  1791. err = -ENOPROTOOPT;
  1792. }
  1793. return err;
  1794. }
  1795. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1796. char __user *optval, int __user *optlen)
  1797. {
  1798. struct sock *sk = sock->sk;
  1799. struct netlink_sock *nlk = nlk_sk(sk);
  1800. int len, val, err;
  1801. if (level != SOL_NETLINK)
  1802. return -ENOPROTOOPT;
  1803. if (get_user(len, optlen))
  1804. return -EFAULT;
  1805. if (len < 0)
  1806. return -EINVAL;
  1807. switch (optname) {
  1808. case NETLINK_PKTINFO:
  1809. if (len < sizeof(int))
  1810. return -EINVAL;
  1811. len = sizeof(int);
  1812. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  1813. if (put_user(len, optlen) ||
  1814. put_user(val, optval))
  1815. return -EFAULT;
  1816. err = 0;
  1817. break;
  1818. case NETLINK_BROADCAST_ERROR:
  1819. if (len < sizeof(int))
  1820. return -EINVAL;
  1821. len = sizeof(int);
  1822. val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
  1823. if (put_user(len, optlen) ||
  1824. put_user(val, optval))
  1825. return -EFAULT;
  1826. err = 0;
  1827. break;
  1828. case NETLINK_NO_ENOBUFS:
  1829. if (len < sizeof(int))
  1830. return -EINVAL;
  1831. len = sizeof(int);
  1832. val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
  1833. if (put_user(len, optlen) ||
  1834. put_user(val, optval))
  1835. return -EFAULT;
  1836. err = 0;
  1837. break;
  1838. default:
  1839. err = -ENOPROTOOPT;
  1840. }
  1841. return err;
  1842. }
  1843. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1844. {
  1845. struct nl_pktinfo info;
  1846. info.group = NETLINK_CB(skb).dst_group;
  1847. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1848. }
  1849. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  1850. struct msghdr *msg, size_t len)
  1851. {
  1852. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1853. struct sock *sk = sock->sk;
  1854. struct netlink_sock *nlk = nlk_sk(sk);
  1855. struct sockaddr_nl *addr = msg->msg_name;
  1856. u32 dst_portid;
  1857. u32 dst_group;
  1858. struct sk_buff *skb;
  1859. int err;
  1860. struct scm_cookie scm;
  1861. if (msg->msg_flags&MSG_OOB)
  1862. return -EOPNOTSUPP;
  1863. if (NULL == siocb->scm)
  1864. siocb->scm = &scm;
  1865. err = scm_send(sock, msg, siocb->scm, true);
  1866. if (err < 0)
  1867. return err;
  1868. if (msg->msg_namelen) {
  1869. err = -EINVAL;
  1870. if (addr->nl_family != AF_NETLINK)
  1871. goto out;
  1872. dst_portid = addr->nl_pid;
  1873. dst_group = ffs(addr->nl_groups);
  1874. err = -EPERM;
  1875. if ((dst_group || dst_portid) &&
  1876. !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
  1877. goto out;
  1878. } else {
  1879. dst_portid = nlk->dst_portid;
  1880. dst_group = nlk->dst_group;
  1881. }
  1882. if (!nlk->portid) {
  1883. err = netlink_autobind(sock);
  1884. if (err)
  1885. goto out;
  1886. }
  1887. if (netlink_tx_is_mmaped(sk) &&
  1888. msg->msg_iov->iov_base == NULL) {
  1889. err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
  1890. siocb);
  1891. goto out;
  1892. }
  1893. err = -EMSGSIZE;
  1894. if (len > sk->sk_sndbuf - 32)
  1895. goto out;
  1896. err = -ENOBUFS;
  1897. skb = netlink_alloc_large_skb(len, dst_group);
  1898. if (skb == NULL)
  1899. goto out;
  1900. NETLINK_CB(skb).portid = nlk->portid;
  1901. NETLINK_CB(skb).dst_group = dst_group;
  1902. NETLINK_CB(skb).creds = siocb->scm->creds;
  1903. err = -EFAULT;
  1904. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  1905. kfree_skb(skb);
  1906. goto out;
  1907. }
  1908. err = security_netlink_send(sk, skb);
  1909. if (err) {
  1910. kfree_skb(skb);
  1911. goto out;
  1912. }
  1913. if (dst_group) {
  1914. atomic_inc(&skb->users);
  1915. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1916. }
  1917. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1918. out:
  1919. scm_destroy(siocb->scm);
  1920. return err;
  1921. }
  1922. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  1923. struct msghdr *msg, size_t len,
  1924. int flags)
  1925. {
  1926. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1927. struct scm_cookie scm;
  1928. struct sock *sk = sock->sk;
  1929. struct netlink_sock *nlk = nlk_sk(sk);
  1930. int noblock = flags&MSG_DONTWAIT;
  1931. size_t copied;
  1932. struct sk_buff *skb, *data_skb;
  1933. int err, ret;
  1934. if (flags&MSG_OOB)
  1935. return -EOPNOTSUPP;
  1936. copied = 0;
  1937. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1938. if (skb == NULL)
  1939. goto out;
  1940. data_skb = skb;
  1941. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1942. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1943. /*
  1944. * If this skb has a frag_list, then here that means that we
  1945. * will have to use the frag_list skb's data for compat tasks
  1946. * and the regular skb's data for normal (non-compat) tasks.
  1947. *
  1948. * If we need to send the compat skb, assign it to the
  1949. * 'data_skb' variable so that it will be used below for data
  1950. * copying. We keep 'skb' for everything else, including
  1951. * freeing both later.
  1952. */
  1953. if (flags & MSG_CMSG_COMPAT)
  1954. data_skb = skb_shinfo(skb)->frag_list;
  1955. }
  1956. #endif
  1957. msg->msg_namelen = 0;
  1958. copied = data_skb->len;
  1959. if (len < copied) {
  1960. msg->msg_flags |= MSG_TRUNC;
  1961. copied = len;
  1962. }
  1963. skb_reset_transport_header(data_skb);
  1964. err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
  1965. if (msg->msg_name) {
  1966. struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
  1967. addr->nl_family = AF_NETLINK;
  1968. addr->nl_pad = 0;
  1969. addr->nl_pid = NETLINK_CB(skb).portid;
  1970. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1971. msg->msg_namelen = sizeof(*addr);
  1972. }
  1973. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1974. netlink_cmsg_recv_pktinfo(msg, skb);
  1975. if (NULL == siocb->scm) {
  1976. memset(&scm, 0, sizeof(scm));
  1977. siocb->scm = &scm;
  1978. }
  1979. siocb->scm->creds = *NETLINK_CREDS(skb);
  1980. if (flags & MSG_TRUNC)
  1981. copied = data_skb->len;
  1982. skb_free_datagram(sk, skb);
  1983. if (nlk->cb_running &&
  1984. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1985. ret = netlink_dump(sk);
  1986. if (ret) {
  1987. sk->sk_err = ret;
  1988. sk->sk_error_report(sk);
  1989. }
  1990. }
  1991. scm_recv(sock, msg, siocb->scm, flags);
  1992. out:
  1993. netlink_rcv_wake(sk);
  1994. return err ? : copied;
  1995. }
  1996. static void netlink_data_ready(struct sock *sk, int len)
  1997. {
  1998. BUG();
  1999. }
  2000. /*
  2001. * We export these functions to other modules. They provide a
  2002. * complete set of kernel non-blocking support for message
  2003. * queueing.
  2004. */
  2005. struct sock *
  2006. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  2007. struct netlink_kernel_cfg *cfg)
  2008. {
  2009. struct socket *sock;
  2010. struct sock *sk;
  2011. struct netlink_sock *nlk;
  2012. struct listeners *listeners = NULL;
  2013. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  2014. unsigned int groups;
  2015. BUG_ON(!nl_table);
  2016. if (unit < 0 || unit >= MAX_LINKS)
  2017. return NULL;
  2018. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  2019. return NULL;
  2020. /*
  2021. * We have to just have a reference on the net from sk, but don't
  2022. * get_net it. Besides, we cannot get and then put the net here.
  2023. * So we create one inside init_net and the move it to net.
  2024. */
  2025. if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
  2026. goto out_sock_release_nosk;
  2027. sk = sock->sk;
  2028. sk_change_net(sk, net);
  2029. if (!cfg || cfg->groups < 32)
  2030. groups = 32;
  2031. else
  2032. groups = cfg->groups;
  2033. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2034. if (!listeners)
  2035. goto out_sock_release;
  2036. sk->sk_data_ready = netlink_data_ready;
  2037. if (cfg && cfg->input)
  2038. nlk_sk(sk)->netlink_rcv = cfg->input;
  2039. if (netlink_insert(sk, net, 0))
  2040. goto out_sock_release;
  2041. nlk = nlk_sk(sk);
  2042. nlk->flags |= NETLINK_KERNEL_SOCKET;
  2043. netlink_table_grab();
  2044. if (!nl_table[unit].registered) {
  2045. nl_table[unit].groups = groups;
  2046. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  2047. nl_table[unit].cb_mutex = cb_mutex;
  2048. nl_table[unit].module = module;
  2049. if (cfg) {
  2050. nl_table[unit].bind = cfg->bind;
  2051. nl_table[unit].flags = cfg->flags;
  2052. if (cfg->compare)
  2053. nl_table[unit].compare = cfg->compare;
  2054. }
  2055. nl_table[unit].registered = 1;
  2056. } else {
  2057. kfree(listeners);
  2058. nl_table[unit].registered++;
  2059. }
  2060. netlink_table_ungrab();
  2061. return sk;
  2062. out_sock_release:
  2063. kfree(listeners);
  2064. netlink_kernel_release(sk);
  2065. return NULL;
  2066. out_sock_release_nosk:
  2067. sock_release(sock);
  2068. return NULL;
  2069. }
  2070. EXPORT_SYMBOL(__netlink_kernel_create);
  2071. void
  2072. netlink_kernel_release(struct sock *sk)
  2073. {
  2074. sk_release_kernel(sk);
  2075. }
  2076. EXPORT_SYMBOL(netlink_kernel_release);
  2077. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  2078. {
  2079. struct listeners *new, *old;
  2080. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  2081. if (groups < 32)
  2082. groups = 32;
  2083. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  2084. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  2085. if (!new)
  2086. return -ENOMEM;
  2087. old = nl_deref_protected(tbl->listeners);
  2088. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  2089. rcu_assign_pointer(tbl->listeners, new);
  2090. kfree_rcu(old, rcu);
  2091. }
  2092. tbl->groups = groups;
  2093. return 0;
  2094. }
  2095. /**
  2096. * netlink_change_ngroups - change number of multicast groups
  2097. *
  2098. * This changes the number of multicast groups that are available
  2099. * on a certain netlink family. Note that it is not possible to
  2100. * change the number of groups to below 32. Also note that it does
  2101. * not implicitly call netlink_clear_multicast_users() when the
  2102. * number of groups is reduced.
  2103. *
  2104. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  2105. * @groups: The new number of groups.
  2106. */
  2107. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  2108. {
  2109. int err;
  2110. netlink_table_grab();
  2111. err = __netlink_change_ngroups(sk, groups);
  2112. netlink_table_ungrab();
  2113. return err;
  2114. }
  2115. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  2116. {
  2117. struct sock *sk;
  2118. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  2119. sk_for_each_bound(sk, &tbl->mc_list)
  2120. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  2121. }
  2122. /**
  2123. * netlink_clear_multicast_users - kick off multicast listeners
  2124. *
  2125. * This function removes all listeners from the given group.
  2126. * @ksk: The kernel netlink socket, as returned by
  2127. * netlink_kernel_create().
  2128. * @group: The multicast group to clear.
  2129. */
  2130. void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  2131. {
  2132. netlink_table_grab();
  2133. __netlink_clear_multicast_users(ksk, group);
  2134. netlink_table_ungrab();
  2135. }
  2136. struct nlmsghdr *
  2137. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  2138. {
  2139. struct nlmsghdr *nlh;
  2140. int size = nlmsg_msg_size(len);
  2141. nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
  2142. nlh->nlmsg_type = type;
  2143. nlh->nlmsg_len = size;
  2144. nlh->nlmsg_flags = flags;
  2145. nlh->nlmsg_pid = portid;
  2146. nlh->nlmsg_seq = seq;
  2147. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  2148. memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  2149. return nlh;
  2150. }
  2151. EXPORT_SYMBOL(__nlmsg_put);
  2152. /*
  2153. * It looks a bit ugly.
  2154. * It would be better to create kernel thread.
  2155. */
  2156. static int netlink_dump(struct sock *sk)
  2157. {
  2158. struct netlink_sock *nlk = nlk_sk(sk);
  2159. struct netlink_callback *cb;
  2160. struct sk_buff *skb = NULL;
  2161. struct nlmsghdr *nlh;
  2162. int len, err = -ENOBUFS;
  2163. int alloc_size;
  2164. mutex_lock(nlk->cb_mutex);
  2165. if (!nlk->cb_running) {
  2166. err = -EINVAL;
  2167. goto errout_skb;
  2168. }
  2169. cb = &nlk->cb;
  2170. alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  2171. if (!netlink_rx_is_mmaped(sk) &&
  2172. atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  2173. goto errout_skb;
  2174. skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, GFP_KERNEL);
  2175. if (!skb)
  2176. goto errout_skb;
  2177. netlink_skb_set_owner_r(skb, sk);
  2178. len = cb->dump(skb, cb);
  2179. if (len > 0) {
  2180. mutex_unlock(nlk->cb_mutex);
  2181. if (sk_filter(sk, skb))
  2182. kfree_skb(skb);
  2183. else
  2184. __netlink_sendskb(sk, skb);
  2185. return 0;
  2186. }
  2187. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  2188. if (!nlh)
  2189. goto errout_skb;
  2190. nl_dump_check_consistent(cb, nlh);
  2191. memcpy(nlmsg_data(nlh), &len, sizeof(len));
  2192. if (sk_filter(sk, skb))
  2193. kfree_skb(skb);
  2194. else
  2195. __netlink_sendskb(sk, skb);
  2196. if (cb->done)
  2197. cb->done(cb);
  2198. nlk->cb_running = false;
  2199. mutex_unlock(nlk->cb_mutex);
  2200. module_put(cb->module);
  2201. consume_skb(cb->skb);
  2202. return 0;
  2203. errout_skb:
  2204. mutex_unlock(nlk->cb_mutex);
  2205. kfree_skb(skb);
  2206. return err;
  2207. }
  2208. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  2209. const struct nlmsghdr *nlh,
  2210. struct netlink_dump_control *control)
  2211. {
  2212. struct netlink_callback *cb;
  2213. struct sock *sk;
  2214. struct netlink_sock *nlk;
  2215. int ret;
  2216. /* Memory mapped dump requests need to be copied to avoid looping
  2217. * on the pending state in netlink_mmap_sendmsg() while the CB hold
  2218. * a reference to the skb.
  2219. */
  2220. if (netlink_skb_is_mmaped(skb)) {
  2221. skb = skb_copy(skb, GFP_KERNEL);
  2222. if (skb == NULL)
  2223. return -ENOBUFS;
  2224. } else
  2225. atomic_inc(&skb->users);
  2226. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  2227. if (sk == NULL) {
  2228. ret = -ECONNREFUSED;
  2229. goto error_free;
  2230. }
  2231. nlk = nlk_sk(sk);
  2232. mutex_lock(nlk->cb_mutex);
  2233. /* A dump is in progress... */
  2234. if (nlk->cb_running) {
  2235. ret = -EBUSY;
  2236. goto error_unlock;
  2237. }
  2238. /* add reference of module which cb->dump belongs to */
  2239. if (!try_module_get(control->module)) {
  2240. ret = -EPROTONOSUPPORT;
  2241. goto error_unlock;
  2242. }
  2243. cb = &nlk->cb;
  2244. memset(cb, 0, sizeof(*cb));
  2245. cb->dump = control->dump;
  2246. cb->done = control->done;
  2247. cb->nlh = nlh;
  2248. cb->data = control->data;
  2249. cb->module = control->module;
  2250. cb->min_dump_alloc = control->min_dump_alloc;
  2251. cb->skb = skb;
  2252. nlk->cb_running = true;
  2253. mutex_unlock(nlk->cb_mutex);
  2254. ret = netlink_dump(sk);
  2255. sock_put(sk);
  2256. if (ret)
  2257. return ret;
  2258. /* We successfully started a dump, by returning -EINTR we
  2259. * signal not to send ACK even if it was requested.
  2260. */
  2261. return -EINTR;
  2262. error_unlock:
  2263. sock_put(sk);
  2264. mutex_unlock(nlk->cb_mutex);
  2265. error_free:
  2266. kfree_skb(skb);
  2267. return ret;
  2268. }
  2269. EXPORT_SYMBOL(__netlink_dump_start);
  2270. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  2271. {
  2272. struct sk_buff *skb;
  2273. struct nlmsghdr *rep;
  2274. struct nlmsgerr *errmsg;
  2275. size_t payload = sizeof(*errmsg);
  2276. /* error messages get the original request appened */
  2277. if (err)
  2278. payload += nlmsg_len(nlh);
  2279. skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
  2280. NETLINK_CB(in_skb).portid, GFP_KERNEL);
  2281. if (!skb) {
  2282. struct sock *sk;
  2283. sk = netlink_lookup(sock_net(in_skb->sk),
  2284. in_skb->sk->sk_protocol,
  2285. NETLINK_CB(in_skb).portid);
  2286. if (sk) {
  2287. sk->sk_err = ENOBUFS;
  2288. sk->sk_error_report(sk);
  2289. sock_put(sk);
  2290. }
  2291. return;
  2292. }
  2293. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  2294. NLMSG_ERROR, payload, 0);
  2295. errmsg = nlmsg_data(rep);
  2296. errmsg->error = err;
  2297. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
  2298. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  2299. }
  2300. EXPORT_SYMBOL(netlink_ack);
  2301. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  2302. struct nlmsghdr *))
  2303. {
  2304. struct nlmsghdr *nlh;
  2305. int err;
  2306. while (skb->len >= nlmsg_total_size(0)) {
  2307. int msglen;
  2308. nlh = nlmsg_hdr(skb);
  2309. err = 0;
  2310. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  2311. return 0;
  2312. /* Only requests are handled by the kernel */
  2313. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  2314. goto ack;
  2315. /* Skip control messages */
  2316. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  2317. goto ack;
  2318. err = cb(skb, nlh);
  2319. if (err == -EINTR)
  2320. goto skip;
  2321. ack:
  2322. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  2323. netlink_ack(skb, nlh, err);
  2324. skip:
  2325. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  2326. if (msglen > skb->len)
  2327. msglen = skb->len;
  2328. skb_pull(skb, msglen);
  2329. }
  2330. return 0;
  2331. }
  2332. EXPORT_SYMBOL(netlink_rcv_skb);
  2333. /**
  2334. * nlmsg_notify - send a notification netlink message
  2335. * @sk: netlink socket to use
  2336. * @skb: notification message
  2337. * @portid: destination netlink portid for reports or 0
  2338. * @group: destination multicast group or 0
  2339. * @report: 1 to report back, 0 to disable
  2340. * @flags: allocation flags
  2341. */
  2342. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  2343. unsigned int group, int report, gfp_t flags)
  2344. {
  2345. int err = 0;
  2346. if (group) {
  2347. int exclude_portid = 0;
  2348. if (report) {
  2349. atomic_inc(&skb->users);
  2350. exclude_portid = portid;
  2351. }
  2352. /* errors reported via destination sk->sk_err, but propagate
  2353. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  2354. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  2355. }
  2356. if (report) {
  2357. int err2;
  2358. err2 = nlmsg_unicast(sk, skb, portid);
  2359. if (!err || err == -ESRCH)
  2360. err = err2;
  2361. }
  2362. return err;
  2363. }
  2364. EXPORT_SYMBOL(nlmsg_notify);
  2365. #ifdef CONFIG_PROC_FS
  2366. struct nl_seq_iter {
  2367. struct seq_net_private p;
  2368. int link;
  2369. int hash_idx;
  2370. };
  2371. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  2372. {
  2373. struct nl_seq_iter *iter = seq->private;
  2374. int i, j;
  2375. struct sock *s;
  2376. loff_t off = 0;
  2377. for (i = 0; i < MAX_LINKS; i++) {
  2378. struct nl_portid_hash *hash = &nl_table[i].hash;
  2379. for (j = 0; j <= hash->mask; j++) {
  2380. sk_for_each(s, &hash->table[j]) {
  2381. if (sock_net(s) != seq_file_net(seq))
  2382. continue;
  2383. if (off == pos) {
  2384. iter->link = i;
  2385. iter->hash_idx = j;
  2386. return s;
  2387. }
  2388. ++off;
  2389. }
  2390. }
  2391. }
  2392. return NULL;
  2393. }
  2394. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  2395. __acquires(nl_table_lock)
  2396. {
  2397. read_lock(&nl_table_lock);
  2398. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  2399. }
  2400. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2401. {
  2402. struct sock *s;
  2403. struct nl_seq_iter *iter;
  2404. struct net *net;
  2405. int i, j;
  2406. ++*pos;
  2407. if (v == SEQ_START_TOKEN)
  2408. return netlink_seq_socket_idx(seq, 0);
  2409. net = seq_file_net(seq);
  2410. iter = seq->private;
  2411. s = v;
  2412. do {
  2413. s = sk_next(s);
  2414. } while (s && !nl_table[s->sk_protocol].compare(net, s));
  2415. if (s)
  2416. return s;
  2417. i = iter->link;
  2418. j = iter->hash_idx + 1;
  2419. do {
  2420. struct nl_portid_hash *hash = &nl_table[i].hash;
  2421. for (; j <= hash->mask; j++) {
  2422. s = sk_head(&hash->table[j]);
  2423. while (s && !nl_table[s->sk_protocol].compare(net, s))
  2424. s = sk_next(s);
  2425. if (s) {
  2426. iter->link = i;
  2427. iter->hash_idx = j;
  2428. return s;
  2429. }
  2430. }
  2431. j = 0;
  2432. } while (++i < MAX_LINKS);
  2433. return NULL;
  2434. }
  2435. static void netlink_seq_stop(struct seq_file *seq, void *v)
  2436. __releases(nl_table_lock)
  2437. {
  2438. read_unlock(&nl_table_lock);
  2439. }
  2440. static int netlink_seq_show(struct seq_file *seq, void *v)
  2441. {
  2442. if (v == SEQ_START_TOKEN) {
  2443. seq_puts(seq,
  2444. "sk Eth Pid Groups "
  2445. "Rmem Wmem Dump Locks Drops Inode\n");
  2446. } else {
  2447. struct sock *s = v;
  2448. struct netlink_sock *nlk = nlk_sk(s);
  2449. seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
  2450. s,
  2451. s->sk_protocol,
  2452. nlk->portid,
  2453. nlk->groups ? (u32)nlk->groups[0] : 0,
  2454. sk_rmem_alloc_get(s),
  2455. sk_wmem_alloc_get(s),
  2456. nlk->cb_running,
  2457. atomic_read(&s->sk_refcnt),
  2458. atomic_read(&s->sk_drops),
  2459. sock_i_ino(s)
  2460. );
  2461. }
  2462. return 0;
  2463. }
  2464. static const struct seq_operations netlink_seq_ops = {
  2465. .start = netlink_seq_start,
  2466. .next = netlink_seq_next,
  2467. .stop = netlink_seq_stop,
  2468. .show = netlink_seq_show,
  2469. };
  2470. static int netlink_seq_open(struct inode *inode, struct file *file)
  2471. {
  2472. return seq_open_net(inode, file, &netlink_seq_ops,
  2473. sizeof(struct nl_seq_iter));
  2474. }
  2475. static const struct file_operations netlink_seq_fops = {
  2476. .owner = THIS_MODULE,
  2477. .open = netlink_seq_open,
  2478. .read = seq_read,
  2479. .llseek = seq_lseek,
  2480. .release = seq_release_net,
  2481. };
  2482. #endif
  2483. int netlink_register_notifier(struct notifier_block *nb)
  2484. {
  2485. return atomic_notifier_chain_register(&netlink_chain, nb);
  2486. }
  2487. EXPORT_SYMBOL(netlink_register_notifier);
  2488. int netlink_unregister_notifier(struct notifier_block *nb)
  2489. {
  2490. return atomic_notifier_chain_unregister(&netlink_chain, nb);
  2491. }
  2492. EXPORT_SYMBOL(netlink_unregister_notifier);
  2493. static const struct proto_ops netlink_ops = {
  2494. .family = PF_NETLINK,
  2495. .owner = THIS_MODULE,
  2496. .release = netlink_release,
  2497. .bind = netlink_bind,
  2498. .connect = netlink_connect,
  2499. .socketpair = sock_no_socketpair,
  2500. .accept = sock_no_accept,
  2501. .getname = netlink_getname,
  2502. .poll = netlink_poll,
  2503. .ioctl = sock_no_ioctl,
  2504. .listen = sock_no_listen,
  2505. .shutdown = sock_no_shutdown,
  2506. .setsockopt = netlink_setsockopt,
  2507. .getsockopt = netlink_getsockopt,
  2508. .sendmsg = netlink_sendmsg,
  2509. .recvmsg = netlink_recvmsg,
  2510. .mmap = netlink_mmap,
  2511. .sendpage = sock_no_sendpage,
  2512. };
  2513. static const struct net_proto_family netlink_family_ops = {
  2514. .family = PF_NETLINK,
  2515. .create = netlink_create,
  2516. .owner = THIS_MODULE, /* for consistency 8) */
  2517. };
  2518. static int __net_init netlink_net_init(struct net *net)
  2519. {
  2520. #ifdef CONFIG_PROC_FS
  2521. if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
  2522. return -ENOMEM;
  2523. #endif
  2524. return 0;
  2525. }
  2526. static void __net_exit netlink_net_exit(struct net *net)
  2527. {
  2528. #ifdef CONFIG_PROC_FS
  2529. remove_proc_entry("netlink", net->proc_net);
  2530. #endif
  2531. }
  2532. static void __init netlink_add_usersock_entry(void)
  2533. {
  2534. struct listeners *listeners;
  2535. int groups = 32;
  2536. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2537. if (!listeners)
  2538. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  2539. netlink_table_grab();
  2540. nl_table[NETLINK_USERSOCK].groups = groups;
  2541. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  2542. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  2543. nl_table[NETLINK_USERSOCK].registered = 1;
  2544. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  2545. netlink_table_ungrab();
  2546. }
  2547. static struct pernet_operations __net_initdata netlink_net_ops = {
  2548. .init = netlink_net_init,
  2549. .exit = netlink_net_exit,
  2550. };
  2551. static int __init netlink_proto_init(void)
  2552. {
  2553. int i;
  2554. unsigned long limit;
  2555. unsigned int order;
  2556. int err = proto_register(&netlink_proto, 0);
  2557. if (err != 0)
  2558. goto out;
  2559. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
  2560. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  2561. if (!nl_table)
  2562. goto panic;
  2563. if (totalram_pages >= (128 * 1024))
  2564. limit = totalram_pages >> (21 - PAGE_SHIFT);
  2565. else
  2566. limit = totalram_pages >> (23 - PAGE_SHIFT);
  2567. order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
  2568. limit = (1UL << order) / sizeof(struct hlist_head);
  2569. order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
  2570. for (i = 0; i < MAX_LINKS; i++) {
  2571. struct nl_portid_hash *hash = &nl_table[i].hash;
  2572. hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table));
  2573. if (!hash->table) {
  2574. while (i-- > 0)
  2575. nl_portid_hash_free(nl_table[i].hash.table,
  2576. 1 * sizeof(*hash->table));
  2577. kfree(nl_table);
  2578. goto panic;
  2579. }
  2580. hash->max_shift = order;
  2581. hash->shift = 0;
  2582. hash->mask = 0;
  2583. hash->rehash_time = jiffies;
  2584. nl_table[i].compare = netlink_compare;
  2585. }
  2586. INIT_LIST_HEAD(&netlink_tap_all);
  2587. netlink_add_usersock_entry();
  2588. sock_register(&netlink_family_ops);
  2589. register_pernet_subsys(&netlink_net_ops);
  2590. /* The netlink device handler may be needed early. */
  2591. rtnetlink_init();
  2592. out:
  2593. return err;
  2594. panic:
  2595. panic("netlink_init: Cannot allocate nl_table\n");
  2596. }
  2597. core_initcall(netlink_proto_init);