slub.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in the.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void sysfs_slab_remove(struct kmem_cache *);
  193. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  194. #else
  195. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  196. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  197. { return 0; }
  198. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  199. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  200. #endif
  201. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  202. {
  203. #ifdef CONFIG_SLUB_STATS
  204. __this_cpu_inc(s->cpu_slab->stat[si]);
  205. #endif
  206. }
  207. /********************************************************************
  208. * Core slab cache functions
  209. *******************************************************************/
  210. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  211. {
  212. return s->node[node];
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  233. {
  234. prefetch(object + s->offset);
  235. }
  236. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  237. {
  238. void *p;
  239. #ifdef CONFIG_DEBUG_PAGEALLOC
  240. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  241. #else
  242. p = get_freepointer(s, object);
  243. #endif
  244. return p;
  245. }
  246. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  247. {
  248. *(void **)(object + s->offset) = fp;
  249. }
  250. /* Loop over all objects in a slab */
  251. #define for_each_object(__p, __s, __addr, __objects) \
  252. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  253. __p += (__s)->size)
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline size_t slab_ksize(const struct kmem_cache *s)
  260. {
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debugging requires use of the padding between object
  264. * and whatever may come after it.
  265. */
  266. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  267. return s->object_size;
  268. #endif
  269. /*
  270. * If we have the need to store the freelist pointer
  271. * back there or track user information then we can
  272. * only use the space before that information.
  273. */
  274. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  275. return s->inuse;
  276. /*
  277. * Else we can use all the padding etc for the allocation
  278. */
  279. return s->size;
  280. }
  281. static inline int order_objects(int order, unsigned long size, int reserved)
  282. {
  283. return ((PAGE_SIZE << order) - reserved) / size;
  284. }
  285. static inline struct kmem_cache_order_objects oo_make(int order,
  286. unsigned long size, int reserved)
  287. {
  288. struct kmem_cache_order_objects x = {
  289. (order << OO_SHIFT) + order_objects(order, size, reserved)
  290. };
  291. return x;
  292. }
  293. static inline int oo_order(struct kmem_cache_order_objects x)
  294. {
  295. return x.x >> OO_SHIFT;
  296. }
  297. static inline int oo_objects(struct kmem_cache_order_objects x)
  298. {
  299. return x.x & OO_MASK;
  300. }
  301. /*
  302. * Per slab locking using the pagelock
  303. */
  304. static __always_inline void slab_lock(struct page *page)
  305. {
  306. bit_spin_lock(PG_locked, &page->flags);
  307. }
  308. static __always_inline void slab_unlock(struct page *page)
  309. {
  310. __bit_spin_unlock(PG_locked, &page->flags);
  311. }
  312. /* Interrupts must be disabled (for the fallback code to work right) */
  313. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  314. void *freelist_old, unsigned long counters_old,
  315. void *freelist_new, unsigned long counters_new,
  316. const char *n)
  317. {
  318. VM_BUG_ON(!irqs_disabled());
  319. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  320. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist, &page->counters,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  351. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  352. if (s->flags & __CMPXCHG_DOUBLE) {
  353. if (cmpxchg_double(&page->freelist, &page->counters,
  354. freelist_old, counters_old,
  355. freelist_new, counters_new))
  356. return 1;
  357. } else
  358. #endif
  359. {
  360. unsigned long flags;
  361. local_irq_save(flags);
  362. slab_lock(page);
  363. if (page->freelist == freelist_old && page->counters == counters_old) {
  364. page->freelist = freelist_new;
  365. page->counters = counters_new;
  366. slab_unlock(page);
  367. local_irq_restore(flags);
  368. return 1;
  369. }
  370. slab_unlock(page);
  371. local_irq_restore(flags);
  372. }
  373. cpu_relax();
  374. stat(s, CMPXCHG_DOUBLE_FAIL);
  375. #ifdef SLUB_DEBUG_CMPXCHG
  376. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  377. #endif
  378. return 0;
  379. }
  380. #ifdef CONFIG_SLUB_DEBUG
  381. /*
  382. * Determine a map of object in use on a page.
  383. *
  384. * Node listlock must be held to guarantee that the page does
  385. * not vanish from under us.
  386. */
  387. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  388. {
  389. void *p;
  390. void *addr = page_address(page);
  391. for (p = page->freelist; p; p = get_freepointer(s, p))
  392. set_bit(slab_index(p, s, addr), map);
  393. }
  394. /*
  395. * Debug settings:
  396. */
  397. #ifdef CONFIG_SLUB_DEBUG_ON
  398. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  399. #else
  400. static int slub_debug;
  401. #endif
  402. static char *slub_debug_slabs;
  403. static int disable_higher_order_debug;
  404. /*
  405. * Object debugging
  406. */
  407. static void print_section(char *text, u8 *addr, unsigned int length)
  408. {
  409. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  410. length, 1);
  411. }
  412. static struct track *get_track(struct kmem_cache *s, void *object,
  413. enum track_item alloc)
  414. {
  415. struct track *p;
  416. if (s->offset)
  417. p = object + s->offset + sizeof(void *);
  418. else
  419. p = object + s->inuse;
  420. return p + alloc;
  421. }
  422. static void set_track(struct kmem_cache *s, void *object,
  423. enum track_item alloc, unsigned long addr)
  424. {
  425. struct track *p = get_track(s, object, alloc);
  426. if (addr) {
  427. #ifdef CONFIG_STACKTRACE
  428. struct stack_trace trace;
  429. int i;
  430. trace.nr_entries = 0;
  431. trace.max_entries = TRACK_ADDRS_COUNT;
  432. trace.entries = p->addrs;
  433. trace.skip = 3;
  434. save_stack_trace(&trace);
  435. /* See rant in lockdep.c */
  436. if (trace.nr_entries != 0 &&
  437. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  438. trace.nr_entries--;
  439. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  440. p->addrs[i] = 0;
  441. #endif
  442. p->addr = addr;
  443. p->cpu = smp_processor_id();
  444. p->pid = current->pid;
  445. p->when = jiffies;
  446. } else
  447. memset(p, 0, sizeof(struct track));
  448. }
  449. static void init_tracking(struct kmem_cache *s, void *object)
  450. {
  451. if (!(s->flags & SLAB_STORE_USER))
  452. return;
  453. set_track(s, object, TRACK_FREE, 0UL);
  454. set_track(s, object, TRACK_ALLOC, 0UL);
  455. }
  456. static void print_track(const char *s, struct track *t)
  457. {
  458. if (!t->addr)
  459. return;
  460. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  461. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  462. #ifdef CONFIG_STACKTRACE
  463. {
  464. int i;
  465. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  466. if (t->addrs[i])
  467. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  468. else
  469. break;
  470. }
  471. #endif
  472. }
  473. static void print_tracking(struct kmem_cache *s, void *object)
  474. {
  475. if (!(s->flags & SLAB_STORE_USER))
  476. return;
  477. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  478. print_track("Freed", get_track(s, object, TRACK_FREE));
  479. }
  480. static void print_page_info(struct page *page)
  481. {
  482. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  483. page, page->objects, page->inuse, page->freelist, page->flags);
  484. }
  485. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  486. {
  487. va_list args;
  488. char buf[100];
  489. va_start(args, fmt);
  490. vsnprintf(buf, sizeof(buf), fmt, args);
  491. va_end(args);
  492. printk(KERN_ERR "========================================"
  493. "=====================================\n");
  494. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  495. printk(KERN_ERR "----------------------------------------"
  496. "-------------------------------------\n\n");
  497. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  498. }
  499. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  500. {
  501. va_list args;
  502. char buf[100];
  503. va_start(args, fmt);
  504. vsnprintf(buf, sizeof(buf), fmt, args);
  505. va_end(args);
  506. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  507. }
  508. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  509. {
  510. unsigned int off; /* Offset of last byte */
  511. u8 *addr = page_address(page);
  512. print_tracking(s, p);
  513. print_page_info(page);
  514. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  515. p, p - addr, get_freepointer(s, p));
  516. if (p > addr + 16)
  517. print_section("Bytes b4 ", p - 16, 16);
  518. print_section("Object ", p, min_t(unsigned long, s->object_size,
  519. PAGE_SIZE));
  520. if (s->flags & SLAB_RED_ZONE)
  521. print_section("Redzone ", p + s->object_size,
  522. s->inuse - s->object_size);
  523. if (s->offset)
  524. off = s->offset + sizeof(void *);
  525. else
  526. off = s->inuse;
  527. if (s->flags & SLAB_STORE_USER)
  528. off += 2 * sizeof(struct track);
  529. if (off != s->size)
  530. /* Beginning of the filler is the free pointer */
  531. print_section("Padding ", p + off, s->size - off);
  532. dump_stack();
  533. }
  534. static void object_err(struct kmem_cache *s, struct page *page,
  535. u8 *object, char *reason)
  536. {
  537. slab_bug(s, "%s", reason);
  538. print_trailer(s, page, object);
  539. }
  540. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  541. {
  542. va_list args;
  543. char buf[100];
  544. va_start(args, fmt);
  545. vsnprintf(buf, sizeof(buf), fmt, args);
  546. va_end(args);
  547. slab_bug(s, "%s", buf);
  548. print_page_info(page);
  549. dump_stack();
  550. }
  551. static void init_object(struct kmem_cache *s, void *object, u8 val)
  552. {
  553. u8 *p = object;
  554. if (s->flags & __OBJECT_POISON) {
  555. memset(p, POISON_FREE, s->object_size - 1);
  556. p[s->object_size - 1] = POISON_END;
  557. }
  558. if (s->flags & SLAB_RED_ZONE)
  559. memset(p + s->object_size, val, s->inuse - s->object_size);
  560. }
  561. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  562. void *from, void *to)
  563. {
  564. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  565. memset(from, data, to - from);
  566. }
  567. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  568. u8 *object, char *what,
  569. u8 *start, unsigned int value, unsigned int bytes)
  570. {
  571. u8 *fault;
  572. u8 *end;
  573. fault = memchr_inv(start, value, bytes);
  574. if (!fault)
  575. return 1;
  576. end = start + bytes;
  577. while (end > fault && end[-1] == value)
  578. end--;
  579. slab_bug(s, "%s overwritten", what);
  580. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  581. fault, end - 1, fault[0], value);
  582. print_trailer(s, page, object);
  583. restore_bytes(s, what, value, fault, end);
  584. return 0;
  585. }
  586. /*
  587. * Object layout:
  588. *
  589. * object address
  590. * Bytes of the object to be managed.
  591. * If the freepointer may overlay the object then the free
  592. * pointer is the first word of the object.
  593. *
  594. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  595. * 0xa5 (POISON_END)
  596. *
  597. * object + s->object_size
  598. * Padding to reach word boundary. This is also used for Redzoning.
  599. * Padding is extended by another word if Redzoning is enabled and
  600. * object_size == inuse.
  601. *
  602. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  603. * 0xcc (RED_ACTIVE) for objects in use.
  604. *
  605. * object + s->inuse
  606. * Meta data starts here.
  607. *
  608. * A. Free pointer (if we cannot overwrite object on free)
  609. * B. Tracking data for SLAB_STORE_USER
  610. * C. Padding to reach required alignment boundary or at mininum
  611. * one word if debugging is on to be able to detect writes
  612. * before the word boundary.
  613. *
  614. * Padding is done using 0x5a (POISON_INUSE)
  615. *
  616. * object + s->size
  617. * Nothing is used beyond s->size.
  618. *
  619. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  620. * ignored. And therefore no slab options that rely on these boundaries
  621. * may be used with merged slabcaches.
  622. */
  623. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  624. {
  625. unsigned long off = s->inuse; /* The end of info */
  626. if (s->offset)
  627. /* Freepointer is placed after the object. */
  628. off += sizeof(void *);
  629. if (s->flags & SLAB_STORE_USER)
  630. /* We also have user information there */
  631. off += 2 * sizeof(struct track);
  632. if (s->size == off)
  633. return 1;
  634. return check_bytes_and_report(s, page, p, "Object padding",
  635. p + off, POISON_INUSE, s->size - off);
  636. }
  637. /* Check the pad bytes at the end of a slab page */
  638. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  639. {
  640. u8 *start;
  641. u8 *fault;
  642. u8 *end;
  643. int length;
  644. int remainder;
  645. if (!(s->flags & SLAB_POISON))
  646. return 1;
  647. start = page_address(page);
  648. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  649. end = start + length;
  650. remainder = length % s->size;
  651. if (!remainder)
  652. return 1;
  653. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  654. if (!fault)
  655. return 1;
  656. while (end > fault && end[-1] == POISON_INUSE)
  657. end--;
  658. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  659. print_section("Padding ", end - remainder, remainder);
  660. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  661. return 0;
  662. }
  663. static int check_object(struct kmem_cache *s, struct page *page,
  664. void *object, u8 val)
  665. {
  666. u8 *p = object;
  667. u8 *endobject = object + s->object_size;
  668. if (s->flags & SLAB_RED_ZONE) {
  669. if (!check_bytes_and_report(s, page, object, "Redzone",
  670. endobject, val, s->inuse - s->object_size))
  671. return 0;
  672. } else {
  673. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  674. check_bytes_and_report(s, page, p, "Alignment padding",
  675. endobject, POISON_INUSE, s->inuse - s->object_size);
  676. }
  677. }
  678. if (s->flags & SLAB_POISON) {
  679. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  680. (!check_bytes_and_report(s, page, p, "Poison", p,
  681. POISON_FREE, s->object_size - 1) ||
  682. !check_bytes_and_report(s, page, p, "Poison",
  683. p + s->object_size - 1, POISON_END, 1)))
  684. return 0;
  685. /*
  686. * check_pad_bytes cleans up on its own.
  687. */
  688. check_pad_bytes(s, page, p);
  689. }
  690. if (!s->offset && val == SLUB_RED_ACTIVE)
  691. /*
  692. * Object and freepointer overlap. Cannot check
  693. * freepointer while object is allocated.
  694. */
  695. return 1;
  696. /* Check free pointer validity */
  697. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  698. object_err(s, page, p, "Freepointer corrupt");
  699. /*
  700. * No choice but to zap it and thus lose the remainder
  701. * of the free objects in this slab. May cause
  702. * another error because the object count is now wrong.
  703. */
  704. set_freepointer(s, p, NULL);
  705. return 0;
  706. }
  707. return 1;
  708. }
  709. static int check_slab(struct kmem_cache *s, struct page *page)
  710. {
  711. int maxobj;
  712. VM_BUG_ON(!irqs_disabled());
  713. if (!PageSlab(page)) {
  714. slab_err(s, page, "Not a valid slab page");
  715. return 0;
  716. }
  717. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  718. if (page->objects > maxobj) {
  719. slab_err(s, page, "objects %u > max %u",
  720. s->name, page->objects, maxobj);
  721. return 0;
  722. }
  723. if (page->inuse > page->objects) {
  724. slab_err(s, page, "inuse %u > max %u",
  725. s->name, page->inuse, page->objects);
  726. return 0;
  727. }
  728. /* Slab_pad_check fixes things up after itself */
  729. slab_pad_check(s, page);
  730. return 1;
  731. }
  732. /*
  733. * Determine if a certain object on a page is on the freelist. Must hold the
  734. * slab lock to guarantee that the chains are in a consistent state.
  735. */
  736. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  737. {
  738. int nr = 0;
  739. void *fp;
  740. void *object = NULL;
  741. unsigned long max_objects;
  742. fp = page->freelist;
  743. while (fp && nr <= page->objects) {
  744. if (fp == search)
  745. return 1;
  746. if (!check_valid_pointer(s, page, fp)) {
  747. if (object) {
  748. object_err(s, page, object,
  749. "Freechain corrupt");
  750. set_freepointer(s, object, NULL);
  751. break;
  752. } else {
  753. slab_err(s, page, "Freepointer corrupt");
  754. page->freelist = NULL;
  755. page->inuse = page->objects;
  756. slab_fix(s, "Freelist cleared");
  757. return 0;
  758. }
  759. break;
  760. }
  761. object = fp;
  762. fp = get_freepointer(s, object);
  763. nr++;
  764. }
  765. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  766. if (max_objects > MAX_OBJS_PER_PAGE)
  767. max_objects = MAX_OBJS_PER_PAGE;
  768. if (page->objects != max_objects) {
  769. slab_err(s, page, "Wrong number of objects. Found %d but "
  770. "should be %d", page->objects, max_objects);
  771. page->objects = max_objects;
  772. slab_fix(s, "Number of objects adjusted.");
  773. }
  774. if (page->inuse != page->objects - nr) {
  775. slab_err(s, page, "Wrong object count. Counter is %d but "
  776. "counted were %d", page->inuse, page->objects - nr);
  777. page->inuse = page->objects - nr;
  778. slab_fix(s, "Object count adjusted.");
  779. }
  780. return search == NULL;
  781. }
  782. static void trace(struct kmem_cache *s, struct page *page, void *object,
  783. int alloc)
  784. {
  785. if (s->flags & SLAB_TRACE) {
  786. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  787. s->name,
  788. alloc ? "alloc" : "free",
  789. object, page->inuse,
  790. page->freelist);
  791. if (!alloc)
  792. print_section("Object ", (void *)object, s->object_size);
  793. dump_stack();
  794. }
  795. }
  796. /*
  797. * Hooks for other subsystems that check memory allocations. In a typical
  798. * production configuration these hooks all should produce no code at all.
  799. */
  800. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  801. {
  802. flags &= gfp_allowed_mask;
  803. lockdep_trace_alloc(flags);
  804. might_sleep_if(flags & __GFP_WAIT);
  805. return should_failslab(s->object_size, flags, s->flags);
  806. }
  807. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  808. {
  809. flags &= gfp_allowed_mask;
  810. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  811. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  812. }
  813. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  814. {
  815. kmemleak_free_recursive(x, s->flags);
  816. /*
  817. * Trouble is that we may no longer disable interupts in the fast path
  818. * So in order to make the debug calls that expect irqs to be
  819. * disabled we need to disable interrupts temporarily.
  820. */
  821. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  822. {
  823. unsigned long flags;
  824. local_irq_save(flags);
  825. kmemcheck_slab_free(s, x, s->object_size);
  826. debug_check_no_locks_freed(x, s->object_size);
  827. local_irq_restore(flags);
  828. }
  829. #endif
  830. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  831. debug_check_no_obj_freed(x, s->object_size);
  832. }
  833. /*
  834. * Tracking of fully allocated slabs for debugging purposes.
  835. *
  836. * list_lock must be held.
  837. */
  838. static void add_full(struct kmem_cache *s,
  839. struct kmem_cache_node *n, struct page *page)
  840. {
  841. if (!(s->flags & SLAB_STORE_USER))
  842. return;
  843. list_add(&page->lru, &n->full);
  844. }
  845. /*
  846. * list_lock must be held.
  847. */
  848. static void remove_full(struct kmem_cache *s, struct page *page)
  849. {
  850. if (!(s->flags & SLAB_STORE_USER))
  851. return;
  852. list_del(&page->lru);
  853. }
  854. /* Tracking of the number of slabs for debugging purposes */
  855. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  856. {
  857. struct kmem_cache_node *n = get_node(s, node);
  858. return atomic_long_read(&n->nr_slabs);
  859. }
  860. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  861. {
  862. return atomic_long_read(&n->nr_slabs);
  863. }
  864. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  865. {
  866. struct kmem_cache_node *n = get_node(s, node);
  867. /*
  868. * May be called early in order to allocate a slab for the
  869. * kmem_cache_node structure. Solve the chicken-egg
  870. * dilemma by deferring the increment of the count during
  871. * bootstrap (see early_kmem_cache_node_alloc).
  872. */
  873. if (likely(n)) {
  874. atomic_long_inc(&n->nr_slabs);
  875. atomic_long_add(objects, &n->total_objects);
  876. }
  877. }
  878. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  879. {
  880. struct kmem_cache_node *n = get_node(s, node);
  881. atomic_long_dec(&n->nr_slabs);
  882. atomic_long_sub(objects, &n->total_objects);
  883. }
  884. /* Object debug checks for alloc/free paths */
  885. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  886. void *object)
  887. {
  888. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  889. return;
  890. init_object(s, object, SLUB_RED_INACTIVE);
  891. init_tracking(s, object);
  892. }
  893. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  894. void *object, unsigned long addr)
  895. {
  896. if (!check_slab(s, page))
  897. goto bad;
  898. if (!check_valid_pointer(s, page, object)) {
  899. object_err(s, page, object, "Freelist Pointer check fails");
  900. goto bad;
  901. }
  902. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  903. goto bad;
  904. /* Success perform special debug activities for allocs */
  905. if (s->flags & SLAB_STORE_USER)
  906. set_track(s, object, TRACK_ALLOC, addr);
  907. trace(s, page, object, 1);
  908. init_object(s, object, SLUB_RED_ACTIVE);
  909. return 1;
  910. bad:
  911. if (PageSlab(page)) {
  912. /*
  913. * If this is a slab page then lets do the best we can
  914. * to avoid issues in the future. Marking all objects
  915. * as used avoids touching the remaining objects.
  916. */
  917. slab_fix(s, "Marking all objects used");
  918. page->inuse = page->objects;
  919. page->freelist = NULL;
  920. }
  921. return 0;
  922. }
  923. static noinline struct kmem_cache_node *free_debug_processing(
  924. struct kmem_cache *s, struct page *page, void *object,
  925. unsigned long addr, unsigned long *flags)
  926. {
  927. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  928. spin_lock_irqsave(&n->list_lock, *flags);
  929. slab_lock(page);
  930. if (!check_slab(s, page))
  931. goto fail;
  932. if (!check_valid_pointer(s, page, object)) {
  933. slab_err(s, page, "Invalid object pointer 0x%p", object);
  934. goto fail;
  935. }
  936. if (on_freelist(s, page, object)) {
  937. object_err(s, page, object, "Object already free");
  938. goto fail;
  939. }
  940. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  941. goto out;
  942. if (unlikely(s != page->slab_cache)) {
  943. if (!PageSlab(page)) {
  944. slab_err(s, page, "Attempt to free object(0x%p) "
  945. "outside of slab", object);
  946. } else if (!page->slab_cache) {
  947. printk(KERN_ERR
  948. "SLUB <none>: no slab for object 0x%p.\n",
  949. object);
  950. dump_stack();
  951. } else
  952. object_err(s, page, object,
  953. "page slab pointer corrupt.");
  954. goto fail;
  955. }
  956. if (s->flags & SLAB_STORE_USER)
  957. set_track(s, object, TRACK_FREE, addr);
  958. trace(s, page, object, 0);
  959. init_object(s, object, SLUB_RED_INACTIVE);
  960. out:
  961. slab_unlock(page);
  962. /*
  963. * Keep node_lock to preserve integrity
  964. * until the object is actually freed
  965. */
  966. return n;
  967. fail:
  968. slab_unlock(page);
  969. spin_unlock_irqrestore(&n->list_lock, *flags);
  970. slab_fix(s, "Object at 0x%p not freed", object);
  971. return NULL;
  972. }
  973. static int __init setup_slub_debug(char *str)
  974. {
  975. slub_debug = DEBUG_DEFAULT_FLAGS;
  976. if (*str++ != '=' || !*str)
  977. /*
  978. * No options specified. Switch on full debugging.
  979. */
  980. goto out;
  981. if (*str == ',')
  982. /*
  983. * No options but restriction on slabs. This means full
  984. * debugging for slabs matching a pattern.
  985. */
  986. goto check_slabs;
  987. if (tolower(*str) == 'o') {
  988. /*
  989. * Avoid enabling debugging on caches if its minimum order
  990. * would increase as a result.
  991. */
  992. disable_higher_order_debug = 1;
  993. goto out;
  994. }
  995. slub_debug = 0;
  996. if (*str == '-')
  997. /*
  998. * Switch off all debugging measures.
  999. */
  1000. goto out;
  1001. /*
  1002. * Determine which debug features should be switched on
  1003. */
  1004. for (; *str && *str != ','; str++) {
  1005. switch (tolower(*str)) {
  1006. case 'f':
  1007. slub_debug |= SLAB_DEBUG_FREE;
  1008. break;
  1009. case 'z':
  1010. slub_debug |= SLAB_RED_ZONE;
  1011. break;
  1012. case 'p':
  1013. slub_debug |= SLAB_POISON;
  1014. break;
  1015. case 'u':
  1016. slub_debug |= SLAB_STORE_USER;
  1017. break;
  1018. case 't':
  1019. slub_debug |= SLAB_TRACE;
  1020. break;
  1021. case 'a':
  1022. slub_debug |= SLAB_FAILSLAB;
  1023. break;
  1024. default:
  1025. printk(KERN_ERR "slub_debug option '%c' "
  1026. "unknown. skipped\n", *str);
  1027. }
  1028. }
  1029. check_slabs:
  1030. if (*str == ',')
  1031. slub_debug_slabs = str + 1;
  1032. out:
  1033. return 1;
  1034. }
  1035. __setup("slub_debug", setup_slub_debug);
  1036. static unsigned long kmem_cache_flags(unsigned long object_size,
  1037. unsigned long flags, const char *name,
  1038. void (*ctor)(void *))
  1039. {
  1040. /*
  1041. * Enable debugging if selected on the kernel commandline.
  1042. */
  1043. if (slub_debug && (!slub_debug_slabs ||
  1044. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1045. flags |= slub_debug;
  1046. return flags;
  1047. }
  1048. #else
  1049. static inline void setup_object_debug(struct kmem_cache *s,
  1050. struct page *page, void *object) {}
  1051. static inline int alloc_debug_processing(struct kmem_cache *s,
  1052. struct page *page, void *object, unsigned long addr) { return 0; }
  1053. static inline struct kmem_cache_node *free_debug_processing(
  1054. struct kmem_cache *s, struct page *page, void *object,
  1055. unsigned long addr, unsigned long *flags) { return NULL; }
  1056. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1057. { return 1; }
  1058. static inline int check_object(struct kmem_cache *s, struct page *page,
  1059. void *object, u8 val) { return 1; }
  1060. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1061. struct page *page) {}
  1062. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1063. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1064. unsigned long flags, const char *name,
  1065. void (*ctor)(void *))
  1066. {
  1067. return flags;
  1068. }
  1069. #define slub_debug 0
  1070. #define disable_higher_order_debug 0
  1071. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1072. { return 0; }
  1073. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1074. { return 0; }
  1075. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1076. int objects) {}
  1077. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1078. int objects) {}
  1079. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1080. { return 0; }
  1081. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1082. void *object) {}
  1083. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1084. #endif /* CONFIG_SLUB_DEBUG */
  1085. /*
  1086. * Slab allocation and freeing
  1087. */
  1088. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1089. struct kmem_cache_order_objects oo)
  1090. {
  1091. int order = oo_order(oo);
  1092. flags |= __GFP_NOTRACK;
  1093. if (node == NUMA_NO_NODE)
  1094. return alloc_pages(flags, order);
  1095. else
  1096. return alloc_pages_exact_node(node, flags, order);
  1097. }
  1098. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1099. {
  1100. struct page *page;
  1101. struct kmem_cache_order_objects oo = s->oo;
  1102. gfp_t alloc_gfp;
  1103. flags &= gfp_allowed_mask;
  1104. if (flags & __GFP_WAIT)
  1105. local_irq_enable();
  1106. flags |= s->allocflags;
  1107. /*
  1108. * Let the initial higher-order allocation fail under memory pressure
  1109. * so we fall-back to the minimum order allocation.
  1110. */
  1111. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1112. page = alloc_slab_page(alloc_gfp, node, oo);
  1113. if (unlikely(!page)) {
  1114. oo = s->min;
  1115. /*
  1116. * Allocation may have failed due to fragmentation.
  1117. * Try a lower order alloc if possible
  1118. */
  1119. page = alloc_slab_page(flags, node, oo);
  1120. if (page)
  1121. stat(s, ORDER_FALLBACK);
  1122. }
  1123. if (kmemcheck_enabled && page
  1124. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1125. int pages = 1 << oo_order(oo);
  1126. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1127. /*
  1128. * Objects from caches that have a constructor don't get
  1129. * cleared when they're allocated, so we need to do it here.
  1130. */
  1131. if (s->ctor)
  1132. kmemcheck_mark_uninitialized_pages(page, pages);
  1133. else
  1134. kmemcheck_mark_unallocated_pages(page, pages);
  1135. }
  1136. if (flags & __GFP_WAIT)
  1137. local_irq_disable();
  1138. if (!page)
  1139. return NULL;
  1140. page->objects = oo_objects(oo);
  1141. mod_zone_page_state(page_zone(page),
  1142. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1143. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1144. 1 << oo_order(oo));
  1145. return page;
  1146. }
  1147. static void setup_object(struct kmem_cache *s, struct page *page,
  1148. void *object)
  1149. {
  1150. setup_object_debug(s, page, object);
  1151. if (unlikely(s->ctor))
  1152. s->ctor(object);
  1153. }
  1154. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1155. {
  1156. struct page *page;
  1157. void *start;
  1158. void *last;
  1159. void *p;
  1160. int order;
  1161. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1162. page = allocate_slab(s,
  1163. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1164. if (!page)
  1165. goto out;
  1166. order = compound_order(page);
  1167. inc_slabs_node(s, page_to_nid(page), page->objects);
  1168. memcg_bind_pages(s, order);
  1169. page->slab_cache = s;
  1170. __SetPageSlab(page);
  1171. if (page->pfmemalloc)
  1172. SetPageSlabPfmemalloc(page);
  1173. start = page_address(page);
  1174. if (unlikely(s->flags & SLAB_POISON))
  1175. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1176. last = start;
  1177. for_each_object(p, s, start, page->objects) {
  1178. setup_object(s, page, last);
  1179. set_freepointer(s, last, p);
  1180. last = p;
  1181. }
  1182. setup_object(s, page, last);
  1183. set_freepointer(s, last, NULL);
  1184. page->freelist = start;
  1185. page->inuse = page->objects;
  1186. page->frozen = 1;
  1187. out:
  1188. return page;
  1189. }
  1190. static void __free_slab(struct kmem_cache *s, struct page *page)
  1191. {
  1192. int order = compound_order(page);
  1193. int pages = 1 << order;
  1194. if (kmem_cache_debug(s)) {
  1195. void *p;
  1196. slab_pad_check(s, page);
  1197. for_each_object(p, s, page_address(page),
  1198. page->objects)
  1199. check_object(s, page, p, SLUB_RED_INACTIVE);
  1200. }
  1201. kmemcheck_free_shadow(page, compound_order(page));
  1202. mod_zone_page_state(page_zone(page),
  1203. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1204. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1205. -pages);
  1206. __ClearPageSlabPfmemalloc(page);
  1207. __ClearPageSlab(page);
  1208. memcg_release_pages(s, order);
  1209. page_mapcount_reset(page);
  1210. if (current->reclaim_state)
  1211. current->reclaim_state->reclaimed_slab += pages;
  1212. __free_memcg_kmem_pages(page, order);
  1213. }
  1214. #define need_reserve_slab_rcu \
  1215. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1216. static void rcu_free_slab(struct rcu_head *h)
  1217. {
  1218. struct page *page;
  1219. if (need_reserve_slab_rcu)
  1220. page = virt_to_head_page(h);
  1221. else
  1222. page = container_of((struct list_head *)h, struct page, lru);
  1223. __free_slab(page->slab_cache, page);
  1224. }
  1225. static void free_slab(struct kmem_cache *s, struct page *page)
  1226. {
  1227. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1228. struct rcu_head *head;
  1229. if (need_reserve_slab_rcu) {
  1230. int order = compound_order(page);
  1231. int offset = (PAGE_SIZE << order) - s->reserved;
  1232. VM_BUG_ON(s->reserved != sizeof(*head));
  1233. head = page_address(page) + offset;
  1234. } else {
  1235. /*
  1236. * RCU free overloads the RCU head over the LRU
  1237. */
  1238. head = (void *)&page->lru;
  1239. }
  1240. call_rcu(head, rcu_free_slab);
  1241. } else
  1242. __free_slab(s, page);
  1243. }
  1244. static void discard_slab(struct kmem_cache *s, struct page *page)
  1245. {
  1246. dec_slabs_node(s, page_to_nid(page), page->objects);
  1247. free_slab(s, page);
  1248. }
  1249. /*
  1250. * Management of partially allocated slabs.
  1251. *
  1252. * list_lock must be held.
  1253. */
  1254. static inline void add_partial(struct kmem_cache_node *n,
  1255. struct page *page, int tail)
  1256. {
  1257. n->nr_partial++;
  1258. if (tail == DEACTIVATE_TO_TAIL)
  1259. list_add_tail(&page->lru, &n->partial);
  1260. else
  1261. list_add(&page->lru, &n->partial);
  1262. }
  1263. /*
  1264. * list_lock must be held.
  1265. */
  1266. static inline void remove_partial(struct kmem_cache_node *n,
  1267. struct page *page)
  1268. {
  1269. list_del(&page->lru);
  1270. n->nr_partial--;
  1271. }
  1272. /*
  1273. * Remove slab from the partial list, freeze it and
  1274. * return the pointer to the freelist.
  1275. *
  1276. * Returns a list of objects or NULL if it fails.
  1277. *
  1278. * Must hold list_lock since we modify the partial list.
  1279. */
  1280. static inline void *acquire_slab(struct kmem_cache *s,
  1281. struct kmem_cache_node *n, struct page *page,
  1282. int mode, int *objects)
  1283. {
  1284. void *freelist;
  1285. unsigned long counters;
  1286. struct page new;
  1287. /*
  1288. * Zap the freelist and set the frozen bit.
  1289. * The old freelist is the list of objects for the
  1290. * per cpu allocation list.
  1291. */
  1292. freelist = page->freelist;
  1293. counters = page->counters;
  1294. new.counters = counters;
  1295. *objects = new.objects - new.inuse;
  1296. if (mode) {
  1297. new.inuse = page->objects;
  1298. new.freelist = NULL;
  1299. } else {
  1300. new.freelist = freelist;
  1301. }
  1302. VM_BUG_ON(new.frozen);
  1303. new.frozen = 1;
  1304. if (!__cmpxchg_double_slab(s, page,
  1305. freelist, counters,
  1306. new.freelist, new.counters,
  1307. "acquire_slab"))
  1308. return NULL;
  1309. remove_partial(n, page);
  1310. WARN_ON(!freelist);
  1311. return freelist;
  1312. }
  1313. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1314. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1315. /*
  1316. * Try to allocate a partial slab from a specific node.
  1317. */
  1318. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1319. struct kmem_cache_cpu *c, gfp_t flags)
  1320. {
  1321. struct page *page, *page2;
  1322. void *object = NULL;
  1323. int available = 0;
  1324. int objects;
  1325. /*
  1326. * Racy check. If we mistakenly see no partial slabs then we
  1327. * just allocate an empty slab. If we mistakenly try to get a
  1328. * partial slab and there is none available then get_partials()
  1329. * will return NULL.
  1330. */
  1331. if (!n || !n->nr_partial)
  1332. return NULL;
  1333. spin_lock(&n->list_lock);
  1334. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1335. void *t;
  1336. if (!pfmemalloc_match(page, flags))
  1337. continue;
  1338. t = acquire_slab(s, n, page, object == NULL, &objects);
  1339. if (!t)
  1340. break;
  1341. available += objects;
  1342. if (!object) {
  1343. c->page = page;
  1344. stat(s, ALLOC_FROM_PARTIAL);
  1345. object = t;
  1346. } else {
  1347. put_cpu_partial(s, page, 0);
  1348. stat(s, CPU_PARTIAL_NODE);
  1349. }
  1350. if (!kmem_cache_has_cpu_partial(s)
  1351. || available > s->cpu_partial / 2)
  1352. break;
  1353. }
  1354. spin_unlock(&n->list_lock);
  1355. return object;
  1356. }
  1357. /*
  1358. * Get a page from somewhere. Search in increasing NUMA distances.
  1359. */
  1360. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1361. struct kmem_cache_cpu *c)
  1362. {
  1363. #ifdef CONFIG_NUMA
  1364. struct zonelist *zonelist;
  1365. struct zoneref *z;
  1366. struct zone *zone;
  1367. enum zone_type high_zoneidx = gfp_zone(flags);
  1368. void *object;
  1369. unsigned int cpuset_mems_cookie;
  1370. /*
  1371. * The defrag ratio allows a configuration of the tradeoffs between
  1372. * inter node defragmentation and node local allocations. A lower
  1373. * defrag_ratio increases the tendency to do local allocations
  1374. * instead of attempting to obtain partial slabs from other nodes.
  1375. *
  1376. * If the defrag_ratio is set to 0 then kmalloc() always
  1377. * returns node local objects. If the ratio is higher then kmalloc()
  1378. * may return off node objects because partial slabs are obtained
  1379. * from other nodes and filled up.
  1380. *
  1381. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1382. * defrag_ratio = 1000) then every (well almost) allocation will
  1383. * first attempt to defrag slab caches on other nodes. This means
  1384. * scanning over all nodes to look for partial slabs which may be
  1385. * expensive if we do it every time we are trying to find a slab
  1386. * with available objects.
  1387. */
  1388. if (!s->remote_node_defrag_ratio ||
  1389. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1390. return NULL;
  1391. do {
  1392. cpuset_mems_cookie = get_mems_allowed();
  1393. zonelist = node_zonelist(slab_node(), flags);
  1394. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1395. struct kmem_cache_node *n;
  1396. n = get_node(s, zone_to_nid(zone));
  1397. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1398. n->nr_partial > s->min_partial) {
  1399. object = get_partial_node(s, n, c, flags);
  1400. if (object) {
  1401. /*
  1402. * Return the object even if
  1403. * put_mems_allowed indicated that
  1404. * the cpuset mems_allowed was
  1405. * updated in parallel. It's a
  1406. * harmless race between the alloc
  1407. * and the cpuset update.
  1408. */
  1409. put_mems_allowed(cpuset_mems_cookie);
  1410. return object;
  1411. }
  1412. }
  1413. }
  1414. } while (!put_mems_allowed(cpuset_mems_cookie));
  1415. #endif
  1416. return NULL;
  1417. }
  1418. /*
  1419. * Get a partial page, lock it and return it.
  1420. */
  1421. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1422. struct kmem_cache_cpu *c)
  1423. {
  1424. void *object;
  1425. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1426. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1427. if (object || node != NUMA_NO_NODE)
  1428. return object;
  1429. return get_any_partial(s, flags, c);
  1430. }
  1431. #ifdef CONFIG_PREEMPT
  1432. /*
  1433. * Calculate the next globally unique transaction for disambiguiation
  1434. * during cmpxchg. The transactions start with the cpu number and are then
  1435. * incremented by CONFIG_NR_CPUS.
  1436. */
  1437. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1438. #else
  1439. /*
  1440. * No preemption supported therefore also no need to check for
  1441. * different cpus.
  1442. */
  1443. #define TID_STEP 1
  1444. #endif
  1445. static inline unsigned long next_tid(unsigned long tid)
  1446. {
  1447. return tid + TID_STEP;
  1448. }
  1449. static inline unsigned int tid_to_cpu(unsigned long tid)
  1450. {
  1451. return tid % TID_STEP;
  1452. }
  1453. static inline unsigned long tid_to_event(unsigned long tid)
  1454. {
  1455. return tid / TID_STEP;
  1456. }
  1457. static inline unsigned int init_tid(int cpu)
  1458. {
  1459. return cpu;
  1460. }
  1461. static inline void note_cmpxchg_failure(const char *n,
  1462. const struct kmem_cache *s, unsigned long tid)
  1463. {
  1464. #ifdef SLUB_DEBUG_CMPXCHG
  1465. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1466. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1467. #ifdef CONFIG_PREEMPT
  1468. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1469. printk("due to cpu change %d -> %d\n",
  1470. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1471. else
  1472. #endif
  1473. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1474. printk("due to cpu running other code. Event %ld->%ld\n",
  1475. tid_to_event(tid), tid_to_event(actual_tid));
  1476. else
  1477. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1478. actual_tid, tid, next_tid(tid));
  1479. #endif
  1480. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1481. }
  1482. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1483. {
  1484. int cpu;
  1485. for_each_possible_cpu(cpu)
  1486. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1487. }
  1488. /*
  1489. * Remove the cpu slab
  1490. */
  1491. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1492. {
  1493. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1494. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1495. int lock = 0;
  1496. enum slab_modes l = M_NONE, m = M_NONE;
  1497. void *nextfree;
  1498. int tail = DEACTIVATE_TO_HEAD;
  1499. struct page new;
  1500. struct page old;
  1501. if (page->freelist) {
  1502. stat(s, DEACTIVATE_REMOTE_FREES);
  1503. tail = DEACTIVATE_TO_TAIL;
  1504. }
  1505. /*
  1506. * Stage one: Free all available per cpu objects back
  1507. * to the page freelist while it is still frozen. Leave the
  1508. * last one.
  1509. *
  1510. * There is no need to take the list->lock because the page
  1511. * is still frozen.
  1512. */
  1513. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1514. void *prior;
  1515. unsigned long counters;
  1516. do {
  1517. prior = page->freelist;
  1518. counters = page->counters;
  1519. set_freepointer(s, freelist, prior);
  1520. new.counters = counters;
  1521. new.inuse--;
  1522. VM_BUG_ON(!new.frozen);
  1523. } while (!__cmpxchg_double_slab(s, page,
  1524. prior, counters,
  1525. freelist, new.counters,
  1526. "drain percpu freelist"));
  1527. freelist = nextfree;
  1528. }
  1529. /*
  1530. * Stage two: Ensure that the page is unfrozen while the
  1531. * list presence reflects the actual number of objects
  1532. * during unfreeze.
  1533. *
  1534. * We setup the list membership and then perform a cmpxchg
  1535. * with the count. If there is a mismatch then the page
  1536. * is not unfrozen but the page is on the wrong list.
  1537. *
  1538. * Then we restart the process which may have to remove
  1539. * the page from the list that we just put it on again
  1540. * because the number of objects in the slab may have
  1541. * changed.
  1542. */
  1543. redo:
  1544. old.freelist = page->freelist;
  1545. old.counters = page->counters;
  1546. VM_BUG_ON(!old.frozen);
  1547. /* Determine target state of the slab */
  1548. new.counters = old.counters;
  1549. if (freelist) {
  1550. new.inuse--;
  1551. set_freepointer(s, freelist, old.freelist);
  1552. new.freelist = freelist;
  1553. } else
  1554. new.freelist = old.freelist;
  1555. new.frozen = 0;
  1556. if (!new.inuse && n->nr_partial > s->min_partial)
  1557. m = M_FREE;
  1558. else if (new.freelist) {
  1559. m = M_PARTIAL;
  1560. if (!lock) {
  1561. lock = 1;
  1562. /*
  1563. * Taking the spinlock removes the possiblity
  1564. * that acquire_slab() will see a slab page that
  1565. * is frozen
  1566. */
  1567. spin_lock(&n->list_lock);
  1568. }
  1569. } else {
  1570. m = M_FULL;
  1571. if (kmem_cache_debug(s) && !lock) {
  1572. lock = 1;
  1573. /*
  1574. * This also ensures that the scanning of full
  1575. * slabs from diagnostic functions will not see
  1576. * any frozen slabs.
  1577. */
  1578. spin_lock(&n->list_lock);
  1579. }
  1580. }
  1581. if (l != m) {
  1582. if (l == M_PARTIAL)
  1583. remove_partial(n, page);
  1584. else if (l == M_FULL)
  1585. remove_full(s, page);
  1586. if (m == M_PARTIAL) {
  1587. add_partial(n, page, tail);
  1588. stat(s, tail);
  1589. } else if (m == M_FULL) {
  1590. stat(s, DEACTIVATE_FULL);
  1591. add_full(s, n, page);
  1592. }
  1593. }
  1594. l = m;
  1595. if (!__cmpxchg_double_slab(s, page,
  1596. old.freelist, old.counters,
  1597. new.freelist, new.counters,
  1598. "unfreezing slab"))
  1599. goto redo;
  1600. if (lock)
  1601. spin_unlock(&n->list_lock);
  1602. if (m == M_FREE) {
  1603. stat(s, DEACTIVATE_EMPTY);
  1604. discard_slab(s, page);
  1605. stat(s, FREE_SLAB);
  1606. }
  1607. }
  1608. /*
  1609. * Unfreeze all the cpu partial slabs.
  1610. *
  1611. * This function must be called with interrupts disabled
  1612. * for the cpu using c (or some other guarantee must be there
  1613. * to guarantee no concurrent accesses).
  1614. */
  1615. static void unfreeze_partials(struct kmem_cache *s,
  1616. struct kmem_cache_cpu *c)
  1617. {
  1618. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1619. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1620. struct page *page, *discard_page = NULL;
  1621. while ((page = c->partial)) {
  1622. struct page new;
  1623. struct page old;
  1624. c->partial = page->next;
  1625. n2 = get_node(s, page_to_nid(page));
  1626. if (n != n2) {
  1627. if (n)
  1628. spin_unlock(&n->list_lock);
  1629. n = n2;
  1630. spin_lock(&n->list_lock);
  1631. }
  1632. do {
  1633. old.freelist = page->freelist;
  1634. old.counters = page->counters;
  1635. VM_BUG_ON(!old.frozen);
  1636. new.counters = old.counters;
  1637. new.freelist = old.freelist;
  1638. new.frozen = 0;
  1639. } while (!__cmpxchg_double_slab(s, page,
  1640. old.freelist, old.counters,
  1641. new.freelist, new.counters,
  1642. "unfreezing slab"));
  1643. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1644. page->next = discard_page;
  1645. discard_page = page;
  1646. } else {
  1647. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1648. stat(s, FREE_ADD_PARTIAL);
  1649. }
  1650. }
  1651. if (n)
  1652. spin_unlock(&n->list_lock);
  1653. while (discard_page) {
  1654. page = discard_page;
  1655. discard_page = discard_page->next;
  1656. stat(s, DEACTIVATE_EMPTY);
  1657. discard_slab(s, page);
  1658. stat(s, FREE_SLAB);
  1659. }
  1660. #endif
  1661. }
  1662. /*
  1663. * Put a page that was just frozen (in __slab_free) into a partial page
  1664. * slot if available. This is done without interrupts disabled and without
  1665. * preemption disabled. The cmpxchg is racy and may put the partial page
  1666. * onto a random cpus partial slot.
  1667. *
  1668. * If we did not find a slot then simply move all the partials to the
  1669. * per node partial list.
  1670. */
  1671. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1672. {
  1673. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1674. struct page *oldpage;
  1675. int pages;
  1676. int pobjects;
  1677. do {
  1678. pages = 0;
  1679. pobjects = 0;
  1680. oldpage = this_cpu_read(s->cpu_slab->partial);
  1681. if (oldpage) {
  1682. pobjects = oldpage->pobjects;
  1683. pages = oldpage->pages;
  1684. if (drain && pobjects > s->cpu_partial) {
  1685. unsigned long flags;
  1686. /*
  1687. * partial array is full. Move the existing
  1688. * set to the per node partial list.
  1689. */
  1690. local_irq_save(flags);
  1691. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1692. local_irq_restore(flags);
  1693. oldpage = NULL;
  1694. pobjects = 0;
  1695. pages = 0;
  1696. stat(s, CPU_PARTIAL_DRAIN);
  1697. }
  1698. }
  1699. pages++;
  1700. pobjects += page->objects - page->inuse;
  1701. page->pages = pages;
  1702. page->pobjects = pobjects;
  1703. page->next = oldpage;
  1704. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1705. #endif
  1706. }
  1707. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1708. {
  1709. stat(s, CPUSLAB_FLUSH);
  1710. deactivate_slab(s, c->page, c->freelist);
  1711. c->tid = next_tid(c->tid);
  1712. c->page = NULL;
  1713. c->freelist = NULL;
  1714. }
  1715. /*
  1716. * Flush cpu slab.
  1717. *
  1718. * Called from IPI handler with interrupts disabled.
  1719. */
  1720. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1721. {
  1722. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1723. if (likely(c)) {
  1724. if (c->page)
  1725. flush_slab(s, c);
  1726. unfreeze_partials(s, c);
  1727. }
  1728. }
  1729. static void flush_cpu_slab(void *d)
  1730. {
  1731. struct kmem_cache *s = d;
  1732. __flush_cpu_slab(s, smp_processor_id());
  1733. }
  1734. static bool has_cpu_slab(int cpu, void *info)
  1735. {
  1736. struct kmem_cache *s = info;
  1737. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1738. return c->page || c->partial;
  1739. }
  1740. static void flush_all(struct kmem_cache *s)
  1741. {
  1742. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1743. }
  1744. /*
  1745. * Check if the objects in a per cpu structure fit numa
  1746. * locality expectations.
  1747. */
  1748. static inline int node_match(struct page *page, int node)
  1749. {
  1750. #ifdef CONFIG_NUMA
  1751. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1752. return 0;
  1753. #endif
  1754. return 1;
  1755. }
  1756. static int count_free(struct page *page)
  1757. {
  1758. return page->objects - page->inuse;
  1759. }
  1760. static unsigned long count_partial(struct kmem_cache_node *n,
  1761. int (*get_count)(struct page *))
  1762. {
  1763. unsigned long flags;
  1764. unsigned long x = 0;
  1765. struct page *page;
  1766. spin_lock_irqsave(&n->list_lock, flags);
  1767. list_for_each_entry(page, &n->partial, lru)
  1768. x += get_count(page);
  1769. spin_unlock_irqrestore(&n->list_lock, flags);
  1770. return x;
  1771. }
  1772. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1773. {
  1774. #ifdef CONFIG_SLUB_DEBUG
  1775. return atomic_long_read(&n->total_objects);
  1776. #else
  1777. return 0;
  1778. #endif
  1779. }
  1780. static noinline void
  1781. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1782. {
  1783. int node;
  1784. printk(KERN_WARNING
  1785. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1786. nid, gfpflags);
  1787. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1788. "default order: %d, min order: %d\n", s->name, s->object_size,
  1789. s->size, oo_order(s->oo), oo_order(s->min));
  1790. if (oo_order(s->min) > get_order(s->object_size))
  1791. printk(KERN_WARNING " %s debugging increased min order, use "
  1792. "slub_debug=O to disable.\n", s->name);
  1793. for_each_online_node(node) {
  1794. struct kmem_cache_node *n = get_node(s, node);
  1795. unsigned long nr_slabs;
  1796. unsigned long nr_objs;
  1797. unsigned long nr_free;
  1798. if (!n)
  1799. continue;
  1800. nr_free = count_partial(n, count_free);
  1801. nr_slabs = node_nr_slabs(n);
  1802. nr_objs = node_nr_objs(n);
  1803. printk(KERN_WARNING
  1804. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1805. node, nr_slabs, nr_objs, nr_free);
  1806. }
  1807. }
  1808. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1809. int node, struct kmem_cache_cpu **pc)
  1810. {
  1811. void *freelist;
  1812. struct kmem_cache_cpu *c = *pc;
  1813. struct page *page;
  1814. freelist = get_partial(s, flags, node, c);
  1815. if (freelist)
  1816. return freelist;
  1817. page = new_slab(s, flags, node);
  1818. if (page) {
  1819. c = __this_cpu_ptr(s->cpu_slab);
  1820. if (c->page)
  1821. flush_slab(s, c);
  1822. /*
  1823. * No other reference to the page yet so we can
  1824. * muck around with it freely without cmpxchg
  1825. */
  1826. freelist = page->freelist;
  1827. page->freelist = NULL;
  1828. stat(s, ALLOC_SLAB);
  1829. c->page = page;
  1830. *pc = c;
  1831. } else
  1832. freelist = NULL;
  1833. return freelist;
  1834. }
  1835. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1836. {
  1837. if (unlikely(PageSlabPfmemalloc(page)))
  1838. return gfp_pfmemalloc_allowed(gfpflags);
  1839. return true;
  1840. }
  1841. /*
  1842. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1843. * or deactivate the page.
  1844. *
  1845. * The page is still frozen if the return value is not NULL.
  1846. *
  1847. * If this function returns NULL then the page has been unfrozen.
  1848. *
  1849. * This function must be called with interrupt disabled.
  1850. */
  1851. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1852. {
  1853. struct page new;
  1854. unsigned long counters;
  1855. void *freelist;
  1856. do {
  1857. freelist = page->freelist;
  1858. counters = page->counters;
  1859. new.counters = counters;
  1860. VM_BUG_ON(!new.frozen);
  1861. new.inuse = page->objects;
  1862. new.frozen = freelist != NULL;
  1863. } while (!__cmpxchg_double_slab(s, page,
  1864. freelist, counters,
  1865. NULL, new.counters,
  1866. "get_freelist"));
  1867. return freelist;
  1868. }
  1869. /*
  1870. * Slow path. The lockless freelist is empty or we need to perform
  1871. * debugging duties.
  1872. *
  1873. * Processing is still very fast if new objects have been freed to the
  1874. * regular freelist. In that case we simply take over the regular freelist
  1875. * as the lockless freelist and zap the regular freelist.
  1876. *
  1877. * If that is not working then we fall back to the partial lists. We take the
  1878. * first element of the freelist as the object to allocate now and move the
  1879. * rest of the freelist to the lockless freelist.
  1880. *
  1881. * And if we were unable to get a new slab from the partial slab lists then
  1882. * we need to allocate a new slab. This is the slowest path since it involves
  1883. * a call to the page allocator and the setup of a new slab.
  1884. */
  1885. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1886. unsigned long addr, struct kmem_cache_cpu *c)
  1887. {
  1888. void *freelist;
  1889. struct page *page;
  1890. unsigned long flags;
  1891. local_irq_save(flags);
  1892. #ifdef CONFIG_PREEMPT
  1893. /*
  1894. * We may have been preempted and rescheduled on a different
  1895. * cpu before disabling interrupts. Need to reload cpu area
  1896. * pointer.
  1897. */
  1898. c = this_cpu_ptr(s->cpu_slab);
  1899. #endif
  1900. page = c->page;
  1901. if (!page)
  1902. goto new_slab;
  1903. redo:
  1904. if (unlikely(!node_match(page, node))) {
  1905. stat(s, ALLOC_NODE_MISMATCH);
  1906. deactivate_slab(s, page, c->freelist);
  1907. c->page = NULL;
  1908. c->freelist = NULL;
  1909. goto new_slab;
  1910. }
  1911. /*
  1912. * By rights, we should be searching for a slab page that was
  1913. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1914. * information when the page leaves the per-cpu allocator
  1915. */
  1916. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1917. deactivate_slab(s, page, c->freelist);
  1918. c->page = NULL;
  1919. c->freelist = NULL;
  1920. goto new_slab;
  1921. }
  1922. /* must check again c->freelist in case of cpu migration or IRQ */
  1923. freelist = c->freelist;
  1924. if (freelist)
  1925. goto load_freelist;
  1926. stat(s, ALLOC_SLOWPATH);
  1927. freelist = get_freelist(s, page);
  1928. if (!freelist) {
  1929. c->page = NULL;
  1930. stat(s, DEACTIVATE_BYPASS);
  1931. goto new_slab;
  1932. }
  1933. stat(s, ALLOC_REFILL);
  1934. load_freelist:
  1935. /*
  1936. * freelist is pointing to the list of objects to be used.
  1937. * page is pointing to the page from which the objects are obtained.
  1938. * That page must be frozen for per cpu allocations to work.
  1939. */
  1940. VM_BUG_ON(!c->page->frozen);
  1941. c->freelist = get_freepointer(s, freelist);
  1942. c->tid = next_tid(c->tid);
  1943. local_irq_restore(flags);
  1944. return freelist;
  1945. new_slab:
  1946. if (c->partial) {
  1947. page = c->page = c->partial;
  1948. c->partial = page->next;
  1949. stat(s, CPU_PARTIAL_ALLOC);
  1950. c->freelist = NULL;
  1951. goto redo;
  1952. }
  1953. freelist = new_slab_objects(s, gfpflags, node, &c);
  1954. if (unlikely(!freelist)) {
  1955. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1956. slab_out_of_memory(s, gfpflags, node);
  1957. local_irq_restore(flags);
  1958. return NULL;
  1959. }
  1960. page = c->page;
  1961. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1962. goto load_freelist;
  1963. /* Only entered in the debug case */
  1964. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1965. goto new_slab; /* Slab failed checks. Next slab needed */
  1966. deactivate_slab(s, page, get_freepointer(s, freelist));
  1967. c->page = NULL;
  1968. c->freelist = NULL;
  1969. local_irq_restore(flags);
  1970. return freelist;
  1971. }
  1972. /*
  1973. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1974. * have the fastpath folded into their functions. So no function call
  1975. * overhead for requests that can be satisfied on the fastpath.
  1976. *
  1977. * The fastpath works by first checking if the lockless freelist can be used.
  1978. * If not then __slab_alloc is called for slow processing.
  1979. *
  1980. * Otherwise we can simply pick the next object from the lockless free list.
  1981. */
  1982. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1983. gfp_t gfpflags, int node, unsigned long addr)
  1984. {
  1985. void **object;
  1986. struct kmem_cache_cpu *c;
  1987. struct page *page;
  1988. unsigned long tid;
  1989. if (slab_pre_alloc_hook(s, gfpflags))
  1990. return NULL;
  1991. s = memcg_kmem_get_cache(s, gfpflags);
  1992. redo:
  1993. /*
  1994. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1995. * enabled. We may switch back and forth between cpus while
  1996. * reading from one cpu area. That does not matter as long
  1997. * as we end up on the original cpu again when doing the cmpxchg.
  1998. *
  1999. * Preemption is disabled for the retrieval of the tid because that
  2000. * must occur from the current processor. We cannot allow rescheduling
  2001. * on a different processor between the determination of the pointer
  2002. * and the retrieval of the tid.
  2003. */
  2004. preempt_disable();
  2005. c = __this_cpu_ptr(s->cpu_slab);
  2006. /*
  2007. * The transaction ids are globally unique per cpu and per operation on
  2008. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2009. * occurs on the right processor and that there was no operation on the
  2010. * linked list in between.
  2011. */
  2012. tid = c->tid;
  2013. preempt_enable();
  2014. object = c->freelist;
  2015. page = c->page;
  2016. if (unlikely(!object || !page || !node_match(page, node)))
  2017. object = __slab_alloc(s, gfpflags, node, addr, c);
  2018. else {
  2019. void *next_object = get_freepointer_safe(s, object);
  2020. /*
  2021. * The cmpxchg will only match if there was no additional
  2022. * operation and if we are on the right processor.
  2023. *
  2024. * The cmpxchg does the following atomically (without lock semantics!)
  2025. * 1. Relocate first pointer to the current per cpu area.
  2026. * 2. Verify that tid and freelist have not been changed
  2027. * 3. If they were not changed replace tid and freelist
  2028. *
  2029. * Since this is without lock semantics the protection is only against
  2030. * code executing on this cpu *not* from access by other cpus.
  2031. */
  2032. if (unlikely(!this_cpu_cmpxchg_double(
  2033. s->cpu_slab->freelist, s->cpu_slab->tid,
  2034. object, tid,
  2035. next_object, next_tid(tid)))) {
  2036. note_cmpxchg_failure("slab_alloc", s, tid);
  2037. goto redo;
  2038. }
  2039. prefetch_freepointer(s, next_object);
  2040. stat(s, ALLOC_FASTPATH);
  2041. }
  2042. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2043. memset(object, 0, s->object_size);
  2044. slab_post_alloc_hook(s, gfpflags, object);
  2045. return object;
  2046. }
  2047. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2048. gfp_t gfpflags, unsigned long addr)
  2049. {
  2050. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2051. }
  2052. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2053. {
  2054. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2055. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2056. return ret;
  2057. }
  2058. EXPORT_SYMBOL(kmem_cache_alloc);
  2059. #ifdef CONFIG_TRACING
  2060. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2061. {
  2062. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2063. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2064. return ret;
  2065. }
  2066. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2067. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2068. {
  2069. void *ret = kmalloc_order(size, flags, order);
  2070. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2071. return ret;
  2072. }
  2073. EXPORT_SYMBOL(kmalloc_order_trace);
  2074. #endif
  2075. #ifdef CONFIG_NUMA
  2076. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2077. {
  2078. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2079. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2080. s->object_size, s->size, gfpflags, node);
  2081. return ret;
  2082. }
  2083. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2084. #ifdef CONFIG_TRACING
  2085. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2086. gfp_t gfpflags,
  2087. int node, size_t size)
  2088. {
  2089. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2090. trace_kmalloc_node(_RET_IP_, ret,
  2091. size, s->size, gfpflags, node);
  2092. return ret;
  2093. }
  2094. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2095. #endif
  2096. #endif
  2097. /*
  2098. * Slow patch handling. This may still be called frequently since objects
  2099. * have a longer lifetime than the cpu slabs in most processing loads.
  2100. *
  2101. * So we still attempt to reduce cache line usage. Just take the slab
  2102. * lock and free the item. If there is no additional partial page
  2103. * handling required then we can return immediately.
  2104. */
  2105. static void __slab_free(struct kmem_cache *s, struct page *page,
  2106. void *x, unsigned long addr)
  2107. {
  2108. void *prior;
  2109. void **object = (void *)x;
  2110. int was_frozen;
  2111. struct page new;
  2112. unsigned long counters;
  2113. struct kmem_cache_node *n = NULL;
  2114. unsigned long uninitialized_var(flags);
  2115. stat(s, FREE_SLOWPATH);
  2116. if (kmem_cache_debug(s) &&
  2117. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2118. return;
  2119. do {
  2120. if (unlikely(n)) {
  2121. spin_unlock_irqrestore(&n->list_lock, flags);
  2122. n = NULL;
  2123. }
  2124. prior = page->freelist;
  2125. counters = page->counters;
  2126. set_freepointer(s, object, prior);
  2127. new.counters = counters;
  2128. was_frozen = new.frozen;
  2129. new.inuse--;
  2130. if ((!new.inuse || !prior) && !was_frozen) {
  2131. if (kmem_cache_has_cpu_partial(s) && !prior)
  2132. /*
  2133. * Slab was on no list before and will be partially empty
  2134. * We can defer the list move and instead freeze it.
  2135. */
  2136. new.frozen = 1;
  2137. else { /* Needs to be taken off a list */
  2138. n = get_node(s, page_to_nid(page));
  2139. /*
  2140. * Speculatively acquire the list_lock.
  2141. * If the cmpxchg does not succeed then we may
  2142. * drop the list_lock without any processing.
  2143. *
  2144. * Otherwise the list_lock will synchronize with
  2145. * other processors updating the list of slabs.
  2146. */
  2147. spin_lock_irqsave(&n->list_lock, flags);
  2148. }
  2149. }
  2150. } while (!cmpxchg_double_slab(s, page,
  2151. prior, counters,
  2152. object, new.counters,
  2153. "__slab_free"));
  2154. if (likely(!n)) {
  2155. /*
  2156. * If we just froze the page then put it onto the
  2157. * per cpu partial list.
  2158. */
  2159. if (new.frozen && !was_frozen) {
  2160. put_cpu_partial(s, page, 1);
  2161. stat(s, CPU_PARTIAL_FREE);
  2162. }
  2163. /*
  2164. * The list lock was not taken therefore no list
  2165. * activity can be necessary.
  2166. */
  2167. if (was_frozen)
  2168. stat(s, FREE_FROZEN);
  2169. return;
  2170. }
  2171. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2172. goto slab_empty;
  2173. /*
  2174. * Objects left in the slab. If it was not on the partial list before
  2175. * then add it.
  2176. */
  2177. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2178. if (kmem_cache_debug(s))
  2179. remove_full(s, page);
  2180. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2181. stat(s, FREE_ADD_PARTIAL);
  2182. }
  2183. spin_unlock_irqrestore(&n->list_lock, flags);
  2184. return;
  2185. slab_empty:
  2186. if (prior) {
  2187. /*
  2188. * Slab on the partial list.
  2189. */
  2190. remove_partial(n, page);
  2191. stat(s, FREE_REMOVE_PARTIAL);
  2192. } else
  2193. /* Slab must be on the full list */
  2194. remove_full(s, page);
  2195. spin_unlock_irqrestore(&n->list_lock, flags);
  2196. stat(s, FREE_SLAB);
  2197. discard_slab(s, page);
  2198. }
  2199. /*
  2200. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2201. * can perform fastpath freeing without additional function calls.
  2202. *
  2203. * The fastpath is only possible if we are freeing to the current cpu slab
  2204. * of this processor. This typically the case if we have just allocated
  2205. * the item before.
  2206. *
  2207. * If fastpath is not possible then fall back to __slab_free where we deal
  2208. * with all sorts of special processing.
  2209. */
  2210. static __always_inline void slab_free(struct kmem_cache *s,
  2211. struct page *page, void *x, unsigned long addr)
  2212. {
  2213. void **object = (void *)x;
  2214. struct kmem_cache_cpu *c;
  2215. unsigned long tid;
  2216. slab_free_hook(s, x);
  2217. redo:
  2218. /*
  2219. * Determine the currently cpus per cpu slab.
  2220. * The cpu may change afterward. However that does not matter since
  2221. * data is retrieved via this pointer. If we are on the same cpu
  2222. * during the cmpxchg then the free will succedd.
  2223. */
  2224. preempt_disable();
  2225. c = __this_cpu_ptr(s->cpu_slab);
  2226. tid = c->tid;
  2227. preempt_enable();
  2228. if (likely(page == c->page)) {
  2229. set_freepointer(s, object, c->freelist);
  2230. if (unlikely(!this_cpu_cmpxchg_double(
  2231. s->cpu_slab->freelist, s->cpu_slab->tid,
  2232. c->freelist, tid,
  2233. object, next_tid(tid)))) {
  2234. note_cmpxchg_failure("slab_free", s, tid);
  2235. goto redo;
  2236. }
  2237. stat(s, FREE_FASTPATH);
  2238. } else
  2239. __slab_free(s, page, x, addr);
  2240. }
  2241. void kmem_cache_free(struct kmem_cache *s, void *x)
  2242. {
  2243. s = cache_from_obj(s, x);
  2244. if (!s)
  2245. return;
  2246. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2247. trace_kmem_cache_free(_RET_IP_, x);
  2248. }
  2249. EXPORT_SYMBOL(kmem_cache_free);
  2250. /*
  2251. * Object placement in a slab is made very easy because we always start at
  2252. * offset 0. If we tune the size of the object to the alignment then we can
  2253. * get the required alignment by putting one properly sized object after
  2254. * another.
  2255. *
  2256. * Notice that the allocation order determines the sizes of the per cpu
  2257. * caches. Each processor has always one slab available for allocations.
  2258. * Increasing the allocation order reduces the number of times that slabs
  2259. * must be moved on and off the partial lists and is therefore a factor in
  2260. * locking overhead.
  2261. */
  2262. /*
  2263. * Mininum / Maximum order of slab pages. This influences locking overhead
  2264. * and slab fragmentation. A higher order reduces the number of partial slabs
  2265. * and increases the number of allocations possible without having to
  2266. * take the list_lock.
  2267. */
  2268. static int slub_min_order;
  2269. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2270. static int slub_min_objects;
  2271. /*
  2272. * Merge control. If this is set then no merging of slab caches will occur.
  2273. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2274. */
  2275. static int slub_nomerge;
  2276. /*
  2277. * Calculate the order of allocation given an slab object size.
  2278. *
  2279. * The order of allocation has significant impact on performance and other
  2280. * system components. Generally order 0 allocations should be preferred since
  2281. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2282. * be problematic to put into order 0 slabs because there may be too much
  2283. * unused space left. We go to a higher order if more than 1/16th of the slab
  2284. * would be wasted.
  2285. *
  2286. * In order to reach satisfactory performance we must ensure that a minimum
  2287. * number of objects is in one slab. Otherwise we may generate too much
  2288. * activity on the partial lists which requires taking the list_lock. This is
  2289. * less a concern for large slabs though which are rarely used.
  2290. *
  2291. * slub_max_order specifies the order where we begin to stop considering the
  2292. * number of objects in a slab as critical. If we reach slub_max_order then
  2293. * we try to keep the page order as low as possible. So we accept more waste
  2294. * of space in favor of a small page order.
  2295. *
  2296. * Higher order allocations also allow the placement of more objects in a
  2297. * slab and thereby reduce object handling overhead. If the user has
  2298. * requested a higher mininum order then we start with that one instead of
  2299. * the smallest order which will fit the object.
  2300. */
  2301. static inline int slab_order(int size, int min_objects,
  2302. int max_order, int fract_leftover, int reserved)
  2303. {
  2304. int order;
  2305. int rem;
  2306. int min_order = slub_min_order;
  2307. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2308. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2309. for (order = max(min_order,
  2310. fls(min_objects * size - 1) - PAGE_SHIFT);
  2311. order <= max_order; order++) {
  2312. unsigned long slab_size = PAGE_SIZE << order;
  2313. if (slab_size < min_objects * size + reserved)
  2314. continue;
  2315. rem = (slab_size - reserved) % size;
  2316. if (rem <= slab_size / fract_leftover)
  2317. break;
  2318. }
  2319. return order;
  2320. }
  2321. static inline int calculate_order(int size, int reserved)
  2322. {
  2323. int order;
  2324. int min_objects;
  2325. int fraction;
  2326. int max_objects;
  2327. /*
  2328. * Attempt to find best configuration for a slab. This
  2329. * works by first attempting to generate a layout with
  2330. * the best configuration and backing off gradually.
  2331. *
  2332. * First we reduce the acceptable waste in a slab. Then
  2333. * we reduce the minimum objects required in a slab.
  2334. */
  2335. min_objects = slub_min_objects;
  2336. if (!min_objects)
  2337. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2338. max_objects = order_objects(slub_max_order, size, reserved);
  2339. min_objects = min(min_objects, max_objects);
  2340. while (min_objects > 1) {
  2341. fraction = 16;
  2342. while (fraction >= 4) {
  2343. order = slab_order(size, min_objects,
  2344. slub_max_order, fraction, reserved);
  2345. if (order <= slub_max_order)
  2346. return order;
  2347. fraction /= 2;
  2348. }
  2349. min_objects--;
  2350. }
  2351. /*
  2352. * We were unable to place multiple objects in a slab. Now
  2353. * lets see if we can place a single object there.
  2354. */
  2355. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2356. if (order <= slub_max_order)
  2357. return order;
  2358. /*
  2359. * Doh this slab cannot be placed using slub_max_order.
  2360. */
  2361. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2362. if (order < MAX_ORDER)
  2363. return order;
  2364. return -ENOSYS;
  2365. }
  2366. static void
  2367. init_kmem_cache_node(struct kmem_cache_node *n)
  2368. {
  2369. n->nr_partial = 0;
  2370. spin_lock_init(&n->list_lock);
  2371. INIT_LIST_HEAD(&n->partial);
  2372. #ifdef CONFIG_SLUB_DEBUG
  2373. atomic_long_set(&n->nr_slabs, 0);
  2374. atomic_long_set(&n->total_objects, 0);
  2375. INIT_LIST_HEAD(&n->full);
  2376. #endif
  2377. }
  2378. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2379. {
  2380. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2381. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2382. /*
  2383. * Must align to double word boundary for the double cmpxchg
  2384. * instructions to work; see __pcpu_double_call_return_bool().
  2385. */
  2386. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2387. 2 * sizeof(void *));
  2388. if (!s->cpu_slab)
  2389. return 0;
  2390. init_kmem_cache_cpus(s);
  2391. return 1;
  2392. }
  2393. static struct kmem_cache *kmem_cache_node;
  2394. /*
  2395. * No kmalloc_node yet so do it by hand. We know that this is the first
  2396. * slab on the node for this slabcache. There are no concurrent accesses
  2397. * possible.
  2398. *
  2399. * Note that this function only works on the kmalloc_node_cache
  2400. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2401. * memory on a fresh node that has no slab structures yet.
  2402. */
  2403. static void early_kmem_cache_node_alloc(int node)
  2404. {
  2405. struct page *page;
  2406. struct kmem_cache_node *n;
  2407. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2408. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2409. BUG_ON(!page);
  2410. if (page_to_nid(page) != node) {
  2411. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2412. "node %d\n", node);
  2413. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2414. "in order to be able to continue\n");
  2415. }
  2416. n = page->freelist;
  2417. BUG_ON(!n);
  2418. page->freelist = get_freepointer(kmem_cache_node, n);
  2419. page->inuse = 1;
  2420. page->frozen = 0;
  2421. kmem_cache_node->node[node] = n;
  2422. #ifdef CONFIG_SLUB_DEBUG
  2423. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2424. init_tracking(kmem_cache_node, n);
  2425. #endif
  2426. init_kmem_cache_node(n);
  2427. inc_slabs_node(kmem_cache_node, node, page->objects);
  2428. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2429. }
  2430. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2431. {
  2432. int node;
  2433. for_each_node_state(node, N_NORMAL_MEMORY) {
  2434. struct kmem_cache_node *n = s->node[node];
  2435. if (n)
  2436. kmem_cache_free(kmem_cache_node, n);
  2437. s->node[node] = NULL;
  2438. }
  2439. }
  2440. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2441. {
  2442. int node;
  2443. for_each_node_state(node, N_NORMAL_MEMORY) {
  2444. struct kmem_cache_node *n;
  2445. if (slab_state == DOWN) {
  2446. early_kmem_cache_node_alloc(node);
  2447. continue;
  2448. }
  2449. n = kmem_cache_alloc_node(kmem_cache_node,
  2450. GFP_KERNEL, node);
  2451. if (!n) {
  2452. free_kmem_cache_nodes(s);
  2453. return 0;
  2454. }
  2455. s->node[node] = n;
  2456. init_kmem_cache_node(n);
  2457. }
  2458. return 1;
  2459. }
  2460. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2461. {
  2462. if (min < MIN_PARTIAL)
  2463. min = MIN_PARTIAL;
  2464. else if (min > MAX_PARTIAL)
  2465. min = MAX_PARTIAL;
  2466. s->min_partial = min;
  2467. }
  2468. /*
  2469. * calculate_sizes() determines the order and the distribution of data within
  2470. * a slab object.
  2471. */
  2472. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2473. {
  2474. unsigned long flags = s->flags;
  2475. unsigned long size = s->object_size;
  2476. int order;
  2477. /*
  2478. * Round up object size to the next word boundary. We can only
  2479. * place the free pointer at word boundaries and this determines
  2480. * the possible location of the free pointer.
  2481. */
  2482. size = ALIGN(size, sizeof(void *));
  2483. #ifdef CONFIG_SLUB_DEBUG
  2484. /*
  2485. * Determine if we can poison the object itself. If the user of
  2486. * the slab may touch the object after free or before allocation
  2487. * then we should never poison the object itself.
  2488. */
  2489. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2490. !s->ctor)
  2491. s->flags |= __OBJECT_POISON;
  2492. else
  2493. s->flags &= ~__OBJECT_POISON;
  2494. /*
  2495. * If we are Redzoning then check if there is some space between the
  2496. * end of the object and the free pointer. If not then add an
  2497. * additional word to have some bytes to store Redzone information.
  2498. */
  2499. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2500. size += sizeof(void *);
  2501. #endif
  2502. /*
  2503. * With that we have determined the number of bytes in actual use
  2504. * by the object. This is the potential offset to the free pointer.
  2505. */
  2506. s->inuse = size;
  2507. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2508. s->ctor)) {
  2509. /*
  2510. * Relocate free pointer after the object if it is not
  2511. * permitted to overwrite the first word of the object on
  2512. * kmem_cache_free.
  2513. *
  2514. * This is the case if we do RCU, have a constructor or
  2515. * destructor or are poisoning the objects.
  2516. */
  2517. s->offset = size;
  2518. size += sizeof(void *);
  2519. }
  2520. #ifdef CONFIG_SLUB_DEBUG
  2521. if (flags & SLAB_STORE_USER)
  2522. /*
  2523. * Need to store information about allocs and frees after
  2524. * the object.
  2525. */
  2526. size += 2 * sizeof(struct track);
  2527. if (flags & SLAB_RED_ZONE)
  2528. /*
  2529. * Add some empty padding so that we can catch
  2530. * overwrites from earlier objects rather than let
  2531. * tracking information or the free pointer be
  2532. * corrupted if a user writes before the start
  2533. * of the object.
  2534. */
  2535. size += sizeof(void *);
  2536. #endif
  2537. /*
  2538. * SLUB stores one object immediately after another beginning from
  2539. * offset 0. In order to align the objects we have to simply size
  2540. * each object to conform to the alignment.
  2541. */
  2542. size = ALIGN(size, s->align);
  2543. s->size = size;
  2544. if (forced_order >= 0)
  2545. order = forced_order;
  2546. else
  2547. order = calculate_order(size, s->reserved);
  2548. if (order < 0)
  2549. return 0;
  2550. s->allocflags = 0;
  2551. if (order)
  2552. s->allocflags |= __GFP_COMP;
  2553. if (s->flags & SLAB_CACHE_DMA)
  2554. s->allocflags |= GFP_DMA;
  2555. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2556. s->allocflags |= __GFP_RECLAIMABLE;
  2557. /*
  2558. * Determine the number of objects per slab
  2559. */
  2560. s->oo = oo_make(order, size, s->reserved);
  2561. s->min = oo_make(get_order(size), size, s->reserved);
  2562. if (oo_objects(s->oo) > oo_objects(s->max))
  2563. s->max = s->oo;
  2564. return !!oo_objects(s->oo);
  2565. }
  2566. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2567. {
  2568. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2569. s->reserved = 0;
  2570. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2571. s->reserved = sizeof(struct rcu_head);
  2572. if (!calculate_sizes(s, -1))
  2573. goto error;
  2574. if (disable_higher_order_debug) {
  2575. /*
  2576. * Disable debugging flags that store metadata if the min slab
  2577. * order increased.
  2578. */
  2579. if (get_order(s->size) > get_order(s->object_size)) {
  2580. s->flags &= ~DEBUG_METADATA_FLAGS;
  2581. s->offset = 0;
  2582. if (!calculate_sizes(s, -1))
  2583. goto error;
  2584. }
  2585. }
  2586. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2587. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2588. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2589. /* Enable fast mode */
  2590. s->flags |= __CMPXCHG_DOUBLE;
  2591. #endif
  2592. /*
  2593. * The larger the object size is, the more pages we want on the partial
  2594. * list to avoid pounding the page allocator excessively.
  2595. */
  2596. set_min_partial(s, ilog2(s->size) / 2);
  2597. /*
  2598. * cpu_partial determined the maximum number of objects kept in the
  2599. * per cpu partial lists of a processor.
  2600. *
  2601. * Per cpu partial lists mainly contain slabs that just have one
  2602. * object freed. If they are used for allocation then they can be
  2603. * filled up again with minimal effort. The slab will never hit the
  2604. * per node partial lists and therefore no locking will be required.
  2605. *
  2606. * This setting also determines
  2607. *
  2608. * A) The number of objects from per cpu partial slabs dumped to the
  2609. * per node list when we reach the limit.
  2610. * B) The number of objects in cpu partial slabs to extract from the
  2611. * per node list when we run out of per cpu objects. We only fetch 50%
  2612. * to keep some capacity around for frees.
  2613. */
  2614. if (!kmem_cache_has_cpu_partial(s))
  2615. s->cpu_partial = 0;
  2616. else if (s->size >= PAGE_SIZE)
  2617. s->cpu_partial = 2;
  2618. else if (s->size >= 1024)
  2619. s->cpu_partial = 6;
  2620. else if (s->size >= 256)
  2621. s->cpu_partial = 13;
  2622. else
  2623. s->cpu_partial = 30;
  2624. #ifdef CONFIG_NUMA
  2625. s->remote_node_defrag_ratio = 1000;
  2626. #endif
  2627. if (!init_kmem_cache_nodes(s))
  2628. goto error;
  2629. if (alloc_kmem_cache_cpus(s))
  2630. return 0;
  2631. free_kmem_cache_nodes(s);
  2632. error:
  2633. if (flags & SLAB_PANIC)
  2634. panic("Cannot create slab %s size=%lu realsize=%u "
  2635. "order=%u offset=%u flags=%lx\n",
  2636. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2637. s->offset, flags);
  2638. return -EINVAL;
  2639. }
  2640. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2641. const char *text)
  2642. {
  2643. #ifdef CONFIG_SLUB_DEBUG
  2644. void *addr = page_address(page);
  2645. void *p;
  2646. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2647. sizeof(long), GFP_ATOMIC);
  2648. if (!map)
  2649. return;
  2650. slab_err(s, page, text, s->name);
  2651. slab_lock(page);
  2652. get_map(s, page, map);
  2653. for_each_object(p, s, addr, page->objects) {
  2654. if (!test_bit(slab_index(p, s, addr), map)) {
  2655. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2656. p, p - addr);
  2657. print_tracking(s, p);
  2658. }
  2659. }
  2660. slab_unlock(page);
  2661. kfree(map);
  2662. #endif
  2663. }
  2664. /*
  2665. * Attempt to free all partial slabs on a node.
  2666. * This is called from kmem_cache_close(). We must be the last thread
  2667. * using the cache and therefore we do not need to lock anymore.
  2668. */
  2669. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2670. {
  2671. struct page *page, *h;
  2672. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2673. if (!page->inuse) {
  2674. remove_partial(n, page);
  2675. discard_slab(s, page);
  2676. } else {
  2677. list_slab_objects(s, page,
  2678. "Objects remaining in %s on kmem_cache_close()");
  2679. }
  2680. }
  2681. }
  2682. /*
  2683. * Release all resources used by a slab cache.
  2684. */
  2685. static inline int kmem_cache_close(struct kmem_cache *s)
  2686. {
  2687. int node;
  2688. flush_all(s);
  2689. /* Attempt to free all objects */
  2690. for_each_node_state(node, N_NORMAL_MEMORY) {
  2691. struct kmem_cache_node *n = get_node(s, node);
  2692. free_partial(s, n);
  2693. if (n->nr_partial || slabs_node(s, node))
  2694. return 1;
  2695. }
  2696. free_percpu(s->cpu_slab);
  2697. free_kmem_cache_nodes(s);
  2698. return 0;
  2699. }
  2700. int __kmem_cache_shutdown(struct kmem_cache *s)
  2701. {
  2702. int rc = kmem_cache_close(s);
  2703. if (!rc) {
  2704. /*
  2705. * We do the same lock strategy around sysfs_slab_add, see
  2706. * __kmem_cache_create. Because this is pretty much the last
  2707. * operation we do and the lock will be released shortly after
  2708. * that in slab_common.c, we could just move sysfs_slab_remove
  2709. * to a later point in common code. We should do that when we
  2710. * have a common sysfs framework for all allocators.
  2711. */
  2712. mutex_unlock(&slab_mutex);
  2713. sysfs_slab_remove(s);
  2714. mutex_lock(&slab_mutex);
  2715. }
  2716. return rc;
  2717. }
  2718. /********************************************************************
  2719. * Kmalloc subsystem
  2720. *******************************************************************/
  2721. static int __init setup_slub_min_order(char *str)
  2722. {
  2723. get_option(&str, &slub_min_order);
  2724. return 1;
  2725. }
  2726. __setup("slub_min_order=", setup_slub_min_order);
  2727. static int __init setup_slub_max_order(char *str)
  2728. {
  2729. get_option(&str, &slub_max_order);
  2730. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2731. return 1;
  2732. }
  2733. __setup("slub_max_order=", setup_slub_max_order);
  2734. static int __init setup_slub_min_objects(char *str)
  2735. {
  2736. get_option(&str, &slub_min_objects);
  2737. return 1;
  2738. }
  2739. __setup("slub_min_objects=", setup_slub_min_objects);
  2740. static int __init setup_slub_nomerge(char *str)
  2741. {
  2742. slub_nomerge = 1;
  2743. return 1;
  2744. }
  2745. __setup("slub_nomerge", setup_slub_nomerge);
  2746. void *__kmalloc(size_t size, gfp_t flags)
  2747. {
  2748. struct kmem_cache *s;
  2749. void *ret;
  2750. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2751. return kmalloc_large(size, flags);
  2752. s = kmalloc_slab(size, flags);
  2753. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2754. return s;
  2755. ret = slab_alloc(s, flags, _RET_IP_);
  2756. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2757. return ret;
  2758. }
  2759. EXPORT_SYMBOL(__kmalloc);
  2760. #ifdef CONFIG_NUMA
  2761. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2762. {
  2763. struct page *page;
  2764. void *ptr = NULL;
  2765. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2766. page = alloc_pages_node(node, flags, get_order(size));
  2767. if (page)
  2768. ptr = page_address(page);
  2769. kmemleak_alloc(ptr, size, 1, flags);
  2770. return ptr;
  2771. }
  2772. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2773. {
  2774. struct kmem_cache *s;
  2775. void *ret;
  2776. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2777. ret = kmalloc_large_node(size, flags, node);
  2778. trace_kmalloc_node(_RET_IP_, ret,
  2779. size, PAGE_SIZE << get_order(size),
  2780. flags, node);
  2781. return ret;
  2782. }
  2783. s = kmalloc_slab(size, flags);
  2784. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2785. return s;
  2786. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2787. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2788. return ret;
  2789. }
  2790. EXPORT_SYMBOL(__kmalloc_node);
  2791. #endif
  2792. size_t ksize(const void *object)
  2793. {
  2794. struct page *page;
  2795. if (unlikely(object == ZERO_SIZE_PTR))
  2796. return 0;
  2797. page = virt_to_head_page(object);
  2798. if (unlikely(!PageSlab(page))) {
  2799. WARN_ON(!PageCompound(page));
  2800. return PAGE_SIZE << compound_order(page);
  2801. }
  2802. return slab_ksize(page->slab_cache);
  2803. }
  2804. EXPORT_SYMBOL(ksize);
  2805. #ifdef CONFIG_SLUB_DEBUG
  2806. bool verify_mem_not_deleted(const void *x)
  2807. {
  2808. struct page *page;
  2809. void *object = (void *)x;
  2810. unsigned long flags;
  2811. bool rv;
  2812. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2813. return false;
  2814. local_irq_save(flags);
  2815. page = virt_to_head_page(x);
  2816. if (unlikely(!PageSlab(page))) {
  2817. /* maybe it was from stack? */
  2818. rv = true;
  2819. goto out_unlock;
  2820. }
  2821. slab_lock(page);
  2822. if (on_freelist(page->slab_cache, page, object)) {
  2823. object_err(page->slab_cache, page, object, "Object is on free-list");
  2824. rv = false;
  2825. } else {
  2826. rv = true;
  2827. }
  2828. slab_unlock(page);
  2829. out_unlock:
  2830. local_irq_restore(flags);
  2831. return rv;
  2832. }
  2833. EXPORT_SYMBOL(verify_mem_not_deleted);
  2834. #endif
  2835. void kfree(const void *x)
  2836. {
  2837. struct page *page;
  2838. void *object = (void *)x;
  2839. trace_kfree(_RET_IP_, x);
  2840. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2841. return;
  2842. page = virt_to_head_page(x);
  2843. if (unlikely(!PageSlab(page))) {
  2844. BUG_ON(!PageCompound(page));
  2845. kmemleak_free(x);
  2846. __free_memcg_kmem_pages(page, compound_order(page));
  2847. return;
  2848. }
  2849. slab_free(page->slab_cache, page, object, _RET_IP_);
  2850. }
  2851. EXPORT_SYMBOL(kfree);
  2852. /*
  2853. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2854. * the remaining slabs by the number of items in use. The slabs with the
  2855. * most items in use come first. New allocations will then fill those up
  2856. * and thus they can be removed from the partial lists.
  2857. *
  2858. * The slabs with the least items are placed last. This results in them
  2859. * being allocated from last increasing the chance that the last objects
  2860. * are freed in them.
  2861. */
  2862. int kmem_cache_shrink(struct kmem_cache *s)
  2863. {
  2864. int node;
  2865. int i;
  2866. struct kmem_cache_node *n;
  2867. struct page *page;
  2868. struct page *t;
  2869. int objects = oo_objects(s->max);
  2870. struct list_head *slabs_by_inuse =
  2871. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2872. unsigned long flags;
  2873. if (!slabs_by_inuse)
  2874. return -ENOMEM;
  2875. flush_all(s);
  2876. for_each_node_state(node, N_NORMAL_MEMORY) {
  2877. n = get_node(s, node);
  2878. if (!n->nr_partial)
  2879. continue;
  2880. for (i = 0; i < objects; i++)
  2881. INIT_LIST_HEAD(slabs_by_inuse + i);
  2882. spin_lock_irqsave(&n->list_lock, flags);
  2883. /*
  2884. * Build lists indexed by the items in use in each slab.
  2885. *
  2886. * Note that concurrent frees may occur while we hold the
  2887. * list_lock. page->inuse here is the upper limit.
  2888. */
  2889. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2890. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2891. if (!page->inuse)
  2892. n->nr_partial--;
  2893. }
  2894. /*
  2895. * Rebuild the partial list with the slabs filled up most
  2896. * first and the least used slabs at the end.
  2897. */
  2898. for (i = objects - 1; i > 0; i--)
  2899. list_splice(slabs_by_inuse + i, n->partial.prev);
  2900. spin_unlock_irqrestore(&n->list_lock, flags);
  2901. /* Release empty slabs */
  2902. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2903. discard_slab(s, page);
  2904. }
  2905. kfree(slabs_by_inuse);
  2906. return 0;
  2907. }
  2908. EXPORT_SYMBOL(kmem_cache_shrink);
  2909. static int slab_mem_going_offline_callback(void *arg)
  2910. {
  2911. struct kmem_cache *s;
  2912. mutex_lock(&slab_mutex);
  2913. list_for_each_entry(s, &slab_caches, list)
  2914. kmem_cache_shrink(s);
  2915. mutex_unlock(&slab_mutex);
  2916. return 0;
  2917. }
  2918. static void slab_mem_offline_callback(void *arg)
  2919. {
  2920. struct kmem_cache_node *n;
  2921. struct kmem_cache *s;
  2922. struct memory_notify *marg = arg;
  2923. int offline_node;
  2924. offline_node = marg->status_change_nid_normal;
  2925. /*
  2926. * If the node still has available memory. we need kmem_cache_node
  2927. * for it yet.
  2928. */
  2929. if (offline_node < 0)
  2930. return;
  2931. mutex_lock(&slab_mutex);
  2932. list_for_each_entry(s, &slab_caches, list) {
  2933. n = get_node(s, offline_node);
  2934. if (n) {
  2935. /*
  2936. * if n->nr_slabs > 0, slabs still exist on the node
  2937. * that is going down. We were unable to free them,
  2938. * and offline_pages() function shouldn't call this
  2939. * callback. So, we must fail.
  2940. */
  2941. BUG_ON(slabs_node(s, offline_node));
  2942. s->node[offline_node] = NULL;
  2943. kmem_cache_free(kmem_cache_node, n);
  2944. }
  2945. }
  2946. mutex_unlock(&slab_mutex);
  2947. }
  2948. static int slab_mem_going_online_callback(void *arg)
  2949. {
  2950. struct kmem_cache_node *n;
  2951. struct kmem_cache *s;
  2952. struct memory_notify *marg = arg;
  2953. int nid = marg->status_change_nid_normal;
  2954. int ret = 0;
  2955. /*
  2956. * If the node's memory is already available, then kmem_cache_node is
  2957. * already created. Nothing to do.
  2958. */
  2959. if (nid < 0)
  2960. return 0;
  2961. /*
  2962. * We are bringing a node online. No memory is available yet. We must
  2963. * allocate a kmem_cache_node structure in order to bring the node
  2964. * online.
  2965. */
  2966. mutex_lock(&slab_mutex);
  2967. list_for_each_entry(s, &slab_caches, list) {
  2968. /*
  2969. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2970. * since memory is not yet available from the node that
  2971. * is brought up.
  2972. */
  2973. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2974. if (!n) {
  2975. ret = -ENOMEM;
  2976. goto out;
  2977. }
  2978. init_kmem_cache_node(n);
  2979. s->node[nid] = n;
  2980. }
  2981. out:
  2982. mutex_unlock(&slab_mutex);
  2983. return ret;
  2984. }
  2985. static int slab_memory_callback(struct notifier_block *self,
  2986. unsigned long action, void *arg)
  2987. {
  2988. int ret = 0;
  2989. switch (action) {
  2990. case MEM_GOING_ONLINE:
  2991. ret = slab_mem_going_online_callback(arg);
  2992. break;
  2993. case MEM_GOING_OFFLINE:
  2994. ret = slab_mem_going_offline_callback(arg);
  2995. break;
  2996. case MEM_OFFLINE:
  2997. case MEM_CANCEL_ONLINE:
  2998. slab_mem_offline_callback(arg);
  2999. break;
  3000. case MEM_ONLINE:
  3001. case MEM_CANCEL_OFFLINE:
  3002. break;
  3003. }
  3004. if (ret)
  3005. ret = notifier_from_errno(ret);
  3006. else
  3007. ret = NOTIFY_OK;
  3008. return ret;
  3009. }
  3010. static struct notifier_block slab_memory_callback_nb = {
  3011. .notifier_call = slab_memory_callback,
  3012. .priority = SLAB_CALLBACK_PRI,
  3013. };
  3014. /********************************************************************
  3015. * Basic setup of slabs
  3016. *******************************************************************/
  3017. /*
  3018. * Used for early kmem_cache structures that were allocated using
  3019. * the page allocator. Allocate them properly then fix up the pointers
  3020. * that may be pointing to the wrong kmem_cache structure.
  3021. */
  3022. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3023. {
  3024. int node;
  3025. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3026. memcpy(s, static_cache, kmem_cache->object_size);
  3027. /*
  3028. * This runs very early, and only the boot processor is supposed to be
  3029. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3030. * IPIs around.
  3031. */
  3032. __flush_cpu_slab(s, smp_processor_id());
  3033. for_each_node_state(node, N_NORMAL_MEMORY) {
  3034. struct kmem_cache_node *n = get_node(s, node);
  3035. struct page *p;
  3036. if (n) {
  3037. list_for_each_entry(p, &n->partial, lru)
  3038. p->slab_cache = s;
  3039. #ifdef CONFIG_SLUB_DEBUG
  3040. list_for_each_entry(p, &n->full, lru)
  3041. p->slab_cache = s;
  3042. #endif
  3043. }
  3044. }
  3045. list_add(&s->list, &slab_caches);
  3046. return s;
  3047. }
  3048. void __init kmem_cache_init(void)
  3049. {
  3050. static __initdata struct kmem_cache boot_kmem_cache,
  3051. boot_kmem_cache_node;
  3052. if (debug_guardpage_minorder())
  3053. slub_max_order = 0;
  3054. kmem_cache_node = &boot_kmem_cache_node;
  3055. kmem_cache = &boot_kmem_cache;
  3056. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3057. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3058. register_hotmemory_notifier(&slab_memory_callback_nb);
  3059. /* Able to allocate the per node structures */
  3060. slab_state = PARTIAL;
  3061. create_boot_cache(kmem_cache, "kmem_cache",
  3062. offsetof(struct kmem_cache, node) +
  3063. nr_node_ids * sizeof(struct kmem_cache_node *),
  3064. SLAB_HWCACHE_ALIGN);
  3065. kmem_cache = bootstrap(&boot_kmem_cache);
  3066. /*
  3067. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3068. * kmem_cache_node is separately allocated so no need to
  3069. * update any list pointers.
  3070. */
  3071. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3072. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3073. create_kmalloc_caches(0);
  3074. #ifdef CONFIG_SMP
  3075. register_cpu_notifier(&slab_notifier);
  3076. #endif
  3077. printk(KERN_INFO
  3078. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3079. " CPUs=%d, Nodes=%d\n",
  3080. cache_line_size(),
  3081. slub_min_order, slub_max_order, slub_min_objects,
  3082. nr_cpu_ids, nr_node_ids);
  3083. }
  3084. void __init kmem_cache_init_late(void)
  3085. {
  3086. }
  3087. /*
  3088. * Find a mergeable slab cache
  3089. */
  3090. static int slab_unmergeable(struct kmem_cache *s)
  3091. {
  3092. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3093. return 1;
  3094. if (s->ctor)
  3095. return 1;
  3096. /*
  3097. * We may have set a slab to be unmergeable during bootstrap.
  3098. */
  3099. if (s->refcount < 0)
  3100. return 1;
  3101. return 0;
  3102. }
  3103. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3104. size_t align, unsigned long flags, const char *name,
  3105. void (*ctor)(void *))
  3106. {
  3107. struct kmem_cache *s;
  3108. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3109. return NULL;
  3110. if (ctor)
  3111. return NULL;
  3112. size = ALIGN(size, sizeof(void *));
  3113. align = calculate_alignment(flags, align, size);
  3114. size = ALIGN(size, align);
  3115. flags = kmem_cache_flags(size, flags, name, NULL);
  3116. list_for_each_entry(s, &slab_caches, list) {
  3117. if (slab_unmergeable(s))
  3118. continue;
  3119. if (size > s->size)
  3120. continue;
  3121. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3122. continue;
  3123. /*
  3124. * Check if alignment is compatible.
  3125. * Courtesy of Adrian Drzewiecki
  3126. */
  3127. if ((s->size & ~(align - 1)) != s->size)
  3128. continue;
  3129. if (s->size - size >= sizeof(void *))
  3130. continue;
  3131. if (!cache_match_memcg(s, memcg))
  3132. continue;
  3133. return s;
  3134. }
  3135. return NULL;
  3136. }
  3137. struct kmem_cache *
  3138. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3139. size_t align, unsigned long flags, void (*ctor)(void *))
  3140. {
  3141. struct kmem_cache *s;
  3142. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3143. if (s) {
  3144. s->refcount++;
  3145. /*
  3146. * Adjust the object sizes so that we clear
  3147. * the complete object on kzalloc.
  3148. */
  3149. s->object_size = max(s->object_size, (int)size);
  3150. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3151. if (sysfs_slab_alias(s, name)) {
  3152. s->refcount--;
  3153. s = NULL;
  3154. }
  3155. }
  3156. return s;
  3157. }
  3158. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3159. {
  3160. int err;
  3161. err = kmem_cache_open(s, flags);
  3162. if (err)
  3163. return err;
  3164. /* Mutex is not taken during early boot */
  3165. if (slab_state <= UP)
  3166. return 0;
  3167. memcg_propagate_slab_attrs(s);
  3168. mutex_unlock(&slab_mutex);
  3169. err = sysfs_slab_add(s);
  3170. mutex_lock(&slab_mutex);
  3171. if (err)
  3172. kmem_cache_close(s);
  3173. return err;
  3174. }
  3175. #ifdef CONFIG_SMP
  3176. /*
  3177. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3178. * necessary.
  3179. */
  3180. static int slab_cpuup_callback(struct notifier_block *nfb,
  3181. unsigned long action, void *hcpu)
  3182. {
  3183. long cpu = (long)hcpu;
  3184. struct kmem_cache *s;
  3185. unsigned long flags;
  3186. switch (action) {
  3187. case CPU_UP_CANCELED:
  3188. case CPU_UP_CANCELED_FROZEN:
  3189. case CPU_DEAD:
  3190. case CPU_DEAD_FROZEN:
  3191. mutex_lock(&slab_mutex);
  3192. list_for_each_entry(s, &slab_caches, list) {
  3193. local_irq_save(flags);
  3194. __flush_cpu_slab(s, cpu);
  3195. local_irq_restore(flags);
  3196. }
  3197. mutex_unlock(&slab_mutex);
  3198. break;
  3199. default:
  3200. break;
  3201. }
  3202. return NOTIFY_OK;
  3203. }
  3204. static struct notifier_block slab_notifier = {
  3205. .notifier_call = slab_cpuup_callback
  3206. };
  3207. #endif
  3208. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3209. {
  3210. struct kmem_cache *s;
  3211. void *ret;
  3212. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3213. return kmalloc_large(size, gfpflags);
  3214. s = kmalloc_slab(size, gfpflags);
  3215. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3216. return s;
  3217. ret = slab_alloc(s, gfpflags, caller);
  3218. /* Honor the call site pointer we received. */
  3219. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3220. return ret;
  3221. }
  3222. #ifdef CONFIG_NUMA
  3223. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3224. int node, unsigned long caller)
  3225. {
  3226. struct kmem_cache *s;
  3227. void *ret;
  3228. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3229. ret = kmalloc_large_node(size, gfpflags, node);
  3230. trace_kmalloc_node(caller, ret,
  3231. size, PAGE_SIZE << get_order(size),
  3232. gfpflags, node);
  3233. return ret;
  3234. }
  3235. s = kmalloc_slab(size, gfpflags);
  3236. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3237. return s;
  3238. ret = slab_alloc_node(s, gfpflags, node, caller);
  3239. /* Honor the call site pointer we received. */
  3240. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3241. return ret;
  3242. }
  3243. #endif
  3244. #ifdef CONFIG_SYSFS
  3245. static int count_inuse(struct page *page)
  3246. {
  3247. return page->inuse;
  3248. }
  3249. static int count_total(struct page *page)
  3250. {
  3251. return page->objects;
  3252. }
  3253. #endif
  3254. #ifdef CONFIG_SLUB_DEBUG
  3255. static int validate_slab(struct kmem_cache *s, struct page *page,
  3256. unsigned long *map)
  3257. {
  3258. void *p;
  3259. void *addr = page_address(page);
  3260. if (!check_slab(s, page) ||
  3261. !on_freelist(s, page, NULL))
  3262. return 0;
  3263. /* Now we know that a valid freelist exists */
  3264. bitmap_zero(map, page->objects);
  3265. get_map(s, page, map);
  3266. for_each_object(p, s, addr, page->objects) {
  3267. if (test_bit(slab_index(p, s, addr), map))
  3268. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3269. return 0;
  3270. }
  3271. for_each_object(p, s, addr, page->objects)
  3272. if (!test_bit(slab_index(p, s, addr), map))
  3273. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3274. return 0;
  3275. return 1;
  3276. }
  3277. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3278. unsigned long *map)
  3279. {
  3280. slab_lock(page);
  3281. validate_slab(s, page, map);
  3282. slab_unlock(page);
  3283. }
  3284. static int validate_slab_node(struct kmem_cache *s,
  3285. struct kmem_cache_node *n, unsigned long *map)
  3286. {
  3287. unsigned long count = 0;
  3288. struct page *page;
  3289. unsigned long flags;
  3290. spin_lock_irqsave(&n->list_lock, flags);
  3291. list_for_each_entry(page, &n->partial, lru) {
  3292. validate_slab_slab(s, page, map);
  3293. count++;
  3294. }
  3295. if (count != n->nr_partial)
  3296. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3297. "counter=%ld\n", s->name, count, n->nr_partial);
  3298. if (!(s->flags & SLAB_STORE_USER))
  3299. goto out;
  3300. list_for_each_entry(page, &n->full, lru) {
  3301. validate_slab_slab(s, page, map);
  3302. count++;
  3303. }
  3304. if (count != atomic_long_read(&n->nr_slabs))
  3305. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3306. "counter=%ld\n", s->name, count,
  3307. atomic_long_read(&n->nr_slabs));
  3308. out:
  3309. spin_unlock_irqrestore(&n->list_lock, flags);
  3310. return count;
  3311. }
  3312. static long validate_slab_cache(struct kmem_cache *s)
  3313. {
  3314. int node;
  3315. unsigned long count = 0;
  3316. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3317. sizeof(unsigned long), GFP_KERNEL);
  3318. if (!map)
  3319. return -ENOMEM;
  3320. flush_all(s);
  3321. for_each_node_state(node, N_NORMAL_MEMORY) {
  3322. struct kmem_cache_node *n = get_node(s, node);
  3323. count += validate_slab_node(s, n, map);
  3324. }
  3325. kfree(map);
  3326. return count;
  3327. }
  3328. /*
  3329. * Generate lists of code addresses where slabcache objects are allocated
  3330. * and freed.
  3331. */
  3332. struct location {
  3333. unsigned long count;
  3334. unsigned long addr;
  3335. long long sum_time;
  3336. long min_time;
  3337. long max_time;
  3338. long min_pid;
  3339. long max_pid;
  3340. DECLARE_BITMAP(cpus, NR_CPUS);
  3341. nodemask_t nodes;
  3342. };
  3343. struct loc_track {
  3344. unsigned long max;
  3345. unsigned long count;
  3346. struct location *loc;
  3347. };
  3348. static void free_loc_track(struct loc_track *t)
  3349. {
  3350. if (t->max)
  3351. free_pages((unsigned long)t->loc,
  3352. get_order(sizeof(struct location) * t->max));
  3353. }
  3354. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3355. {
  3356. struct location *l;
  3357. int order;
  3358. order = get_order(sizeof(struct location) * max);
  3359. l = (void *)__get_free_pages(flags, order);
  3360. if (!l)
  3361. return 0;
  3362. if (t->count) {
  3363. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3364. free_loc_track(t);
  3365. }
  3366. t->max = max;
  3367. t->loc = l;
  3368. return 1;
  3369. }
  3370. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3371. const struct track *track)
  3372. {
  3373. long start, end, pos;
  3374. struct location *l;
  3375. unsigned long caddr;
  3376. unsigned long age = jiffies - track->when;
  3377. start = -1;
  3378. end = t->count;
  3379. for ( ; ; ) {
  3380. pos = start + (end - start + 1) / 2;
  3381. /*
  3382. * There is nothing at "end". If we end up there
  3383. * we need to add something to before end.
  3384. */
  3385. if (pos == end)
  3386. break;
  3387. caddr = t->loc[pos].addr;
  3388. if (track->addr == caddr) {
  3389. l = &t->loc[pos];
  3390. l->count++;
  3391. if (track->when) {
  3392. l->sum_time += age;
  3393. if (age < l->min_time)
  3394. l->min_time = age;
  3395. if (age > l->max_time)
  3396. l->max_time = age;
  3397. if (track->pid < l->min_pid)
  3398. l->min_pid = track->pid;
  3399. if (track->pid > l->max_pid)
  3400. l->max_pid = track->pid;
  3401. cpumask_set_cpu(track->cpu,
  3402. to_cpumask(l->cpus));
  3403. }
  3404. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3405. return 1;
  3406. }
  3407. if (track->addr < caddr)
  3408. end = pos;
  3409. else
  3410. start = pos;
  3411. }
  3412. /*
  3413. * Not found. Insert new tracking element.
  3414. */
  3415. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3416. return 0;
  3417. l = t->loc + pos;
  3418. if (pos < t->count)
  3419. memmove(l + 1, l,
  3420. (t->count - pos) * sizeof(struct location));
  3421. t->count++;
  3422. l->count = 1;
  3423. l->addr = track->addr;
  3424. l->sum_time = age;
  3425. l->min_time = age;
  3426. l->max_time = age;
  3427. l->min_pid = track->pid;
  3428. l->max_pid = track->pid;
  3429. cpumask_clear(to_cpumask(l->cpus));
  3430. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3431. nodes_clear(l->nodes);
  3432. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3433. return 1;
  3434. }
  3435. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3436. struct page *page, enum track_item alloc,
  3437. unsigned long *map)
  3438. {
  3439. void *addr = page_address(page);
  3440. void *p;
  3441. bitmap_zero(map, page->objects);
  3442. get_map(s, page, map);
  3443. for_each_object(p, s, addr, page->objects)
  3444. if (!test_bit(slab_index(p, s, addr), map))
  3445. add_location(t, s, get_track(s, p, alloc));
  3446. }
  3447. static int list_locations(struct kmem_cache *s, char *buf,
  3448. enum track_item alloc)
  3449. {
  3450. int len = 0;
  3451. unsigned long i;
  3452. struct loc_track t = { 0, 0, NULL };
  3453. int node;
  3454. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3455. sizeof(unsigned long), GFP_KERNEL);
  3456. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3457. GFP_TEMPORARY)) {
  3458. kfree(map);
  3459. return sprintf(buf, "Out of memory\n");
  3460. }
  3461. /* Push back cpu slabs */
  3462. flush_all(s);
  3463. for_each_node_state(node, N_NORMAL_MEMORY) {
  3464. struct kmem_cache_node *n = get_node(s, node);
  3465. unsigned long flags;
  3466. struct page *page;
  3467. if (!atomic_long_read(&n->nr_slabs))
  3468. continue;
  3469. spin_lock_irqsave(&n->list_lock, flags);
  3470. list_for_each_entry(page, &n->partial, lru)
  3471. process_slab(&t, s, page, alloc, map);
  3472. list_for_each_entry(page, &n->full, lru)
  3473. process_slab(&t, s, page, alloc, map);
  3474. spin_unlock_irqrestore(&n->list_lock, flags);
  3475. }
  3476. for (i = 0; i < t.count; i++) {
  3477. struct location *l = &t.loc[i];
  3478. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3479. break;
  3480. len += sprintf(buf + len, "%7ld ", l->count);
  3481. if (l->addr)
  3482. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3483. else
  3484. len += sprintf(buf + len, "<not-available>");
  3485. if (l->sum_time != l->min_time) {
  3486. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3487. l->min_time,
  3488. (long)div_u64(l->sum_time, l->count),
  3489. l->max_time);
  3490. } else
  3491. len += sprintf(buf + len, " age=%ld",
  3492. l->min_time);
  3493. if (l->min_pid != l->max_pid)
  3494. len += sprintf(buf + len, " pid=%ld-%ld",
  3495. l->min_pid, l->max_pid);
  3496. else
  3497. len += sprintf(buf + len, " pid=%ld",
  3498. l->min_pid);
  3499. if (num_online_cpus() > 1 &&
  3500. !cpumask_empty(to_cpumask(l->cpus)) &&
  3501. len < PAGE_SIZE - 60) {
  3502. len += sprintf(buf + len, " cpus=");
  3503. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3504. to_cpumask(l->cpus));
  3505. }
  3506. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3507. len < PAGE_SIZE - 60) {
  3508. len += sprintf(buf + len, " nodes=");
  3509. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3510. l->nodes);
  3511. }
  3512. len += sprintf(buf + len, "\n");
  3513. }
  3514. free_loc_track(&t);
  3515. kfree(map);
  3516. if (!t.count)
  3517. len += sprintf(buf, "No data\n");
  3518. return len;
  3519. }
  3520. #endif
  3521. #ifdef SLUB_RESILIENCY_TEST
  3522. static void resiliency_test(void)
  3523. {
  3524. u8 *p;
  3525. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3526. printk(KERN_ERR "SLUB resiliency testing\n");
  3527. printk(KERN_ERR "-----------------------\n");
  3528. printk(KERN_ERR "A. Corruption after allocation\n");
  3529. p = kzalloc(16, GFP_KERNEL);
  3530. p[16] = 0x12;
  3531. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3532. " 0x12->0x%p\n\n", p + 16);
  3533. validate_slab_cache(kmalloc_caches[4]);
  3534. /* Hmmm... The next two are dangerous */
  3535. p = kzalloc(32, GFP_KERNEL);
  3536. p[32 + sizeof(void *)] = 0x34;
  3537. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3538. " 0x34 -> -0x%p\n", p);
  3539. printk(KERN_ERR
  3540. "If allocated object is overwritten then not detectable\n\n");
  3541. validate_slab_cache(kmalloc_caches[5]);
  3542. p = kzalloc(64, GFP_KERNEL);
  3543. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3544. *p = 0x56;
  3545. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3546. p);
  3547. printk(KERN_ERR
  3548. "If allocated object is overwritten then not detectable\n\n");
  3549. validate_slab_cache(kmalloc_caches[6]);
  3550. printk(KERN_ERR "\nB. Corruption after free\n");
  3551. p = kzalloc(128, GFP_KERNEL);
  3552. kfree(p);
  3553. *p = 0x78;
  3554. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3555. validate_slab_cache(kmalloc_caches[7]);
  3556. p = kzalloc(256, GFP_KERNEL);
  3557. kfree(p);
  3558. p[50] = 0x9a;
  3559. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3560. p);
  3561. validate_slab_cache(kmalloc_caches[8]);
  3562. p = kzalloc(512, GFP_KERNEL);
  3563. kfree(p);
  3564. p[512] = 0xab;
  3565. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3566. validate_slab_cache(kmalloc_caches[9]);
  3567. }
  3568. #else
  3569. #ifdef CONFIG_SYSFS
  3570. static void resiliency_test(void) {};
  3571. #endif
  3572. #endif
  3573. #ifdef CONFIG_SYSFS
  3574. enum slab_stat_type {
  3575. SL_ALL, /* All slabs */
  3576. SL_PARTIAL, /* Only partially allocated slabs */
  3577. SL_CPU, /* Only slabs used for cpu caches */
  3578. SL_OBJECTS, /* Determine allocated objects not slabs */
  3579. SL_TOTAL /* Determine object capacity not slabs */
  3580. };
  3581. #define SO_ALL (1 << SL_ALL)
  3582. #define SO_PARTIAL (1 << SL_PARTIAL)
  3583. #define SO_CPU (1 << SL_CPU)
  3584. #define SO_OBJECTS (1 << SL_OBJECTS)
  3585. #define SO_TOTAL (1 << SL_TOTAL)
  3586. static ssize_t show_slab_objects(struct kmem_cache *s,
  3587. char *buf, unsigned long flags)
  3588. {
  3589. unsigned long total = 0;
  3590. int node;
  3591. int x;
  3592. unsigned long *nodes;
  3593. unsigned long *per_cpu;
  3594. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3595. if (!nodes)
  3596. return -ENOMEM;
  3597. per_cpu = nodes + nr_node_ids;
  3598. if (flags & SO_CPU) {
  3599. int cpu;
  3600. for_each_possible_cpu(cpu) {
  3601. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3602. int node;
  3603. struct page *page;
  3604. page = ACCESS_ONCE(c->page);
  3605. if (!page)
  3606. continue;
  3607. node = page_to_nid(page);
  3608. if (flags & SO_TOTAL)
  3609. x = page->objects;
  3610. else if (flags & SO_OBJECTS)
  3611. x = page->inuse;
  3612. else
  3613. x = 1;
  3614. total += x;
  3615. nodes[node] += x;
  3616. page = ACCESS_ONCE(c->partial);
  3617. if (page) {
  3618. x = page->pobjects;
  3619. total += x;
  3620. nodes[node] += x;
  3621. }
  3622. per_cpu[node]++;
  3623. }
  3624. }
  3625. lock_memory_hotplug();
  3626. #ifdef CONFIG_SLUB_DEBUG
  3627. if (flags & SO_ALL) {
  3628. for_each_node_state(node, N_NORMAL_MEMORY) {
  3629. struct kmem_cache_node *n = get_node(s, node);
  3630. if (flags & SO_TOTAL)
  3631. x = atomic_long_read(&n->total_objects);
  3632. else if (flags & SO_OBJECTS)
  3633. x = atomic_long_read(&n->total_objects) -
  3634. count_partial(n, count_free);
  3635. else
  3636. x = atomic_long_read(&n->nr_slabs);
  3637. total += x;
  3638. nodes[node] += x;
  3639. }
  3640. } else
  3641. #endif
  3642. if (flags & SO_PARTIAL) {
  3643. for_each_node_state(node, N_NORMAL_MEMORY) {
  3644. struct kmem_cache_node *n = get_node(s, node);
  3645. if (flags & SO_TOTAL)
  3646. x = count_partial(n, count_total);
  3647. else if (flags & SO_OBJECTS)
  3648. x = count_partial(n, count_inuse);
  3649. else
  3650. x = n->nr_partial;
  3651. total += x;
  3652. nodes[node] += x;
  3653. }
  3654. }
  3655. x = sprintf(buf, "%lu", total);
  3656. #ifdef CONFIG_NUMA
  3657. for_each_node_state(node, N_NORMAL_MEMORY)
  3658. if (nodes[node])
  3659. x += sprintf(buf + x, " N%d=%lu",
  3660. node, nodes[node]);
  3661. #endif
  3662. unlock_memory_hotplug();
  3663. kfree(nodes);
  3664. return x + sprintf(buf + x, "\n");
  3665. }
  3666. #ifdef CONFIG_SLUB_DEBUG
  3667. static int any_slab_objects(struct kmem_cache *s)
  3668. {
  3669. int node;
  3670. for_each_online_node(node) {
  3671. struct kmem_cache_node *n = get_node(s, node);
  3672. if (!n)
  3673. continue;
  3674. if (atomic_long_read(&n->total_objects))
  3675. return 1;
  3676. }
  3677. return 0;
  3678. }
  3679. #endif
  3680. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3681. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3682. struct slab_attribute {
  3683. struct attribute attr;
  3684. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3685. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3686. };
  3687. #define SLAB_ATTR_RO(_name) \
  3688. static struct slab_attribute _name##_attr = \
  3689. __ATTR(_name, 0400, _name##_show, NULL)
  3690. #define SLAB_ATTR(_name) \
  3691. static struct slab_attribute _name##_attr = \
  3692. __ATTR(_name, 0600, _name##_show, _name##_store)
  3693. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3694. {
  3695. return sprintf(buf, "%d\n", s->size);
  3696. }
  3697. SLAB_ATTR_RO(slab_size);
  3698. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3699. {
  3700. return sprintf(buf, "%d\n", s->align);
  3701. }
  3702. SLAB_ATTR_RO(align);
  3703. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3704. {
  3705. return sprintf(buf, "%d\n", s->object_size);
  3706. }
  3707. SLAB_ATTR_RO(object_size);
  3708. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3709. {
  3710. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3711. }
  3712. SLAB_ATTR_RO(objs_per_slab);
  3713. static ssize_t order_store(struct kmem_cache *s,
  3714. const char *buf, size_t length)
  3715. {
  3716. unsigned long order;
  3717. int err;
  3718. err = strict_strtoul(buf, 10, &order);
  3719. if (err)
  3720. return err;
  3721. if (order > slub_max_order || order < slub_min_order)
  3722. return -EINVAL;
  3723. calculate_sizes(s, order);
  3724. return length;
  3725. }
  3726. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3727. {
  3728. return sprintf(buf, "%d\n", oo_order(s->oo));
  3729. }
  3730. SLAB_ATTR(order);
  3731. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3732. {
  3733. return sprintf(buf, "%lu\n", s->min_partial);
  3734. }
  3735. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3736. size_t length)
  3737. {
  3738. unsigned long min;
  3739. int err;
  3740. err = strict_strtoul(buf, 10, &min);
  3741. if (err)
  3742. return err;
  3743. set_min_partial(s, min);
  3744. return length;
  3745. }
  3746. SLAB_ATTR(min_partial);
  3747. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3748. {
  3749. return sprintf(buf, "%u\n", s->cpu_partial);
  3750. }
  3751. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3752. size_t length)
  3753. {
  3754. unsigned long objects;
  3755. int err;
  3756. err = strict_strtoul(buf, 10, &objects);
  3757. if (err)
  3758. return err;
  3759. if (objects && !kmem_cache_has_cpu_partial(s))
  3760. return -EINVAL;
  3761. s->cpu_partial = objects;
  3762. flush_all(s);
  3763. return length;
  3764. }
  3765. SLAB_ATTR(cpu_partial);
  3766. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3767. {
  3768. if (!s->ctor)
  3769. return 0;
  3770. return sprintf(buf, "%pS\n", s->ctor);
  3771. }
  3772. SLAB_ATTR_RO(ctor);
  3773. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3774. {
  3775. return sprintf(buf, "%d\n", s->refcount - 1);
  3776. }
  3777. SLAB_ATTR_RO(aliases);
  3778. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3779. {
  3780. return show_slab_objects(s, buf, SO_PARTIAL);
  3781. }
  3782. SLAB_ATTR_RO(partial);
  3783. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3784. {
  3785. return show_slab_objects(s, buf, SO_CPU);
  3786. }
  3787. SLAB_ATTR_RO(cpu_slabs);
  3788. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3789. {
  3790. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3791. }
  3792. SLAB_ATTR_RO(objects);
  3793. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3794. {
  3795. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3796. }
  3797. SLAB_ATTR_RO(objects_partial);
  3798. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3799. {
  3800. int objects = 0;
  3801. int pages = 0;
  3802. int cpu;
  3803. int len;
  3804. for_each_online_cpu(cpu) {
  3805. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3806. if (page) {
  3807. pages += page->pages;
  3808. objects += page->pobjects;
  3809. }
  3810. }
  3811. len = sprintf(buf, "%d(%d)", objects, pages);
  3812. #ifdef CONFIG_SMP
  3813. for_each_online_cpu(cpu) {
  3814. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3815. if (page && len < PAGE_SIZE - 20)
  3816. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3817. page->pobjects, page->pages);
  3818. }
  3819. #endif
  3820. return len + sprintf(buf + len, "\n");
  3821. }
  3822. SLAB_ATTR_RO(slabs_cpu_partial);
  3823. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3824. {
  3825. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3826. }
  3827. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3828. const char *buf, size_t length)
  3829. {
  3830. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3831. if (buf[0] == '1')
  3832. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3833. return length;
  3834. }
  3835. SLAB_ATTR(reclaim_account);
  3836. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3837. {
  3838. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3839. }
  3840. SLAB_ATTR_RO(hwcache_align);
  3841. #ifdef CONFIG_ZONE_DMA
  3842. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3843. {
  3844. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3845. }
  3846. SLAB_ATTR_RO(cache_dma);
  3847. #endif
  3848. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3849. {
  3850. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3851. }
  3852. SLAB_ATTR_RO(destroy_by_rcu);
  3853. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", s->reserved);
  3856. }
  3857. SLAB_ATTR_RO(reserved);
  3858. #ifdef CONFIG_SLUB_DEBUG
  3859. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3860. {
  3861. return show_slab_objects(s, buf, SO_ALL);
  3862. }
  3863. SLAB_ATTR_RO(slabs);
  3864. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3865. {
  3866. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3867. }
  3868. SLAB_ATTR_RO(total_objects);
  3869. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3870. {
  3871. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3872. }
  3873. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3874. const char *buf, size_t length)
  3875. {
  3876. s->flags &= ~SLAB_DEBUG_FREE;
  3877. if (buf[0] == '1') {
  3878. s->flags &= ~__CMPXCHG_DOUBLE;
  3879. s->flags |= SLAB_DEBUG_FREE;
  3880. }
  3881. return length;
  3882. }
  3883. SLAB_ATTR(sanity_checks);
  3884. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3885. {
  3886. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3887. }
  3888. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3889. size_t length)
  3890. {
  3891. s->flags &= ~SLAB_TRACE;
  3892. if (buf[0] == '1') {
  3893. s->flags &= ~__CMPXCHG_DOUBLE;
  3894. s->flags |= SLAB_TRACE;
  3895. }
  3896. return length;
  3897. }
  3898. SLAB_ATTR(trace);
  3899. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3900. {
  3901. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3902. }
  3903. static ssize_t red_zone_store(struct kmem_cache *s,
  3904. const char *buf, size_t length)
  3905. {
  3906. if (any_slab_objects(s))
  3907. return -EBUSY;
  3908. s->flags &= ~SLAB_RED_ZONE;
  3909. if (buf[0] == '1') {
  3910. s->flags &= ~__CMPXCHG_DOUBLE;
  3911. s->flags |= SLAB_RED_ZONE;
  3912. }
  3913. calculate_sizes(s, -1);
  3914. return length;
  3915. }
  3916. SLAB_ATTR(red_zone);
  3917. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3918. {
  3919. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3920. }
  3921. static ssize_t poison_store(struct kmem_cache *s,
  3922. const char *buf, size_t length)
  3923. {
  3924. if (any_slab_objects(s))
  3925. return -EBUSY;
  3926. s->flags &= ~SLAB_POISON;
  3927. if (buf[0] == '1') {
  3928. s->flags &= ~__CMPXCHG_DOUBLE;
  3929. s->flags |= SLAB_POISON;
  3930. }
  3931. calculate_sizes(s, -1);
  3932. return length;
  3933. }
  3934. SLAB_ATTR(poison);
  3935. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3936. {
  3937. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3938. }
  3939. static ssize_t store_user_store(struct kmem_cache *s,
  3940. const char *buf, size_t length)
  3941. {
  3942. if (any_slab_objects(s))
  3943. return -EBUSY;
  3944. s->flags &= ~SLAB_STORE_USER;
  3945. if (buf[0] == '1') {
  3946. s->flags &= ~__CMPXCHG_DOUBLE;
  3947. s->flags |= SLAB_STORE_USER;
  3948. }
  3949. calculate_sizes(s, -1);
  3950. return length;
  3951. }
  3952. SLAB_ATTR(store_user);
  3953. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3954. {
  3955. return 0;
  3956. }
  3957. static ssize_t validate_store(struct kmem_cache *s,
  3958. const char *buf, size_t length)
  3959. {
  3960. int ret = -EINVAL;
  3961. if (buf[0] == '1') {
  3962. ret = validate_slab_cache(s);
  3963. if (ret >= 0)
  3964. ret = length;
  3965. }
  3966. return ret;
  3967. }
  3968. SLAB_ATTR(validate);
  3969. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3970. {
  3971. if (!(s->flags & SLAB_STORE_USER))
  3972. return -ENOSYS;
  3973. return list_locations(s, buf, TRACK_ALLOC);
  3974. }
  3975. SLAB_ATTR_RO(alloc_calls);
  3976. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3977. {
  3978. if (!(s->flags & SLAB_STORE_USER))
  3979. return -ENOSYS;
  3980. return list_locations(s, buf, TRACK_FREE);
  3981. }
  3982. SLAB_ATTR_RO(free_calls);
  3983. #endif /* CONFIG_SLUB_DEBUG */
  3984. #ifdef CONFIG_FAILSLAB
  3985. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3986. {
  3987. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3988. }
  3989. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3990. size_t length)
  3991. {
  3992. s->flags &= ~SLAB_FAILSLAB;
  3993. if (buf[0] == '1')
  3994. s->flags |= SLAB_FAILSLAB;
  3995. return length;
  3996. }
  3997. SLAB_ATTR(failslab);
  3998. #endif
  3999. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4000. {
  4001. return 0;
  4002. }
  4003. static ssize_t shrink_store(struct kmem_cache *s,
  4004. const char *buf, size_t length)
  4005. {
  4006. if (buf[0] == '1') {
  4007. int rc = kmem_cache_shrink(s);
  4008. if (rc)
  4009. return rc;
  4010. } else
  4011. return -EINVAL;
  4012. return length;
  4013. }
  4014. SLAB_ATTR(shrink);
  4015. #ifdef CONFIG_NUMA
  4016. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4017. {
  4018. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4019. }
  4020. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4021. const char *buf, size_t length)
  4022. {
  4023. unsigned long ratio;
  4024. int err;
  4025. err = strict_strtoul(buf, 10, &ratio);
  4026. if (err)
  4027. return err;
  4028. if (ratio <= 100)
  4029. s->remote_node_defrag_ratio = ratio * 10;
  4030. return length;
  4031. }
  4032. SLAB_ATTR(remote_node_defrag_ratio);
  4033. #endif
  4034. #ifdef CONFIG_SLUB_STATS
  4035. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4036. {
  4037. unsigned long sum = 0;
  4038. int cpu;
  4039. int len;
  4040. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4041. if (!data)
  4042. return -ENOMEM;
  4043. for_each_online_cpu(cpu) {
  4044. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4045. data[cpu] = x;
  4046. sum += x;
  4047. }
  4048. len = sprintf(buf, "%lu", sum);
  4049. #ifdef CONFIG_SMP
  4050. for_each_online_cpu(cpu) {
  4051. if (data[cpu] && len < PAGE_SIZE - 20)
  4052. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4053. }
  4054. #endif
  4055. kfree(data);
  4056. return len + sprintf(buf + len, "\n");
  4057. }
  4058. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4059. {
  4060. int cpu;
  4061. for_each_online_cpu(cpu)
  4062. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4063. }
  4064. #define STAT_ATTR(si, text) \
  4065. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4066. { \
  4067. return show_stat(s, buf, si); \
  4068. } \
  4069. static ssize_t text##_store(struct kmem_cache *s, \
  4070. const char *buf, size_t length) \
  4071. { \
  4072. if (buf[0] != '0') \
  4073. return -EINVAL; \
  4074. clear_stat(s, si); \
  4075. return length; \
  4076. } \
  4077. SLAB_ATTR(text); \
  4078. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4079. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4080. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4081. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4082. STAT_ATTR(FREE_FROZEN, free_frozen);
  4083. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4084. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4085. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4086. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4087. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4088. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4089. STAT_ATTR(FREE_SLAB, free_slab);
  4090. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4091. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4092. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4093. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4094. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4095. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4096. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4097. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4098. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4099. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4100. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4101. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4102. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4103. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4104. #endif
  4105. static struct attribute *slab_attrs[] = {
  4106. &slab_size_attr.attr,
  4107. &object_size_attr.attr,
  4108. &objs_per_slab_attr.attr,
  4109. &order_attr.attr,
  4110. &min_partial_attr.attr,
  4111. &cpu_partial_attr.attr,
  4112. &objects_attr.attr,
  4113. &objects_partial_attr.attr,
  4114. &partial_attr.attr,
  4115. &cpu_slabs_attr.attr,
  4116. &ctor_attr.attr,
  4117. &aliases_attr.attr,
  4118. &align_attr.attr,
  4119. &hwcache_align_attr.attr,
  4120. &reclaim_account_attr.attr,
  4121. &destroy_by_rcu_attr.attr,
  4122. &shrink_attr.attr,
  4123. &reserved_attr.attr,
  4124. &slabs_cpu_partial_attr.attr,
  4125. #ifdef CONFIG_SLUB_DEBUG
  4126. &total_objects_attr.attr,
  4127. &slabs_attr.attr,
  4128. &sanity_checks_attr.attr,
  4129. &trace_attr.attr,
  4130. &red_zone_attr.attr,
  4131. &poison_attr.attr,
  4132. &store_user_attr.attr,
  4133. &validate_attr.attr,
  4134. &alloc_calls_attr.attr,
  4135. &free_calls_attr.attr,
  4136. #endif
  4137. #ifdef CONFIG_ZONE_DMA
  4138. &cache_dma_attr.attr,
  4139. #endif
  4140. #ifdef CONFIG_NUMA
  4141. &remote_node_defrag_ratio_attr.attr,
  4142. #endif
  4143. #ifdef CONFIG_SLUB_STATS
  4144. &alloc_fastpath_attr.attr,
  4145. &alloc_slowpath_attr.attr,
  4146. &free_fastpath_attr.attr,
  4147. &free_slowpath_attr.attr,
  4148. &free_frozen_attr.attr,
  4149. &free_add_partial_attr.attr,
  4150. &free_remove_partial_attr.attr,
  4151. &alloc_from_partial_attr.attr,
  4152. &alloc_slab_attr.attr,
  4153. &alloc_refill_attr.attr,
  4154. &alloc_node_mismatch_attr.attr,
  4155. &free_slab_attr.attr,
  4156. &cpuslab_flush_attr.attr,
  4157. &deactivate_full_attr.attr,
  4158. &deactivate_empty_attr.attr,
  4159. &deactivate_to_head_attr.attr,
  4160. &deactivate_to_tail_attr.attr,
  4161. &deactivate_remote_frees_attr.attr,
  4162. &deactivate_bypass_attr.attr,
  4163. &order_fallback_attr.attr,
  4164. &cmpxchg_double_fail_attr.attr,
  4165. &cmpxchg_double_cpu_fail_attr.attr,
  4166. &cpu_partial_alloc_attr.attr,
  4167. &cpu_partial_free_attr.attr,
  4168. &cpu_partial_node_attr.attr,
  4169. &cpu_partial_drain_attr.attr,
  4170. #endif
  4171. #ifdef CONFIG_FAILSLAB
  4172. &failslab_attr.attr,
  4173. #endif
  4174. NULL
  4175. };
  4176. static struct attribute_group slab_attr_group = {
  4177. .attrs = slab_attrs,
  4178. };
  4179. static ssize_t slab_attr_show(struct kobject *kobj,
  4180. struct attribute *attr,
  4181. char *buf)
  4182. {
  4183. struct slab_attribute *attribute;
  4184. struct kmem_cache *s;
  4185. int err;
  4186. attribute = to_slab_attr(attr);
  4187. s = to_slab(kobj);
  4188. if (!attribute->show)
  4189. return -EIO;
  4190. err = attribute->show(s, buf);
  4191. return err;
  4192. }
  4193. static ssize_t slab_attr_store(struct kobject *kobj,
  4194. struct attribute *attr,
  4195. const char *buf, size_t len)
  4196. {
  4197. struct slab_attribute *attribute;
  4198. struct kmem_cache *s;
  4199. int err;
  4200. attribute = to_slab_attr(attr);
  4201. s = to_slab(kobj);
  4202. if (!attribute->store)
  4203. return -EIO;
  4204. err = attribute->store(s, buf, len);
  4205. #ifdef CONFIG_MEMCG_KMEM
  4206. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4207. int i;
  4208. mutex_lock(&slab_mutex);
  4209. if (s->max_attr_size < len)
  4210. s->max_attr_size = len;
  4211. /*
  4212. * This is a best effort propagation, so this function's return
  4213. * value will be determined by the parent cache only. This is
  4214. * basically because not all attributes will have a well
  4215. * defined semantics for rollbacks - most of the actions will
  4216. * have permanent effects.
  4217. *
  4218. * Returning the error value of any of the children that fail
  4219. * is not 100 % defined, in the sense that users seeing the
  4220. * error code won't be able to know anything about the state of
  4221. * the cache.
  4222. *
  4223. * Only returning the error code for the parent cache at least
  4224. * has well defined semantics. The cache being written to
  4225. * directly either failed or succeeded, in which case we loop
  4226. * through the descendants with best-effort propagation.
  4227. */
  4228. for_each_memcg_cache_index(i) {
  4229. struct kmem_cache *c = cache_from_memcg(s, i);
  4230. if (c)
  4231. attribute->store(c, buf, len);
  4232. }
  4233. mutex_unlock(&slab_mutex);
  4234. }
  4235. #endif
  4236. return err;
  4237. }
  4238. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4239. {
  4240. #ifdef CONFIG_MEMCG_KMEM
  4241. int i;
  4242. char *buffer = NULL;
  4243. if (!is_root_cache(s))
  4244. return;
  4245. /*
  4246. * This mean this cache had no attribute written. Therefore, no point
  4247. * in copying default values around
  4248. */
  4249. if (!s->max_attr_size)
  4250. return;
  4251. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4252. char mbuf[64];
  4253. char *buf;
  4254. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4255. if (!attr || !attr->store || !attr->show)
  4256. continue;
  4257. /*
  4258. * It is really bad that we have to allocate here, so we will
  4259. * do it only as a fallback. If we actually allocate, though,
  4260. * we can just use the allocated buffer until the end.
  4261. *
  4262. * Most of the slub attributes will tend to be very small in
  4263. * size, but sysfs allows buffers up to a page, so they can
  4264. * theoretically happen.
  4265. */
  4266. if (buffer)
  4267. buf = buffer;
  4268. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4269. buf = mbuf;
  4270. else {
  4271. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4272. if (WARN_ON(!buffer))
  4273. continue;
  4274. buf = buffer;
  4275. }
  4276. attr->show(s->memcg_params->root_cache, buf);
  4277. attr->store(s, buf, strlen(buf));
  4278. }
  4279. if (buffer)
  4280. free_page((unsigned long)buffer);
  4281. #endif
  4282. }
  4283. static const struct sysfs_ops slab_sysfs_ops = {
  4284. .show = slab_attr_show,
  4285. .store = slab_attr_store,
  4286. };
  4287. static struct kobj_type slab_ktype = {
  4288. .sysfs_ops = &slab_sysfs_ops,
  4289. };
  4290. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4291. {
  4292. struct kobj_type *ktype = get_ktype(kobj);
  4293. if (ktype == &slab_ktype)
  4294. return 1;
  4295. return 0;
  4296. }
  4297. static const struct kset_uevent_ops slab_uevent_ops = {
  4298. .filter = uevent_filter,
  4299. };
  4300. static struct kset *slab_kset;
  4301. #define ID_STR_LENGTH 64
  4302. /* Create a unique string id for a slab cache:
  4303. *
  4304. * Format :[flags-]size
  4305. */
  4306. static char *create_unique_id(struct kmem_cache *s)
  4307. {
  4308. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4309. char *p = name;
  4310. BUG_ON(!name);
  4311. *p++ = ':';
  4312. /*
  4313. * First flags affecting slabcache operations. We will only
  4314. * get here for aliasable slabs so we do not need to support
  4315. * too many flags. The flags here must cover all flags that
  4316. * are matched during merging to guarantee that the id is
  4317. * unique.
  4318. */
  4319. if (s->flags & SLAB_CACHE_DMA)
  4320. *p++ = 'd';
  4321. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4322. *p++ = 'a';
  4323. if (s->flags & SLAB_DEBUG_FREE)
  4324. *p++ = 'F';
  4325. if (!(s->flags & SLAB_NOTRACK))
  4326. *p++ = 't';
  4327. if (p != name + 1)
  4328. *p++ = '-';
  4329. p += sprintf(p, "%07d", s->size);
  4330. #ifdef CONFIG_MEMCG_KMEM
  4331. if (!is_root_cache(s))
  4332. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4333. #endif
  4334. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4335. return name;
  4336. }
  4337. static int sysfs_slab_add(struct kmem_cache *s)
  4338. {
  4339. int err;
  4340. const char *name;
  4341. int unmergeable = slab_unmergeable(s);
  4342. if (unmergeable) {
  4343. /*
  4344. * Slabcache can never be merged so we can use the name proper.
  4345. * This is typically the case for debug situations. In that
  4346. * case we can catch duplicate names easily.
  4347. */
  4348. sysfs_remove_link(&slab_kset->kobj, s->name);
  4349. name = s->name;
  4350. } else {
  4351. /*
  4352. * Create a unique name for the slab as a target
  4353. * for the symlinks.
  4354. */
  4355. name = create_unique_id(s);
  4356. }
  4357. s->kobj.kset = slab_kset;
  4358. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4359. if (err) {
  4360. kobject_put(&s->kobj);
  4361. return err;
  4362. }
  4363. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4364. if (err) {
  4365. kobject_del(&s->kobj);
  4366. kobject_put(&s->kobj);
  4367. return err;
  4368. }
  4369. kobject_uevent(&s->kobj, KOBJ_ADD);
  4370. if (!unmergeable) {
  4371. /* Setup first alias */
  4372. sysfs_slab_alias(s, s->name);
  4373. kfree(name);
  4374. }
  4375. return 0;
  4376. }
  4377. static void sysfs_slab_remove(struct kmem_cache *s)
  4378. {
  4379. if (slab_state < FULL)
  4380. /*
  4381. * Sysfs has not been setup yet so no need to remove the
  4382. * cache from sysfs.
  4383. */
  4384. return;
  4385. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4386. kobject_del(&s->kobj);
  4387. kobject_put(&s->kobj);
  4388. }
  4389. /*
  4390. * Need to buffer aliases during bootup until sysfs becomes
  4391. * available lest we lose that information.
  4392. */
  4393. struct saved_alias {
  4394. struct kmem_cache *s;
  4395. const char *name;
  4396. struct saved_alias *next;
  4397. };
  4398. static struct saved_alias *alias_list;
  4399. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4400. {
  4401. struct saved_alias *al;
  4402. if (slab_state == FULL) {
  4403. /*
  4404. * If we have a leftover link then remove it.
  4405. */
  4406. sysfs_remove_link(&slab_kset->kobj, name);
  4407. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4408. }
  4409. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4410. if (!al)
  4411. return -ENOMEM;
  4412. al->s = s;
  4413. al->name = name;
  4414. al->next = alias_list;
  4415. alias_list = al;
  4416. return 0;
  4417. }
  4418. static int __init slab_sysfs_init(void)
  4419. {
  4420. struct kmem_cache *s;
  4421. int err;
  4422. mutex_lock(&slab_mutex);
  4423. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4424. if (!slab_kset) {
  4425. mutex_unlock(&slab_mutex);
  4426. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4427. return -ENOSYS;
  4428. }
  4429. slab_state = FULL;
  4430. list_for_each_entry(s, &slab_caches, list) {
  4431. err = sysfs_slab_add(s);
  4432. if (err)
  4433. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4434. " to sysfs\n", s->name);
  4435. }
  4436. while (alias_list) {
  4437. struct saved_alias *al = alias_list;
  4438. alias_list = alias_list->next;
  4439. err = sysfs_slab_alias(al->s, al->name);
  4440. if (err)
  4441. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4442. " %s to sysfs\n", al->name);
  4443. kfree(al);
  4444. }
  4445. mutex_unlock(&slab_mutex);
  4446. resiliency_test();
  4447. return 0;
  4448. }
  4449. __initcall(slab_sysfs_init);
  4450. #endif /* CONFIG_SYSFS */
  4451. /*
  4452. * The /proc/slabinfo ABI
  4453. */
  4454. #ifdef CONFIG_SLABINFO
  4455. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4456. {
  4457. unsigned long nr_slabs = 0;
  4458. unsigned long nr_objs = 0;
  4459. unsigned long nr_free = 0;
  4460. int node;
  4461. for_each_online_node(node) {
  4462. struct kmem_cache_node *n = get_node(s, node);
  4463. if (!n)
  4464. continue;
  4465. nr_slabs += node_nr_slabs(n);
  4466. nr_objs += node_nr_objs(n);
  4467. nr_free += count_partial(n, count_free);
  4468. }
  4469. sinfo->active_objs = nr_objs - nr_free;
  4470. sinfo->num_objs = nr_objs;
  4471. sinfo->active_slabs = nr_slabs;
  4472. sinfo->num_slabs = nr_slabs;
  4473. sinfo->objects_per_slab = oo_objects(s->oo);
  4474. sinfo->cache_order = oo_order(s->oo);
  4475. }
  4476. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4477. {
  4478. }
  4479. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4480. size_t count, loff_t *ppos)
  4481. {
  4482. return -EIO;
  4483. }
  4484. #endif /* CONFIG_SLABINFO */