page_alloc.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <asm/sections.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/div64.h>
  65. #include "internal.h"
  66. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  67. static DEFINE_MUTEX(pcp_batch_high_lock);
  68. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  69. DEFINE_PER_CPU(int, numa_node);
  70. EXPORT_PER_CPU_SYMBOL(numa_node);
  71. #endif
  72. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  73. /*
  74. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  75. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  76. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  77. * defined in <linux/topology.h>.
  78. */
  79. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  80. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  81. #endif
  82. /*
  83. * Array of node states.
  84. */
  85. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  86. [N_POSSIBLE] = NODE_MASK_ALL,
  87. [N_ONLINE] = { { [0] = 1UL } },
  88. #ifndef CONFIG_NUMA
  89. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  90. #ifdef CONFIG_HIGHMEM
  91. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  92. #endif
  93. #ifdef CONFIG_MOVABLE_NODE
  94. [N_MEMORY] = { { [0] = 1UL } },
  95. #endif
  96. [N_CPU] = { { [0] = 1UL } },
  97. #endif /* NUMA */
  98. };
  99. EXPORT_SYMBOL(node_states);
  100. /* Protect totalram_pages and zone->managed_pages */
  101. static DEFINE_SPINLOCK(managed_page_count_lock);
  102. unsigned long totalram_pages __read_mostly;
  103. unsigned long totalreserve_pages __read_mostly;
  104. /*
  105. * When calculating the number of globally allowed dirty pages, there
  106. * is a certain number of per-zone reserves that should not be
  107. * considered dirtyable memory. This is the sum of those reserves
  108. * over all existing zones that contribute dirtyable memory.
  109. */
  110. unsigned long dirty_balance_reserve __read_mostly;
  111. int percpu_pagelist_fraction;
  112. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  113. #ifdef CONFIG_PM_SLEEP
  114. /*
  115. * The following functions are used by the suspend/hibernate code to temporarily
  116. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  117. * while devices are suspended. To avoid races with the suspend/hibernate code,
  118. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  119. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  120. * guaranteed not to run in parallel with that modification).
  121. */
  122. static gfp_t saved_gfp_mask;
  123. void pm_restore_gfp_mask(void)
  124. {
  125. WARN_ON(!mutex_is_locked(&pm_mutex));
  126. if (saved_gfp_mask) {
  127. gfp_allowed_mask = saved_gfp_mask;
  128. saved_gfp_mask = 0;
  129. }
  130. }
  131. void pm_restrict_gfp_mask(void)
  132. {
  133. WARN_ON(!mutex_is_locked(&pm_mutex));
  134. WARN_ON(saved_gfp_mask);
  135. saved_gfp_mask = gfp_allowed_mask;
  136. gfp_allowed_mask &= ~GFP_IOFS;
  137. }
  138. bool pm_suspended_storage(void)
  139. {
  140. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  141. return false;
  142. return true;
  143. }
  144. #endif /* CONFIG_PM_SLEEP */
  145. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  146. int pageblock_order __read_mostly;
  147. #endif
  148. static void __free_pages_ok(struct page *page, unsigned int order);
  149. /*
  150. * results with 256, 32 in the lowmem_reserve sysctl:
  151. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  152. * 1G machine -> (16M dma, 784M normal, 224M high)
  153. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  154. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  155. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  156. *
  157. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  158. * don't need any ZONE_NORMAL reservation
  159. */
  160. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  161. #ifdef CONFIG_ZONE_DMA
  162. 256,
  163. #endif
  164. #ifdef CONFIG_ZONE_DMA32
  165. 256,
  166. #endif
  167. #ifdef CONFIG_HIGHMEM
  168. 32,
  169. #endif
  170. 32,
  171. };
  172. EXPORT_SYMBOL(totalram_pages);
  173. static char * const zone_names[MAX_NR_ZONES] = {
  174. #ifdef CONFIG_ZONE_DMA
  175. "DMA",
  176. #endif
  177. #ifdef CONFIG_ZONE_DMA32
  178. "DMA32",
  179. #endif
  180. "Normal",
  181. #ifdef CONFIG_HIGHMEM
  182. "HighMem",
  183. #endif
  184. "Movable",
  185. };
  186. int min_free_kbytes = 1024;
  187. int user_min_free_kbytes;
  188. static unsigned long __meminitdata nr_kernel_pages;
  189. static unsigned long __meminitdata nr_all_pages;
  190. static unsigned long __meminitdata dma_reserve;
  191. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  192. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  193. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  194. static unsigned long __initdata required_kernelcore;
  195. static unsigned long __initdata required_movablecore;
  196. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  197. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  198. int movable_zone;
  199. EXPORT_SYMBOL(movable_zone);
  200. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  201. #if MAX_NUMNODES > 1
  202. int nr_node_ids __read_mostly = MAX_NUMNODES;
  203. int nr_online_nodes __read_mostly = 1;
  204. EXPORT_SYMBOL(nr_node_ids);
  205. EXPORT_SYMBOL(nr_online_nodes);
  206. #endif
  207. int page_group_by_mobility_disabled __read_mostly;
  208. void set_pageblock_migratetype(struct page *page, int migratetype)
  209. {
  210. if (unlikely(page_group_by_mobility_disabled))
  211. migratetype = MIGRATE_UNMOVABLE;
  212. set_pageblock_flags_group(page, (unsigned long)migratetype,
  213. PB_migrate, PB_migrate_end);
  214. }
  215. bool oom_killer_disabled __read_mostly;
  216. #ifdef CONFIG_DEBUG_VM
  217. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  218. {
  219. int ret = 0;
  220. unsigned seq;
  221. unsigned long pfn = page_to_pfn(page);
  222. unsigned long sp, start_pfn;
  223. do {
  224. seq = zone_span_seqbegin(zone);
  225. start_pfn = zone->zone_start_pfn;
  226. sp = zone->spanned_pages;
  227. if (!zone_spans_pfn(zone, pfn))
  228. ret = 1;
  229. } while (zone_span_seqretry(zone, seq));
  230. if (ret)
  231. pr_err("page %lu outside zone [ %lu - %lu ]\n",
  232. pfn, start_pfn, start_pfn + sp);
  233. return ret;
  234. }
  235. static int page_is_consistent(struct zone *zone, struct page *page)
  236. {
  237. if (!pfn_valid_within(page_to_pfn(page)))
  238. return 0;
  239. if (zone != page_zone(page))
  240. return 0;
  241. return 1;
  242. }
  243. /*
  244. * Temporary debugging check for pages not lying within a given zone.
  245. */
  246. static int bad_range(struct zone *zone, struct page *page)
  247. {
  248. if (page_outside_zone_boundaries(zone, page))
  249. return 1;
  250. if (!page_is_consistent(zone, page))
  251. return 1;
  252. return 0;
  253. }
  254. #else
  255. static inline int bad_range(struct zone *zone, struct page *page)
  256. {
  257. return 0;
  258. }
  259. #endif
  260. static void bad_page(struct page *page)
  261. {
  262. static unsigned long resume;
  263. static unsigned long nr_shown;
  264. static unsigned long nr_unshown;
  265. /* Don't complain about poisoned pages */
  266. if (PageHWPoison(page)) {
  267. page_mapcount_reset(page); /* remove PageBuddy */
  268. return;
  269. }
  270. /*
  271. * Allow a burst of 60 reports, then keep quiet for that minute;
  272. * or allow a steady drip of one report per second.
  273. */
  274. if (nr_shown == 60) {
  275. if (time_before(jiffies, resume)) {
  276. nr_unshown++;
  277. goto out;
  278. }
  279. if (nr_unshown) {
  280. printk(KERN_ALERT
  281. "BUG: Bad page state: %lu messages suppressed\n",
  282. nr_unshown);
  283. nr_unshown = 0;
  284. }
  285. nr_shown = 0;
  286. }
  287. if (nr_shown++ == 0)
  288. resume = jiffies + 60 * HZ;
  289. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  290. current->comm, page_to_pfn(page));
  291. dump_page(page);
  292. print_modules();
  293. dump_stack();
  294. out:
  295. /* Leave bad fields for debug, except PageBuddy could make trouble */
  296. page_mapcount_reset(page); /* remove PageBuddy */
  297. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  298. }
  299. /*
  300. * Higher-order pages are called "compound pages". They are structured thusly:
  301. *
  302. * The first PAGE_SIZE page is called the "head page".
  303. *
  304. * The remaining PAGE_SIZE pages are called "tail pages".
  305. *
  306. * All pages have PG_compound set. All tail pages have their ->first_page
  307. * pointing at the head page.
  308. *
  309. * The first tail page's ->lru.next holds the address of the compound page's
  310. * put_page() function. Its ->lru.prev holds the order of allocation.
  311. * This usage means that zero-order pages may not be compound.
  312. */
  313. static void free_compound_page(struct page *page)
  314. {
  315. __free_pages_ok(page, compound_order(page));
  316. }
  317. void prep_compound_page(struct page *page, unsigned long order)
  318. {
  319. int i;
  320. int nr_pages = 1 << order;
  321. set_compound_page_dtor(page, free_compound_page);
  322. set_compound_order(page, order);
  323. __SetPageHead(page);
  324. for (i = 1; i < nr_pages; i++) {
  325. struct page *p = page + i;
  326. __SetPageTail(p);
  327. set_page_count(p, 0);
  328. p->first_page = page;
  329. }
  330. }
  331. /* update __split_huge_page_refcount if you change this function */
  332. static int destroy_compound_page(struct page *page, unsigned long order)
  333. {
  334. int i;
  335. int nr_pages = 1 << order;
  336. int bad = 0;
  337. if (unlikely(compound_order(page) != order)) {
  338. bad_page(page);
  339. bad++;
  340. }
  341. __ClearPageHead(page);
  342. for (i = 1; i < nr_pages; i++) {
  343. struct page *p = page + i;
  344. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  345. bad_page(page);
  346. bad++;
  347. }
  348. __ClearPageTail(p);
  349. }
  350. return bad;
  351. }
  352. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  353. {
  354. int i;
  355. /*
  356. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  357. * and __GFP_HIGHMEM from hard or soft interrupt context.
  358. */
  359. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  360. for (i = 0; i < (1 << order); i++)
  361. clear_highpage(page + i);
  362. }
  363. #ifdef CONFIG_DEBUG_PAGEALLOC
  364. unsigned int _debug_guardpage_minorder;
  365. static int __init debug_guardpage_minorder_setup(char *buf)
  366. {
  367. unsigned long res;
  368. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  369. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  370. return 0;
  371. }
  372. _debug_guardpage_minorder = res;
  373. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  374. return 0;
  375. }
  376. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  377. static inline void set_page_guard_flag(struct page *page)
  378. {
  379. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  380. }
  381. static inline void clear_page_guard_flag(struct page *page)
  382. {
  383. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  384. }
  385. #else
  386. static inline void set_page_guard_flag(struct page *page) { }
  387. static inline void clear_page_guard_flag(struct page *page) { }
  388. #endif
  389. static inline void set_page_order(struct page *page, int order)
  390. {
  391. set_page_private(page, order);
  392. __SetPageBuddy(page);
  393. }
  394. static inline void rmv_page_order(struct page *page)
  395. {
  396. __ClearPageBuddy(page);
  397. set_page_private(page, 0);
  398. }
  399. /*
  400. * Locate the struct page for both the matching buddy in our
  401. * pair (buddy1) and the combined O(n+1) page they form (page).
  402. *
  403. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  404. * the following equation:
  405. * B2 = B1 ^ (1 << O)
  406. * For example, if the starting buddy (buddy2) is #8 its order
  407. * 1 buddy is #10:
  408. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  409. *
  410. * 2) Any buddy B will have an order O+1 parent P which
  411. * satisfies the following equation:
  412. * P = B & ~(1 << O)
  413. *
  414. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  415. */
  416. static inline unsigned long
  417. __find_buddy_index(unsigned long page_idx, unsigned int order)
  418. {
  419. return page_idx ^ (1 << order);
  420. }
  421. /*
  422. * This function checks whether a page is free && is the buddy
  423. * we can do coalesce a page and its buddy if
  424. * (a) the buddy is not in a hole &&
  425. * (b) the buddy is in the buddy system &&
  426. * (c) a page and its buddy have the same order &&
  427. * (d) a page and its buddy are in the same zone.
  428. *
  429. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  430. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  431. *
  432. * For recording page's order, we use page_private(page).
  433. */
  434. static inline int page_is_buddy(struct page *page, struct page *buddy,
  435. int order)
  436. {
  437. if (!pfn_valid_within(page_to_pfn(buddy)))
  438. return 0;
  439. if (page_zone_id(page) != page_zone_id(buddy))
  440. return 0;
  441. if (page_is_guard(buddy) && page_order(buddy) == order) {
  442. VM_BUG_ON(page_count(buddy) != 0);
  443. return 1;
  444. }
  445. if (PageBuddy(buddy) && page_order(buddy) == order) {
  446. VM_BUG_ON(page_count(buddy) != 0);
  447. return 1;
  448. }
  449. return 0;
  450. }
  451. /*
  452. * Freeing function for a buddy system allocator.
  453. *
  454. * The concept of a buddy system is to maintain direct-mapped table
  455. * (containing bit values) for memory blocks of various "orders".
  456. * The bottom level table contains the map for the smallest allocatable
  457. * units of memory (here, pages), and each level above it describes
  458. * pairs of units from the levels below, hence, "buddies".
  459. * At a high level, all that happens here is marking the table entry
  460. * at the bottom level available, and propagating the changes upward
  461. * as necessary, plus some accounting needed to play nicely with other
  462. * parts of the VM system.
  463. * At each level, we keep a list of pages, which are heads of continuous
  464. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  465. * order is recorded in page_private(page) field.
  466. * So when we are allocating or freeing one, we can derive the state of the
  467. * other. That is, if we allocate a small block, and both were
  468. * free, the remainder of the region must be split into blocks.
  469. * If a block is freed, and its buddy is also free, then this
  470. * triggers coalescing into a block of larger size.
  471. *
  472. * -- nyc
  473. */
  474. static inline void __free_one_page(struct page *page,
  475. struct zone *zone, unsigned int order,
  476. int migratetype)
  477. {
  478. unsigned long page_idx;
  479. unsigned long combined_idx;
  480. unsigned long uninitialized_var(buddy_idx);
  481. struct page *buddy;
  482. VM_BUG_ON(!zone_is_initialized(zone));
  483. if (unlikely(PageCompound(page)))
  484. if (unlikely(destroy_compound_page(page, order)))
  485. return;
  486. VM_BUG_ON(migratetype == -1);
  487. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  488. VM_BUG_ON(page_idx & ((1 << order) - 1));
  489. VM_BUG_ON(bad_range(zone, page));
  490. while (order < MAX_ORDER-1) {
  491. buddy_idx = __find_buddy_index(page_idx, order);
  492. buddy = page + (buddy_idx - page_idx);
  493. if (!page_is_buddy(page, buddy, order))
  494. break;
  495. /*
  496. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  497. * merge with it and move up one order.
  498. */
  499. if (page_is_guard(buddy)) {
  500. clear_page_guard_flag(buddy);
  501. set_page_private(page, 0);
  502. __mod_zone_freepage_state(zone, 1 << order,
  503. migratetype);
  504. } else {
  505. list_del(&buddy->lru);
  506. zone->free_area[order].nr_free--;
  507. rmv_page_order(buddy);
  508. }
  509. combined_idx = buddy_idx & page_idx;
  510. page = page + (combined_idx - page_idx);
  511. page_idx = combined_idx;
  512. order++;
  513. }
  514. set_page_order(page, order);
  515. /*
  516. * If this is not the largest possible page, check if the buddy
  517. * of the next-highest order is free. If it is, it's possible
  518. * that pages are being freed that will coalesce soon. In case,
  519. * that is happening, add the free page to the tail of the list
  520. * so it's less likely to be used soon and more likely to be merged
  521. * as a higher order page
  522. */
  523. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  524. struct page *higher_page, *higher_buddy;
  525. combined_idx = buddy_idx & page_idx;
  526. higher_page = page + (combined_idx - page_idx);
  527. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  528. higher_buddy = higher_page + (buddy_idx - combined_idx);
  529. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  530. list_add_tail(&page->lru,
  531. &zone->free_area[order].free_list[migratetype]);
  532. goto out;
  533. }
  534. }
  535. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  536. out:
  537. zone->free_area[order].nr_free++;
  538. }
  539. static inline int free_pages_check(struct page *page)
  540. {
  541. if (unlikely(page_mapcount(page) |
  542. (page->mapping != NULL) |
  543. (atomic_read(&page->_count) != 0) |
  544. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  545. (mem_cgroup_bad_page_check(page)))) {
  546. bad_page(page);
  547. return 1;
  548. }
  549. page_nid_reset_last(page);
  550. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  551. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  552. return 0;
  553. }
  554. /*
  555. * Frees a number of pages from the PCP lists
  556. * Assumes all pages on list are in same zone, and of same order.
  557. * count is the number of pages to free.
  558. *
  559. * If the zone was previously in an "all pages pinned" state then look to
  560. * see if this freeing clears that state.
  561. *
  562. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  563. * pinned" detection logic.
  564. */
  565. static void free_pcppages_bulk(struct zone *zone, int count,
  566. struct per_cpu_pages *pcp)
  567. {
  568. int migratetype = 0;
  569. int batch_free = 0;
  570. int to_free = count;
  571. spin_lock(&zone->lock);
  572. zone->all_unreclaimable = 0;
  573. zone->pages_scanned = 0;
  574. while (to_free) {
  575. struct page *page;
  576. struct list_head *list;
  577. /*
  578. * Remove pages from lists in a round-robin fashion. A
  579. * batch_free count is maintained that is incremented when an
  580. * empty list is encountered. This is so more pages are freed
  581. * off fuller lists instead of spinning excessively around empty
  582. * lists
  583. */
  584. do {
  585. batch_free++;
  586. if (++migratetype == MIGRATE_PCPTYPES)
  587. migratetype = 0;
  588. list = &pcp->lists[migratetype];
  589. } while (list_empty(list));
  590. /* This is the only non-empty list. Free them all. */
  591. if (batch_free == MIGRATE_PCPTYPES)
  592. batch_free = to_free;
  593. do {
  594. int mt; /* migratetype of the to-be-freed page */
  595. page = list_entry(list->prev, struct page, lru);
  596. /* must delete as __free_one_page list manipulates */
  597. list_del(&page->lru);
  598. mt = get_freepage_migratetype(page);
  599. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  600. __free_one_page(page, zone, 0, mt);
  601. trace_mm_page_pcpu_drain(page, 0, mt);
  602. if (likely(!is_migrate_isolate_page(page))) {
  603. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  604. if (is_migrate_cma(mt))
  605. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  606. }
  607. } while (--to_free && --batch_free && !list_empty(list));
  608. }
  609. spin_unlock(&zone->lock);
  610. }
  611. static void free_one_page(struct zone *zone, struct page *page, int order,
  612. int migratetype)
  613. {
  614. spin_lock(&zone->lock);
  615. zone->all_unreclaimable = 0;
  616. zone->pages_scanned = 0;
  617. __free_one_page(page, zone, order, migratetype);
  618. if (unlikely(!is_migrate_isolate(migratetype)))
  619. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  620. spin_unlock(&zone->lock);
  621. }
  622. static bool free_pages_prepare(struct page *page, unsigned int order)
  623. {
  624. int i;
  625. int bad = 0;
  626. trace_mm_page_free(page, order);
  627. kmemcheck_free_shadow(page, order);
  628. if (PageAnon(page))
  629. page->mapping = NULL;
  630. for (i = 0; i < (1 << order); i++)
  631. bad += free_pages_check(page + i);
  632. if (bad)
  633. return false;
  634. if (!PageHighMem(page)) {
  635. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  636. debug_check_no_obj_freed(page_address(page),
  637. PAGE_SIZE << order);
  638. }
  639. arch_free_page(page, order);
  640. kernel_map_pages(page, 1 << order, 0);
  641. return true;
  642. }
  643. static void __free_pages_ok(struct page *page, unsigned int order)
  644. {
  645. unsigned long flags;
  646. int migratetype;
  647. if (!free_pages_prepare(page, order))
  648. return;
  649. local_irq_save(flags);
  650. __count_vm_events(PGFREE, 1 << order);
  651. migratetype = get_pageblock_migratetype(page);
  652. set_freepage_migratetype(page, migratetype);
  653. free_one_page(page_zone(page), page, order, migratetype);
  654. local_irq_restore(flags);
  655. }
  656. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  657. {
  658. unsigned int nr_pages = 1 << order;
  659. unsigned int loop;
  660. prefetchw(page);
  661. for (loop = 0; loop < nr_pages; loop++) {
  662. struct page *p = &page[loop];
  663. if (loop + 1 < nr_pages)
  664. prefetchw(p + 1);
  665. __ClearPageReserved(p);
  666. set_page_count(p, 0);
  667. }
  668. page_zone(page)->managed_pages += 1 << order;
  669. set_page_refcounted(page);
  670. __free_pages(page, order);
  671. }
  672. #ifdef CONFIG_CMA
  673. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  674. void __init init_cma_reserved_pageblock(struct page *page)
  675. {
  676. unsigned i = pageblock_nr_pages;
  677. struct page *p = page;
  678. do {
  679. __ClearPageReserved(p);
  680. set_page_count(p, 0);
  681. } while (++p, --i);
  682. set_page_refcounted(page);
  683. set_pageblock_migratetype(page, MIGRATE_CMA);
  684. __free_pages(page, pageblock_order);
  685. adjust_managed_page_count(page, pageblock_nr_pages);
  686. }
  687. #endif
  688. /*
  689. * The order of subdivision here is critical for the IO subsystem.
  690. * Please do not alter this order without good reasons and regression
  691. * testing. Specifically, as large blocks of memory are subdivided,
  692. * the order in which smaller blocks are delivered depends on the order
  693. * they're subdivided in this function. This is the primary factor
  694. * influencing the order in which pages are delivered to the IO
  695. * subsystem according to empirical testing, and this is also justified
  696. * by considering the behavior of a buddy system containing a single
  697. * large block of memory acted on by a series of small allocations.
  698. * This behavior is a critical factor in sglist merging's success.
  699. *
  700. * -- nyc
  701. */
  702. static inline void expand(struct zone *zone, struct page *page,
  703. int low, int high, struct free_area *area,
  704. int migratetype)
  705. {
  706. unsigned long size = 1 << high;
  707. while (high > low) {
  708. area--;
  709. high--;
  710. size >>= 1;
  711. VM_BUG_ON(bad_range(zone, &page[size]));
  712. #ifdef CONFIG_DEBUG_PAGEALLOC
  713. if (high < debug_guardpage_minorder()) {
  714. /*
  715. * Mark as guard pages (or page), that will allow to
  716. * merge back to allocator when buddy will be freed.
  717. * Corresponding page table entries will not be touched,
  718. * pages will stay not present in virtual address space
  719. */
  720. INIT_LIST_HEAD(&page[size].lru);
  721. set_page_guard_flag(&page[size]);
  722. set_page_private(&page[size], high);
  723. /* Guard pages are not available for any usage */
  724. __mod_zone_freepage_state(zone, -(1 << high),
  725. migratetype);
  726. continue;
  727. }
  728. #endif
  729. list_add(&page[size].lru, &area->free_list[migratetype]);
  730. area->nr_free++;
  731. set_page_order(&page[size], high);
  732. }
  733. }
  734. /*
  735. * This page is about to be returned from the page allocator
  736. */
  737. static inline int check_new_page(struct page *page)
  738. {
  739. if (unlikely(page_mapcount(page) |
  740. (page->mapping != NULL) |
  741. (atomic_read(&page->_count) != 0) |
  742. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  743. (mem_cgroup_bad_page_check(page)))) {
  744. bad_page(page);
  745. return 1;
  746. }
  747. return 0;
  748. }
  749. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  750. {
  751. int i;
  752. for (i = 0; i < (1 << order); i++) {
  753. struct page *p = page + i;
  754. if (unlikely(check_new_page(p)))
  755. return 1;
  756. }
  757. set_page_private(page, 0);
  758. set_page_refcounted(page);
  759. arch_alloc_page(page, order);
  760. kernel_map_pages(page, 1 << order, 1);
  761. if (gfp_flags & __GFP_ZERO)
  762. prep_zero_page(page, order, gfp_flags);
  763. if (order && (gfp_flags & __GFP_COMP))
  764. prep_compound_page(page, order);
  765. return 0;
  766. }
  767. /*
  768. * Go through the free lists for the given migratetype and remove
  769. * the smallest available page from the freelists
  770. */
  771. static inline
  772. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  773. int migratetype)
  774. {
  775. unsigned int current_order;
  776. struct free_area * area;
  777. struct page *page;
  778. /* Find a page of the appropriate size in the preferred list */
  779. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  780. area = &(zone->free_area[current_order]);
  781. if (list_empty(&area->free_list[migratetype]))
  782. continue;
  783. page = list_entry(area->free_list[migratetype].next,
  784. struct page, lru);
  785. list_del(&page->lru);
  786. rmv_page_order(page);
  787. area->nr_free--;
  788. expand(zone, page, order, current_order, area, migratetype);
  789. return page;
  790. }
  791. return NULL;
  792. }
  793. /*
  794. * This array describes the order lists are fallen back to when
  795. * the free lists for the desirable migrate type are depleted
  796. */
  797. static int fallbacks[MIGRATE_TYPES][4] = {
  798. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  799. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  800. #ifdef CONFIG_CMA
  801. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  802. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  803. #else
  804. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  805. #endif
  806. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  807. #ifdef CONFIG_MEMORY_ISOLATION
  808. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  809. #endif
  810. };
  811. /*
  812. * Move the free pages in a range to the free lists of the requested type.
  813. * Note that start_page and end_pages are not aligned on a pageblock
  814. * boundary. If alignment is required, use move_freepages_block()
  815. */
  816. int move_freepages(struct zone *zone,
  817. struct page *start_page, struct page *end_page,
  818. int migratetype)
  819. {
  820. struct page *page;
  821. unsigned long order;
  822. int pages_moved = 0;
  823. #ifndef CONFIG_HOLES_IN_ZONE
  824. /*
  825. * page_zone is not safe to call in this context when
  826. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  827. * anyway as we check zone boundaries in move_freepages_block().
  828. * Remove at a later date when no bug reports exist related to
  829. * grouping pages by mobility
  830. */
  831. BUG_ON(page_zone(start_page) != page_zone(end_page));
  832. #endif
  833. for (page = start_page; page <= end_page;) {
  834. /* Make sure we are not inadvertently changing nodes */
  835. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  836. if (!pfn_valid_within(page_to_pfn(page))) {
  837. page++;
  838. continue;
  839. }
  840. if (!PageBuddy(page)) {
  841. page++;
  842. continue;
  843. }
  844. order = page_order(page);
  845. list_move(&page->lru,
  846. &zone->free_area[order].free_list[migratetype]);
  847. set_freepage_migratetype(page, migratetype);
  848. page += 1 << order;
  849. pages_moved += 1 << order;
  850. }
  851. return pages_moved;
  852. }
  853. int move_freepages_block(struct zone *zone, struct page *page,
  854. int migratetype)
  855. {
  856. unsigned long start_pfn, end_pfn;
  857. struct page *start_page, *end_page;
  858. start_pfn = page_to_pfn(page);
  859. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  860. start_page = pfn_to_page(start_pfn);
  861. end_page = start_page + pageblock_nr_pages - 1;
  862. end_pfn = start_pfn + pageblock_nr_pages - 1;
  863. /* Do not cross zone boundaries */
  864. if (!zone_spans_pfn(zone, start_pfn))
  865. start_page = page;
  866. if (!zone_spans_pfn(zone, end_pfn))
  867. return 0;
  868. return move_freepages(zone, start_page, end_page, migratetype);
  869. }
  870. static void change_pageblock_range(struct page *pageblock_page,
  871. int start_order, int migratetype)
  872. {
  873. int nr_pageblocks = 1 << (start_order - pageblock_order);
  874. while (nr_pageblocks--) {
  875. set_pageblock_migratetype(pageblock_page, migratetype);
  876. pageblock_page += pageblock_nr_pages;
  877. }
  878. }
  879. /* Remove an element from the buddy allocator from the fallback list */
  880. static inline struct page *
  881. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  882. {
  883. struct free_area * area;
  884. int current_order;
  885. struct page *page;
  886. int migratetype, i;
  887. /* Find the largest possible block of pages in the other list */
  888. for (current_order = MAX_ORDER-1; current_order >= order;
  889. --current_order) {
  890. for (i = 0;; i++) {
  891. migratetype = fallbacks[start_migratetype][i];
  892. /* MIGRATE_RESERVE handled later if necessary */
  893. if (migratetype == MIGRATE_RESERVE)
  894. break;
  895. area = &(zone->free_area[current_order]);
  896. if (list_empty(&area->free_list[migratetype]))
  897. continue;
  898. page = list_entry(area->free_list[migratetype].next,
  899. struct page, lru);
  900. area->nr_free--;
  901. /*
  902. * If breaking a large block of pages, move all free
  903. * pages to the preferred allocation list. If falling
  904. * back for a reclaimable kernel allocation, be more
  905. * aggressive about taking ownership of free pages
  906. *
  907. * On the other hand, never change migration
  908. * type of MIGRATE_CMA pageblocks nor move CMA
  909. * pages on different free lists. We don't
  910. * want unmovable pages to be allocated from
  911. * MIGRATE_CMA areas.
  912. */
  913. if (!is_migrate_cma(migratetype) &&
  914. (current_order >= pageblock_order / 2 ||
  915. start_migratetype == MIGRATE_RECLAIMABLE ||
  916. page_group_by_mobility_disabled)) {
  917. int pages;
  918. pages = move_freepages_block(zone, page,
  919. start_migratetype);
  920. /* Claim the whole block if over half of it is free */
  921. if (pages >= (1 << (pageblock_order-1)) ||
  922. page_group_by_mobility_disabled)
  923. set_pageblock_migratetype(page,
  924. start_migratetype);
  925. migratetype = start_migratetype;
  926. }
  927. /* Remove the page from the freelists */
  928. list_del(&page->lru);
  929. rmv_page_order(page);
  930. /* Take ownership for orders >= pageblock_order */
  931. if (current_order >= pageblock_order &&
  932. !is_migrate_cma(migratetype))
  933. change_pageblock_range(page, current_order,
  934. start_migratetype);
  935. expand(zone, page, order, current_order, area,
  936. is_migrate_cma(migratetype)
  937. ? migratetype : start_migratetype);
  938. trace_mm_page_alloc_extfrag(page, order, current_order,
  939. start_migratetype, migratetype);
  940. return page;
  941. }
  942. }
  943. return NULL;
  944. }
  945. /*
  946. * Do the hard work of removing an element from the buddy allocator.
  947. * Call me with the zone->lock already held.
  948. */
  949. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  950. int migratetype)
  951. {
  952. struct page *page;
  953. retry_reserve:
  954. page = __rmqueue_smallest(zone, order, migratetype);
  955. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  956. page = __rmqueue_fallback(zone, order, migratetype);
  957. /*
  958. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  959. * is used because __rmqueue_smallest is an inline function
  960. * and we want just one call site
  961. */
  962. if (!page) {
  963. migratetype = MIGRATE_RESERVE;
  964. goto retry_reserve;
  965. }
  966. }
  967. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  968. return page;
  969. }
  970. /*
  971. * Obtain a specified number of elements from the buddy allocator, all under
  972. * a single hold of the lock, for efficiency. Add them to the supplied list.
  973. * Returns the number of new pages which were placed at *list.
  974. */
  975. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  976. unsigned long count, struct list_head *list,
  977. int migratetype, int cold)
  978. {
  979. int mt = migratetype, i;
  980. spin_lock(&zone->lock);
  981. for (i = 0; i < count; ++i) {
  982. struct page *page = __rmqueue(zone, order, migratetype);
  983. if (unlikely(page == NULL))
  984. break;
  985. /*
  986. * Split buddy pages returned by expand() are received here
  987. * in physical page order. The page is added to the callers and
  988. * list and the list head then moves forward. From the callers
  989. * perspective, the linked list is ordered by page number in
  990. * some conditions. This is useful for IO devices that can
  991. * merge IO requests if the physical pages are ordered
  992. * properly.
  993. */
  994. if (likely(cold == 0))
  995. list_add(&page->lru, list);
  996. else
  997. list_add_tail(&page->lru, list);
  998. if (IS_ENABLED(CONFIG_CMA)) {
  999. mt = get_pageblock_migratetype(page);
  1000. if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
  1001. mt = migratetype;
  1002. }
  1003. set_freepage_migratetype(page, mt);
  1004. list = &page->lru;
  1005. if (is_migrate_cma(mt))
  1006. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1007. -(1 << order));
  1008. }
  1009. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1010. spin_unlock(&zone->lock);
  1011. return i;
  1012. }
  1013. #ifdef CONFIG_NUMA
  1014. /*
  1015. * Called from the vmstat counter updater to drain pagesets of this
  1016. * currently executing processor on remote nodes after they have
  1017. * expired.
  1018. *
  1019. * Note that this function must be called with the thread pinned to
  1020. * a single processor.
  1021. */
  1022. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1023. {
  1024. unsigned long flags;
  1025. int to_drain;
  1026. unsigned long batch;
  1027. local_irq_save(flags);
  1028. batch = ACCESS_ONCE(pcp->batch);
  1029. if (pcp->count >= batch)
  1030. to_drain = batch;
  1031. else
  1032. to_drain = pcp->count;
  1033. if (to_drain > 0) {
  1034. free_pcppages_bulk(zone, to_drain, pcp);
  1035. pcp->count -= to_drain;
  1036. }
  1037. local_irq_restore(flags);
  1038. }
  1039. #endif
  1040. /*
  1041. * Drain pages of the indicated processor.
  1042. *
  1043. * The processor must either be the current processor and the
  1044. * thread pinned to the current processor or a processor that
  1045. * is not online.
  1046. */
  1047. static void drain_pages(unsigned int cpu)
  1048. {
  1049. unsigned long flags;
  1050. struct zone *zone;
  1051. for_each_populated_zone(zone) {
  1052. struct per_cpu_pageset *pset;
  1053. struct per_cpu_pages *pcp;
  1054. local_irq_save(flags);
  1055. pset = per_cpu_ptr(zone->pageset, cpu);
  1056. pcp = &pset->pcp;
  1057. if (pcp->count) {
  1058. free_pcppages_bulk(zone, pcp->count, pcp);
  1059. pcp->count = 0;
  1060. }
  1061. local_irq_restore(flags);
  1062. }
  1063. }
  1064. /*
  1065. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1066. */
  1067. void drain_local_pages(void *arg)
  1068. {
  1069. drain_pages(smp_processor_id());
  1070. }
  1071. /*
  1072. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1073. *
  1074. * Note that this code is protected against sending an IPI to an offline
  1075. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1076. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1077. * nothing keeps CPUs from showing up after we populated the cpumask and
  1078. * before the call to on_each_cpu_mask().
  1079. */
  1080. void drain_all_pages(void)
  1081. {
  1082. int cpu;
  1083. struct per_cpu_pageset *pcp;
  1084. struct zone *zone;
  1085. /*
  1086. * Allocate in the BSS so we wont require allocation in
  1087. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1088. */
  1089. static cpumask_t cpus_with_pcps;
  1090. /*
  1091. * We don't care about racing with CPU hotplug event
  1092. * as offline notification will cause the notified
  1093. * cpu to drain that CPU pcps and on_each_cpu_mask
  1094. * disables preemption as part of its processing
  1095. */
  1096. for_each_online_cpu(cpu) {
  1097. bool has_pcps = false;
  1098. for_each_populated_zone(zone) {
  1099. pcp = per_cpu_ptr(zone->pageset, cpu);
  1100. if (pcp->pcp.count) {
  1101. has_pcps = true;
  1102. break;
  1103. }
  1104. }
  1105. if (has_pcps)
  1106. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1107. else
  1108. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1109. }
  1110. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1111. }
  1112. #ifdef CONFIG_HIBERNATION
  1113. void mark_free_pages(struct zone *zone)
  1114. {
  1115. unsigned long pfn, max_zone_pfn;
  1116. unsigned long flags;
  1117. int order, t;
  1118. struct list_head *curr;
  1119. if (!zone->spanned_pages)
  1120. return;
  1121. spin_lock_irqsave(&zone->lock, flags);
  1122. max_zone_pfn = zone_end_pfn(zone);
  1123. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1124. if (pfn_valid(pfn)) {
  1125. struct page *page = pfn_to_page(pfn);
  1126. if (!swsusp_page_is_forbidden(page))
  1127. swsusp_unset_page_free(page);
  1128. }
  1129. for_each_migratetype_order(order, t) {
  1130. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1131. unsigned long i;
  1132. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1133. for (i = 0; i < (1UL << order); i++)
  1134. swsusp_set_page_free(pfn_to_page(pfn + i));
  1135. }
  1136. }
  1137. spin_unlock_irqrestore(&zone->lock, flags);
  1138. }
  1139. #endif /* CONFIG_PM */
  1140. /*
  1141. * Free a 0-order page
  1142. * cold == 1 ? free a cold page : free a hot page
  1143. */
  1144. void free_hot_cold_page(struct page *page, int cold)
  1145. {
  1146. struct zone *zone = page_zone(page);
  1147. struct per_cpu_pages *pcp;
  1148. unsigned long flags;
  1149. int migratetype;
  1150. if (!free_pages_prepare(page, 0))
  1151. return;
  1152. migratetype = get_pageblock_migratetype(page);
  1153. set_freepage_migratetype(page, migratetype);
  1154. local_irq_save(flags);
  1155. __count_vm_event(PGFREE);
  1156. /*
  1157. * We only track unmovable, reclaimable and movable on pcp lists.
  1158. * Free ISOLATE pages back to the allocator because they are being
  1159. * offlined but treat RESERVE as movable pages so we can get those
  1160. * areas back if necessary. Otherwise, we may have to free
  1161. * excessively into the page allocator
  1162. */
  1163. if (migratetype >= MIGRATE_PCPTYPES) {
  1164. if (unlikely(is_migrate_isolate(migratetype))) {
  1165. free_one_page(zone, page, 0, migratetype);
  1166. goto out;
  1167. }
  1168. migratetype = MIGRATE_MOVABLE;
  1169. }
  1170. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1171. if (cold)
  1172. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1173. else
  1174. list_add(&page->lru, &pcp->lists[migratetype]);
  1175. pcp->count++;
  1176. if (pcp->count >= pcp->high) {
  1177. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1178. free_pcppages_bulk(zone, batch, pcp);
  1179. pcp->count -= batch;
  1180. }
  1181. out:
  1182. local_irq_restore(flags);
  1183. }
  1184. /*
  1185. * Free a list of 0-order pages
  1186. */
  1187. void free_hot_cold_page_list(struct list_head *list, int cold)
  1188. {
  1189. struct page *page, *next;
  1190. list_for_each_entry_safe(page, next, list, lru) {
  1191. trace_mm_page_free_batched(page, cold);
  1192. free_hot_cold_page(page, cold);
  1193. }
  1194. }
  1195. /*
  1196. * split_page takes a non-compound higher-order page, and splits it into
  1197. * n (1<<order) sub-pages: page[0..n]
  1198. * Each sub-page must be freed individually.
  1199. *
  1200. * Note: this is probably too low level an operation for use in drivers.
  1201. * Please consult with lkml before using this in your driver.
  1202. */
  1203. void split_page(struct page *page, unsigned int order)
  1204. {
  1205. int i;
  1206. VM_BUG_ON(PageCompound(page));
  1207. VM_BUG_ON(!page_count(page));
  1208. #ifdef CONFIG_KMEMCHECK
  1209. /*
  1210. * Split shadow pages too, because free(page[0]) would
  1211. * otherwise free the whole shadow.
  1212. */
  1213. if (kmemcheck_page_is_tracked(page))
  1214. split_page(virt_to_page(page[0].shadow), order);
  1215. #endif
  1216. for (i = 1; i < (1 << order); i++)
  1217. set_page_refcounted(page + i);
  1218. }
  1219. EXPORT_SYMBOL_GPL(split_page);
  1220. static int __isolate_free_page(struct page *page, unsigned int order)
  1221. {
  1222. unsigned long watermark;
  1223. struct zone *zone;
  1224. int mt;
  1225. BUG_ON(!PageBuddy(page));
  1226. zone = page_zone(page);
  1227. mt = get_pageblock_migratetype(page);
  1228. if (!is_migrate_isolate(mt)) {
  1229. /* Obey watermarks as if the page was being allocated */
  1230. watermark = low_wmark_pages(zone) + (1 << order);
  1231. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1232. return 0;
  1233. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1234. }
  1235. /* Remove page from free list */
  1236. list_del(&page->lru);
  1237. zone->free_area[order].nr_free--;
  1238. rmv_page_order(page);
  1239. /* Set the pageblock if the isolated page is at least a pageblock */
  1240. if (order >= pageblock_order - 1) {
  1241. struct page *endpage = page + (1 << order) - 1;
  1242. for (; page < endpage; page += pageblock_nr_pages) {
  1243. int mt = get_pageblock_migratetype(page);
  1244. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1245. set_pageblock_migratetype(page,
  1246. MIGRATE_MOVABLE);
  1247. }
  1248. }
  1249. return 1UL << order;
  1250. }
  1251. /*
  1252. * Similar to split_page except the page is already free. As this is only
  1253. * being used for migration, the migratetype of the block also changes.
  1254. * As this is called with interrupts disabled, the caller is responsible
  1255. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1256. * are enabled.
  1257. *
  1258. * Note: this is probably too low level an operation for use in drivers.
  1259. * Please consult with lkml before using this in your driver.
  1260. */
  1261. int split_free_page(struct page *page)
  1262. {
  1263. unsigned int order;
  1264. int nr_pages;
  1265. order = page_order(page);
  1266. nr_pages = __isolate_free_page(page, order);
  1267. if (!nr_pages)
  1268. return 0;
  1269. /* Split into individual pages */
  1270. set_page_refcounted(page);
  1271. split_page(page, order);
  1272. return nr_pages;
  1273. }
  1274. /*
  1275. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1276. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1277. * or two.
  1278. */
  1279. static inline
  1280. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1281. struct zone *zone, int order, gfp_t gfp_flags,
  1282. int migratetype)
  1283. {
  1284. unsigned long flags;
  1285. struct page *page;
  1286. int cold = !!(gfp_flags & __GFP_COLD);
  1287. again:
  1288. if (likely(order == 0)) {
  1289. struct per_cpu_pages *pcp;
  1290. struct list_head *list;
  1291. local_irq_save(flags);
  1292. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1293. list = &pcp->lists[migratetype];
  1294. if (list_empty(list)) {
  1295. pcp->count += rmqueue_bulk(zone, 0,
  1296. pcp->batch, list,
  1297. migratetype, cold);
  1298. if (unlikely(list_empty(list)))
  1299. goto failed;
  1300. }
  1301. if (cold)
  1302. page = list_entry(list->prev, struct page, lru);
  1303. else
  1304. page = list_entry(list->next, struct page, lru);
  1305. list_del(&page->lru);
  1306. pcp->count--;
  1307. } else {
  1308. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1309. /*
  1310. * __GFP_NOFAIL is not to be used in new code.
  1311. *
  1312. * All __GFP_NOFAIL callers should be fixed so that they
  1313. * properly detect and handle allocation failures.
  1314. *
  1315. * We most definitely don't want callers attempting to
  1316. * allocate greater than order-1 page units with
  1317. * __GFP_NOFAIL.
  1318. */
  1319. WARN_ON_ONCE(order > 1);
  1320. }
  1321. spin_lock_irqsave(&zone->lock, flags);
  1322. page = __rmqueue(zone, order, migratetype);
  1323. spin_unlock(&zone->lock);
  1324. if (!page)
  1325. goto failed;
  1326. __mod_zone_freepage_state(zone, -(1 << order),
  1327. get_pageblock_migratetype(page));
  1328. }
  1329. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1330. zone_statistics(preferred_zone, zone, gfp_flags);
  1331. local_irq_restore(flags);
  1332. VM_BUG_ON(bad_range(zone, page));
  1333. if (prep_new_page(page, order, gfp_flags))
  1334. goto again;
  1335. return page;
  1336. failed:
  1337. local_irq_restore(flags);
  1338. return NULL;
  1339. }
  1340. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1341. static struct {
  1342. struct fault_attr attr;
  1343. u32 ignore_gfp_highmem;
  1344. u32 ignore_gfp_wait;
  1345. u32 min_order;
  1346. } fail_page_alloc = {
  1347. .attr = FAULT_ATTR_INITIALIZER,
  1348. .ignore_gfp_wait = 1,
  1349. .ignore_gfp_highmem = 1,
  1350. .min_order = 1,
  1351. };
  1352. static int __init setup_fail_page_alloc(char *str)
  1353. {
  1354. return setup_fault_attr(&fail_page_alloc.attr, str);
  1355. }
  1356. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1357. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1358. {
  1359. if (order < fail_page_alloc.min_order)
  1360. return false;
  1361. if (gfp_mask & __GFP_NOFAIL)
  1362. return false;
  1363. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1364. return false;
  1365. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1366. return false;
  1367. return should_fail(&fail_page_alloc.attr, 1 << order);
  1368. }
  1369. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1370. static int __init fail_page_alloc_debugfs(void)
  1371. {
  1372. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1373. struct dentry *dir;
  1374. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1375. &fail_page_alloc.attr);
  1376. if (IS_ERR(dir))
  1377. return PTR_ERR(dir);
  1378. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1379. &fail_page_alloc.ignore_gfp_wait))
  1380. goto fail;
  1381. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1382. &fail_page_alloc.ignore_gfp_highmem))
  1383. goto fail;
  1384. if (!debugfs_create_u32("min-order", mode, dir,
  1385. &fail_page_alloc.min_order))
  1386. goto fail;
  1387. return 0;
  1388. fail:
  1389. debugfs_remove_recursive(dir);
  1390. return -ENOMEM;
  1391. }
  1392. late_initcall(fail_page_alloc_debugfs);
  1393. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1394. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1395. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1396. {
  1397. return false;
  1398. }
  1399. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1400. /*
  1401. * Return true if free pages are above 'mark'. This takes into account the order
  1402. * of the allocation.
  1403. */
  1404. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1405. int classzone_idx, int alloc_flags, long free_pages)
  1406. {
  1407. /* free_pages my go negative - that's OK */
  1408. long min = mark;
  1409. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1410. int o;
  1411. long free_cma = 0;
  1412. free_pages -= (1 << order) - 1;
  1413. if (alloc_flags & ALLOC_HIGH)
  1414. min -= min / 2;
  1415. if (alloc_flags & ALLOC_HARDER)
  1416. min -= min / 4;
  1417. #ifdef CONFIG_CMA
  1418. /* If allocation can't use CMA areas don't use free CMA pages */
  1419. if (!(alloc_flags & ALLOC_CMA))
  1420. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1421. #endif
  1422. if (free_pages - free_cma <= min + lowmem_reserve)
  1423. return false;
  1424. for (o = 0; o < order; o++) {
  1425. /* At the next order, this order's pages become unavailable */
  1426. free_pages -= z->free_area[o].nr_free << o;
  1427. /* Require fewer higher order pages to be free */
  1428. min >>= 1;
  1429. if (free_pages <= min)
  1430. return false;
  1431. }
  1432. return true;
  1433. }
  1434. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1435. int classzone_idx, int alloc_flags)
  1436. {
  1437. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1438. zone_page_state(z, NR_FREE_PAGES));
  1439. }
  1440. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1441. int classzone_idx, int alloc_flags)
  1442. {
  1443. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1444. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1445. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1446. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1447. free_pages);
  1448. }
  1449. #ifdef CONFIG_NUMA
  1450. /*
  1451. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1452. * skip over zones that are not allowed by the cpuset, or that have
  1453. * been recently (in last second) found to be nearly full. See further
  1454. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1455. * that have to skip over a lot of full or unallowed zones.
  1456. *
  1457. * If the zonelist cache is present in the passed in zonelist, then
  1458. * returns a pointer to the allowed node mask (either the current
  1459. * tasks mems_allowed, or node_states[N_MEMORY].)
  1460. *
  1461. * If the zonelist cache is not available for this zonelist, does
  1462. * nothing and returns NULL.
  1463. *
  1464. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1465. * a second since last zap'd) then we zap it out (clear its bits.)
  1466. *
  1467. * We hold off even calling zlc_setup, until after we've checked the
  1468. * first zone in the zonelist, on the theory that most allocations will
  1469. * be satisfied from that first zone, so best to examine that zone as
  1470. * quickly as we can.
  1471. */
  1472. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1473. {
  1474. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1475. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1476. zlc = zonelist->zlcache_ptr;
  1477. if (!zlc)
  1478. return NULL;
  1479. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1480. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1481. zlc->last_full_zap = jiffies;
  1482. }
  1483. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1484. &cpuset_current_mems_allowed :
  1485. &node_states[N_MEMORY];
  1486. return allowednodes;
  1487. }
  1488. /*
  1489. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1490. * if it is worth looking at further for free memory:
  1491. * 1) Check that the zone isn't thought to be full (doesn't have its
  1492. * bit set in the zonelist_cache fullzones BITMAP).
  1493. * 2) Check that the zones node (obtained from the zonelist_cache
  1494. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1495. * Return true (non-zero) if zone is worth looking at further, or
  1496. * else return false (zero) if it is not.
  1497. *
  1498. * This check -ignores- the distinction between various watermarks,
  1499. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1500. * found to be full for any variation of these watermarks, it will
  1501. * be considered full for up to one second by all requests, unless
  1502. * we are so low on memory on all allowed nodes that we are forced
  1503. * into the second scan of the zonelist.
  1504. *
  1505. * In the second scan we ignore this zonelist cache and exactly
  1506. * apply the watermarks to all zones, even it is slower to do so.
  1507. * We are low on memory in the second scan, and should leave no stone
  1508. * unturned looking for a free page.
  1509. */
  1510. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1511. nodemask_t *allowednodes)
  1512. {
  1513. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1514. int i; /* index of *z in zonelist zones */
  1515. int n; /* node that zone *z is on */
  1516. zlc = zonelist->zlcache_ptr;
  1517. if (!zlc)
  1518. return 1;
  1519. i = z - zonelist->_zonerefs;
  1520. n = zlc->z_to_n[i];
  1521. /* This zone is worth trying if it is allowed but not full */
  1522. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1523. }
  1524. /*
  1525. * Given 'z' scanning a zonelist, set the corresponding bit in
  1526. * zlc->fullzones, so that subsequent attempts to allocate a page
  1527. * from that zone don't waste time re-examining it.
  1528. */
  1529. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1530. {
  1531. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1532. int i; /* index of *z in zonelist zones */
  1533. zlc = zonelist->zlcache_ptr;
  1534. if (!zlc)
  1535. return;
  1536. i = z - zonelist->_zonerefs;
  1537. set_bit(i, zlc->fullzones);
  1538. }
  1539. /*
  1540. * clear all zones full, called after direct reclaim makes progress so that
  1541. * a zone that was recently full is not skipped over for up to a second
  1542. */
  1543. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1544. {
  1545. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1546. zlc = zonelist->zlcache_ptr;
  1547. if (!zlc)
  1548. return;
  1549. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1550. }
  1551. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1552. {
  1553. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1554. }
  1555. static void __paginginit init_zone_allows_reclaim(int nid)
  1556. {
  1557. int i;
  1558. for_each_online_node(i)
  1559. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1560. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1561. else
  1562. zone_reclaim_mode = 1;
  1563. }
  1564. #else /* CONFIG_NUMA */
  1565. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1566. {
  1567. return NULL;
  1568. }
  1569. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1570. nodemask_t *allowednodes)
  1571. {
  1572. return 1;
  1573. }
  1574. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1575. {
  1576. }
  1577. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1578. {
  1579. }
  1580. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1581. {
  1582. return true;
  1583. }
  1584. static inline void init_zone_allows_reclaim(int nid)
  1585. {
  1586. }
  1587. #endif /* CONFIG_NUMA */
  1588. /*
  1589. * get_page_from_freelist goes through the zonelist trying to allocate
  1590. * a page.
  1591. */
  1592. static struct page *
  1593. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1594. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1595. struct zone *preferred_zone, int migratetype)
  1596. {
  1597. struct zoneref *z;
  1598. struct page *page = NULL;
  1599. int classzone_idx;
  1600. struct zone *zone;
  1601. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1602. int zlc_active = 0; /* set if using zonelist_cache */
  1603. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1604. classzone_idx = zone_idx(preferred_zone);
  1605. zonelist_scan:
  1606. /*
  1607. * Scan zonelist, looking for a zone with enough free.
  1608. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1609. */
  1610. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1611. high_zoneidx, nodemask) {
  1612. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1613. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1614. continue;
  1615. if ((alloc_flags & ALLOC_CPUSET) &&
  1616. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1617. continue;
  1618. /*
  1619. * When allocating a page cache page for writing, we
  1620. * want to get it from a zone that is within its dirty
  1621. * limit, such that no single zone holds more than its
  1622. * proportional share of globally allowed dirty pages.
  1623. * The dirty limits take into account the zone's
  1624. * lowmem reserves and high watermark so that kswapd
  1625. * should be able to balance it without having to
  1626. * write pages from its LRU list.
  1627. *
  1628. * This may look like it could increase pressure on
  1629. * lower zones by failing allocations in higher zones
  1630. * before they are full. But the pages that do spill
  1631. * over are limited as the lower zones are protected
  1632. * by this very same mechanism. It should not become
  1633. * a practical burden to them.
  1634. *
  1635. * XXX: For now, allow allocations to potentially
  1636. * exceed the per-zone dirty limit in the slowpath
  1637. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1638. * which is important when on a NUMA setup the allowed
  1639. * zones are together not big enough to reach the
  1640. * global limit. The proper fix for these situations
  1641. * will require awareness of zones in the
  1642. * dirty-throttling and the flusher threads.
  1643. */
  1644. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1645. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1646. goto this_zone_full;
  1647. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1648. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1649. unsigned long mark;
  1650. int ret;
  1651. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1652. if (zone_watermark_ok(zone, order, mark,
  1653. classzone_idx, alloc_flags))
  1654. goto try_this_zone;
  1655. if (IS_ENABLED(CONFIG_NUMA) &&
  1656. !did_zlc_setup && nr_online_nodes > 1) {
  1657. /*
  1658. * we do zlc_setup if there are multiple nodes
  1659. * and before considering the first zone allowed
  1660. * by the cpuset.
  1661. */
  1662. allowednodes = zlc_setup(zonelist, alloc_flags);
  1663. zlc_active = 1;
  1664. did_zlc_setup = 1;
  1665. }
  1666. if (zone_reclaim_mode == 0 ||
  1667. !zone_allows_reclaim(preferred_zone, zone))
  1668. goto this_zone_full;
  1669. /*
  1670. * As we may have just activated ZLC, check if the first
  1671. * eligible zone has failed zone_reclaim recently.
  1672. */
  1673. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1674. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1675. continue;
  1676. ret = zone_reclaim(zone, gfp_mask, order);
  1677. switch (ret) {
  1678. case ZONE_RECLAIM_NOSCAN:
  1679. /* did not scan */
  1680. continue;
  1681. case ZONE_RECLAIM_FULL:
  1682. /* scanned but unreclaimable */
  1683. continue;
  1684. default:
  1685. /* did we reclaim enough */
  1686. if (zone_watermark_ok(zone, order, mark,
  1687. classzone_idx, alloc_flags))
  1688. goto try_this_zone;
  1689. /*
  1690. * Failed to reclaim enough to meet watermark.
  1691. * Only mark the zone full if checking the min
  1692. * watermark or if we failed to reclaim just
  1693. * 1<<order pages or else the page allocator
  1694. * fastpath will prematurely mark zones full
  1695. * when the watermark is between the low and
  1696. * min watermarks.
  1697. */
  1698. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1699. ret == ZONE_RECLAIM_SOME)
  1700. goto this_zone_full;
  1701. continue;
  1702. }
  1703. }
  1704. try_this_zone:
  1705. page = buffered_rmqueue(preferred_zone, zone, order,
  1706. gfp_mask, migratetype);
  1707. if (page)
  1708. break;
  1709. this_zone_full:
  1710. if (IS_ENABLED(CONFIG_NUMA))
  1711. zlc_mark_zone_full(zonelist, z);
  1712. }
  1713. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1714. /* Disable zlc cache for second zonelist scan */
  1715. zlc_active = 0;
  1716. goto zonelist_scan;
  1717. }
  1718. if (page)
  1719. /*
  1720. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1721. * necessary to allocate the page. The expectation is
  1722. * that the caller is taking steps that will free more
  1723. * memory. The caller should avoid the page being used
  1724. * for !PFMEMALLOC purposes.
  1725. */
  1726. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1727. return page;
  1728. }
  1729. /*
  1730. * Large machines with many possible nodes should not always dump per-node
  1731. * meminfo in irq context.
  1732. */
  1733. static inline bool should_suppress_show_mem(void)
  1734. {
  1735. bool ret = false;
  1736. #if NODES_SHIFT > 8
  1737. ret = in_interrupt();
  1738. #endif
  1739. return ret;
  1740. }
  1741. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1742. DEFAULT_RATELIMIT_INTERVAL,
  1743. DEFAULT_RATELIMIT_BURST);
  1744. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1745. {
  1746. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1747. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1748. debug_guardpage_minorder() > 0)
  1749. return;
  1750. /*
  1751. * Walking all memory to count page types is very expensive and should
  1752. * be inhibited in non-blockable contexts.
  1753. */
  1754. if (!(gfp_mask & __GFP_WAIT))
  1755. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1756. /*
  1757. * This documents exceptions given to allocations in certain
  1758. * contexts that are allowed to allocate outside current's set
  1759. * of allowed nodes.
  1760. */
  1761. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1762. if (test_thread_flag(TIF_MEMDIE) ||
  1763. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1764. filter &= ~SHOW_MEM_FILTER_NODES;
  1765. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1766. filter &= ~SHOW_MEM_FILTER_NODES;
  1767. if (fmt) {
  1768. struct va_format vaf;
  1769. va_list args;
  1770. va_start(args, fmt);
  1771. vaf.fmt = fmt;
  1772. vaf.va = &args;
  1773. pr_warn("%pV", &vaf);
  1774. va_end(args);
  1775. }
  1776. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1777. current->comm, order, gfp_mask);
  1778. dump_stack();
  1779. if (!should_suppress_show_mem())
  1780. show_mem(filter);
  1781. }
  1782. static inline int
  1783. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1784. unsigned long did_some_progress,
  1785. unsigned long pages_reclaimed)
  1786. {
  1787. /* Do not loop if specifically requested */
  1788. if (gfp_mask & __GFP_NORETRY)
  1789. return 0;
  1790. /* Always retry if specifically requested */
  1791. if (gfp_mask & __GFP_NOFAIL)
  1792. return 1;
  1793. /*
  1794. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1795. * making forward progress without invoking OOM. Suspend also disables
  1796. * storage devices so kswapd will not help. Bail if we are suspending.
  1797. */
  1798. if (!did_some_progress && pm_suspended_storage())
  1799. return 0;
  1800. /*
  1801. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1802. * means __GFP_NOFAIL, but that may not be true in other
  1803. * implementations.
  1804. */
  1805. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1806. return 1;
  1807. /*
  1808. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1809. * specified, then we retry until we no longer reclaim any pages
  1810. * (above), or we've reclaimed an order of pages at least as
  1811. * large as the allocation's order. In both cases, if the
  1812. * allocation still fails, we stop retrying.
  1813. */
  1814. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1815. return 1;
  1816. return 0;
  1817. }
  1818. static inline struct page *
  1819. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1820. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1821. nodemask_t *nodemask, struct zone *preferred_zone,
  1822. int migratetype)
  1823. {
  1824. struct page *page;
  1825. /* Acquire the OOM killer lock for the zones in zonelist */
  1826. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1827. schedule_timeout_uninterruptible(1);
  1828. return NULL;
  1829. }
  1830. /*
  1831. * Go through the zonelist yet one more time, keep very high watermark
  1832. * here, this is only to catch a parallel oom killing, we must fail if
  1833. * we're still under heavy pressure.
  1834. */
  1835. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1836. order, zonelist, high_zoneidx,
  1837. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1838. preferred_zone, migratetype);
  1839. if (page)
  1840. goto out;
  1841. if (!(gfp_mask & __GFP_NOFAIL)) {
  1842. /* The OOM killer will not help higher order allocs */
  1843. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1844. goto out;
  1845. /* The OOM killer does not needlessly kill tasks for lowmem */
  1846. if (high_zoneidx < ZONE_NORMAL)
  1847. goto out;
  1848. /*
  1849. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1850. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1851. * The caller should handle page allocation failure by itself if
  1852. * it specifies __GFP_THISNODE.
  1853. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1854. */
  1855. if (gfp_mask & __GFP_THISNODE)
  1856. goto out;
  1857. }
  1858. /* Exhausted what can be done so it's blamo time */
  1859. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1860. out:
  1861. clear_zonelist_oom(zonelist, gfp_mask);
  1862. return page;
  1863. }
  1864. #ifdef CONFIG_COMPACTION
  1865. /* Try memory compaction for high-order allocations before reclaim */
  1866. static struct page *
  1867. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1868. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1869. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1870. int migratetype, bool sync_migration,
  1871. bool *contended_compaction, bool *deferred_compaction,
  1872. unsigned long *did_some_progress)
  1873. {
  1874. if (!order)
  1875. return NULL;
  1876. if (compaction_deferred(preferred_zone, order)) {
  1877. *deferred_compaction = true;
  1878. return NULL;
  1879. }
  1880. current->flags |= PF_MEMALLOC;
  1881. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1882. nodemask, sync_migration,
  1883. contended_compaction);
  1884. current->flags &= ~PF_MEMALLOC;
  1885. if (*did_some_progress != COMPACT_SKIPPED) {
  1886. struct page *page;
  1887. /* Page migration frees to the PCP lists but we want merging */
  1888. drain_pages(get_cpu());
  1889. put_cpu();
  1890. page = get_page_from_freelist(gfp_mask, nodemask,
  1891. order, zonelist, high_zoneidx,
  1892. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1893. preferred_zone, migratetype);
  1894. if (page) {
  1895. preferred_zone->compact_blockskip_flush = false;
  1896. preferred_zone->compact_considered = 0;
  1897. preferred_zone->compact_defer_shift = 0;
  1898. if (order >= preferred_zone->compact_order_failed)
  1899. preferred_zone->compact_order_failed = order + 1;
  1900. count_vm_event(COMPACTSUCCESS);
  1901. return page;
  1902. }
  1903. /*
  1904. * It's bad if compaction run occurs and fails.
  1905. * The most likely reason is that pages exist,
  1906. * but not enough to satisfy watermarks.
  1907. */
  1908. count_vm_event(COMPACTFAIL);
  1909. /*
  1910. * As async compaction considers a subset of pageblocks, only
  1911. * defer if the failure was a sync compaction failure.
  1912. */
  1913. if (sync_migration)
  1914. defer_compaction(preferred_zone, order);
  1915. cond_resched();
  1916. }
  1917. return NULL;
  1918. }
  1919. #else
  1920. static inline struct page *
  1921. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1922. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1923. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1924. int migratetype, bool sync_migration,
  1925. bool *contended_compaction, bool *deferred_compaction,
  1926. unsigned long *did_some_progress)
  1927. {
  1928. return NULL;
  1929. }
  1930. #endif /* CONFIG_COMPACTION */
  1931. /* Perform direct synchronous page reclaim */
  1932. static int
  1933. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1934. nodemask_t *nodemask)
  1935. {
  1936. struct reclaim_state reclaim_state;
  1937. int progress;
  1938. cond_resched();
  1939. /* We now go into synchronous reclaim */
  1940. cpuset_memory_pressure_bump();
  1941. current->flags |= PF_MEMALLOC;
  1942. lockdep_set_current_reclaim_state(gfp_mask);
  1943. reclaim_state.reclaimed_slab = 0;
  1944. current->reclaim_state = &reclaim_state;
  1945. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1946. current->reclaim_state = NULL;
  1947. lockdep_clear_current_reclaim_state();
  1948. current->flags &= ~PF_MEMALLOC;
  1949. cond_resched();
  1950. return progress;
  1951. }
  1952. /* The really slow allocator path where we enter direct reclaim */
  1953. static inline struct page *
  1954. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1955. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1956. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1957. int migratetype, unsigned long *did_some_progress)
  1958. {
  1959. struct page *page = NULL;
  1960. bool drained = false;
  1961. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1962. nodemask);
  1963. if (unlikely(!(*did_some_progress)))
  1964. return NULL;
  1965. /* After successful reclaim, reconsider all zones for allocation */
  1966. if (IS_ENABLED(CONFIG_NUMA))
  1967. zlc_clear_zones_full(zonelist);
  1968. retry:
  1969. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1970. zonelist, high_zoneidx,
  1971. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1972. preferred_zone, migratetype);
  1973. /*
  1974. * If an allocation failed after direct reclaim, it could be because
  1975. * pages are pinned on the per-cpu lists. Drain them and try again
  1976. */
  1977. if (!page && !drained) {
  1978. drain_all_pages();
  1979. drained = true;
  1980. goto retry;
  1981. }
  1982. return page;
  1983. }
  1984. /*
  1985. * This is called in the allocator slow-path if the allocation request is of
  1986. * sufficient urgency to ignore watermarks and take other desperate measures
  1987. */
  1988. static inline struct page *
  1989. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1990. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1991. nodemask_t *nodemask, struct zone *preferred_zone,
  1992. int migratetype)
  1993. {
  1994. struct page *page;
  1995. do {
  1996. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1997. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1998. preferred_zone, migratetype);
  1999. if (!page && gfp_mask & __GFP_NOFAIL)
  2000. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2001. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2002. return page;
  2003. }
  2004. static inline
  2005. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2006. enum zone_type high_zoneidx,
  2007. enum zone_type classzone_idx)
  2008. {
  2009. struct zoneref *z;
  2010. struct zone *zone;
  2011. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2012. wakeup_kswapd(zone, order, classzone_idx);
  2013. }
  2014. static inline int
  2015. gfp_to_alloc_flags(gfp_t gfp_mask)
  2016. {
  2017. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2018. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2019. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2020. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2021. /*
  2022. * The caller may dip into page reserves a bit more if the caller
  2023. * cannot run direct reclaim, or if the caller has realtime scheduling
  2024. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2025. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2026. */
  2027. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2028. if (!wait) {
  2029. /*
  2030. * Not worth trying to allocate harder for
  2031. * __GFP_NOMEMALLOC even if it can't schedule.
  2032. */
  2033. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2034. alloc_flags |= ALLOC_HARDER;
  2035. /*
  2036. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2037. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2038. */
  2039. alloc_flags &= ~ALLOC_CPUSET;
  2040. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2041. alloc_flags |= ALLOC_HARDER;
  2042. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2043. if (gfp_mask & __GFP_MEMALLOC)
  2044. alloc_flags |= ALLOC_NO_WATERMARKS;
  2045. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2046. alloc_flags |= ALLOC_NO_WATERMARKS;
  2047. else if (!in_interrupt() &&
  2048. ((current->flags & PF_MEMALLOC) ||
  2049. unlikely(test_thread_flag(TIF_MEMDIE))))
  2050. alloc_flags |= ALLOC_NO_WATERMARKS;
  2051. }
  2052. #ifdef CONFIG_CMA
  2053. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2054. alloc_flags |= ALLOC_CMA;
  2055. #endif
  2056. return alloc_flags;
  2057. }
  2058. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2059. {
  2060. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2061. }
  2062. static inline struct page *
  2063. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2064. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2065. nodemask_t *nodemask, struct zone *preferred_zone,
  2066. int migratetype)
  2067. {
  2068. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2069. struct page *page = NULL;
  2070. int alloc_flags;
  2071. unsigned long pages_reclaimed = 0;
  2072. unsigned long did_some_progress;
  2073. bool sync_migration = false;
  2074. bool deferred_compaction = false;
  2075. bool contended_compaction = false;
  2076. /*
  2077. * In the slowpath, we sanity check order to avoid ever trying to
  2078. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2079. * be using allocators in order of preference for an area that is
  2080. * too large.
  2081. */
  2082. if (order >= MAX_ORDER) {
  2083. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2084. return NULL;
  2085. }
  2086. /*
  2087. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2088. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2089. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2090. * using a larger set of nodes after it has established that the
  2091. * allowed per node queues are empty and that nodes are
  2092. * over allocated.
  2093. */
  2094. if (IS_ENABLED(CONFIG_NUMA) &&
  2095. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2096. goto nopage;
  2097. restart:
  2098. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2099. wake_all_kswapd(order, zonelist, high_zoneidx,
  2100. zone_idx(preferred_zone));
  2101. /*
  2102. * OK, we're below the kswapd watermark and have kicked background
  2103. * reclaim. Now things get more complex, so set up alloc_flags according
  2104. * to how we want to proceed.
  2105. */
  2106. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2107. /*
  2108. * Find the true preferred zone if the allocation is unconstrained by
  2109. * cpusets.
  2110. */
  2111. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2112. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2113. &preferred_zone);
  2114. rebalance:
  2115. /* This is the last chance, in general, before the goto nopage. */
  2116. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2117. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2118. preferred_zone, migratetype);
  2119. if (page)
  2120. goto got_pg;
  2121. /* Allocate without watermarks if the context allows */
  2122. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2123. /*
  2124. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2125. * the allocation is high priority and these type of
  2126. * allocations are system rather than user orientated
  2127. */
  2128. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2129. page = __alloc_pages_high_priority(gfp_mask, order,
  2130. zonelist, high_zoneidx, nodemask,
  2131. preferred_zone, migratetype);
  2132. if (page) {
  2133. goto got_pg;
  2134. }
  2135. }
  2136. /* Atomic allocations - we can't balance anything */
  2137. if (!wait)
  2138. goto nopage;
  2139. /* Avoid recursion of direct reclaim */
  2140. if (current->flags & PF_MEMALLOC)
  2141. goto nopage;
  2142. /* Avoid allocations with no watermarks from looping endlessly */
  2143. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2144. goto nopage;
  2145. /*
  2146. * Try direct compaction. The first pass is asynchronous. Subsequent
  2147. * attempts after direct reclaim are synchronous
  2148. */
  2149. page = __alloc_pages_direct_compact(gfp_mask, order,
  2150. zonelist, high_zoneidx,
  2151. nodemask,
  2152. alloc_flags, preferred_zone,
  2153. migratetype, sync_migration,
  2154. &contended_compaction,
  2155. &deferred_compaction,
  2156. &did_some_progress);
  2157. if (page)
  2158. goto got_pg;
  2159. sync_migration = true;
  2160. /*
  2161. * If compaction is deferred for high-order allocations, it is because
  2162. * sync compaction recently failed. In this is the case and the caller
  2163. * requested a movable allocation that does not heavily disrupt the
  2164. * system then fail the allocation instead of entering direct reclaim.
  2165. */
  2166. if ((deferred_compaction || contended_compaction) &&
  2167. (gfp_mask & __GFP_NO_KSWAPD))
  2168. goto nopage;
  2169. /* Try direct reclaim and then allocating */
  2170. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2171. zonelist, high_zoneidx,
  2172. nodemask,
  2173. alloc_flags, preferred_zone,
  2174. migratetype, &did_some_progress);
  2175. if (page)
  2176. goto got_pg;
  2177. /*
  2178. * If we failed to make any progress reclaiming, then we are
  2179. * running out of options and have to consider going OOM
  2180. */
  2181. if (!did_some_progress) {
  2182. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2183. if (oom_killer_disabled)
  2184. goto nopage;
  2185. /* Coredumps can quickly deplete all memory reserves */
  2186. if ((current->flags & PF_DUMPCORE) &&
  2187. !(gfp_mask & __GFP_NOFAIL))
  2188. goto nopage;
  2189. page = __alloc_pages_may_oom(gfp_mask, order,
  2190. zonelist, high_zoneidx,
  2191. nodemask, preferred_zone,
  2192. migratetype);
  2193. if (page)
  2194. goto got_pg;
  2195. if (!(gfp_mask & __GFP_NOFAIL)) {
  2196. /*
  2197. * The oom killer is not called for high-order
  2198. * allocations that may fail, so if no progress
  2199. * is being made, there are no other options and
  2200. * retrying is unlikely to help.
  2201. */
  2202. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2203. goto nopage;
  2204. /*
  2205. * The oom killer is not called for lowmem
  2206. * allocations to prevent needlessly killing
  2207. * innocent tasks.
  2208. */
  2209. if (high_zoneidx < ZONE_NORMAL)
  2210. goto nopage;
  2211. }
  2212. goto restart;
  2213. }
  2214. }
  2215. /* Check if we should retry the allocation */
  2216. pages_reclaimed += did_some_progress;
  2217. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2218. pages_reclaimed)) {
  2219. /* Wait for some write requests to complete then retry */
  2220. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2221. goto rebalance;
  2222. } else {
  2223. /*
  2224. * High-order allocations do not necessarily loop after
  2225. * direct reclaim and reclaim/compaction depends on compaction
  2226. * being called after reclaim so call directly if necessary
  2227. */
  2228. page = __alloc_pages_direct_compact(gfp_mask, order,
  2229. zonelist, high_zoneidx,
  2230. nodemask,
  2231. alloc_flags, preferred_zone,
  2232. migratetype, sync_migration,
  2233. &contended_compaction,
  2234. &deferred_compaction,
  2235. &did_some_progress);
  2236. if (page)
  2237. goto got_pg;
  2238. }
  2239. nopage:
  2240. warn_alloc_failed(gfp_mask, order, NULL);
  2241. return page;
  2242. got_pg:
  2243. if (kmemcheck_enabled)
  2244. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2245. return page;
  2246. }
  2247. /*
  2248. * This is the 'heart' of the zoned buddy allocator.
  2249. */
  2250. struct page *
  2251. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2252. struct zonelist *zonelist, nodemask_t *nodemask)
  2253. {
  2254. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2255. struct zone *preferred_zone;
  2256. struct page *page = NULL;
  2257. int migratetype = allocflags_to_migratetype(gfp_mask);
  2258. unsigned int cpuset_mems_cookie;
  2259. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2260. struct mem_cgroup *memcg = NULL;
  2261. gfp_mask &= gfp_allowed_mask;
  2262. lockdep_trace_alloc(gfp_mask);
  2263. might_sleep_if(gfp_mask & __GFP_WAIT);
  2264. if (should_fail_alloc_page(gfp_mask, order))
  2265. return NULL;
  2266. /*
  2267. * Check the zones suitable for the gfp_mask contain at least one
  2268. * valid zone. It's possible to have an empty zonelist as a result
  2269. * of GFP_THISNODE and a memoryless node
  2270. */
  2271. if (unlikely(!zonelist->_zonerefs->zone))
  2272. return NULL;
  2273. /*
  2274. * Will only have any effect when __GFP_KMEMCG is set. This is
  2275. * verified in the (always inline) callee
  2276. */
  2277. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2278. return NULL;
  2279. retry_cpuset:
  2280. cpuset_mems_cookie = get_mems_allowed();
  2281. /* The preferred zone is used for statistics later */
  2282. first_zones_zonelist(zonelist, high_zoneidx,
  2283. nodemask ? : &cpuset_current_mems_allowed,
  2284. &preferred_zone);
  2285. if (!preferred_zone)
  2286. goto out;
  2287. #ifdef CONFIG_CMA
  2288. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2289. alloc_flags |= ALLOC_CMA;
  2290. #endif
  2291. /* First allocation attempt */
  2292. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2293. zonelist, high_zoneidx, alloc_flags,
  2294. preferred_zone, migratetype);
  2295. if (unlikely(!page)) {
  2296. /*
  2297. * Runtime PM, block IO and its error handling path
  2298. * can deadlock because I/O on the device might not
  2299. * complete.
  2300. */
  2301. gfp_mask = memalloc_noio_flags(gfp_mask);
  2302. page = __alloc_pages_slowpath(gfp_mask, order,
  2303. zonelist, high_zoneidx, nodemask,
  2304. preferred_zone, migratetype);
  2305. }
  2306. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2307. out:
  2308. /*
  2309. * When updating a task's mems_allowed, it is possible to race with
  2310. * parallel threads in such a way that an allocation can fail while
  2311. * the mask is being updated. If a page allocation is about to fail,
  2312. * check if the cpuset changed during allocation and if so, retry.
  2313. */
  2314. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2315. goto retry_cpuset;
  2316. memcg_kmem_commit_charge(page, memcg, order);
  2317. return page;
  2318. }
  2319. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2320. /*
  2321. * Common helper functions.
  2322. */
  2323. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2324. {
  2325. struct page *page;
  2326. /*
  2327. * __get_free_pages() returns a 32-bit address, which cannot represent
  2328. * a highmem page
  2329. */
  2330. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2331. page = alloc_pages(gfp_mask, order);
  2332. if (!page)
  2333. return 0;
  2334. return (unsigned long) page_address(page);
  2335. }
  2336. EXPORT_SYMBOL(__get_free_pages);
  2337. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2338. {
  2339. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2340. }
  2341. EXPORT_SYMBOL(get_zeroed_page);
  2342. void __free_pages(struct page *page, unsigned int order)
  2343. {
  2344. if (put_page_testzero(page)) {
  2345. if (order == 0)
  2346. free_hot_cold_page(page, 0);
  2347. else
  2348. __free_pages_ok(page, order);
  2349. }
  2350. }
  2351. EXPORT_SYMBOL(__free_pages);
  2352. void free_pages(unsigned long addr, unsigned int order)
  2353. {
  2354. if (addr != 0) {
  2355. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2356. __free_pages(virt_to_page((void *)addr), order);
  2357. }
  2358. }
  2359. EXPORT_SYMBOL(free_pages);
  2360. /*
  2361. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2362. * pages allocated with __GFP_KMEMCG.
  2363. *
  2364. * Those pages are accounted to a particular memcg, embedded in the
  2365. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2366. * for that information only to find out that it is NULL for users who have no
  2367. * interest in that whatsoever, we provide these functions.
  2368. *
  2369. * The caller knows better which flags it relies on.
  2370. */
  2371. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2372. {
  2373. memcg_kmem_uncharge_pages(page, order);
  2374. __free_pages(page, order);
  2375. }
  2376. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2377. {
  2378. if (addr != 0) {
  2379. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2380. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2381. }
  2382. }
  2383. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2384. {
  2385. if (addr) {
  2386. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2387. unsigned long used = addr + PAGE_ALIGN(size);
  2388. split_page(virt_to_page((void *)addr), order);
  2389. while (used < alloc_end) {
  2390. free_page(used);
  2391. used += PAGE_SIZE;
  2392. }
  2393. }
  2394. return (void *)addr;
  2395. }
  2396. /**
  2397. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2398. * @size: the number of bytes to allocate
  2399. * @gfp_mask: GFP flags for the allocation
  2400. *
  2401. * This function is similar to alloc_pages(), except that it allocates the
  2402. * minimum number of pages to satisfy the request. alloc_pages() can only
  2403. * allocate memory in power-of-two pages.
  2404. *
  2405. * This function is also limited by MAX_ORDER.
  2406. *
  2407. * Memory allocated by this function must be released by free_pages_exact().
  2408. */
  2409. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2410. {
  2411. unsigned int order = get_order(size);
  2412. unsigned long addr;
  2413. addr = __get_free_pages(gfp_mask, order);
  2414. return make_alloc_exact(addr, order, size);
  2415. }
  2416. EXPORT_SYMBOL(alloc_pages_exact);
  2417. /**
  2418. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2419. * pages on a node.
  2420. * @nid: the preferred node ID where memory should be allocated
  2421. * @size: the number of bytes to allocate
  2422. * @gfp_mask: GFP flags for the allocation
  2423. *
  2424. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2425. * back.
  2426. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2427. * but is not exact.
  2428. */
  2429. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2430. {
  2431. unsigned order = get_order(size);
  2432. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2433. if (!p)
  2434. return NULL;
  2435. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2436. }
  2437. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2438. /**
  2439. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2440. * @virt: the value returned by alloc_pages_exact.
  2441. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2442. *
  2443. * Release the memory allocated by a previous call to alloc_pages_exact.
  2444. */
  2445. void free_pages_exact(void *virt, size_t size)
  2446. {
  2447. unsigned long addr = (unsigned long)virt;
  2448. unsigned long end = addr + PAGE_ALIGN(size);
  2449. while (addr < end) {
  2450. free_page(addr);
  2451. addr += PAGE_SIZE;
  2452. }
  2453. }
  2454. EXPORT_SYMBOL(free_pages_exact);
  2455. /**
  2456. * nr_free_zone_pages - count number of pages beyond high watermark
  2457. * @offset: The zone index of the highest zone
  2458. *
  2459. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2460. * high watermark within all zones at or below a given zone index. For each
  2461. * zone, the number of pages is calculated as:
  2462. * managed_pages - high_pages
  2463. */
  2464. static unsigned long nr_free_zone_pages(int offset)
  2465. {
  2466. struct zoneref *z;
  2467. struct zone *zone;
  2468. /* Just pick one node, since fallback list is circular */
  2469. unsigned long sum = 0;
  2470. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2471. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2472. unsigned long size = zone->managed_pages;
  2473. unsigned long high = high_wmark_pages(zone);
  2474. if (size > high)
  2475. sum += size - high;
  2476. }
  2477. return sum;
  2478. }
  2479. /**
  2480. * nr_free_buffer_pages - count number of pages beyond high watermark
  2481. *
  2482. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2483. * watermark within ZONE_DMA and ZONE_NORMAL.
  2484. */
  2485. unsigned long nr_free_buffer_pages(void)
  2486. {
  2487. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2488. }
  2489. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2490. /**
  2491. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2492. *
  2493. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2494. * high watermark within all zones.
  2495. */
  2496. unsigned long nr_free_pagecache_pages(void)
  2497. {
  2498. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2499. }
  2500. static inline void show_node(struct zone *zone)
  2501. {
  2502. if (IS_ENABLED(CONFIG_NUMA))
  2503. printk("Node %d ", zone_to_nid(zone));
  2504. }
  2505. void si_meminfo(struct sysinfo *val)
  2506. {
  2507. val->totalram = totalram_pages;
  2508. val->sharedram = 0;
  2509. val->freeram = global_page_state(NR_FREE_PAGES);
  2510. val->bufferram = nr_blockdev_pages();
  2511. val->totalhigh = totalhigh_pages;
  2512. val->freehigh = nr_free_highpages();
  2513. val->mem_unit = PAGE_SIZE;
  2514. }
  2515. EXPORT_SYMBOL(si_meminfo);
  2516. #ifdef CONFIG_NUMA
  2517. void si_meminfo_node(struct sysinfo *val, int nid)
  2518. {
  2519. int zone_type; /* needs to be signed */
  2520. unsigned long managed_pages = 0;
  2521. pg_data_t *pgdat = NODE_DATA(nid);
  2522. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2523. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2524. val->totalram = managed_pages;
  2525. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2526. #ifdef CONFIG_HIGHMEM
  2527. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2528. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2529. NR_FREE_PAGES);
  2530. #else
  2531. val->totalhigh = 0;
  2532. val->freehigh = 0;
  2533. #endif
  2534. val->mem_unit = PAGE_SIZE;
  2535. }
  2536. #endif
  2537. /*
  2538. * Determine whether the node should be displayed or not, depending on whether
  2539. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2540. */
  2541. bool skip_free_areas_node(unsigned int flags, int nid)
  2542. {
  2543. bool ret = false;
  2544. unsigned int cpuset_mems_cookie;
  2545. if (!(flags & SHOW_MEM_FILTER_NODES))
  2546. goto out;
  2547. do {
  2548. cpuset_mems_cookie = get_mems_allowed();
  2549. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2550. } while (!put_mems_allowed(cpuset_mems_cookie));
  2551. out:
  2552. return ret;
  2553. }
  2554. #define K(x) ((x) << (PAGE_SHIFT-10))
  2555. static void show_migration_types(unsigned char type)
  2556. {
  2557. static const char types[MIGRATE_TYPES] = {
  2558. [MIGRATE_UNMOVABLE] = 'U',
  2559. [MIGRATE_RECLAIMABLE] = 'E',
  2560. [MIGRATE_MOVABLE] = 'M',
  2561. [MIGRATE_RESERVE] = 'R',
  2562. #ifdef CONFIG_CMA
  2563. [MIGRATE_CMA] = 'C',
  2564. #endif
  2565. #ifdef CONFIG_MEMORY_ISOLATION
  2566. [MIGRATE_ISOLATE] = 'I',
  2567. #endif
  2568. };
  2569. char tmp[MIGRATE_TYPES + 1];
  2570. char *p = tmp;
  2571. int i;
  2572. for (i = 0; i < MIGRATE_TYPES; i++) {
  2573. if (type & (1 << i))
  2574. *p++ = types[i];
  2575. }
  2576. *p = '\0';
  2577. printk("(%s) ", tmp);
  2578. }
  2579. /*
  2580. * Show free area list (used inside shift_scroll-lock stuff)
  2581. * We also calculate the percentage fragmentation. We do this by counting the
  2582. * memory on each free list with the exception of the first item on the list.
  2583. * Suppresses nodes that are not allowed by current's cpuset if
  2584. * SHOW_MEM_FILTER_NODES is passed.
  2585. */
  2586. void show_free_areas(unsigned int filter)
  2587. {
  2588. int cpu;
  2589. struct zone *zone;
  2590. for_each_populated_zone(zone) {
  2591. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2592. continue;
  2593. show_node(zone);
  2594. printk("%s per-cpu:\n", zone->name);
  2595. for_each_online_cpu(cpu) {
  2596. struct per_cpu_pageset *pageset;
  2597. pageset = per_cpu_ptr(zone->pageset, cpu);
  2598. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2599. cpu, pageset->pcp.high,
  2600. pageset->pcp.batch, pageset->pcp.count);
  2601. }
  2602. }
  2603. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2604. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2605. " unevictable:%lu"
  2606. " dirty:%lu writeback:%lu unstable:%lu\n"
  2607. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2608. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2609. " free_cma:%lu\n",
  2610. global_page_state(NR_ACTIVE_ANON),
  2611. global_page_state(NR_INACTIVE_ANON),
  2612. global_page_state(NR_ISOLATED_ANON),
  2613. global_page_state(NR_ACTIVE_FILE),
  2614. global_page_state(NR_INACTIVE_FILE),
  2615. global_page_state(NR_ISOLATED_FILE),
  2616. global_page_state(NR_UNEVICTABLE),
  2617. global_page_state(NR_FILE_DIRTY),
  2618. global_page_state(NR_WRITEBACK),
  2619. global_page_state(NR_UNSTABLE_NFS),
  2620. global_page_state(NR_FREE_PAGES),
  2621. global_page_state(NR_SLAB_RECLAIMABLE),
  2622. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2623. global_page_state(NR_FILE_MAPPED),
  2624. global_page_state(NR_SHMEM),
  2625. global_page_state(NR_PAGETABLE),
  2626. global_page_state(NR_BOUNCE),
  2627. global_page_state(NR_FREE_CMA_PAGES));
  2628. for_each_populated_zone(zone) {
  2629. int i;
  2630. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2631. continue;
  2632. show_node(zone);
  2633. printk("%s"
  2634. " free:%lukB"
  2635. " min:%lukB"
  2636. " low:%lukB"
  2637. " high:%lukB"
  2638. " active_anon:%lukB"
  2639. " inactive_anon:%lukB"
  2640. " active_file:%lukB"
  2641. " inactive_file:%lukB"
  2642. " unevictable:%lukB"
  2643. " isolated(anon):%lukB"
  2644. " isolated(file):%lukB"
  2645. " present:%lukB"
  2646. " managed:%lukB"
  2647. " mlocked:%lukB"
  2648. " dirty:%lukB"
  2649. " writeback:%lukB"
  2650. " mapped:%lukB"
  2651. " shmem:%lukB"
  2652. " slab_reclaimable:%lukB"
  2653. " slab_unreclaimable:%lukB"
  2654. " kernel_stack:%lukB"
  2655. " pagetables:%lukB"
  2656. " unstable:%lukB"
  2657. " bounce:%lukB"
  2658. " free_cma:%lukB"
  2659. " writeback_tmp:%lukB"
  2660. " pages_scanned:%lu"
  2661. " all_unreclaimable? %s"
  2662. "\n",
  2663. zone->name,
  2664. K(zone_page_state(zone, NR_FREE_PAGES)),
  2665. K(min_wmark_pages(zone)),
  2666. K(low_wmark_pages(zone)),
  2667. K(high_wmark_pages(zone)),
  2668. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2669. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2670. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2671. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2672. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2673. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2674. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2675. K(zone->present_pages),
  2676. K(zone->managed_pages),
  2677. K(zone_page_state(zone, NR_MLOCK)),
  2678. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2679. K(zone_page_state(zone, NR_WRITEBACK)),
  2680. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2681. K(zone_page_state(zone, NR_SHMEM)),
  2682. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2683. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2684. zone_page_state(zone, NR_KERNEL_STACK) *
  2685. THREAD_SIZE / 1024,
  2686. K(zone_page_state(zone, NR_PAGETABLE)),
  2687. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2688. K(zone_page_state(zone, NR_BOUNCE)),
  2689. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2690. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2691. zone->pages_scanned,
  2692. (zone->all_unreclaimable ? "yes" : "no")
  2693. );
  2694. printk("lowmem_reserve[]:");
  2695. for (i = 0; i < MAX_NR_ZONES; i++)
  2696. printk(" %lu", zone->lowmem_reserve[i]);
  2697. printk("\n");
  2698. }
  2699. for_each_populated_zone(zone) {
  2700. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2701. unsigned char types[MAX_ORDER];
  2702. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2703. continue;
  2704. show_node(zone);
  2705. printk("%s: ", zone->name);
  2706. spin_lock_irqsave(&zone->lock, flags);
  2707. for (order = 0; order < MAX_ORDER; order++) {
  2708. struct free_area *area = &zone->free_area[order];
  2709. int type;
  2710. nr[order] = area->nr_free;
  2711. total += nr[order] << order;
  2712. types[order] = 0;
  2713. for (type = 0; type < MIGRATE_TYPES; type++) {
  2714. if (!list_empty(&area->free_list[type]))
  2715. types[order] |= 1 << type;
  2716. }
  2717. }
  2718. spin_unlock_irqrestore(&zone->lock, flags);
  2719. for (order = 0; order < MAX_ORDER; order++) {
  2720. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2721. if (nr[order])
  2722. show_migration_types(types[order]);
  2723. }
  2724. printk("= %lukB\n", K(total));
  2725. }
  2726. hugetlb_show_meminfo();
  2727. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2728. show_swap_cache_info();
  2729. }
  2730. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2731. {
  2732. zoneref->zone = zone;
  2733. zoneref->zone_idx = zone_idx(zone);
  2734. }
  2735. /*
  2736. * Builds allocation fallback zone lists.
  2737. *
  2738. * Add all populated zones of a node to the zonelist.
  2739. */
  2740. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2741. int nr_zones)
  2742. {
  2743. struct zone *zone;
  2744. enum zone_type zone_type = MAX_NR_ZONES;
  2745. do {
  2746. zone_type--;
  2747. zone = pgdat->node_zones + zone_type;
  2748. if (populated_zone(zone)) {
  2749. zoneref_set_zone(zone,
  2750. &zonelist->_zonerefs[nr_zones++]);
  2751. check_highest_zone(zone_type);
  2752. }
  2753. } while (zone_type);
  2754. return nr_zones;
  2755. }
  2756. /*
  2757. * zonelist_order:
  2758. * 0 = automatic detection of better ordering.
  2759. * 1 = order by ([node] distance, -zonetype)
  2760. * 2 = order by (-zonetype, [node] distance)
  2761. *
  2762. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2763. * the same zonelist. So only NUMA can configure this param.
  2764. */
  2765. #define ZONELIST_ORDER_DEFAULT 0
  2766. #define ZONELIST_ORDER_NODE 1
  2767. #define ZONELIST_ORDER_ZONE 2
  2768. /* zonelist order in the kernel.
  2769. * set_zonelist_order() will set this to NODE or ZONE.
  2770. */
  2771. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2772. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2773. #ifdef CONFIG_NUMA
  2774. /* The value user specified ....changed by config */
  2775. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2776. /* string for sysctl */
  2777. #define NUMA_ZONELIST_ORDER_LEN 16
  2778. char numa_zonelist_order[16] = "default";
  2779. /*
  2780. * interface for configure zonelist ordering.
  2781. * command line option "numa_zonelist_order"
  2782. * = "[dD]efault - default, automatic configuration.
  2783. * = "[nN]ode - order by node locality, then by zone within node
  2784. * = "[zZ]one - order by zone, then by locality within zone
  2785. */
  2786. static int __parse_numa_zonelist_order(char *s)
  2787. {
  2788. if (*s == 'd' || *s == 'D') {
  2789. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2790. } else if (*s == 'n' || *s == 'N') {
  2791. user_zonelist_order = ZONELIST_ORDER_NODE;
  2792. } else if (*s == 'z' || *s == 'Z') {
  2793. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2794. } else {
  2795. printk(KERN_WARNING
  2796. "Ignoring invalid numa_zonelist_order value: "
  2797. "%s\n", s);
  2798. return -EINVAL;
  2799. }
  2800. return 0;
  2801. }
  2802. static __init int setup_numa_zonelist_order(char *s)
  2803. {
  2804. int ret;
  2805. if (!s)
  2806. return 0;
  2807. ret = __parse_numa_zonelist_order(s);
  2808. if (ret == 0)
  2809. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2810. return ret;
  2811. }
  2812. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2813. /*
  2814. * sysctl handler for numa_zonelist_order
  2815. */
  2816. int numa_zonelist_order_handler(ctl_table *table, int write,
  2817. void __user *buffer, size_t *length,
  2818. loff_t *ppos)
  2819. {
  2820. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2821. int ret;
  2822. static DEFINE_MUTEX(zl_order_mutex);
  2823. mutex_lock(&zl_order_mutex);
  2824. if (write) {
  2825. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2826. ret = -EINVAL;
  2827. goto out;
  2828. }
  2829. strcpy(saved_string, (char *)table->data);
  2830. }
  2831. ret = proc_dostring(table, write, buffer, length, ppos);
  2832. if (ret)
  2833. goto out;
  2834. if (write) {
  2835. int oldval = user_zonelist_order;
  2836. ret = __parse_numa_zonelist_order((char *)table->data);
  2837. if (ret) {
  2838. /*
  2839. * bogus value. restore saved string
  2840. */
  2841. strncpy((char *)table->data, saved_string,
  2842. NUMA_ZONELIST_ORDER_LEN);
  2843. user_zonelist_order = oldval;
  2844. } else if (oldval != user_zonelist_order) {
  2845. mutex_lock(&zonelists_mutex);
  2846. build_all_zonelists(NULL, NULL);
  2847. mutex_unlock(&zonelists_mutex);
  2848. }
  2849. }
  2850. out:
  2851. mutex_unlock(&zl_order_mutex);
  2852. return ret;
  2853. }
  2854. #define MAX_NODE_LOAD (nr_online_nodes)
  2855. static int node_load[MAX_NUMNODES];
  2856. /**
  2857. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2858. * @node: node whose fallback list we're appending
  2859. * @used_node_mask: nodemask_t of already used nodes
  2860. *
  2861. * We use a number of factors to determine which is the next node that should
  2862. * appear on a given node's fallback list. The node should not have appeared
  2863. * already in @node's fallback list, and it should be the next closest node
  2864. * according to the distance array (which contains arbitrary distance values
  2865. * from each node to each node in the system), and should also prefer nodes
  2866. * with no CPUs, since presumably they'll have very little allocation pressure
  2867. * on them otherwise.
  2868. * It returns -1 if no node is found.
  2869. */
  2870. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2871. {
  2872. int n, val;
  2873. int min_val = INT_MAX;
  2874. int best_node = NUMA_NO_NODE;
  2875. const struct cpumask *tmp = cpumask_of_node(0);
  2876. /* Use the local node if we haven't already */
  2877. if (!node_isset(node, *used_node_mask)) {
  2878. node_set(node, *used_node_mask);
  2879. return node;
  2880. }
  2881. for_each_node_state(n, N_MEMORY) {
  2882. /* Don't want a node to appear more than once */
  2883. if (node_isset(n, *used_node_mask))
  2884. continue;
  2885. /* Use the distance array to find the distance */
  2886. val = node_distance(node, n);
  2887. /* Penalize nodes under us ("prefer the next node") */
  2888. val += (n < node);
  2889. /* Give preference to headless and unused nodes */
  2890. tmp = cpumask_of_node(n);
  2891. if (!cpumask_empty(tmp))
  2892. val += PENALTY_FOR_NODE_WITH_CPUS;
  2893. /* Slight preference for less loaded node */
  2894. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2895. val += node_load[n];
  2896. if (val < min_val) {
  2897. min_val = val;
  2898. best_node = n;
  2899. }
  2900. }
  2901. if (best_node >= 0)
  2902. node_set(best_node, *used_node_mask);
  2903. return best_node;
  2904. }
  2905. /*
  2906. * Build zonelists ordered by node and zones within node.
  2907. * This results in maximum locality--normal zone overflows into local
  2908. * DMA zone, if any--but risks exhausting DMA zone.
  2909. */
  2910. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2911. {
  2912. int j;
  2913. struct zonelist *zonelist;
  2914. zonelist = &pgdat->node_zonelists[0];
  2915. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2916. ;
  2917. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  2918. zonelist->_zonerefs[j].zone = NULL;
  2919. zonelist->_zonerefs[j].zone_idx = 0;
  2920. }
  2921. /*
  2922. * Build gfp_thisnode zonelists
  2923. */
  2924. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2925. {
  2926. int j;
  2927. struct zonelist *zonelist;
  2928. zonelist = &pgdat->node_zonelists[1];
  2929. j = build_zonelists_node(pgdat, zonelist, 0);
  2930. zonelist->_zonerefs[j].zone = NULL;
  2931. zonelist->_zonerefs[j].zone_idx = 0;
  2932. }
  2933. /*
  2934. * Build zonelists ordered by zone and nodes within zones.
  2935. * This results in conserving DMA zone[s] until all Normal memory is
  2936. * exhausted, but results in overflowing to remote node while memory
  2937. * may still exist in local DMA zone.
  2938. */
  2939. static int node_order[MAX_NUMNODES];
  2940. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2941. {
  2942. int pos, j, node;
  2943. int zone_type; /* needs to be signed */
  2944. struct zone *z;
  2945. struct zonelist *zonelist;
  2946. zonelist = &pgdat->node_zonelists[0];
  2947. pos = 0;
  2948. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2949. for (j = 0; j < nr_nodes; j++) {
  2950. node = node_order[j];
  2951. z = &NODE_DATA(node)->node_zones[zone_type];
  2952. if (populated_zone(z)) {
  2953. zoneref_set_zone(z,
  2954. &zonelist->_zonerefs[pos++]);
  2955. check_highest_zone(zone_type);
  2956. }
  2957. }
  2958. }
  2959. zonelist->_zonerefs[pos].zone = NULL;
  2960. zonelist->_zonerefs[pos].zone_idx = 0;
  2961. }
  2962. static int default_zonelist_order(void)
  2963. {
  2964. int nid, zone_type;
  2965. unsigned long low_kmem_size,total_size;
  2966. struct zone *z;
  2967. int average_size;
  2968. /*
  2969. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2970. * If they are really small and used heavily, the system can fall
  2971. * into OOM very easily.
  2972. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2973. */
  2974. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2975. low_kmem_size = 0;
  2976. total_size = 0;
  2977. for_each_online_node(nid) {
  2978. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2979. z = &NODE_DATA(nid)->node_zones[zone_type];
  2980. if (populated_zone(z)) {
  2981. if (zone_type < ZONE_NORMAL)
  2982. low_kmem_size += z->managed_pages;
  2983. total_size += z->managed_pages;
  2984. } else if (zone_type == ZONE_NORMAL) {
  2985. /*
  2986. * If any node has only lowmem, then node order
  2987. * is preferred to allow kernel allocations
  2988. * locally; otherwise, they can easily infringe
  2989. * on other nodes when there is an abundance of
  2990. * lowmem available to allocate from.
  2991. */
  2992. return ZONELIST_ORDER_NODE;
  2993. }
  2994. }
  2995. }
  2996. if (!low_kmem_size || /* there are no DMA area. */
  2997. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2998. return ZONELIST_ORDER_NODE;
  2999. /*
  3000. * look into each node's config.
  3001. * If there is a node whose DMA/DMA32 memory is very big area on
  3002. * local memory, NODE_ORDER may be suitable.
  3003. */
  3004. average_size = total_size /
  3005. (nodes_weight(node_states[N_MEMORY]) + 1);
  3006. for_each_online_node(nid) {
  3007. low_kmem_size = 0;
  3008. total_size = 0;
  3009. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3010. z = &NODE_DATA(nid)->node_zones[zone_type];
  3011. if (populated_zone(z)) {
  3012. if (zone_type < ZONE_NORMAL)
  3013. low_kmem_size += z->present_pages;
  3014. total_size += z->present_pages;
  3015. }
  3016. }
  3017. if (low_kmem_size &&
  3018. total_size > average_size && /* ignore small node */
  3019. low_kmem_size > total_size * 70/100)
  3020. return ZONELIST_ORDER_NODE;
  3021. }
  3022. return ZONELIST_ORDER_ZONE;
  3023. }
  3024. static void set_zonelist_order(void)
  3025. {
  3026. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3027. current_zonelist_order = default_zonelist_order();
  3028. else
  3029. current_zonelist_order = user_zonelist_order;
  3030. }
  3031. static void build_zonelists(pg_data_t *pgdat)
  3032. {
  3033. int j, node, load;
  3034. enum zone_type i;
  3035. nodemask_t used_mask;
  3036. int local_node, prev_node;
  3037. struct zonelist *zonelist;
  3038. int order = current_zonelist_order;
  3039. /* initialize zonelists */
  3040. for (i = 0; i < MAX_ZONELISTS; i++) {
  3041. zonelist = pgdat->node_zonelists + i;
  3042. zonelist->_zonerefs[0].zone = NULL;
  3043. zonelist->_zonerefs[0].zone_idx = 0;
  3044. }
  3045. /* NUMA-aware ordering of nodes */
  3046. local_node = pgdat->node_id;
  3047. load = nr_online_nodes;
  3048. prev_node = local_node;
  3049. nodes_clear(used_mask);
  3050. memset(node_order, 0, sizeof(node_order));
  3051. j = 0;
  3052. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3053. /*
  3054. * We don't want to pressure a particular node.
  3055. * So adding penalty to the first node in same
  3056. * distance group to make it round-robin.
  3057. */
  3058. if (node_distance(local_node, node) !=
  3059. node_distance(local_node, prev_node))
  3060. node_load[node] = load;
  3061. prev_node = node;
  3062. load--;
  3063. if (order == ZONELIST_ORDER_NODE)
  3064. build_zonelists_in_node_order(pgdat, node);
  3065. else
  3066. node_order[j++] = node; /* remember order */
  3067. }
  3068. if (order == ZONELIST_ORDER_ZONE) {
  3069. /* calculate node order -- i.e., DMA last! */
  3070. build_zonelists_in_zone_order(pgdat, j);
  3071. }
  3072. build_thisnode_zonelists(pgdat);
  3073. }
  3074. /* Construct the zonelist performance cache - see further mmzone.h */
  3075. static void build_zonelist_cache(pg_data_t *pgdat)
  3076. {
  3077. struct zonelist *zonelist;
  3078. struct zonelist_cache *zlc;
  3079. struct zoneref *z;
  3080. zonelist = &pgdat->node_zonelists[0];
  3081. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3082. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3083. for (z = zonelist->_zonerefs; z->zone; z++)
  3084. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3085. }
  3086. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3087. /*
  3088. * Return node id of node used for "local" allocations.
  3089. * I.e., first node id of first zone in arg node's generic zonelist.
  3090. * Used for initializing percpu 'numa_mem', which is used primarily
  3091. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3092. */
  3093. int local_memory_node(int node)
  3094. {
  3095. struct zone *zone;
  3096. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3097. gfp_zone(GFP_KERNEL),
  3098. NULL,
  3099. &zone);
  3100. return zone->node;
  3101. }
  3102. #endif
  3103. #else /* CONFIG_NUMA */
  3104. static void set_zonelist_order(void)
  3105. {
  3106. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3107. }
  3108. static void build_zonelists(pg_data_t *pgdat)
  3109. {
  3110. int node, local_node;
  3111. enum zone_type j;
  3112. struct zonelist *zonelist;
  3113. local_node = pgdat->node_id;
  3114. zonelist = &pgdat->node_zonelists[0];
  3115. j = build_zonelists_node(pgdat, zonelist, 0);
  3116. /*
  3117. * Now we build the zonelist so that it contains the zones
  3118. * of all the other nodes.
  3119. * We don't want to pressure a particular node, so when
  3120. * building the zones for node N, we make sure that the
  3121. * zones coming right after the local ones are those from
  3122. * node N+1 (modulo N)
  3123. */
  3124. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3125. if (!node_online(node))
  3126. continue;
  3127. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3128. }
  3129. for (node = 0; node < local_node; node++) {
  3130. if (!node_online(node))
  3131. continue;
  3132. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3133. }
  3134. zonelist->_zonerefs[j].zone = NULL;
  3135. zonelist->_zonerefs[j].zone_idx = 0;
  3136. }
  3137. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3138. static void build_zonelist_cache(pg_data_t *pgdat)
  3139. {
  3140. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3141. }
  3142. #endif /* CONFIG_NUMA */
  3143. /*
  3144. * Boot pageset table. One per cpu which is going to be used for all
  3145. * zones and all nodes. The parameters will be set in such a way
  3146. * that an item put on a list will immediately be handed over to
  3147. * the buddy list. This is safe since pageset manipulation is done
  3148. * with interrupts disabled.
  3149. *
  3150. * The boot_pagesets must be kept even after bootup is complete for
  3151. * unused processors and/or zones. They do play a role for bootstrapping
  3152. * hotplugged processors.
  3153. *
  3154. * zoneinfo_show() and maybe other functions do
  3155. * not check if the processor is online before following the pageset pointer.
  3156. * Other parts of the kernel may not check if the zone is available.
  3157. */
  3158. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3159. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3160. static void setup_zone_pageset(struct zone *zone);
  3161. /*
  3162. * Global mutex to protect against size modification of zonelists
  3163. * as well as to serialize pageset setup for the new populated zone.
  3164. */
  3165. DEFINE_MUTEX(zonelists_mutex);
  3166. /* return values int ....just for stop_machine() */
  3167. static int __build_all_zonelists(void *data)
  3168. {
  3169. int nid;
  3170. int cpu;
  3171. pg_data_t *self = data;
  3172. #ifdef CONFIG_NUMA
  3173. memset(node_load, 0, sizeof(node_load));
  3174. #endif
  3175. if (self && !node_online(self->node_id)) {
  3176. build_zonelists(self);
  3177. build_zonelist_cache(self);
  3178. }
  3179. for_each_online_node(nid) {
  3180. pg_data_t *pgdat = NODE_DATA(nid);
  3181. build_zonelists(pgdat);
  3182. build_zonelist_cache(pgdat);
  3183. }
  3184. /*
  3185. * Initialize the boot_pagesets that are going to be used
  3186. * for bootstrapping processors. The real pagesets for
  3187. * each zone will be allocated later when the per cpu
  3188. * allocator is available.
  3189. *
  3190. * boot_pagesets are used also for bootstrapping offline
  3191. * cpus if the system is already booted because the pagesets
  3192. * are needed to initialize allocators on a specific cpu too.
  3193. * F.e. the percpu allocator needs the page allocator which
  3194. * needs the percpu allocator in order to allocate its pagesets
  3195. * (a chicken-egg dilemma).
  3196. */
  3197. for_each_possible_cpu(cpu) {
  3198. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3199. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3200. /*
  3201. * We now know the "local memory node" for each node--
  3202. * i.e., the node of the first zone in the generic zonelist.
  3203. * Set up numa_mem percpu variable for on-line cpus. During
  3204. * boot, only the boot cpu should be on-line; we'll init the
  3205. * secondary cpus' numa_mem as they come on-line. During
  3206. * node/memory hotplug, we'll fixup all on-line cpus.
  3207. */
  3208. if (cpu_online(cpu))
  3209. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3210. #endif
  3211. }
  3212. return 0;
  3213. }
  3214. /*
  3215. * Called with zonelists_mutex held always
  3216. * unless system_state == SYSTEM_BOOTING.
  3217. */
  3218. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3219. {
  3220. set_zonelist_order();
  3221. if (system_state == SYSTEM_BOOTING) {
  3222. __build_all_zonelists(NULL);
  3223. mminit_verify_zonelist();
  3224. cpuset_init_current_mems_allowed();
  3225. } else {
  3226. #ifdef CONFIG_MEMORY_HOTPLUG
  3227. if (zone)
  3228. setup_zone_pageset(zone);
  3229. #endif
  3230. /* we have to stop all cpus to guarantee there is no user
  3231. of zonelist */
  3232. stop_machine(__build_all_zonelists, pgdat, NULL);
  3233. /* cpuset refresh routine should be here */
  3234. }
  3235. vm_total_pages = nr_free_pagecache_pages();
  3236. /*
  3237. * Disable grouping by mobility if the number of pages in the
  3238. * system is too low to allow the mechanism to work. It would be
  3239. * more accurate, but expensive to check per-zone. This check is
  3240. * made on memory-hotadd so a system can start with mobility
  3241. * disabled and enable it later
  3242. */
  3243. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3244. page_group_by_mobility_disabled = 1;
  3245. else
  3246. page_group_by_mobility_disabled = 0;
  3247. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3248. "Total pages: %ld\n",
  3249. nr_online_nodes,
  3250. zonelist_order_name[current_zonelist_order],
  3251. page_group_by_mobility_disabled ? "off" : "on",
  3252. vm_total_pages);
  3253. #ifdef CONFIG_NUMA
  3254. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3255. #endif
  3256. }
  3257. /*
  3258. * Helper functions to size the waitqueue hash table.
  3259. * Essentially these want to choose hash table sizes sufficiently
  3260. * large so that collisions trying to wait on pages are rare.
  3261. * But in fact, the number of active page waitqueues on typical
  3262. * systems is ridiculously low, less than 200. So this is even
  3263. * conservative, even though it seems large.
  3264. *
  3265. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3266. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3267. */
  3268. #define PAGES_PER_WAITQUEUE 256
  3269. #ifndef CONFIG_MEMORY_HOTPLUG
  3270. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3271. {
  3272. unsigned long size = 1;
  3273. pages /= PAGES_PER_WAITQUEUE;
  3274. while (size < pages)
  3275. size <<= 1;
  3276. /*
  3277. * Once we have dozens or even hundreds of threads sleeping
  3278. * on IO we've got bigger problems than wait queue collision.
  3279. * Limit the size of the wait table to a reasonable size.
  3280. */
  3281. size = min(size, 4096UL);
  3282. return max(size, 4UL);
  3283. }
  3284. #else
  3285. /*
  3286. * A zone's size might be changed by hot-add, so it is not possible to determine
  3287. * a suitable size for its wait_table. So we use the maximum size now.
  3288. *
  3289. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3290. *
  3291. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3292. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3293. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3294. *
  3295. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3296. * or more by the traditional way. (See above). It equals:
  3297. *
  3298. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3299. * ia64(16K page size) : = ( 8G + 4M)byte.
  3300. * powerpc (64K page size) : = (32G +16M)byte.
  3301. */
  3302. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3303. {
  3304. return 4096UL;
  3305. }
  3306. #endif
  3307. /*
  3308. * This is an integer logarithm so that shifts can be used later
  3309. * to extract the more random high bits from the multiplicative
  3310. * hash function before the remainder is taken.
  3311. */
  3312. static inline unsigned long wait_table_bits(unsigned long size)
  3313. {
  3314. return ffz(~size);
  3315. }
  3316. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3317. /*
  3318. * Check if a pageblock contains reserved pages
  3319. */
  3320. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3321. {
  3322. unsigned long pfn;
  3323. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3324. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3325. return 1;
  3326. }
  3327. return 0;
  3328. }
  3329. /*
  3330. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3331. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3332. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3333. * higher will lead to a bigger reserve which will get freed as contiguous
  3334. * blocks as reclaim kicks in
  3335. */
  3336. static void setup_zone_migrate_reserve(struct zone *zone)
  3337. {
  3338. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3339. struct page *page;
  3340. unsigned long block_migratetype;
  3341. int reserve;
  3342. /*
  3343. * Get the start pfn, end pfn and the number of blocks to reserve
  3344. * We have to be careful to be aligned to pageblock_nr_pages to
  3345. * make sure that we always check pfn_valid for the first page in
  3346. * the block.
  3347. */
  3348. start_pfn = zone->zone_start_pfn;
  3349. end_pfn = zone_end_pfn(zone);
  3350. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3351. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3352. pageblock_order;
  3353. /*
  3354. * Reserve blocks are generally in place to help high-order atomic
  3355. * allocations that are short-lived. A min_free_kbytes value that
  3356. * would result in more than 2 reserve blocks for atomic allocations
  3357. * is assumed to be in place to help anti-fragmentation for the
  3358. * future allocation of hugepages at runtime.
  3359. */
  3360. reserve = min(2, reserve);
  3361. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3362. if (!pfn_valid(pfn))
  3363. continue;
  3364. page = pfn_to_page(pfn);
  3365. /* Watch out for overlapping nodes */
  3366. if (page_to_nid(page) != zone_to_nid(zone))
  3367. continue;
  3368. block_migratetype = get_pageblock_migratetype(page);
  3369. /* Only test what is necessary when the reserves are not met */
  3370. if (reserve > 0) {
  3371. /*
  3372. * Blocks with reserved pages will never free, skip
  3373. * them.
  3374. */
  3375. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3376. if (pageblock_is_reserved(pfn, block_end_pfn))
  3377. continue;
  3378. /* If this block is reserved, account for it */
  3379. if (block_migratetype == MIGRATE_RESERVE) {
  3380. reserve--;
  3381. continue;
  3382. }
  3383. /* Suitable for reserving if this block is movable */
  3384. if (block_migratetype == MIGRATE_MOVABLE) {
  3385. set_pageblock_migratetype(page,
  3386. MIGRATE_RESERVE);
  3387. move_freepages_block(zone, page,
  3388. MIGRATE_RESERVE);
  3389. reserve--;
  3390. continue;
  3391. }
  3392. }
  3393. /*
  3394. * If the reserve is met and this is a previous reserved block,
  3395. * take it back
  3396. */
  3397. if (block_migratetype == MIGRATE_RESERVE) {
  3398. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3399. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3400. }
  3401. }
  3402. }
  3403. /*
  3404. * Initially all pages are reserved - free ones are freed
  3405. * up by free_all_bootmem() once the early boot process is
  3406. * done. Non-atomic initialization, single-pass.
  3407. */
  3408. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3409. unsigned long start_pfn, enum memmap_context context)
  3410. {
  3411. struct page *page;
  3412. unsigned long end_pfn = start_pfn + size;
  3413. unsigned long pfn;
  3414. struct zone *z;
  3415. if (highest_memmap_pfn < end_pfn - 1)
  3416. highest_memmap_pfn = end_pfn - 1;
  3417. z = &NODE_DATA(nid)->node_zones[zone];
  3418. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3419. /*
  3420. * There can be holes in boot-time mem_map[]s
  3421. * handed to this function. They do not
  3422. * exist on hotplugged memory.
  3423. */
  3424. if (context == MEMMAP_EARLY) {
  3425. if (!early_pfn_valid(pfn))
  3426. continue;
  3427. if (!early_pfn_in_nid(pfn, nid))
  3428. continue;
  3429. }
  3430. page = pfn_to_page(pfn);
  3431. set_page_links(page, zone, nid, pfn);
  3432. mminit_verify_page_links(page, zone, nid, pfn);
  3433. init_page_count(page);
  3434. page_mapcount_reset(page);
  3435. page_nid_reset_last(page);
  3436. SetPageReserved(page);
  3437. /*
  3438. * Mark the block movable so that blocks are reserved for
  3439. * movable at startup. This will force kernel allocations
  3440. * to reserve their blocks rather than leaking throughout
  3441. * the address space during boot when many long-lived
  3442. * kernel allocations are made. Later some blocks near
  3443. * the start are marked MIGRATE_RESERVE by
  3444. * setup_zone_migrate_reserve()
  3445. *
  3446. * bitmap is created for zone's valid pfn range. but memmap
  3447. * can be created for invalid pages (for alignment)
  3448. * check here not to call set_pageblock_migratetype() against
  3449. * pfn out of zone.
  3450. */
  3451. if ((z->zone_start_pfn <= pfn)
  3452. && (pfn < zone_end_pfn(z))
  3453. && !(pfn & (pageblock_nr_pages - 1)))
  3454. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3455. INIT_LIST_HEAD(&page->lru);
  3456. #ifdef WANT_PAGE_VIRTUAL
  3457. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3458. if (!is_highmem_idx(zone))
  3459. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3460. #endif
  3461. }
  3462. }
  3463. static void __meminit zone_init_free_lists(struct zone *zone)
  3464. {
  3465. int order, t;
  3466. for_each_migratetype_order(order, t) {
  3467. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3468. zone->free_area[order].nr_free = 0;
  3469. }
  3470. }
  3471. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3472. #define memmap_init(size, nid, zone, start_pfn) \
  3473. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3474. #endif
  3475. static int __meminit zone_batchsize(struct zone *zone)
  3476. {
  3477. #ifdef CONFIG_MMU
  3478. int batch;
  3479. /*
  3480. * The per-cpu-pages pools are set to around 1000th of the
  3481. * size of the zone. But no more than 1/2 of a meg.
  3482. *
  3483. * OK, so we don't know how big the cache is. So guess.
  3484. */
  3485. batch = zone->managed_pages / 1024;
  3486. if (batch * PAGE_SIZE > 512 * 1024)
  3487. batch = (512 * 1024) / PAGE_SIZE;
  3488. batch /= 4; /* We effectively *= 4 below */
  3489. if (batch < 1)
  3490. batch = 1;
  3491. /*
  3492. * Clamp the batch to a 2^n - 1 value. Having a power
  3493. * of 2 value was found to be more likely to have
  3494. * suboptimal cache aliasing properties in some cases.
  3495. *
  3496. * For example if 2 tasks are alternately allocating
  3497. * batches of pages, one task can end up with a lot
  3498. * of pages of one half of the possible page colors
  3499. * and the other with pages of the other colors.
  3500. */
  3501. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3502. return batch;
  3503. #else
  3504. /* The deferral and batching of frees should be suppressed under NOMMU
  3505. * conditions.
  3506. *
  3507. * The problem is that NOMMU needs to be able to allocate large chunks
  3508. * of contiguous memory as there's no hardware page translation to
  3509. * assemble apparent contiguous memory from discontiguous pages.
  3510. *
  3511. * Queueing large contiguous runs of pages for batching, however,
  3512. * causes the pages to actually be freed in smaller chunks. As there
  3513. * can be a significant delay between the individual batches being
  3514. * recycled, this leads to the once large chunks of space being
  3515. * fragmented and becoming unavailable for high-order allocations.
  3516. */
  3517. return 0;
  3518. #endif
  3519. }
  3520. /*
  3521. * pcp->high and pcp->batch values are related and dependent on one another:
  3522. * ->batch must never be higher then ->high.
  3523. * The following function updates them in a safe manner without read side
  3524. * locking.
  3525. *
  3526. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3527. * those fields changing asynchronously (acording the the above rule).
  3528. *
  3529. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3530. * outside of boot time (or some other assurance that no concurrent updaters
  3531. * exist).
  3532. */
  3533. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3534. unsigned long batch)
  3535. {
  3536. /* start with a fail safe value for batch */
  3537. pcp->batch = 1;
  3538. smp_wmb();
  3539. /* Update high, then batch, in order */
  3540. pcp->high = high;
  3541. smp_wmb();
  3542. pcp->batch = batch;
  3543. }
  3544. /* a companion to pageset_set_high() */
  3545. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3546. {
  3547. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3548. }
  3549. static void pageset_init(struct per_cpu_pageset *p)
  3550. {
  3551. struct per_cpu_pages *pcp;
  3552. int migratetype;
  3553. memset(p, 0, sizeof(*p));
  3554. pcp = &p->pcp;
  3555. pcp->count = 0;
  3556. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3557. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3558. }
  3559. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3560. {
  3561. pageset_init(p);
  3562. pageset_set_batch(p, batch);
  3563. }
  3564. /*
  3565. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3566. * to the value high for the pageset p.
  3567. */
  3568. static void pageset_set_high(struct per_cpu_pageset *p,
  3569. unsigned long high)
  3570. {
  3571. unsigned long batch = max(1UL, high / 4);
  3572. if ((high / 4) > (PAGE_SHIFT * 8))
  3573. batch = PAGE_SHIFT * 8;
  3574. pageset_update(&p->pcp, high, batch);
  3575. }
  3576. static void __meminit pageset_set_high_and_batch(struct zone *zone,
  3577. struct per_cpu_pageset *pcp)
  3578. {
  3579. if (percpu_pagelist_fraction)
  3580. pageset_set_high(pcp,
  3581. (zone->managed_pages /
  3582. percpu_pagelist_fraction));
  3583. else
  3584. pageset_set_batch(pcp, zone_batchsize(zone));
  3585. }
  3586. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3587. {
  3588. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3589. pageset_init(pcp);
  3590. pageset_set_high_and_batch(zone, pcp);
  3591. }
  3592. static void __meminit setup_zone_pageset(struct zone *zone)
  3593. {
  3594. int cpu;
  3595. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3596. for_each_possible_cpu(cpu)
  3597. zone_pageset_init(zone, cpu);
  3598. }
  3599. /*
  3600. * Allocate per cpu pagesets and initialize them.
  3601. * Before this call only boot pagesets were available.
  3602. */
  3603. void __init setup_per_cpu_pageset(void)
  3604. {
  3605. struct zone *zone;
  3606. for_each_populated_zone(zone)
  3607. setup_zone_pageset(zone);
  3608. }
  3609. static noinline __init_refok
  3610. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3611. {
  3612. int i;
  3613. struct pglist_data *pgdat = zone->zone_pgdat;
  3614. size_t alloc_size;
  3615. /*
  3616. * The per-page waitqueue mechanism uses hashed waitqueues
  3617. * per zone.
  3618. */
  3619. zone->wait_table_hash_nr_entries =
  3620. wait_table_hash_nr_entries(zone_size_pages);
  3621. zone->wait_table_bits =
  3622. wait_table_bits(zone->wait_table_hash_nr_entries);
  3623. alloc_size = zone->wait_table_hash_nr_entries
  3624. * sizeof(wait_queue_head_t);
  3625. if (!slab_is_available()) {
  3626. zone->wait_table = (wait_queue_head_t *)
  3627. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3628. } else {
  3629. /*
  3630. * This case means that a zone whose size was 0 gets new memory
  3631. * via memory hot-add.
  3632. * But it may be the case that a new node was hot-added. In
  3633. * this case vmalloc() will not be able to use this new node's
  3634. * memory - this wait_table must be initialized to use this new
  3635. * node itself as well.
  3636. * To use this new node's memory, further consideration will be
  3637. * necessary.
  3638. */
  3639. zone->wait_table = vmalloc(alloc_size);
  3640. }
  3641. if (!zone->wait_table)
  3642. return -ENOMEM;
  3643. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3644. init_waitqueue_head(zone->wait_table + i);
  3645. return 0;
  3646. }
  3647. static __meminit void zone_pcp_init(struct zone *zone)
  3648. {
  3649. /*
  3650. * per cpu subsystem is not up at this point. The following code
  3651. * relies on the ability of the linker to provide the
  3652. * offset of a (static) per cpu variable into the per cpu area.
  3653. */
  3654. zone->pageset = &boot_pageset;
  3655. if (zone->present_pages)
  3656. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3657. zone->name, zone->present_pages,
  3658. zone_batchsize(zone));
  3659. }
  3660. int __meminit init_currently_empty_zone(struct zone *zone,
  3661. unsigned long zone_start_pfn,
  3662. unsigned long size,
  3663. enum memmap_context context)
  3664. {
  3665. struct pglist_data *pgdat = zone->zone_pgdat;
  3666. int ret;
  3667. ret = zone_wait_table_init(zone, size);
  3668. if (ret)
  3669. return ret;
  3670. pgdat->nr_zones = zone_idx(zone) + 1;
  3671. zone->zone_start_pfn = zone_start_pfn;
  3672. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3673. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3674. pgdat->node_id,
  3675. (unsigned long)zone_idx(zone),
  3676. zone_start_pfn, (zone_start_pfn + size));
  3677. zone_init_free_lists(zone);
  3678. return 0;
  3679. }
  3680. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3681. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3682. /*
  3683. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3684. * Architectures may implement their own version but if add_active_range()
  3685. * was used and there are no special requirements, this is a convenient
  3686. * alternative
  3687. */
  3688. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3689. {
  3690. unsigned long start_pfn, end_pfn;
  3691. int i, nid;
  3692. /*
  3693. * NOTE: The following SMP-unsafe globals are only used early in boot
  3694. * when the kernel is running single-threaded.
  3695. */
  3696. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3697. static int __meminitdata last_nid;
  3698. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3699. return last_nid;
  3700. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3701. if (start_pfn <= pfn && pfn < end_pfn) {
  3702. last_start_pfn = start_pfn;
  3703. last_end_pfn = end_pfn;
  3704. last_nid = nid;
  3705. return nid;
  3706. }
  3707. /* This is a memory hole */
  3708. return -1;
  3709. }
  3710. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3711. int __meminit early_pfn_to_nid(unsigned long pfn)
  3712. {
  3713. int nid;
  3714. nid = __early_pfn_to_nid(pfn);
  3715. if (nid >= 0)
  3716. return nid;
  3717. /* just returns 0 */
  3718. return 0;
  3719. }
  3720. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3721. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3722. {
  3723. int nid;
  3724. nid = __early_pfn_to_nid(pfn);
  3725. if (nid >= 0 && nid != node)
  3726. return false;
  3727. return true;
  3728. }
  3729. #endif
  3730. /**
  3731. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3732. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3733. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3734. *
  3735. * If an architecture guarantees that all ranges registered with
  3736. * add_active_ranges() contain no holes and may be freed, this
  3737. * this function may be used instead of calling free_bootmem() manually.
  3738. */
  3739. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3740. {
  3741. unsigned long start_pfn, end_pfn;
  3742. int i, this_nid;
  3743. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3744. start_pfn = min(start_pfn, max_low_pfn);
  3745. end_pfn = min(end_pfn, max_low_pfn);
  3746. if (start_pfn < end_pfn)
  3747. free_bootmem_node(NODE_DATA(this_nid),
  3748. PFN_PHYS(start_pfn),
  3749. (end_pfn - start_pfn) << PAGE_SHIFT);
  3750. }
  3751. }
  3752. /**
  3753. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3754. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3755. *
  3756. * If an architecture guarantees that all ranges registered with
  3757. * add_active_ranges() contain no holes and may be freed, this
  3758. * function may be used instead of calling memory_present() manually.
  3759. */
  3760. void __init sparse_memory_present_with_active_regions(int nid)
  3761. {
  3762. unsigned long start_pfn, end_pfn;
  3763. int i, this_nid;
  3764. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3765. memory_present(this_nid, start_pfn, end_pfn);
  3766. }
  3767. /**
  3768. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3769. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3770. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3771. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3772. *
  3773. * It returns the start and end page frame of a node based on information
  3774. * provided by an arch calling add_active_range(). If called for a node
  3775. * with no available memory, a warning is printed and the start and end
  3776. * PFNs will be 0.
  3777. */
  3778. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3779. unsigned long *start_pfn, unsigned long *end_pfn)
  3780. {
  3781. unsigned long this_start_pfn, this_end_pfn;
  3782. int i;
  3783. *start_pfn = -1UL;
  3784. *end_pfn = 0;
  3785. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3786. *start_pfn = min(*start_pfn, this_start_pfn);
  3787. *end_pfn = max(*end_pfn, this_end_pfn);
  3788. }
  3789. if (*start_pfn == -1UL)
  3790. *start_pfn = 0;
  3791. }
  3792. /*
  3793. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3794. * assumption is made that zones within a node are ordered in monotonic
  3795. * increasing memory addresses so that the "highest" populated zone is used
  3796. */
  3797. static void __init find_usable_zone_for_movable(void)
  3798. {
  3799. int zone_index;
  3800. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3801. if (zone_index == ZONE_MOVABLE)
  3802. continue;
  3803. if (arch_zone_highest_possible_pfn[zone_index] >
  3804. arch_zone_lowest_possible_pfn[zone_index])
  3805. break;
  3806. }
  3807. VM_BUG_ON(zone_index == -1);
  3808. movable_zone = zone_index;
  3809. }
  3810. /*
  3811. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3812. * because it is sized independent of architecture. Unlike the other zones,
  3813. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3814. * in each node depending on the size of each node and how evenly kernelcore
  3815. * is distributed. This helper function adjusts the zone ranges
  3816. * provided by the architecture for a given node by using the end of the
  3817. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3818. * zones within a node are in order of monotonic increases memory addresses
  3819. */
  3820. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3821. unsigned long zone_type,
  3822. unsigned long node_start_pfn,
  3823. unsigned long node_end_pfn,
  3824. unsigned long *zone_start_pfn,
  3825. unsigned long *zone_end_pfn)
  3826. {
  3827. /* Only adjust if ZONE_MOVABLE is on this node */
  3828. if (zone_movable_pfn[nid]) {
  3829. /* Size ZONE_MOVABLE */
  3830. if (zone_type == ZONE_MOVABLE) {
  3831. *zone_start_pfn = zone_movable_pfn[nid];
  3832. *zone_end_pfn = min(node_end_pfn,
  3833. arch_zone_highest_possible_pfn[movable_zone]);
  3834. /* Adjust for ZONE_MOVABLE starting within this range */
  3835. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3836. *zone_end_pfn > zone_movable_pfn[nid]) {
  3837. *zone_end_pfn = zone_movable_pfn[nid];
  3838. /* Check if this whole range is within ZONE_MOVABLE */
  3839. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3840. *zone_start_pfn = *zone_end_pfn;
  3841. }
  3842. }
  3843. /*
  3844. * Return the number of pages a zone spans in a node, including holes
  3845. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3846. */
  3847. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3848. unsigned long zone_type,
  3849. unsigned long node_start_pfn,
  3850. unsigned long node_end_pfn,
  3851. unsigned long *ignored)
  3852. {
  3853. unsigned long zone_start_pfn, zone_end_pfn;
  3854. /* Get the start and end of the zone */
  3855. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3856. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3857. adjust_zone_range_for_zone_movable(nid, zone_type,
  3858. node_start_pfn, node_end_pfn,
  3859. &zone_start_pfn, &zone_end_pfn);
  3860. /* Check that this node has pages within the zone's required range */
  3861. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3862. return 0;
  3863. /* Move the zone boundaries inside the node if necessary */
  3864. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3865. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3866. /* Return the spanned pages */
  3867. return zone_end_pfn - zone_start_pfn;
  3868. }
  3869. /*
  3870. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3871. * then all holes in the requested range will be accounted for.
  3872. */
  3873. unsigned long __meminit __absent_pages_in_range(int nid,
  3874. unsigned long range_start_pfn,
  3875. unsigned long range_end_pfn)
  3876. {
  3877. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3878. unsigned long start_pfn, end_pfn;
  3879. int i;
  3880. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3881. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3882. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3883. nr_absent -= end_pfn - start_pfn;
  3884. }
  3885. return nr_absent;
  3886. }
  3887. /**
  3888. * absent_pages_in_range - Return number of page frames in holes within a range
  3889. * @start_pfn: The start PFN to start searching for holes
  3890. * @end_pfn: The end PFN to stop searching for holes
  3891. *
  3892. * It returns the number of pages frames in memory holes within a range.
  3893. */
  3894. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3895. unsigned long end_pfn)
  3896. {
  3897. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3898. }
  3899. /* Return the number of page frames in holes in a zone on a node */
  3900. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3901. unsigned long zone_type,
  3902. unsigned long node_start_pfn,
  3903. unsigned long node_end_pfn,
  3904. unsigned long *ignored)
  3905. {
  3906. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3907. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3908. unsigned long zone_start_pfn, zone_end_pfn;
  3909. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3910. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3911. adjust_zone_range_for_zone_movable(nid, zone_type,
  3912. node_start_pfn, node_end_pfn,
  3913. &zone_start_pfn, &zone_end_pfn);
  3914. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3915. }
  3916. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3917. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3918. unsigned long zone_type,
  3919. unsigned long node_start_pfn,
  3920. unsigned long node_end_pfn,
  3921. unsigned long *zones_size)
  3922. {
  3923. return zones_size[zone_type];
  3924. }
  3925. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3926. unsigned long zone_type,
  3927. unsigned long node_start_pfn,
  3928. unsigned long node_end_pfn,
  3929. unsigned long *zholes_size)
  3930. {
  3931. if (!zholes_size)
  3932. return 0;
  3933. return zholes_size[zone_type];
  3934. }
  3935. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3936. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3937. unsigned long node_start_pfn,
  3938. unsigned long node_end_pfn,
  3939. unsigned long *zones_size,
  3940. unsigned long *zholes_size)
  3941. {
  3942. unsigned long realtotalpages, totalpages = 0;
  3943. enum zone_type i;
  3944. for (i = 0; i < MAX_NR_ZONES; i++)
  3945. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3946. node_start_pfn,
  3947. node_end_pfn,
  3948. zones_size);
  3949. pgdat->node_spanned_pages = totalpages;
  3950. realtotalpages = totalpages;
  3951. for (i = 0; i < MAX_NR_ZONES; i++)
  3952. realtotalpages -=
  3953. zone_absent_pages_in_node(pgdat->node_id, i,
  3954. node_start_pfn, node_end_pfn,
  3955. zholes_size);
  3956. pgdat->node_present_pages = realtotalpages;
  3957. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3958. realtotalpages);
  3959. }
  3960. #ifndef CONFIG_SPARSEMEM
  3961. /*
  3962. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3963. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3964. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3965. * round what is now in bits to nearest long in bits, then return it in
  3966. * bytes.
  3967. */
  3968. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  3969. {
  3970. unsigned long usemapsize;
  3971. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  3972. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3973. usemapsize = usemapsize >> pageblock_order;
  3974. usemapsize *= NR_PAGEBLOCK_BITS;
  3975. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3976. return usemapsize / 8;
  3977. }
  3978. static void __init setup_usemap(struct pglist_data *pgdat,
  3979. struct zone *zone,
  3980. unsigned long zone_start_pfn,
  3981. unsigned long zonesize)
  3982. {
  3983. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  3984. zone->pageblock_flags = NULL;
  3985. if (usemapsize)
  3986. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3987. usemapsize);
  3988. }
  3989. #else
  3990. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  3991. unsigned long zone_start_pfn, unsigned long zonesize) {}
  3992. #endif /* CONFIG_SPARSEMEM */
  3993. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3994. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3995. void __init set_pageblock_order(void)
  3996. {
  3997. unsigned int order;
  3998. /* Check that pageblock_nr_pages has not already been setup */
  3999. if (pageblock_order)
  4000. return;
  4001. if (HPAGE_SHIFT > PAGE_SHIFT)
  4002. order = HUGETLB_PAGE_ORDER;
  4003. else
  4004. order = MAX_ORDER - 1;
  4005. /*
  4006. * Assume the largest contiguous order of interest is a huge page.
  4007. * This value may be variable depending on boot parameters on IA64 and
  4008. * powerpc.
  4009. */
  4010. pageblock_order = order;
  4011. }
  4012. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4013. /*
  4014. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4015. * is unused as pageblock_order is set at compile-time. See
  4016. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4017. * the kernel config
  4018. */
  4019. void __init set_pageblock_order(void)
  4020. {
  4021. }
  4022. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4023. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4024. unsigned long present_pages)
  4025. {
  4026. unsigned long pages = spanned_pages;
  4027. /*
  4028. * Provide a more accurate estimation if there are holes within
  4029. * the zone and SPARSEMEM is in use. If there are holes within the
  4030. * zone, each populated memory region may cost us one or two extra
  4031. * memmap pages due to alignment because memmap pages for each
  4032. * populated regions may not naturally algined on page boundary.
  4033. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4034. */
  4035. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4036. IS_ENABLED(CONFIG_SPARSEMEM))
  4037. pages = present_pages;
  4038. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4039. }
  4040. /*
  4041. * Set up the zone data structures:
  4042. * - mark all pages reserved
  4043. * - mark all memory queues empty
  4044. * - clear the memory bitmaps
  4045. *
  4046. * NOTE: pgdat should get zeroed by caller.
  4047. */
  4048. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4049. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4050. unsigned long *zones_size, unsigned long *zholes_size)
  4051. {
  4052. enum zone_type j;
  4053. int nid = pgdat->node_id;
  4054. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4055. int ret;
  4056. pgdat_resize_init(pgdat);
  4057. #ifdef CONFIG_NUMA_BALANCING
  4058. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4059. pgdat->numabalancing_migrate_nr_pages = 0;
  4060. pgdat->numabalancing_migrate_next_window = jiffies;
  4061. #endif
  4062. init_waitqueue_head(&pgdat->kswapd_wait);
  4063. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4064. pgdat_page_cgroup_init(pgdat);
  4065. for (j = 0; j < MAX_NR_ZONES; j++) {
  4066. struct zone *zone = pgdat->node_zones + j;
  4067. unsigned long size, realsize, freesize, memmap_pages;
  4068. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4069. node_end_pfn, zones_size);
  4070. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4071. node_start_pfn,
  4072. node_end_pfn,
  4073. zholes_size);
  4074. /*
  4075. * Adjust freesize so that it accounts for how much memory
  4076. * is used by this zone for memmap. This affects the watermark
  4077. * and per-cpu initialisations
  4078. */
  4079. memmap_pages = calc_memmap_size(size, realsize);
  4080. if (freesize >= memmap_pages) {
  4081. freesize -= memmap_pages;
  4082. if (memmap_pages)
  4083. printk(KERN_DEBUG
  4084. " %s zone: %lu pages used for memmap\n",
  4085. zone_names[j], memmap_pages);
  4086. } else
  4087. printk(KERN_WARNING
  4088. " %s zone: %lu pages exceeds freesize %lu\n",
  4089. zone_names[j], memmap_pages, freesize);
  4090. /* Account for reserved pages */
  4091. if (j == 0 && freesize > dma_reserve) {
  4092. freesize -= dma_reserve;
  4093. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4094. zone_names[0], dma_reserve);
  4095. }
  4096. if (!is_highmem_idx(j))
  4097. nr_kernel_pages += freesize;
  4098. /* Charge for highmem memmap if there are enough kernel pages */
  4099. else if (nr_kernel_pages > memmap_pages * 2)
  4100. nr_kernel_pages -= memmap_pages;
  4101. nr_all_pages += freesize;
  4102. zone->spanned_pages = size;
  4103. zone->present_pages = realsize;
  4104. /*
  4105. * Set an approximate value for lowmem here, it will be adjusted
  4106. * when the bootmem allocator frees pages into the buddy system.
  4107. * And all highmem pages will be managed by the buddy system.
  4108. */
  4109. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4110. #ifdef CONFIG_NUMA
  4111. zone->node = nid;
  4112. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4113. / 100;
  4114. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4115. #endif
  4116. zone->name = zone_names[j];
  4117. spin_lock_init(&zone->lock);
  4118. spin_lock_init(&zone->lru_lock);
  4119. zone_seqlock_init(zone);
  4120. zone->zone_pgdat = pgdat;
  4121. zone_pcp_init(zone);
  4122. lruvec_init(&zone->lruvec);
  4123. if (!size)
  4124. continue;
  4125. set_pageblock_order();
  4126. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4127. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4128. size, MEMMAP_EARLY);
  4129. BUG_ON(ret);
  4130. memmap_init(size, nid, j, zone_start_pfn);
  4131. zone_start_pfn += size;
  4132. }
  4133. }
  4134. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4135. {
  4136. /* Skip empty nodes */
  4137. if (!pgdat->node_spanned_pages)
  4138. return;
  4139. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4140. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4141. if (!pgdat->node_mem_map) {
  4142. unsigned long size, start, end;
  4143. struct page *map;
  4144. /*
  4145. * The zone's endpoints aren't required to be MAX_ORDER
  4146. * aligned but the node_mem_map endpoints must be in order
  4147. * for the buddy allocator to function correctly.
  4148. */
  4149. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4150. end = pgdat_end_pfn(pgdat);
  4151. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4152. size = (end - start) * sizeof(struct page);
  4153. map = alloc_remap(pgdat->node_id, size);
  4154. if (!map)
  4155. map = alloc_bootmem_node_nopanic(pgdat, size);
  4156. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4157. }
  4158. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4159. /*
  4160. * With no DISCONTIG, the global mem_map is just set as node 0's
  4161. */
  4162. if (pgdat == NODE_DATA(0)) {
  4163. mem_map = NODE_DATA(0)->node_mem_map;
  4164. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4165. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4166. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4167. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4168. }
  4169. #endif
  4170. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4171. }
  4172. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4173. unsigned long node_start_pfn, unsigned long *zholes_size)
  4174. {
  4175. pg_data_t *pgdat = NODE_DATA(nid);
  4176. unsigned long start_pfn = 0;
  4177. unsigned long end_pfn = 0;
  4178. /* pg_data_t should be reset to zero when it's allocated */
  4179. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4180. pgdat->node_id = nid;
  4181. pgdat->node_start_pfn = node_start_pfn;
  4182. init_zone_allows_reclaim(nid);
  4183. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4184. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4185. #endif
  4186. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4187. zones_size, zholes_size);
  4188. alloc_node_mem_map(pgdat);
  4189. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4190. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4191. nid, (unsigned long)pgdat,
  4192. (unsigned long)pgdat->node_mem_map);
  4193. #endif
  4194. free_area_init_core(pgdat, start_pfn, end_pfn,
  4195. zones_size, zholes_size);
  4196. }
  4197. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4198. #if MAX_NUMNODES > 1
  4199. /*
  4200. * Figure out the number of possible node ids.
  4201. */
  4202. void __init setup_nr_node_ids(void)
  4203. {
  4204. unsigned int node;
  4205. unsigned int highest = 0;
  4206. for_each_node_mask(node, node_possible_map)
  4207. highest = node;
  4208. nr_node_ids = highest + 1;
  4209. }
  4210. #endif
  4211. /**
  4212. * node_map_pfn_alignment - determine the maximum internode alignment
  4213. *
  4214. * This function should be called after node map is populated and sorted.
  4215. * It calculates the maximum power of two alignment which can distinguish
  4216. * all the nodes.
  4217. *
  4218. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4219. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4220. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4221. * shifted, 1GiB is enough and this function will indicate so.
  4222. *
  4223. * This is used to test whether pfn -> nid mapping of the chosen memory
  4224. * model has fine enough granularity to avoid incorrect mapping for the
  4225. * populated node map.
  4226. *
  4227. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4228. * requirement (single node).
  4229. */
  4230. unsigned long __init node_map_pfn_alignment(void)
  4231. {
  4232. unsigned long accl_mask = 0, last_end = 0;
  4233. unsigned long start, end, mask;
  4234. int last_nid = -1;
  4235. int i, nid;
  4236. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4237. if (!start || last_nid < 0 || last_nid == nid) {
  4238. last_nid = nid;
  4239. last_end = end;
  4240. continue;
  4241. }
  4242. /*
  4243. * Start with a mask granular enough to pin-point to the
  4244. * start pfn and tick off bits one-by-one until it becomes
  4245. * too coarse to separate the current node from the last.
  4246. */
  4247. mask = ~((1 << __ffs(start)) - 1);
  4248. while (mask && last_end <= (start & (mask << 1)))
  4249. mask <<= 1;
  4250. /* accumulate all internode masks */
  4251. accl_mask |= mask;
  4252. }
  4253. /* convert mask to number of pages */
  4254. return ~accl_mask + 1;
  4255. }
  4256. /* Find the lowest pfn for a node */
  4257. static unsigned long __init find_min_pfn_for_node(int nid)
  4258. {
  4259. unsigned long min_pfn = ULONG_MAX;
  4260. unsigned long start_pfn;
  4261. int i;
  4262. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4263. min_pfn = min(min_pfn, start_pfn);
  4264. if (min_pfn == ULONG_MAX) {
  4265. printk(KERN_WARNING
  4266. "Could not find start_pfn for node %d\n", nid);
  4267. return 0;
  4268. }
  4269. return min_pfn;
  4270. }
  4271. /**
  4272. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4273. *
  4274. * It returns the minimum PFN based on information provided via
  4275. * add_active_range().
  4276. */
  4277. unsigned long __init find_min_pfn_with_active_regions(void)
  4278. {
  4279. return find_min_pfn_for_node(MAX_NUMNODES);
  4280. }
  4281. /*
  4282. * early_calculate_totalpages()
  4283. * Sum pages in active regions for movable zone.
  4284. * Populate N_MEMORY for calculating usable_nodes.
  4285. */
  4286. static unsigned long __init early_calculate_totalpages(void)
  4287. {
  4288. unsigned long totalpages = 0;
  4289. unsigned long start_pfn, end_pfn;
  4290. int i, nid;
  4291. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4292. unsigned long pages = end_pfn - start_pfn;
  4293. totalpages += pages;
  4294. if (pages)
  4295. node_set_state(nid, N_MEMORY);
  4296. }
  4297. return totalpages;
  4298. }
  4299. /*
  4300. * Find the PFN the Movable zone begins in each node. Kernel memory
  4301. * is spread evenly between nodes as long as the nodes have enough
  4302. * memory. When they don't, some nodes will have more kernelcore than
  4303. * others
  4304. */
  4305. static void __init find_zone_movable_pfns_for_nodes(void)
  4306. {
  4307. int i, nid;
  4308. unsigned long usable_startpfn;
  4309. unsigned long kernelcore_node, kernelcore_remaining;
  4310. /* save the state before borrow the nodemask */
  4311. nodemask_t saved_node_state = node_states[N_MEMORY];
  4312. unsigned long totalpages = early_calculate_totalpages();
  4313. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4314. /*
  4315. * If movablecore was specified, calculate what size of
  4316. * kernelcore that corresponds so that memory usable for
  4317. * any allocation type is evenly spread. If both kernelcore
  4318. * and movablecore are specified, then the value of kernelcore
  4319. * will be used for required_kernelcore if it's greater than
  4320. * what movablecore would have allowed.
  4321. */
  4322. if (required_movablecore) {
  4323. unsigned long corepages;
  4324. /*
  4325. * Round-up so that ZONE_MOVABLE is at least as large as what
  4326. * was requested by the user
  4327. */
  4328. required_movablecore =
  4329. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4330. corepages = totalpages - required_movablecore;
  4331. required_kernelcore = max(required_kernelcore, corepages);
  4332. }
  4333. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4334. if (!required_kernelcore)
  4335. goto out;
  4336. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4337. find_usable_zone_for_movable();
  4338. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4339. restart:
  4340. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4341. kernelcore_node = required_kernelcore / usable_nodes;
  4342. for_each_node_state(nid, N_MEMORY) {
  4343. unsigned long start_pfn, end_pfn;
  4344. /*
  4345. * Recalculate kernelcore_node if the division per node
  4346. * now exceeds what is necessary to satisfy the requested
  4347. * amount of memory for the kernel
  4348. */
  4349. if (required_kernelcore < kernelcore_node)
  4350. kernelcore_node = required_kernelcore / usable_nodes;
  4351. /*
  4352. * As the map is walked, we track how much memory is usable
  4353. * by the kernel using kernelcore_remaining. When it is
  4354. * 0, the rest of the node is usable by ZONE_MOVABLE
  4355. */
  4356. kernelcore_remaining = kernelcore_node;
  4357. /* Go through each range of PFNs within this node */
  4358. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4359. unsigned long size_pages;
  4360. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4361. if (start_pfn >= end_pfn)
  4362. continue;
  4363. /* Account for what is only usable for kernelcore */
  4364. if (start_pfn < usable_startpfn) {
  4365. unsigned long kernel_pages;
  4366. kernel_pages = min(end_pfn, usable_startpfn)
  4367. - start_pfn;
  4368. kernelcore_remaining -= min(kernel_pages,
  4369. kernelcore_remaining);
  4370. required_kernelcore -= min(kernel_pages,
  4371. required_kernelcore);
  4372. /* Continue if range is now fully accounted */
  4373. if (end_pfn <= usable_startpfn) {
  4374. /*
  4375. * Push zone_movable_pfn to the end so
  4376. * that if we have to rebalance
  4377. * kernelcore across nodes, we will
  4378. * not double account here
  4379. */
  4380. zone_movable_pfn[nid] = end_pfn;
  4381. continue;
  4382. }
  4383. start_pfn = usable_startpfn;
  4384. }
  4385. /*
  4386. * The usable PFN range for ZONE_MOVABLE is from
  4387. * start_pfn->end_pfn. Calculate size_pages as the
  4388. * number of pages used as kernelcore
  4389. */
  4390. size_pages = end_pfn - start_pfn;
  4391. if (size_pages > kernelcore_remaining)
  4392. size_pages = kernelcore_remaining;
  4393. zone_movable_pfn[nid] = start_pfn + size_pages;
  4394. /*
  4395. * Some kernelcore has been met, update counts and
  4396. * break if the kernelcore for this node has been
  4397. * satisified
  4398. */
  4399. required_kernelcore -= min(required_kernelcore,
  4400. size_pages);
  4401. kernelcore_remaining -= size_pages;
  4402. if (!kernelcore_remaining)
  4403. break;
  4404. }
  4405. }
  4406. /*
  4407. * If there is still required_kernelcore, we do another pass with one
  4408. * less node in the count. This will push zone_movable_pfn[nid] further
  4409. * along on the nodes that still have memory until kernelcore is
  4410. * satisified
  4411. */
  4412. usable_nodes--;
  4413. if (usable_nodes && required_kernelcore > usable_nodes)
  4414. goto restart;
  4415. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4416. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4417. zone_movable_pfn[nid] =
  4418. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4419. out:
  4420. /* restore the node_state */
  4421. node_states[N_MEMORY] = saved_node_state;
  4422. }
  4423. /* Any regular or high memory on that node ? */
  4424. static void check_for_memory(pg_data_t *pgdat, int nid)
  4425. {
  4426. enum zone_type zone_type;
  4427. if (N_MEMORY == N_NORMAL_MEMORY)
  4428. return;
  4429. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4430. struct zone *zone = &pgdat->node_zones[zone_type];
  4431. if (zone->present_pages) {
  4432. node_set_state(nid, N_HIGH_MEMORY);
  4433. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4434. zone_type <= ZONE_NORMAL)
  4435. node_set_state(nid, N_NORMAL_MEMORY);
  4436. break;
  4437. }
  4438. }
  4439. }
  4440. /**
  4441. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4442. * @max_zone_pfn: an array of max PFNs for each zone
  4443. *
  4444. * This will call free_area_init_node() for each active node in the system.
  4445. * Using the page ranges provided by add_active_range(), the size of each
  4446. * zone in each node and their holes is calculated. If the maximum PFN
  4447. * between two adjacent zones match, it is assumed that the zone is empty.
  4448. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4449. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4450. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4451. * at arch_max_dma_pfn.
  4452. */
  4453. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4454. {
  4455. unsigned long start_pfn, end_pfn;
  4456. int i, nid;
  4457. /* Record where the zone boundaries are */
  4458. memset(arch_zone_lowest_possible_pfn, 0,
  4459. sizeof(arch_zone_lowest_possible_pfn));
  4460. memset(arch_zone_highest_possible_pfn, 0,
  4461. sizeof(arch_zone_highest_possible_pfn));
  4462. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4463. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4464. for (i = 1; i < MAX_NR_ZONES; i++) {
  4465. if (i == ZONE_MOVABLE)
  4466. continue;
  4467. arch_zone_lowest_possible_pfn[i] =
  4468. arch_zone_highest_possible_pfn[i-1];
  4469. arch_zone_highest_possible_pfn[i] =
  4470. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4471. }
  4472. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4473. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4474. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4475. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4476. find_zone_movable_pfns_for_nodes();
  4477. /* Print out the zone ranges */
  4478. printk("Zone ranges:\n");
  4479. for (i = 0; i < MAX_NR_ZONES; i++) {
  4480. if (i == ZONE_MOVABLE)
  4481. continue;
  4482. printk(KERN_CONT " %-8s ", zone_names[i]);
  4483. if (arch_zone_lowest_possible_pfn[i] ==
  4484. arch_zone_highest_possible_pfn[i])
  4485. printk(KERN_CONT "empty\n");
  4486. else
  4487. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4488. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4489. (arch_zone_highest_possible_pfn[i]
  4490. << PAGE_SHIFT) - 1);
  4491. }
  4492. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4493. printk("Movable zone start for each node\n");
  4494. for (i = 0; i < MAX_NUMNODES; i++) {
  4495. if (zone_movable_pfn[i])
  4496. printk(" Node %d: %#010lx\n", i,
  4497. zone_movable_pfn[i] << PAGE_SHIFT);
  4498. }
  4499. /* Print out the early node map */
  4500. printk("Early memory node ranges\n");
  4501. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4502. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4503. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4504. /* Initialise every node */
  4505. mminit_verify_pageflags_layout();
  4506. setup_nr_node_ids();
  4507. for_each_online_node(nid) {
  4508. pg_data_t *pgdat = NODE_DATA(nid);
  4509. free_area_init_node(nid, NULL,
  4510. find_min_pfn_for_node(nid), NULL);
  4511. /* Any memory on that node */
  4512. if (pgdat->node_present_pages)
  4513. node_set_state(nid, N_MEMORY);
  4514. check_for_memory(pgdat, nid);
  4515. }
  4516. }
  4517. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4518. {
  4519. unsigned long long coremem;
  4520. if (!p)
  4521. return -EINVAL;
  4522. coremem = memparse(p, &p);
  4523. *core = coremem >> PAGE_SHIFT;
  4524. /* Paranoid check that UL is enough for the coremem value */
  4525. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4526. return 0;
  4527. }
  4528. /*
  4529. * kernelcore=size sets the amount of memory for use for allocations that
  4530. * cannot be reclaimed or migrated.
  4531. */
  4532. static int __init cmdline_parse_kernelcore(char *p)
  4533. {
  4534. return cmdline_parse_core(p, &required_kernelcore);
  4535. }
  4536. /*
  4537. * movablecore=size sets the amount of memory for use for allocations that
  4538. * can be reclaimed or migrated.
  4539. */
  4540. static int __init cmdline_parse_movablecore(char *p)
  4541. {
  4542. return cmdline_parse_core(p, &required_movablecore);
  4543. }
  4544. early_param("kernelcore", cmdline_parse_kernelcore);
  4545. early_param("movablecore", cmdline_parse_movablecore);
  4546. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4547. void adjust_managed_page_count(struct page *page, long count)
  4548. {
  4549. spin_lock(&managed_page_count_lock);
  4550. page_zone(page)->managed_pages += count;
  4551. totalram_pages += count;
  4552. #ifdef CONFIG_HIGHMEM
  4553. if (PageHighMem(page))
  4554. totalhigh_pages += count;
  4555. #endif
  4556. spin_unlock(&managed_page_count_lock);
  4557. }
  4558. EXPORT_SYMBOL(adjust_managed_page_count);
  4559. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4560. {
  4561. void *pos;
  4562. unsigned long pages = 0;
  4563. start = (void *)PAGE_ALIGN((unsigned long)start);
  4564. end = (void *)((unsigned long)end & PAGE_MASK);
  4565. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4566. if ((unsigned int)poison <= 0xFF)
  4567. memset(pos, poison, PAGE_SIZE);
  4568. free_reserved_page(virt_to_page(pos));
  4569. }
  4570. if (pages && s)
  4571. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4572. s, pages << (PAGE_SHIFT - 10), start, end);
  4573. return pages;
  4574. }
  4575. EXPORT_SYMBOL(free_reserved_area);
  4576. #ifdef CONFIG_HIGHMEM
  4577. void free_highmem_page(struct page *page)
  4578. {
  4579. __free_reserved_page(page);
  4580. totalram_pages++;
  4581. page_zone(page)->managed_pages++;
  4582. totalhigh_pages++;
  4583. }
  4584. #endif
  4585. void __init mem_init_print_info(const char *str)
  4586. {
  4587. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4588. unsigned long init_code_size, init_data_size;
  4589. physpages = get_num_physpages();
  4590. codesize = _etext - _stext;
  4591. datasize = _edata - _sdata;
  4592. rosize = __end_rodata - __start_rodata;
  4593. bss_size = __bss_stop - __bss_start;
  4594. init_data_size = __init_end - __init_begin;
  4595. init_code_size = _einittext - _sinittext;
  4596. /*
  4597. * Detect special cases and adjust section sizes accordingly:
  4598. * 1) .init.* may be embedded into .data sections
  4599. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4600. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4601. * 3) .rodata.* may be embedded into .text or .data sections.
  4602. */
  4603. #define adj_init_size(start, end, size, pos, adj) \
  4604. if (start <= pos && pos < end && size > adj) \
  4605. size -= adj;
  4606. adj_init_size(__init_begin, __init_end, init_data_size,
  4607. _sinittext, init_code_size);
  4608. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4609. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4610. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4611. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4612. #undef adj_init_size
  4613. printk("Memory: %luK/%luK available "
  4614. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4615. "%luK init, %luK bss, %luK reserved"
  4616. #ifdef CONFIG_HIGHMEM
  4617. ", %luK highmem"
  4618. #endif
  4619. "%s%s)\n",
  4620. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4621. codesize >> 10, datasize >> 10, rosize >> 10,
  4622. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4623. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4624. #ifdef CONFIG_HIGHMEM
  4625. totalhigh_pages << (PAGE_SHIFT-10),
  4626. #endif
  4627. str ? ", " : "", str ? str : "");
  4628. }
  4629. /**
  4630. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4631. * @new_dma_reserve: The number of pages to mark reserved
  4632. *
  4633. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4634. * In the DMA zone, a significant percentage may be consumed by kernel image
  4635. * and other unfreeable allocations which can skew the watermarks badly. This
  4636. * function may optionally be used to account for unfreeable pages in the
  4637. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4638. * smaller per-cpu batchsize.
  4639. */
  4640. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4641. {
  4642. dma_reserve = new_dma_reserve;
  4643. }
  4644. void __init free_area_init(unsigned long *zones_size)
  4645. {
  4646. free_area_init_node(0, zones_size,
  4647. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4648. }
  4649. static int page_alloc_cpu_notify(struct notifier_block *self,
  4650. unsigned long action, void *hcpu)
  4651. {
  4652. int cpu = (unsigned long)hcpu;
  4653. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4654. lru_add_drain_cpu(cpu);
  4655. drain_pages(cpu);
  4656. /*
  4657. * Spill the event counters of the dead processor
  4658. * into the current processors event counters.
  4659. * This artificially elevates the count of the current
  4660. * processor.
  4661. */
  4662. vm_events_fold_cpu(cpu);
  4663. /*
  4664. * Zero the differential counters of the dead processor
  4665. * so that the vm statistics are consistent.
  4666. *
  4667. * This is only okay since the processor is dead and cannot
  4668. * race with what we are doing.
  4669. */
  4670. refresh_cpu_vm_stats(cpu);
  4671. }
  4672. return NOTIFY_OK;
  4673. }
  4674. void __init page_alloc_init(void)
  4675. {
  4676. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4677. }
  4678. /*
  4679. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4680. * or min_free_kbytes changes.
  4681. */
  4682. static void calculate_totalreserve_pages(void)
  4683. {
  4684. struct pglist_data *pgdat;
  4685. unsigned long reserve_pages = 0;
  4686. enum zone_type i, j;
  4687. for_each_online_pgdat(pgdat) {
  4688. for (i = 0; i < MAX_NR_ZONES; i++) {
  4689. struct zone *zone = pgdat->node_zones + i;
  4690. unsigned long max = 0;
  4691. /* Find valid and maximum lowmem_reserve in the zone */
  4692. for (j = i; j < MAX_NR_ZONES; j++) {
  4693. if (zone->lowmem_reserve[j] > max)
  4694. max = zone->lowmem_reserve[j];
  4695. }
  4696. /* we treat the high watermark as reserved pages. */
  4697. max += high_wmark_pages(zone);
  4698. if (max > zone->managed_pages)
  4699. max = zone->managed_pages;
  4700. reserve_pages += max;
  4701. /*
  4702. * Lowmem reserves are not available to
  4703. * GFP_HIGHUSER page cache allocations and
  4704. * kswapd tries to balance zones to their high
  4705. * watermark. As a result, neither should be
  4706. * regarded as dirtyable memory, to prevent a
  4707. * situation where reclaim has to clean pages
  4708. * in order to balance the zones.
  4709. */
  4710. zone->dirty_balance_reserve = max;
  4711. }
  4712. }
  4713. dirty_balance_reserve = reserve_pages;
  4714. totalreserve_pages = reserve_pages;
  4715. }
  4716. /*
  4717. * setup_per_zone_lowmem_reserve - called whenever
  4718. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4719. * has a correct pages reserved value, so an adequate number of
  4720. * pages are left in the zone after a successful __alloc_pages().
  4721. */
  4722. static void setup_per_zone_lowmem_reserve(void)
  4723. {
  4724. struct pglist_data *pgdat;
  4725. enum zone_type j, idx;
  4726. for_each_online_pgdat(pgdat) {
  4727. for (j = 0; j < MAX_NR_ZONES; j++) {
  4728. struct zone *zone = pgdat->node_zones + j;
  4729. unsigned long managed_pages = zone->managed_pages;
  4730. zone->lowmem_reserve[j] = 0;
  4731. idx = j;
  4732. while (idx) {
  4733. struct zone *lower_zone;
  4734. idx--;
  4735. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4736. sysctl_lowmem_reserve_ratio[idx] = 1;
  4737. lower_zone = pgdat->node_zones + idx;
  4738. lower_zone->lowmem_reserve[j] = managed_pages /
  4739. sysctl_lowmem_reserve_ratio[idx];
  4740. managed_pages += lower_zone->managed_pages;
  4741. }
  4742. }
  4743. }
  4744. /* update totalreserve_pages */
  4745. calculate_totalreserve_pages();
  4746. }
  4747. static void __setup_per_zone_wmarks(void)
  4748. {
  4749. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4750. unsigned long lowmem_pages = 0;
  4751. struct zone *zone;
  4752. unsigned long flags;
  4753. /* Calculate total number of !ZONE_HIGHMEM pages */
  4754. for_each_zone(zone) {
  4755. if (!is_highmem(zone))
  4756. lowmem_pages += zone->managed_pages;
  4757. }
  4758. for_each_zone(zone) {
  4759. u64 tmp;
  4760. spin_lock_irqsave(&zone->lock, flags);
  4761. tmp = (u64)pages_min * zone->managed_pages;
  4762. do_div(tmp, lowmem_pages);
  4763. if (is_highmem(zone)) {
  4764. /*
  4765. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4766. * need highmem pages, so cap pages_min to a small
  4767. * value here.
  4768. *
  4769. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4770. * deltas controls asynch page reclaim, and so should
  4771. * not be capped for highmem.
  4772. */
  4773. unsigned long min_pages;
  4774. min_pages = zone->managed_pages / 1024;
  4775. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4776. zone->watermark[WMARK_MIN] = min_pages;
  4777. } else {
  4778. /*
  4779. * If it's a lowmem zone, reserve a number of pages
  4780. * proportionate to the zone's size.
  4781. */
  4782. zone->watermark[WMARK_MIN] = tmp;
  4783. }
  4784. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4785. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4786. setup_zone_migrate_reserve(zone);
  4787. spin_unlock_irqrestore(&zone->lock, flags);
  4788. }
  4789. /* update totalreserve_pages */
  4790. calculate_totalreserve_pages();
  4791. }
  4792. /**
  4793. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4794. * or when memory is hot-{added|removed}
  4795. *
  4796. * Ensures that the watermark[min,low,high] values for each zone are set
  4797. * correctly with respect to min_free_kbytes.
  4798. */
  4799. void setup_per_zone_wmarks(void)
  4800. {
  4801. mutex_lock(&zonelists_mutex);
  4802. __setup_per_zone_wmarks();
  4803. mutex_unlock(&zonelists_mutex);
  4804. }
  4805. /*
  4806. * The inactive anon list should be small enough that the VM never has to
  4807. * do too much work, but large enough that each inactive page has a chance
  4808. * to be referenced again before it is swapped out.
  4809. *
  4810. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4811. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4812. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4813. * the anonymous pages are kept on the inactive list.
  4814. *
  4815. * total target max
  4816. * memory ratio inactive anon
  4817. * -------------------------------------
  4818. * 10MB 1 5MB
  4819. * 100MB 1 50MB
  4820. * 1GB 3 250MB
  4821. * 10GB 10 0.9GB
  4822. * 100GB 31 3GB
  4823. * 1TB 101 10GB
  4824. * 10TB 320 32GB
  4825. */
  4826. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4827. {
  4828. unsigned int gb, ratio;
  4829. /* Zone size in gigabytes */
  4830. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4831. if (gb)
  4832. ratio = int_sqrt(10 * gb);
  4833. else
  4834. ratio = 1;
  4835. zone->inactive_ratio = ratio;
  4836. }
  4837. static void __meminit setup_per_zone_inactive_ratio(void)
  4838. {
  4839. struct zone *zone;
  4840. for_each_zone(zone)
  4841. calculate_zone_inactive_ratio(zone);
  4842. }
  4843. /*
  4844. * Initialise min_free_kbytes.
  4845. *
  4846. * For small machines we want it small (128k min). For large machines
  4847. * we want it large (64MB max). But it is not linear, because network
  4848. * bandwidth does not increase linearly with machine size. We use
  4849. *
  4850. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4851. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4852. *
  4853. * which yields
  4854. *
  4855. * 16MB: 512k
  4856. * 32MB: 724k
  4857. * 64MB: 1024k
  4858. * 128MB: 1448k
  4859. * 256MB: 2048k
  4860. * 512MB: 2896k
  4861. * 1024MB: 4096k
  4862. * 2048MB: 5792k
  4863. * 4096MB: 8192k
  4864. * 8192MB: 11584k
  4865. * 16384MB: 16384k
  4866. */
  4867. int __meminit init_per_zone_wmark_min(void)
  4868. {
  4869. unsigned long lowmem_kbytes;
  4870. int new_min_free_kbytes;
  4871. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4872. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4873. if (new_min_free_kbytes > user_min_free_kbytes) {
  4874. min_free_kbytes = new_min_free_kbytes;
  4875. if (min_free_kbytes < 128)
  4876. min_free_kbytes = 128;
  4877. if (min_free_kbytes > 65536)
  4878. min_free_kbytes = 65536;
  4879. } else {
  4880. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  4881. new_min_free_kbytes, user_min_free_kbytes);
  4882. }
  4883. setup_per_zone_wmarks();
  4884. refresh_zone_stat_thresholds();
  4885. setup_per_zone_lowmem_reserve();
  4886. setup_per_zone_inactive_ratio();
  4887. return 0;
  4888. }
  4889. module_init(init_per_zone_wmark_min)
  4890. /*
  4891. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4892. * that we can call two helper functions whenever min_free_kbytes
  4893. * changes.
  4894. */
  4895. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4896. void __user *buffer, size_t *length, loff_t *ppos)
  4897. {
  4898. proc_dointvec(table, write, buffer, length, ppos);
  4899. if (write) {
  4900. user_min_free_kbytes = min_free_kbytes;
  4901. setup_per_zone_wmarks();
  4902. }
  4903. return 0;
  4904. }
  4905. #ifdef CONFIG_NUMA
  4906. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4907. void __user *buffer, size_t *length, loff_t *ppos)
  4908. {
  4909. struct zone *zone;
  4910. int rc;
  4911. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4912. if (rc)
  4913. return rc;
  4914. for_each_zone(zone)
  4915. zone->min_unmapped_pages = (zone->managed_pages *
  4916. sysctl_min_unmapped_ratio) / 100;
  4917. return 0;
  4918. }
  4919. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4920. void __user *buffer, size_t *length, loff_t *ppos)
  4921. {
  4922. struct zone *zone;
  4923. int rc;
  4924. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4925. if (rc)
  4926. return rc;
  4927. for_each_zone(zone)
  4928. zone->min_slab_pages = (zone->managed_pages *
  4929. sysctl_min_slab_ratio) / 100;
  4930. return 0;
  4931. }
  4932. #endif
  4933. /*
  4934. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4935. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4936. * whenever sysctl_lowmem_reserve_ratio changes.
  4937. *
  4938. * The reserve ratio obviously has absolutely no relation with the
  4939. * minimum watermarks. The lowmem reserve ratio can only make sense
  4940. * if in function of the boot time zone sizes.
  4941. */
  4942. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4943. void __user *buffer, size_t *length, loff_t *ppos)
  4944. {
  4945. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4946. setup_per_zone_lowmem_reserve();
  4947. return 0;
  4948. }
  4949. /*
  4950. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4951. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4952. * can have before it gets flushed back to buddy allocator.
  4953. */
  4954. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4955. void __user *buffer, size_t *length, loff_t *ppos)
  4956. {
  4957. struct zone *zone;
  4958. unsigned int cpu;
  4959. int ret;
  4960. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4961. if (!write || (ret < 0))
  4962. return ret;
  4963. mutex_lock(&pcp_batch_high_lock);
  4964. for_each_populated_zone(zone) {
  4965. unsigned long high;
  4966. high = zone->managed_pages / percpu_pagelist_fraction;
  4967. for_each_possible_cpu(cpu)
  4968. pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
  4969. high);
  4970. }
  4971. mutex_unlock(&pcp_batch_high_lock);
  4972. return 0;
  4973. }
  4974. int hashdist = HASHDIST_DEFAULT;
  4975. #ifdef CONFIG_NUMA
  4976. static int __init set_hashdist(char *str)
  4977. {
  4978. if (!str)
  4979. return 0;
  4980. hashdist = simple_strtoul(str, &str, 0);
  4981. return 1;
  4982. }
  4983. __setup("hashdist=", set_hashdist);
  4984. #endif
  4985. /*
  4986. * allocate a large system hash table from bootmem
  4987. * - it is assumed that the hash table must contain an exact power-of-2
  4988. * quantity of entries
  4989. * - limit is the number of hash buckets, not the total allocation size
  4990. */
  4991. void *__init alloc_large_system_hash(const char *tablename,
  4992. unsigned long bucketsize,
  4993. unsigned long numentries,
  4994. int scale,
  4995. int flags,
  4996. unsigned int *_hash_shift,
  4997. unsigned int *_hash_mask,
  4998. unsigned long low_limit,
  4999. unsigned long high_limit)
  5000. {
  5001. unsigned long long max = high_limit;
  5002. unsigned long log2qty, size;
  5003. void *table = NULL;
  5004. /* allow the kernel cmdline to have a say */
  5005. if (!numentries) {
  5006. /* round applicable memory size up to nearest megabyte */
  5007. numentries = nr_kernel_pages;
  5008. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  5009. numentries >>= 20 - PAGE_SHIFT;
  5010. numentries <<= 20 - PAGE_SHIFT;
  5011. /* limit to 1 bucket per 2^scale bytes of low memory */
  5012. if (scale > PAGE_SHIFT)
  5013. numentries >>= (scale - PAGE_SHIFT);
  5014. else
  5015. numentries <<= (PAGE_SHIFT - scale);
  5016. /* Make sure we've got at least a 0-order allocation.. */
  5017. if (unlikely(flags & HASH_SMALL)) {
  5018. /* Makes no sense without HASH_EARLY */
  5019. WARN_ON(!(flags & HASH_EARLY));
  5020. if (!(numentries >> *_hash_shift)) {
  5021. numentries = 1UL << *_hash_shift;
  5022. BUG_ON(!numentries);
  5023. }
  5024. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5025. numentries = PAGE_SIZE / bucketsize;
  5026. }
  5027. numentries = roundup_pow_of_two(numentries);
  5028. /* limit allocation size to 1/16 total memory by default */
  5029. if (max == 0) {
  5030. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5031. do_div(max, bucketsize);
  5032. }
  5033. max = min(max, 0x80000000ULL);
  5034. if (numentries < low_limit)
  5035. numentries = low_limit;
  5036. if (numentries > max)
  5037. numentries = max;
  5038. log2qty = ilog2(numentries);
  5039. do {
  5040. size = bucketsize << log2qty;
  5041. if (flags & HASH_EARLY)
  5042. table = alloc_bootmem_nopanic(size);
  5043. else if (hashdist)
  5044. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5045. else {
  5046. /*
  5047. * If bucketsize is not a power-of-two, we may free
  5048. * some pages at the end of hash table which
  5049. * alloc_pages_exact() automatically does
  5050. */
  5051. if (get_order(size) < MAX_ORDER) {
  5052. table = alloc_pages_exact(size, GFP_ATOMIC);
  5053. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5054. }
  5055. }
  5056. } while (!table && size > PAGE_SIZE && --log2qty);
  5057. if (!table)
  5058. panic("Failed to allocate %s hash table\n", tablename);
  5059. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5060. tablename,
  5061. (1UL << log2qty),
  5062. ilog2(size) - PAGE_SHIFT,
  5063. size);
  5064. if (_hash_shift)
  5065. *_hash_shift = log2qty;
  5066. if (_hash_mask)
  5067. *_hash_mask = (1 << log2qty) - 1;
  5068. return table;
  5069. }
  5070. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5071. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5072. unsigned long pfn)
  5073. {
  5074. #ifdef CONFIG_SPARSEMEM
  5075. return __pfn_to_section(pfn)->pageblock_flags;
  5076. #else
  5077. return zone->pageblock_flags;
  5078. #endif /* CONFIG_SPARSEMEM */
  5079. }
  5080. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5081. {
  5082. #ifdef CONFIG_SPARSEMEM
  5083. pfn &= (PAGES_PER_SECTION-1);
  5084. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5085. #else
  5086. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5087. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5088. #endif /* CONFIG_SPARSEMEM */
  5089. }
  5090. /**
  5091. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5092. * @page: The page within the block of interest
  5093. * @start_bitidx: The first bit of interest to retrieve
  5094. * @end_bitidx: The last bit of interest
  5095. * returns pageblock_bits flags
  5096. */
  5097. unsigned long get_pageblock_flags_group(struct page *page,
  5098. int start_bitidx, int end_bitidx)
  5099. {
  5100. struct zone *zone;
  5101. unsigned long *bitmap;
  5102. unsigned long pfn, bitidx;
  5103. unsigned long flags = 0;
  5104. unsigned long value = 1;
  5105. zone = page_zone(page);
  5106. pfn = page_to_pfn(page);
  5107. bitmap = get_pageblock_bitmap(zone, pfn);
  5108. bitidx = pfn_to_bitidx(zone, pfn);
  5109. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5110. if (test_bit(bitidx + start_bitidx, bitmap))
  5111. flags |= value;
  5112. return flags;
  5113. }
  5114. /**
  5115. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5116. * @page: The page within the block of interest
  5117. * @start_bitidx: The first bit of interest
  5118. * @end_bitidx: The last bit of interest
  5119. * @flags: The flags to set
  5120. */
  5121. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5122. int start_bitidx, int end_bitidx)
  5123. {
  5124. struct zone *zone;
  5125. unsigned long *bitmap;
  5126. unsigned long pfn, bitidx;
  5127. unsigned long value = 1;
  5128. zone = page_zone(page);
  5129. pfn = page_to_pfn(page);
  5130. bitmap = get_pageblock_bitmap(zone, pfn);
  5131. bitidx = pfn_to_bitidx(zone, pfn);
  5132. VM_BUG_ON(!zone_spans_pfn(zone, pfn));
  5133. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5134. if (flags & value)
  5135. __set_bit(bitidx + start_bitidx, bitmap);
  5136. else
  5137. __clear_bit(bitidx + start_bitidx, bitmap);
  5138. }
  5139. /*
  5140. * This function checks whether pageblock includes unmovable pages or not.
  5141. * If @count is not zero, it is okay to include less @count unmovable pages
  5142. *
  5143. * PageLRU check wihtout isolation or lru_lock could race so that
  5144. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5145. * expect this function should be exact.
  5146. */
  5147. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5148. bool skip_hwpoisoned_pages)
  5149. {
  5150. unsigned long pfn, iter, found;
  5151. int mt;
  5152. /*
  5153. * For avoiding noise data, lru_add_drain_all() should be called
  5154. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5155. */
  5156. if (zone_idx(zone) == ZONE_MOVABLE)
  5157. return false;
  5158. mt = get_pageblock_migratetype(page);
  5159. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5160. return false;
  5161. pfn = page_to_pfn(page);
  5162. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5163. unsigned long check = pfn + iter;
  5164. if (!pfn_valid_within(check))
  5165. continue;
  5166. page = pfn_to_page(check);
  5167. /*
  5168. * We can't use page_count without pin a page
  5169. * because another CPU can free compound page.
  5170. * This check already skips compound tails of THP
  5171. * because their page->_count is zero at all time.
  5172. */
  5173. if (!atomic_read(&page->_count)) {
  5174. if (PageBuddy(page))
  5175. iter += (1 << page_order(page)) - 1;
  5176. continue;
  5177. }
  5178. /*
  5179. * The HWPoisoned page may be not in buddy system, and
  5180. * page_count() is not 0.
  5181. */
  5182. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5183. continue;
  5184. if (!PageLRU(page))
  5185. found++;
  5186. /*
  5187. * If there are RECLAIMABLE pages, we need to check it.
  5188. * But now, memory offline itself doesn't call shrink_slab()
  5189. * and it still to be fixed.
  5190. */
  5191. /*
  5192. * If the page is not RAM, page_count()should be 0.
  5193. * we don't need more check. This is an _used_ not-movable page.
  5194. *
  5195. * The problematic thing here is PG_reserved pages. PG_reserved
  5196. * is set to both of a memory hole page and a _used_ kernel
  5197. * page at boot.
  5198. */
  5199. if (found > count)
  5200. return true;
  5201. }
  5202. return false;
  5203. }
  5204. bool is_pageblock_removable_nolock(struct page *page)
  5205. {
  5206. struct zone *zone;
  5207. unsigned long pfn;
  5208. /*
  5209. * We have to be careful here because we are iterating over memory
  5210. * sections which are not zone aware so we might end up outside of
  5211. * the zone but still within the section.
  5212. * We have to take care about the node as well. If the node is offline
  5213. * its NODE_DATA will be NULL - see page_zone.
  5214. */
  5215. if (!node_online(page_to_nid(page)))
  5216. return false;
  5217. zone = page_zone(page);
  5218. pfn = page_to_pfn(page);
  5219. if (!zone_spans_pfn(zone, pfn))
  5220. return false;
  5221. return !has_unmovable_pages(zone, page, 0, true);
  5222. }
  5223. #ifdef CONFIG_CMA
  5224. static unsigned long pfn_max_align_down(unsigned long pfn)
  5225. {
  5226. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5227. pageblock_nr_pages) - 1);
  5228. }
  5229. static unsigned long pfn_max_align_up(unsigned long pfn)
  5230. {
  5231. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5232. pageblock_nr_pages));
  5233. }
  5234. /* [start, end) must belong to a single zone. */
  5235. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5236. unsigned long start, unsigned long end)
  5237. {
  5238. /* This function is based on compact_zone() from compaction.c. */
  5239. unsigned long nr_reclaimed;
  5240. unsigned long pfn = start;
  5241. unsigned int tries = 0;
  5242. int ret = 0;
  5243. migrate_prep();
  5244. while (pfn < end || !list_empty(&cc->migratepages)) {
  5245. if (fatal_signal_pending(current)) {
  5246. ret = -EINTR;
  5247. break;
  5248. }
  5249. if (list_empty(&cc->migratepages)) {
  5250. cc->nr_migratepages = 0;
  5251. pfn = isolate_migratepages_range(cc->zone, cc,
  5252. pfn, end, true);
  5253. if (!pfn) {
  5254. ret = -EINTR;
  5255. break;
  5256. }
  5257. tries = 0;
  5258. } else if (++tries == 5) {
  5259. ret = ret < 0 ? ret : -EBUSY;
  5260. break;
  5261. }
  5262. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5263. &cc->migratepages);
  5264. cc->nr_migratepages -= nr_reclaimed;
  5265. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5266. 0, MIGRATE_SYNC, MR_CMA);
  5267. }
  5268. if (ret < 0) {
  5269. putback_movable_pages(&cc->migratepages);
  5270. return ret;
  5271. }
  5272. return 0;
  5273. }
  5274. /**
  5275. * alloc_contig_range() -- tries to allocate given range of pages
  5276. * @start: start PFN to allocate
  5277. * @end: one-past-the-last PFN to allocate
  5278. * @migratetype: migratetype of the underlaying pageblocks (either
  5279. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5280. * in range must have the same migratetype and it must
  5281. * be either of the two.
  5282. *
  5283. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5284. * aligned, however it's the caller's responsibility to guarantee that
  5285. * we are the only thread that changes migrate type of pageblocks the
  5286. * pages fall in.
  5287. *
  5288. * The PFN range must belong to a single zone.
  5289. *
  5290. * Returns zero on success or negative error code. On success all
  5291. * pages which PFN is in [start, end) are allocated for the caller and
  5292. * need to be freed with free_contig_range().
  5293. */
  5294. int alloc_contig_range(unsigned long start, unsigned long end,
  5295. unsigned migratetype)
  5296. {
  5297. unsigned long outer_start, outer_end;
  5298. int ret = 0, order;
  5299. struct compact_control cc = {
  5300. .nr_migratepages = 0,
  5301. .order = -1,
  5302. .zone = page_zone(pfn_to_page(start)),
  5303. .sync = true,
  5304. .ignore_skip_hint = true,
  5305. };
  5306. INIT_LIST_HEAD(&cc.migratepages);
  5307. /*
  5308. * What we do here is we mark all pageblocks in range as
  5309. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5310. * have different sizes, and due to the way page allocator
  5311. * work, we align the range to biggest of the two pages so
  5312. * that page allocator won't try to merge buddies from
  5313. * different pageblocks and change MIGRATE_ISOLATE to some
  5314. * other migration type.
  5315. *
  5316. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5317. * migrate the pages from an unaligned range (ie. pages that
  5318. * we are interested in). This will put all the pages in
  5319. * range back to page allocator as MIGRATE_ISOLATE.
  5320. *
  5321. * When this is done, we take the pages in range from page
  5322. * allocator removing them from the buddy system. This way
  5323. * page allocator will never consider using them.
  5324. *
  5325. * This lets us mark the pageblocks back as
  5326. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5327. * aligned range but not in the unaligned, original range are
  5328. * put back to page allocator so that buddy can use them.
  5329. */
  5330. ret = start_isolate_page_range(pfn_max_align_down(start),
  5331. pfn_max_align_up(end), migratetype,
  5332. false);
  5333. if (ret)
  5334. return ret;
  5335. ret = __alloc_contig_migrate_range(&cc, start, end);
  5336. if (ret)
  5337. goto done;
  5338. /*
  5339. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5340. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5341. * more, all pages in [start, end) are free in page allocator.
  5342. * What we are going to do is to allocate all pages from
  5343. * [start, end) (that is remove them from page allocator).
  5344. *
  5345. * The only problem is that pages at the beginning and at the
  5346. * end of interesting range may be not aligned with pages that
  5347. * page allocator holds, ie. they can be part of higher order
  5348. * pages. Because of this, we reserve the bigger range and
  5349. * once this is done free the pages we are not interested in.
  5350. *
  5351. * We don't have to hold zone->lock here because the pages are
  5352. * isolated thus they won't get removed from buddy.
  5353. */
  5354. lru_add_drain_all();
  5355. drain_all_pages();
  5356. order = 0;
  5357. outer_start = start;
  5358. while (!PageBuddy(pfn_to_page(outer_start))) {
  5359. if (++order >= MAX_ORDER) {
  5360. ret = -EBUSY;
  5361. goto done;
  5362. }
  5363. outer_start &= ~0UL << order;
  5364. }
  5365. /* Make sure the range is really isolated. */
  5366. if (test_pages_isolated(outer_start, end, false)) {
  5367. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5368. outer_start, end);
  5369. ret = -EBUSY;
  5370. goto done;
  5371. }
  5372. /* Grab isolated pages from freelists. */
  5373. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5374. if (!outer_end) {
  5375. ret = -EBUSY;
  5376. goto done;
  5377. }
  5378. /* Free head and tail (if any) */
  5379. if (start != outer_start)
  5380. free_contig_range(outer_start, start - outer_start);
  5381. if (end != outer_end)
  5382. free_contig_range(end, outer_end - end);
  5383. done:
  5384. undo_isolate_page_range(pfn_max_align_down(start),
  5385. pfn_max_align_up(end), migratetype);
  5386. return ret;
  5387. }
  5388. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5389. {
  5390. unsigned int count = 0;
  5391. for (; nr_pages--; pfn++) {
  5392. struct page *page = pfn_to_page(pfn);
  5393. count += page_count(page) != 1;
  5394. __free_page(page);
  5395. }
  5396. WARN(count != 0, "%d pages are still in use!\n", count);
  5397. }
  5398. #endif
  5399. #ifdef CONFIG_MEMORY_HOTPLUG
  5400. /*
  5401. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5402. * page high values need to be recalulated.
  5403. */
  5404. void __meminit zone_pcp_update(struct zone *zone)
  5405. {
  5406. unsigned cpu;
  5407. mutex_lock(&pcp_batch_high_lock);
  5408. for_each_possible_cpu(cpu)
  5409. pageset_set_high_and_batch(zone,
  5410. per_cpu_ptr(zone->pageset, cpu));
  5411. mutex_unlock(&pcp_batch_high_lock);
  5412. }
  5413. #endif
  5414. void zone_pcp_reset(struct zone *zone)
  5415. {
  5416. unsigned long flags;
  5417. int cpu;
  5418. struct per_cpu_pageset *pset;
  5419. /* avoid races with drain_pages() */
  5420. local_irq_save(flags);
  5421. if (zone->pageset != &boot_pageset) {
  5422. for_each_online_cpu(cpu) {
  5423. pset = per_cpu_ptr(zone->pageset, cpu);
  5424. drain_zonestat(zone, pset);
  5425. }
  5426. free_percpu(zone->pageset);
  5427. zone->pageset = &boot_pageset;
  5428. }
  5429. local_irq_restore(flags);
  5430. }
  5431. #ifdef CONFIG_MEMORY_HOTREMOVE
  5432. /*
  5433. * All pages in the range must be isolated before calling this.
  5434. */
  5435. void
  5436. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5437. {
  5438. struct page *page;
  5439. struct zone *zone;
  5440. int order, i;
  5441. unsigned long pfn;
  5442. unsigned long flags;
  5443. /* find the first valid pfn */
  5444. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5445. if (pfn_valid(pfn))
  5446. break;
  5447. if (pfn == end_pfn)
  5448. return;
  5449. zone = page_zone(pfn_to_page(pfn));
  5450. spin_lock_irqsave(&zone->lock, flags);
  5451. pfn = start_pfn;
  5452. while (pfn < end_pfn) {
  5453. if (!pfn_valid(pfn)) {
  5454. pfn++;
  5455. continue;
  5456. }
  5457. page = pfn_to_page(pfn);
  5458. /*
  5459. * The HWPoisoned page may be not in buddy system, and
  5460. * page_count() is not 0.
  5461. */
  5462. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5463. pfn++;
  5464. SetPageReserved(page);
  5465. continue;
  5466. }
  5467. BUG_ON(page_count(page));
  5468. BUG_ON(!PageBuddy(page));
  5469. order = page_order(page);
  5470. #ifdef CONFIG_DEBUG_VM
  5471. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5472. pfn, 1 << order, end_pfn);
  5473. #endif
  5474. list_del(&page->lru);
  5475. rmv_page_order(page);
  5476. zone->free_area[order].nr_free--;
  5477. #ifdef CONFIG_HIGHMEM
  5478. if (PageHighMem(page))
  5479. totalhigh_pages -= 1 << order;
  5480. #endif
  5481. for (i = 0; i < (1 << order); i++)
  5482. SetPageReserved((page+i));
  5483. pfn += (1 << order);
  5484. }
  5485. spin_unlock_irqrestore(&zone->lock, flags);
  5486. }
  5487. #endif
  5488. #ifdef CONFIG_MEMORY_FAILURE
  5489. bool is_free_buddy_page(struct page *page)
  5490. {
  5491. struct zone *zone = page_zone(page);
  5492. unsigned long pfn = page_to_pfn(page);
  5493. unsigned long flags;
  5494. int order;
  5495. spin_lock_irqsave(&zone->lock, flags);
  5496. for (order = 0; order < MAX_ORDER; order++) {
  5497. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5498. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5499. break;
  5500. }
  5501. spin_unlock_irqrestore(&zone->lock, flags);
  5502. return order < MAX_ORDER;
  5503. }
  5504. #endif
  5505. static const struct trace_print_flags pageflag_names[] = {
  5506. {1UL << PG_locked, "locked" },
  5507. {1UL << PG_error, "error" },
  5508. {1UL << PG_referenced, "referenced" },
  5509. {1UL << PG_uptodate, "uptodate" },
  5510. {1UL << PG_dirty, "dirty" },
  5511. {1UL << PG_lru, "lru" },
  5512. {1UL << PG_active, "active" },
  5513. {1UL << PG_slab, "slab" },
  5514. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5515. {1UL << PG_arch_1, "arch_1" },
  5516. {1UL << PG_reserved, "reserved" },
  5517. {1UL << PG_private, "private" },
  5518. {1UL << PG_private_2, "private_2" },
  5519. {1UL << PG_writeback, "writeback" },
  5520. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5521. {1UL << PG_head, "head" },
  5522. {1UL << PG_tail, "tail" },
  5523. #else
  5524. {1UL << PG_compound, "compound" },
  5525. #endif
  5526. {1UL << PG_swapcache, "swapcache" },
  5527. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5528. {1UL << PG_reclaim, "reclaim" },
  5529. {1UL << PG_swapbacked, "swapbacked" },
  5530. {1UL << PG_unevictable, "unevictable" },
  5531. #ifdef CONFIG_MMU
  5532. {1UL << PG_mlocked, "mlocked" },
  5533. #endif
  5534. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5535. {1UL << PG_uncached, "uncached" },
  5536. #endif
  5537. #ifdef CONFIG_MEMORY_FAILURE
  5538. {1UL << PG_hwpoison, "hwpoison" },
  5539. #endif
  5540. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5541. {1UL << PG_compound_lock, "compound_lock" },
  5542. #endif
  5543. };
  5544. static void dump_page_flags(unsigned long flags)
  5545. {
  5546. const char *delim = "";
  5547. unsigned long mask;
  5548. int i;
  5549. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5550. printk(KERN_ALERT "page flags: %#lx(", flags);
  5551. /* remove zone id */
  5552. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5553. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5554. mask = pageflag_names[i].mask;
  5555. if ((flags & mask) != mask)
  5556. continue;
  5557. flags &= ~mask;
  5558. printk("%s%s", delim, pageflag_names[i].name);
  5559. delim = "|";
  5560. }
  5561. /* check for left over flags */
  5562. if (flags)
  5563. printk("%s%#lx", delim, flags);
  5564. printk(")\n");
  5565. }
  5566. void dump_page(struct page *page)
  5567. {
  5568. printk(KERN_ALERT
  5569. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5570. page, atomic_read(&page->_count), page_mapcount(page),
  5571. page->mapping, page->index);
  5572. dump_page_flags(page->flags);
  5573. mem_cgroup_print_bad_page(page);
  5574. }