fork.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <linux/aio.h>
  72. #include <asm/pgtable.h>
  73. #include <asm/pgalloc.h>
  74. #include <asm/uaccess.h>
  75. #include <asm/mmu_context.h>
  76. #include <asm/cacheflush.h>
  77. #include <asm/tlbflush.h>
  78. #include <trace/events/sched.h>
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/task.h>
  81. /*
  82. * Protected counters by write_lock_irq(&tasklist_lock)
  83. */
  84. unsigned long total_forks; /* Handle normal Linux uptimes. */
  85. int nr_threads; /* The idle threads do not count.. */
  86. int max_threads; /* tunable limit on nr_threads */
  87. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  89. #ifdef CONFIG_PROVE_RCU
  90. int lockdep_tasklist_lock_is_held(void)
  91. {
  92. return lockdep_is_held(&tasklist_lock);
  93. }
  94. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  95. #endif /* #ifdef CONFIG_PROVE_RCU */
  96. int nr_processes(void)
  97. {
  98. int cpu;
  99. int total = 0;
  100. for_each_possible_cpu(cpu)
  101. total += per_cpu(process_counts, cpu);
  102. return total;
  103. }
  104. void __weak arch_release_task_struct(struct task_struct *tsk)
  105. {
  106. }
  107. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  108. static struct kmem_cache *task_struct_cachep;
  109. static inline struct task_struct *alloc_task_struct_node(int node)
  110. {
  111. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  112. }
  113. static inline void free_task_struct(struct task_struct *tsk)
  114. {
  115. kmem_cache_free(task_struct_cachep, tsk);
  116. }
  117. #endif
  118. void __weak arch_release_thread_info(struct thread_info *ti)
  119. {
  120. }
  121. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  122. /*
  123. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  124. * kmemcache based allocator.
  125. */
  126. # if THREAD_SIZE >= PAGE_SIZE
  127. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  128. int node)
  129. {
  130. struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
  131. THREAD_SIZE_ORDER);
  132. return page ? page_address(page) : NULL;
  133. }
  134. static inline void free_thread_info(struct thread_info *ti)
  135. {
  136. free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  137. }
  138. # else
  139. static struct kmem_cache *thread_info_cache;
  140. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  144. }
  145. static void free_thread_info(struct thread_info *ti)
  146. {
  147. kmem_cache_free(thread_info_cache, ti);
  148. }
  149. void thread_info_cache_init(void)
  150. {
  151. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  152. THREAD_SIZE, 0, NULL);
  153. BUG_ON(thread_info_cache == NULL);
  154. }
  155. # endif
  156. #endif
  157. /* SLAB cache for signal_struct structures (tsk->signal) */
  158. static struct kmem_cache *signal_cachep;
  159. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  160. struct kmem_cache *sighand_cachep;
  161. /* SLAB cache for files_struct structures (tsk->files) */
  162. struct kmem_cache *files_cachep;
  163. /* SLAB cache for fs_struct structures (tsk->fs) */
  164. struct kmem_cache *fs_cachep;
  165. /* SLAB cache for vm_area_struct structures */
  166. struct kmem_cache *vm_area_cachep;
  167. /* SLAB cache for mm_struct structures (tsk->mm) */
  168. static struct kmem_cache *mm_cachep;
  169. static void account_kernel_stack(struct thread_info *ti, int account)
  170. {
  171. struct zone *zone = page_zone(virt_to_page(ti));
  172. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  173. }
  174. void free_task(struct task_struct *tsk)
  175. {
  176. account_kernel_stack(tsk->stack, -1);
  177. arch_release_thread_info(tsk->stack);
  178. free_thread_info(tsk->stack);
  179. rt_mutex_debug_task_free(tsk);
  180. ftrace_graph_exit_task(tsk);
  181. put_seccomp_filter(tsk);
  182. arch_release_task_struct(tsk);
  183. free_task_struct(tsk);
  184. }
  185. EXPORT_SYMBOL(free_task);
  186. static inline void free_signal_struct(struct signal_struct *sig)
  187. {
  188. taskstats_tgid_free(sig);
  189. sched_autogroup_exit(sig);
  190. kmem_cache_free(signal_cachep, sig);
  191. }
  192. static inline void put_signal_struct(struct signal_struct *sig)
  193. {
  194. if (atomic_dec_and_test(&sig->sigcnt))
  195. free_signal_struct(sig);
  196. }
  197. void __put_task_struct(struct task_struct *tsk)
  198. {
  199. WARN_ON(!tsk->exit_state);
  200. WARN_ON(atomic_read(&tsk->usage));
  201. WARN_ON(tsk == current);
  202. security_task_free(tsk);
  203. exit_creds(tsk);
  204. delayacct_tsk_free(tsk);
  205. put_signal_struct(tsk->signal);
  206. if (!profile_handoff_task(tsk))
  207. free_task(tsk);
  208. }
  209. EXPORT_SYMBOL_GPL(__put_task_struct);
  210. void __init __weak arch_task_cache_init(void) { }
  211. void __init fork_init(unsigned long mempages)
  212. {
  213. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  214. #ifndef ARCH_MIN_TASKALIGN
  215. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  216. #endif
  217. /* create a slab on which task_structs can be allocated */
  218. task_struct_cachep =
  219. kmem_cache_create("task_struct", sizeof(struct task_struct),
  220. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  221. #endif
  222. /* do the arch specific task caches init */
  223. arch_task_cache_init();
  224. /*
  225. * The default maximum number of threads is set to a safe
  226. * value: the thread structures can take up at most half
  227. * of memory.
  228. */
  229. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  230. /*
  231. * we need to allow at least 20 threads to boot a system
  232. */
  233. if (max_threads < 20)
  234. max_threads = 20;
  235. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  236. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  237. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  238. init_task.signal->rlim[RLIMIT_NPROC];
  239. }
  240. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  241. struct task_struct *src)
  242. {
  243. *dst = *src;
  244. return 0;
  245. }
  246. static struct task_struct *dup_task_struct(struct task_struct *orig)
  247. {
  248. struct task_struct *tsk;
  249. struct thread_info *ti;
  250. unsigned long *stackend;
  251. int node = tsk_fork_get_node(orig);
  252. int err;
  253. tsk = alloc_task_struct_node(node);
  254. if (!tsk)
  255. return NULL;
  256. ti = alloc_thread_info_node(tsk, node);
  257. if (!ti)
  258. goto free_tsk;
  259. err = arch_dup_task_struct(tsk, orig);
  260. if (err)
  261. goto free_ti;
  262. tsk->stack = ti;
  263. setup_thread_stack(tsk, orig);
  264. clear_user_return_notifier(tsk);
  265. clear_tsk_need_resched(tsk);
  266. stackend = end_of_stack(tsk);
  267. *stackend = STACK_END_MAGIC; /* for overflow detection */
  268. #ifdef CONFIG_CC_STACKPROTECTOR
  269. tsk->stack_canary = get_random_int();
  270. #endif
  271. /*
  272. * One for us, one for whoever does the "release_task()" (usually
  273. * parent)
  274. */
  275. atomic_set(&tsk->usage, 2);
  276. #ifdef CONFIG_BLK_DEV_IO_TRACE
  277. tsk->btrace_seq = 0;
  278. #endif
  279. tsk->splice_pipe = NULL;
  280. tsk->task_frag.page = NULL;
  281. account_kernel_stack(ti, 1);
  282. return tsk;
  283. free_ti:
  284. free_thread_info(ti);
  285. free_tsk:
  286. free_task_struct(tsk);
  287. return NULL;
  288. }
  289. #ifdef CONFIG_MMU
  290. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  291. {
  292. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  293. struct rb_node **rb_link, *rb_parent;
  294. int retval;
  295. unsigned long charge;
  296. struct mempolicy *pol;
  297. uprobe_start_dup_mmap();
  298. down_write(&oldmm->mmap_sem);
  299. flush_cache_dup_mm(oldmm);
  300. uprobe_dup_mmap(oldmm, mm);
  301. /*
  302. * Not linked in yet - no deadlock potential:
  303. */
  304. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  305. mm->locked_vm = 0;
  306. mm->mmap = NULL;
  307. mm->mmap_cache = NULL;
  308. mm->map_count = 0;
  309. cpumask_clear(mm_cpumask(mm));
  310. mm->mm_rb = RB_ROOT;
  311. rb_link = &mm->mm_rb.rb_node;
  312. rb_parent = NULL;
  313. pprev = &mm->mmap;
  314. retval = ksm_fork(mm, oldmm);
  315. if (retval)
  316. goto out;
  317. retval = khugepaged_fork(mm, oldmm);
  318. if (retval)
  319. goto out;
  320. prev = NULL;
  321. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  322. struct file *file;
  323. if (mpnt->vm_flags & VM_DONTCOPY) {
  324. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  325. -vma_pages(mpnt));
  326. continue;
  327. }
  328. charge = 0;
  329. if (mpnt->vm_flags & VM_ACCOUNT) {
  330. unsigned long len = vma_pages(mpnt);
  331. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  332. goto fail_nomem;
  333. charge = len;
  334. }
  335. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  336. if (!tmp)
  337. goto fail_nomem;
  338. *tmp = *mpnt;
  339. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  340. pol = mpol_dup(vma_policy(mpnt));
  341. retval = PTR_ERR(pol);
  342. if (IS_ERR(pol))
  343. goto fail_nomem_policy;
  344. vma_set_policy(tmp, pol);
  345. tmp->vm_mm = mm;
  346. if (anon_vma_fork(tmp, mpnt))
  347. goto fail_nomem_anon_vma_fork;
  348. tmp->vm_flags &= ~VM_LOCKED;
  349. tmp->vm_next = tmp->vm_prev = NULL;
  350. file = tmp->vm_file;
  351. if (file) {
  352. struct inode *inode = file_inode(file);
  353. struct address_space *mapping = file->f_mapping;
  354. get_file(file);
  355. if (tmp->vm_flags & VM_DENYWRITE)
  356. atomic_dec(&inode->i_writecount);
  357. mutex_lock(&mapping->i_mmap_mutex);
  358. if (tmp->vm_flags & VM_SHARED)
  359. mapping->i_mmap_writable++;
  360. flush_dcache_mmap_lock(mapping);
  361. /* insert tmp into the share list, just after mpnt */
  362. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  363. vma_nonlinear_insert(tmp,
  364. &mapping->i_mmap_nonlinear);
  365. else
  366. vma_interval_tree_insert_after(tmp, mpnt,
  367. &mapping->i_mmap);
  368. flush_dcache_mmap_unlock(mapping);
  369. mutex_unlock(&mapping->i_mmap_mutex);
  370. }
  371. /*
  372. * Clear hugetlb-related page reserves for children. This only
  373. * affects MAP_PRIVATE mappings. Faults generated by the child
  374. * are not guaranteed to succeed, even if read-only
  375. */
  376. if (is_vm_hugetlb_page(tmp))
  377. reset_vma_resv_huge_pages(tmp);
  378. /*
  379. * Link in the new vma and copy the page table entries.
  380. */
  381. *pprev = tmp;
  382. pprev = &tmp->vm_next;
  383. tmp->vm_prev = prev;
  384. prev = tmp;
  385. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  386. rb_link = &tmp->vm_rb.rb_right;
  387. rb_parent = &tmp->vm_rb;
  388. mm->map_count++;
  389. retval = copy_page_range(mm, oldmm, mpnt);
  390. if (tmp->vm_ops && tmp->vm_ops->open)
  391. tmp->vm_ops->open(tmp);
  392. if (retval)
  393. goto out;
  394. }
  395. /* a new mm has just been created */
  396. arch_dup_mmap(oldmm, mm);
  397. retval = 0;
  398. out:
  399. up_write(&mm->mmap_sem);
  400. flush_tlb_mm(oldmm);
  401. up_write(&oldmm->mmap_sem);
  402. uprobe_end_dup_mmap();
  403. return retval;
  404. fail_nomem_anon_vma_fork:
  405. mpol_put(pol);
  406. fail_nomem_policy:
  407. kmem_cache_free(vm_area_cachep, tmp);
  408. fail_nomem:
  409. retval = -ENOMEM;
  410. vm_unacct_memory(charge);
  411. goto out;
  412. }
  413. static inline int mm_alloc_pgd(struct mm_struct *mm)
  414. {
  415. mm->pgd = pgd_alloc(mm);
  416. if (unlikely(!mm->pgd))
  417. return -ENOMEM;
  418. return 0;
  419. }
  420. static inline void mm_free_pgd(struct mm_struct *mm)
  421. {
  422. pgd_free(mm, mm->pgd);
  423. }
  424. #else
  425. #define dup_mmap(mm, oldmm) (0)
  426. #define mm_alloc_pgd(mm) (0)
  427. #define mm_free_pgd(mm)
  428. #endif /* CONFIG_MMU */
  429. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  430. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  431. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  432. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  433. static int __init coredump_filter_setup(char *s)
  434. {
  435. default_dump_filter =
  436. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  437. MMF_DUMP_FILTER_MASK;
  438. return 1;
  439. }
  440. __setup("coredump_filter=", coredump_filter_setup);
  441. #include <linux/init_task.h>
  442. static void mm_init_aio(struct mm_struct *mm)
  443. {
  444. #ifdef CONFIG_AIO
  445. spin_lock_init(&mm->ioctx_lock);
  446. INIT_HLIST_HEAD(&mm->ioctx_list);
  447. #endif
  448. }
  449. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  450. {
  451. atomic_set(&mm->mm_users, 1);
  452. atomic_set(&mm->mm_count, 1);
  453. init_rwsem(&mm->mmap_sem);
  454. INIT_LIST_HEAD(&mm->mmlist);
  455. mm->flags = (current->mm) ?
  456. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  457. mm->core_state = NULL;
  458. mm->nr_ptes = 0;
  459. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  460. spin_lock_init(&mm->page_table_lock);
  461. mm_init_aio(mm);
  462. mm_init_owner(mm, p);
  463. if (likely(!mm_alloc_pgd(mm))) {
  464. mm->def_flags = 0;
  465. mmu_notifier_mm_init(mm);
  466. return mm;
  467. }
  468. free_mm(mm);
  469. return NULL;
  470. }
  471. static void check_mm(struct mm_struct *mm)
  472. {
  473. int i;
  474. for (i = 0; i < NR_MM_COUNTERS; i++) {
  475. long x = atomic_long_read(&mm->rss_stat.count[i]);
  476. if (unlikely(x))
  477. printk(KERN_ALERT "BUG: Bad rss-counter state "
  478. "mm:%p idx:%d val:%ld\n", mm, i, x);
  479. }
  480. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  481. VM_BUG_ON(mm->pmd_huge_pte);
  482. #endif
  483. }
  484. /*
  485. * Allocate and initialize an mm_struct.
  486. */
  487. struct mm_struct *mm_alloc(void)
  488. {
  489. struct mm_struct *mm;
  490. mm = allocate_mm();
  491. if (!mm)
  492. return NULL;
  493. memset(mm, 0, sizeof(*mm));
  494. mm_init_cpumask(mm);
  495. return mm_init(mm, current);
  496. }
  497. /*
  498. * Called when the last reference to the mm
  499. * is dropped: either by a lazy thread or by
  500. * mmput. Free the page directory and the mm.
  501. */
  502. void __mmdrop(struct mm_struct *mm)
  503. {
  504. BUG_ON(mm == &init_mm);
  505. mm_free_pgd(mm);
  506. destroy_context(mm);
  507. mmu_notifier_mm_destroy(mm);
  508. check_mm(mm);
  509. free_mm(mm);
  510. }
  511. EXPORT_SYMBOL_GPL(__mmdrop);
  512. /*
  513. * Decrement the use count and release all resources for an mm.
  514. */
  515. void mmput(struct mm_struct *mm)
  516. {
  517. might_sleep();
  518. if (atomic_dec_and_test(&mm->mm_users)) {
  519. uprobe_clear_state(mm);
  520. exit_aio(mm);
  521. ksm_exit(mm);
  522. khugepaged_exit(mm); /* must run before exit_mmap */
  523. exit_mmap(mm);
  524. set_mm_exe_file(mm, NULL);
  525. if (!list_empty(&mm->mmlist)) {
  526. spin_lock(&mmlist_lock);
  527. list_del(&mm->mmlist);
  528. spin_unlock(&mmlist_lock);
  529. }
  530. if (mm->binfmt)
  531. module_put(mm->binfmt->module);
  532. mmdrop(mm);
  533. }
  534. }
  535. EXPORT_SYMBOL_GPL(mmput);
  536. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  537. {
  538. if (new_exe_file)
  539. get_file(new_exe_file);
  540. if (mm->exe_file)
  541. fput(mm->exe_file);
  542. mm->exe_file = new_exe_file;
  543. }
  544. struct file *get_mm_exe_file(struct mm_struct *mm)
  545. {
  546. struct file *exe_file;
  547. /* We need mmap_sem to protect against races with removal of exe_file */
  548. down_read(&mm->mmap_sem);
  549. exe_file = mm->exe_file;
  550. if (exe_file)
  551. get_file(exe_file);
  552. up_read(&mm->mmap_sem);
  553. return exe_file;
  554. }
  555. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  556. {
  557. /* It's safe to write the exe_file pointer without exe_file_lock because
  558. * this is called during fork when the task is not yet in /proc */
  559. newmm->exe_file = get_mm_exe_file(oldmm);
  560. }
  561. /**
  562. * get_task_mm - acquire a reference to the task's mm
  563. *
  564. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  565. * this kernel workthread has transiently adopted a user mm with use_mm,
  566. * to do its AIO) is not set and if so returns a reference to it, after
  567. * bumping up the use count. User must release the mm via mmput()
  568. * after use. Typically used by /proc and ptrace.
  569. */
  570. struct mm_struct *get_task_mm(struct task_struct *task)
  571. {
  572. struct mm_struct *mm;
  573. task_lock(task);
  574. mm = task->mm;
  575. if (mm) {
  576. if (task->flags & PF_KTHREAD)
  577. mm = NULL;
  578. else
  579. atomic_inc(&mm->mm_users);
  580. }
  581. task_unlock(task);
  582. return mm;
  583. }
  584. EXPORT_SYMBOL_GPL(get_task_mm);
  585. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  586. {
  587. struct mm_struct *mm;
  588. int err;
  589. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  590. if (err)
  591. return ERR_PTR(err);
  592. mm = get_task_mm(task);
  593. if (mm && mm != current->mm &&
  594. !ptrace_may_access(task, mode)) {
  595. mmput(mm);
  596. mm = ERR_PTR(-EACCES);
  597. }
  598. mutex_unlock(&task->signal->cred_guard_mutex);
  599. return mm;
  600. }
  601. static void complete_vfork_done(struct task_struct *tsk)
  602. {
  603. struct completion *vfork;
  604. task_lock(tsk);
  605. vfork = tsk->vfork_done;
  606. if (likely(vfork)) {
  607. tsk->vfork_done = NULL;
  608. complete(vfork);
  609. }
  610. task_unlock(tsk);
  611. }
  612. static int wait_for_vfork_done(struct task_struct *child,
  613. struct completion *vfork)
  614. {
  615. int killed;
  616. freezer_do_not_count();
  617. killed = wait_for_completion_killable(vfork);
  618. freezer_count();
  619. if (killed) {
  620. task_lock(child);
  621. child->vfork_done = NULL;
  622. task_unlock(child);
  623. }
  624. put_task_struct(child);
  625. return killed;
  626. }
  627. /* Please note the differences between mmput and mm_release.
  628. * mmput is called whenever we stop holding onto a mm_struct,
  629. * error success whatever.
  630. *
  631. * mm_release is called after a mm_struct has been removed
  632. * from the current process.
  633. *
  634. * This difference is important for error handling, when we
  635. * only half set up a mm_struct for a new process and need to restore
  636. * the old one. Because we mmput the new mm_struct before
  637. * restoring the old one. . .
  638. * Eric Biederman 10 January 1998
  639. */
  640. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  641. {
  642. /* Get rid of any futexes when releasing the mm */
  643. #ifdef CONFIG_FUTEX
  644. if (unlikely(tsk->robust_list)) {
  645. exit_robust_list(tsk);
  646. tsk->robust_list = NULL;
  647. }
  648. #ifdef CONFIG_COMPAT
  649. if (unlikely(tsk->compat_robust_list)) {
  650. compat_exit_robust_list(tsk);
  651. tsk->compat_robust_list = NULL;
  652. }
  653. #endif
  654. if (unlikely(!list_empty(&tsk->pi_state_list)))
  655. exit_pi_state_list(tsk);
  656. #endif
  657. uprobe_free_utask(tsk);
  658. /* Get rid of any cached register state */
  659. deactivate_mm(tsk, mm);
  660. /*
  661. * If we're exiting normally, clear a user-space tid field if
  662. * requested. We leave this alone when dying by signal, to leave
  663. * the value intact in a core dump, and to save the unnecessary
  664. * trouble, say, a killed vfork parent shouldn't touch this mm.
  665. * Userland only wants this done for a sys_exit.
  666. */
  667. if (tsk->clear_child_tid) {
  668. if (!(tsk->flags & PF_SIGNALED) &&
  669. atomic_read(&mm->mm_users) > 1) {
  670. /*
  671. * We don't check the error code - if userspace has
  672. * not set up a proper pointer then tough luck.
  673. */
  674. put_user(0, tsk->clear_child_tid);
  675. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  676. 1, NULL, NULL, 0);
  677. }
  678. tsk->clear_child_tid = NULL;
  679. }
  680. /*
  681. * All done, finally we can wake up parent and return this mm to him.
  682. * Also kthread_stop() uses this completion for synchronization.
  683. */
  684. if (tsk->vfork_done)
  685. complete_vfork_done(tsk);
  686. }
  687. /*
  688. * Allocate a new mm structure and copy contents from the
  689. * mm structure of the passed in task structure.
  690. */
  691. struct mm_struct *dup_mm(struct task_struct *tsk)
  692. {
  693. struct mm_struct *mm, *oldmm = current->mm;
  694. int err;
  695. if (!oldmm)
  696. return NULL;
  697. mm = allocate_mm();
  698. if (!mm)
  699. goto fail_nomem;
  700. memcpy(mm, oldmm, sizeof(*mm));
  701. mm_init_cpumask(mm);
  702. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  703. mm->pmd_huge_pte = NULL;
  704. #endif
  705. #ifdef CONFIG_NUMA_BALANCING
  706. mm->first_nid = NUMA_PTE_SCAN_INIT;
  707. #endif
  708. if (!mm_init(mm, tsk))
  709. goto fail_nomem;
  710. if (init_new_context(tsk, mm))
  711. goto fail_nocontext;
  712. dup_mm_exe_file(oldmm, mm);
  713. err = dup_mmap(mm, oldmm);
  714. if (err)
  715. goto free_pt;
  716. mm->hiwater_rss = get_mm_rss(mm);
  717. mm->hiwater_vm = mm->total_vm;
  718. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  719. goto free_pt;
  720. return mm;
  721. free_pt:
  722. /* don't put binfmt in mmput, we haven't got module yet */
  723. mm->binfmt = NULL;
  724. mmput(mm);
  725. fail_nomem:
  726. return NULL;
  727. fail_nocontext:
  728. /*
  729. * If init_new_context() failed, we cannot use mmput() to free the mm
  730. * because it calls destroy_context()
  731. */
  732. mm_free_pgd(mm);
  733. free_mm(mm);
  734. return NULL;
  735. }
  736. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  737. {
  738. struct mm_struct *mm, *oldmm;
  739. int retval;
  740. tsk->min_flt = tsk->maj_flt = 0;
  741. tsk->nvcsw = tsk->nivcsw = 0;
  742. #ifdef CONFIG_DETECT_HUNG_TASK
  743. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  744. #endif
  745. tsk->mm = NULL;
  746. tsk->active_mm = NULL;
  747. /*
  748. * Are we cloning a kernel thread?
  749. *
  750. * We need to steal a active VM for that..
  751. */
  752. oldmm = current->mm;
  753. if (!oldmm)
  754. return 0;
  755. if (clone_flags & CLONE_VM) {
  756. atomic_inc(&oldmm->mm_users);
  757. mm = oldmm;
  758. goto good_mm;
  759. }
  760. retval = -ENOMEM;
  761. mm = dup_mm(tsk);
  762. if (!mm)
  763. goto fail_nomem;
  764. good_mm:
  765. tsk->mm = mm;
  766. tsk->active_mm = mm;
  767. return 0;
  768. fail_nomem:
  769. return retval;
  770. }
  771. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  772. {
  773. struct fs_struct *fs = current->fs;
  774. if (clone_flags & CLONE_FS) {
  775. /* tsk->fs is already what we want */
  776. spin_lock(&fs->lock);
  777. if (fs->in_exec) {
  778. spin_unlock(&fs->lock);
  779. return -EAGAIN;
  780. }
  781. fs->users++;
  782. spin_unlock(&fs->lock);
  783. return 0;
  784. }
  785. tsk->fs = copy_fs_struct(fs);
  786. if (!tsk->fs)
  787. return -ENOMEM;
  788. return 0;
  789. }
  790. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  791. {
  792. struct files_struct *oldf, *newf;
  793. int error = 0;
  794. /*
  795. * A background process may not have any files ...
  796. */
  797. oldf = current->files;
  798. if (!oldf)
  799. goto out;
  800. if (clone_flags & CLONE_FILES) {
  801. atomic_inc(&oldf->count);
  802. goto out;
  803. }
  804. newf = dup_fd(oldf, &error);
  805. if (!newf)
  806. goto out;
  807. tsk->files = newf;
  808. error = 0;
  809. out:
  810. return error;
  811. }
  812. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  813. {
  814. #ifdef CONFIG_BLOCK
  815. struct io_context *ioc = current->io_context;
  816. struct io_context *new_ioc;
  817. if (!ioc)
  818. return 0;
  819. /*
  820. * Share io context with parent, if CLONE_IO is set
  821. */
  822. if (clone_flags & CLONE_IO) {
  823. ioc_task_link(ioc);
  824. tsk->io_context = ioc;
  825. } else if (ioprio_valid(ioc->ioprio)) {
  826. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  827. if (unlikely(!new_ioc))
  828. return -ENOMEM;
  829. new_ioc->ioprio = ioc->ioprio;
  830. put_io_context(new_ioc);
  831. }
  832. #endif
  833. return 0;
  834. }
  835. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  836. {
  837. struct sighand_struct *sig;
  838. if (clone_flags & CLONE_SIGHAND) {
  839. atomic_inc(&current->sighand->count);
  840. return 0;
  841. }
  842. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  843. rcu_assign_pointer(tsk->sighand, sig);
  844. if (!sig)
  845. return -ENOMEM;
  846. atomic_set(&sig->count, 1);
  847. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  848. return 0;
  849. }
  850. void __cleanup_sighand(struct sighand_struct *sighand)
  851. {
  852. if (atomic_dec_and_test(&sighand->count)) {
  853. signalfd_cleanup(sighand);
  854. kmem_cache_free(sighand_cachep, sighand);
  855. }
  856. }
  857. /*
  858. * Initialize POSIX timer handling for a thread group.
  859. */
  860. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  861. {
  862. unsigned long cpu_limit;
  863. /* Thread group counters. */
  864. thread_group_cputime_init(sig);
  865. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  866. if (cpu_limit != RLIM_INFINITY) {
  867. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  868. sig->cputimer.running = 1;
  869. }
  870. /* The timer lists. */
  871. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  872. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  873. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  874. }
  875. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  876. {
  877. struct signal_struct *sig;
  878. if (clone_flags & CLONE_THREAD)
  879. return 0;
  880. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  881. tsk->signal = sig;
  882. if (!sig)
  883. return -ENOMEM;
  884. sig->nr_threads = 1;
  885. atomic_set(&sig->live, 1);
  886. atomic_set(&sig->sigcnt, 1);
  887. init_waitqueue_head(&sig->wait_chldexit);
  888. sig->curr_target = tsk;
  889. init_sigpending(&sig->shared_pending);
  890. INIT_LIST_HEAD(&sig->posix_timers);
  891. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  892. sig->real_timer.function = it_real_fn;
  893. task_lock(current->group_leader);
  894. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  895. task_unlock(current->group_leader);
  896. posix_cpu_timers_init_group(sig);
  897. tty_audit_fork(sig);
  898. sched_autogroup_fork(sig);
  899. #ifdef CONFIG_CGROUPS
  900. init_rwsem(&sig->group_rwsem);
  901. #endif
  902. sig->oom_score_adj = current->signal->oom_score_adj;
  903. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  904. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  905. current->signal->is_child_subreaper;
  906. mutex_init(&sig->cred_guard_mutex);
  907. return 0;
  908. }
  909. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  910. {
  911. unsigned long new_flags = p->flags;
  912. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  913. new_flags |= PF_FORKNOEXEC;
  914. p->flags = new_flags;
  915. }
  916. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  917. {
  918. current->clear_child_tid = tidptr;
  919. return task_pid_vnr(current);
  920. }
  921. static void rt_mutex_init_task(struct task_struct *p)
  922. {
  923. raw_spin_lock_init(&p->pi_lock);
  924. #ifdef CONFIG_RT_MUTEXES
  925. plist_head_init(&p->pi_waiters);
  926. p->pi_blocked_on = NULL;
  927. #endif
  928. }
  929. #ifdef CONFIG_MM_OWNER
  930. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  931. {
  932. mm->owner = p;
  933. }
  934. #endif /* CONFIG_MM_OWNER */
  935. /*
  936. * Initialize POSIX timer handling for a single task.
  937. */
  938. static void posix_cpu_timers_init(struct task_struct *tsk)
  939. {
  940. tsk->cputime_expires.prof_exp = 0;
  941. tsk->cputime_expires.virt_exp = 0;
  942. tsk->cputime_expires.sched_exp = 0;
  943. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  944. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  945. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  946. }
  947. static inline void
  948. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  949. {
  950. task->pids[type].pid = pid;
  951. }
  952. /*
  953. * This creates a new process as a copy of the old one,
  954. * but does not actually start it yet.
  955. *
  956. * It copies the registers, and all the appropriate
  957. * parts of the process environment (as per the clone
  958. * flags). The actual kick-off is left to the caller.
  959. */
  960. static struct task_struct *copy_process(unsigned long clone_flags,
  961. unsigned long stack_start,
  962. unsigned long stack_size,
  963. int __user *child_tidptr,
  964. struct pid *pid,
  965. int trace)
  966. {
  967. int retval;
  968. struct task_struct *p;
  969. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  970. return ERR_PTR(-EINVAL);
  971. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  972. return ERR_PTR(-EINVAL);
  973. /*
  974. * Thread groups must share signals as well, and detached threads
  975. * can only be started up within the thread group.
  976. */
  977. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  978. return ERR_PTR(-EINVAL);
  979. /*
  980. * Shared signal handlers imply shared VM. By way of the above,
  981. * thread groups also imply shared VM. Blocking this case allows
  982. * for various simplifications in other code.
  983. */
  984. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  985. return ERR_PTR(-EINVAL);
  986. /*
  987. * Siblings of global init remain as zombies on exit since they are
  988. * not reaped by their parent (swapper). To solve this and to avoid
  989. * multi-rooted process trees, prevent global and container-inits
  990. * from creating siblings.
  991. */
  992. if ((clone_flags & CLONE_PARENT) &&
  993. current->signal->flags & SIGNAL_UNKILLABLE)
  994. return ERR_PTR(-EINVAL);
  995. /*
  996. * If the new process will be in a different pid or user namespace
  997. * do not allow it to share a thread group or signal handlers or
  998. * parent with the forking task.
  999. */
  1000. if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
  1001. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1002. (task_active_pid_ns(current) !=
  1003. current->nsproxy->pid_ns_for_children))
  1004. return ERR_PTR(-EINVAL);
  1005. }
  1006. retval = security_task_create(clone_flags);
  1007. if (retval)
  1008. goto fork_out;
  1009. retval = -ENOMEM;
  1010. p = dup_task_struct(current);
  1011. if (!p)
  1012. goto fork_out;
  1013. ftrace_graph_init_task(p);
  1014. get_seccomp_filter(p);
  1015. rt_mutex_init_task(p);
  1016. #ifdef CONFIG_PROVE_LOCKING
  1017. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1018. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1019. #endif
  1020. retval = -EAGAIN;
  1021. if (atomic_read(&p->real_cred->user->processes) >=
  1022. task_rlimit(p, RLIMIT_NPROC)) {
  1023. if (p->real_cred->user != INIT_USER &&
  1024. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1025. goto bad_fork_free;
  1026. }
  1027. current->flags &= ~PF_NPROC_EXCEEDED;
  1028. retval = copy_creds(p, clone_flags);
  1029. if (retval < 0)
  1030. goto bad_fork_free;
  1031. /*
  1032. * If multiple threads are within copy_process(), then this check
  1033. * triggers too late. This doesn't hurt, the check is only there
  1034. * to stop root fork bombs.
  1035. */
  1036. retval = -EAGAIN;
  1037. if (nr_threads >= max_threads)
  1038. goto bad_fork_cleanup_count;
  1039. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1040. goto bad_fork_cleanup_count;
  1041. p->did_exec = 0;
  1042. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1043. copy_flags(clone_flags, p);
  1044. INIT_LIST_HEAD(&p->children);
  1045. INIT_LIST_HEAD(&p->sibling);
  1046. rcu_copy_process(p);
  1047. p->vfork_done = NULL;
  1048. spin_lock_init(&p->alloc_lock);
  1049. init_sigpending(&p->pending);
  1050. p->utime = p->stime = p->gtime = 0;
  1051. p->utimescaled = p->stimescaled = 0;
  1052. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1053. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1054. #endif
  1055. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1056. seqlock_init(&p->vtime_seqlock);
  1057. p->vtime_snap = 0;
  1058. p->vtime_snap_whence = VTIME_SLEEPING;
  1059. #endif
  1060. #if defined(SPLIT_RSS_COUNTING)
  1061. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1062. #endif
  1063. p->default_timer_slack_ns = current->timer_slack_ns;
  1064. task_io_accounting_init(&p->ioac);
  1065. acct_clear_integrals(p);
  1066. posix_cpu_timers_init(p);
  1067. do_posix_clock_monotonic_gettime(&p->start_time);
  1068. p->real_start_time = p->start_time;
  1069. monotonic_to_bootbased(&p->real_start_time);
  1070. p->io_context = NULL;
  1071. p->audit_context = NULL;
  1072. if (clone_flags & CLONE_THREAD)
  1073. threadgroup_change_begin(current);
  1074. cgroup_fork(p);
  1075. #ifdef CONFIG_NUMA
  1076. p->mempolicy = mpol_dup(p->mempolicy);
  1077. if (IS_ERR(p->mempolicy)) {
  1078. retval = PTR_ERR(p->mempolicy);
  1079. p->mempolicy = NULL;
  1080. goto bad_fork_cleanup_cgroup;
  1081. }
  1082. mpol_fix_fork_child_flag(p);
  1083. #endif
  1084. #ifdef CONFIG_CPUSETS
  1085. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1086. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1087. seqcount_init(&p->mems_allowed_seq);
  1088. #endif
  1089. #ifdef CONFIG_TRACE_IRQFLAGS
  1090. p->irq_events = 0;
  1091. p->hardirqs_enabled = 0;
  1092. p->hardirq_enable_ip = 0;
  1093. p->hardirq_enable_event = 0;
  1094. p->hardirq_disable_ip = _THIS_IP_;
  1095. p->hardirq_disable_event = 0;
  1096. p->softirqs_enabled = 1;
  1097. p->softirq_enable_ip = _THIS_IP_;
  1098. p->softirq_enable_event = 0;
  1099. p->softirq_disable_ip = 0;
  1100. p->softirq_disable_event = 0;
  1101. p->hardirq_context = 0;
  1102. p->softirq_context = 0;
  1103. #endif
  1104. #ifdef CONFIG_LOCKDEP
  1105. p->lockdep_depth = 0; /* no locks held yet */
  1106. p->curr_chain_key = 0;
  1107. p->lockdep_recursion = 0;
  1108. #endif
  1109. #ifdef CONFIG_DEBUG_MUTEXES
  1110. p->blocked_on = NULL; /* not blocked yet */
  1111. #endif
  1112. #ifdef CONFIG_MEMCG
  1113. p->memcg_batch.do_batch = 0;
  1114. p->memcg_batch.memcg = NULL;
  1115. #endif
  1116. #ifdef CONFIG_BCACHE
  1117. p->sequential_io = 0;
  1118. p->sequential_io_avg = 0;
  1119. #endif
  1120. /* Perform scheduler related setup. Assign this task to a CPU. */
  1121. sched_fork(p);
  1122. retval = perf_event_init_task(p);
  1123. if (retval)
  1124. goto bad_fork_cleanup_policy;
  1125. retval = audit_alloc(p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_policy;
  1128. /* copy all the process information */
  1129. retval = copy_semundo(clone_flags, p);
  1130. if (retval)
  1131. goto bad_fork_cleanup_audit;
  1132. retval = copy_files(clone_flags, p);
  1133. if (retval)
  1134. goto bad_fork_cleanup_semundo;
  1135. retval = copy_fs(clone_flags, p);
  1136. if (retval)
  1137. goto bad_fork_cleanup_files;
  1138. retval = copy_sighand(clone_flags, p);
  1139. if (retval)
  1140. goto bad_fork_cleanup_fs;
  1141. retval = copy_signal(clone_flags, p);
  1142. if (retval)
  1143. goto bad_fork_cleanup_sighand;
  1144. retval = copy_mm(clone_flags, p);
  1145. if (retval)
  1146. goto bad_fork_cleanup_signal;
  1147. retval = copy_namespaces(clone_flags, p);
  1148. if (retval)
  1149. goto bad_fork_cleanup_mm;
  1150. retval = copy_io(clone_flags, p);
  1151. if (retval)
  1152. goto bad_fork_cleanup_namespaces;
  1153. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1154. if (retval)
  1155. goto bad_fork_cleanup_io;
  1156. if (pid != &init_struct_pid) {
  1157. retval = -ENOMEM;
  1158. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1159. if (!pid)
  1160. goto bad_fork_cleanup_io;
  1161. }
  1162. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1163. /*
  1164. * Clear TID on mm_release()?
  1165. */
  1166. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1167. #ifdef CONFIG_BLOCK
  1168. p->plug = NULL;
  1169. #endif
  1170. #ifdef CONFIG_FUTEX
  1171. p->robust_list = NULL;
  1172. #ifdef CONFIG_COMPAT
  1173. p->compat_robust_list = NULL;
  1174. #endif
  1175. INIT_LIST_HEAD(&p->pi_state_list);
  1176. p->pi_state_cache = NULL;
  1177. #endif
  1178. uprobe_copy_process(p);
  1179. /*
  1180. * sigaltstack should be cleared when sharing the same VM
  1181. */
  1182. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1183. p->sas_ss_sp = p->sas_ss_size = 0;
  1184. /*
  1185. * Syscall tracing and stepping should be turned off in the
  1186. * child regardless of CLONE_PTRACE.
  1187. */
  1188. user_disable_single_step(p);
  1189. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1190. #ifdef TIF_SYSCALL_EMU
  1191. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1192. #endif
  1193. clear_all_latency_tracing(p);
  1194. /* ok, now we should be set up.. */
  1195. p->pid = pid_nr(pid);
  1196. if (clone_flags & CLONE_THREAD) {
  1197. p->exit_signal = -1;
  1198. p->group_leader = current->group_leader;
  1199. p->tgid = current->tgid;
  1200. } else {
  1201. if (clone_flags & CLONE_PARENT)
  1202. p->exit_signal = current->group_leader->exit_signal;
  1203. else
  1204. p->exit_signal = (clone_flags & CSIGNAL);
  1205. p->group_leader = p;
  1206. p->tgid = p->pid;
  1207. }
  1208. p->pdeath_signal = 0;
  1209. p->exit_state = 0;
  1210. p->nr_dirtied = 0;
  1211. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1212. p->dirty_paused_when = 0;
  1213. INIT_LIST_HEAD(&p->thread_group);
  1214. p->task_works = NULL;
  1215. /*
  1216. * Make it visible to the rest of the system, but dont wake it up yet.
  1217. * Need tasklist lock for parent etc handling!
  1218. */
  1219. write_lock_irq(&tasklist_lock);
  1220. /* CLONE_PARENT re-uses the old parent */
  1221. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1222. p->real_parent = current->real_parent;
  1223. p->parent_exec_id = current->parent_exec_id;
  1224. } else {
  1225. p->real_parent = current;
  1226. p->parent_exec_id = current->self_exec_id;
  1227. }
  1228. spin_lock(&current->sighand->siglock);
  1229. /*
  1230. * Process group and session signals need to be delivered to just the
  1231. * parent before the fork or both the parent and the child after the
  1232. * fork. Restart if a signal comes in before we add the new process to
  1233. * it's process group.
  1234. * A fatal signal pending means that current will exit, so the new
  1235. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1236. */
  1237. recalc_sigpending();
  1238. if (signal_pending(current)) {
  1239. spin_unlock(&current->sighand->siglock);
  1240. write_unlock_irq(&tasklist_lock);
  1241. retval = -ERESTARTNOINTR;
  1242. goto bad_fork_free_pid;
  1243. }
  1244. if (likely(p->pid)) {
  1245. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1246. init_task_pid(p, PIDTYPE_PID, pid);
  1247. if (thread_group_leader(p)) {
  1248. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1249. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1250. if (is_child_reaper(pid)) {
  1251. ns_of_pid(pid)->child_reaper = p;
  1252. p->signal->flags |= SIGNAL_UNKILLABLE;
  1253. }
  1254. p->signal->leader_pid = pid;
  1255. p->signal->tty = tty_kref_get(current->signal->tty);
  1256. list_add_tail(&p->sibling, &p->real_parent->children);
  1257. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1258. attach_pid(p, PIDTYPE_PGID);
  1259. attach_pid(p, PIDTYPE_SID);
  1260. __this_cpu_inc(process_counts);
  1261. } else {
  1262. current->signal->nr_threads++;
  1263. atomic_inc(&current->signal->live);
  1264. atomic_inc(&current->signal->sigcnt);
  1265. list_add_tail_rcu(&p->thread_group,
  1266. &p->group_leader->thread_group);
  1267. }
  1268. attach_pid(p, PIDTYPE_PID);
  1269. nr_threads++;
  1270. }
  1271. total_forks++;
  1272. spin_unlock(&current->sighand->siglock);
  1273. write_unlock_irq(&tasklist_lock);
  1274. proc_fork_connector(p);
  1275. cgroup_post_fork(p);
  1276. if (clone_flags & CLONE_THREAD)
  1277. threadgroup_change_end(current);
  1278. perf_event_fork(p);
  1279. trace_task_newtask(p, clone_flags);
  1280. return p;
  1281. bad_fork_free_pid:
  1282. if (pid != &init_struct_pid)
  1283. free_pid(pid);
  1284. bad_fork_cleanup_io:
  1285. if (p->io_context)
  1286. exit_io_context(p);
  1287. bad_fork_cleanup_namespaces:
  1288. exit_task_namespaces(p);
  1289. bad_fork_cleanup_mm:
  1290. if (p->mm)
  1291. mmput(p->mm);
  1292. bad_fork_cleanup_signal:
  1293. if (!(clone_flags & CLONE_THREAD))
  1294. free_signal_struct(p->signal);
  1295. bad_fork_cleanup_sighand:
  1296. __cleanup_sighand(p->sighand);
  1297. bad_fork_cleanup_fs:
  1298. exit_fs(p); /* blocking */
  1299. bad_fork_cleanup_files:
  1300. exit_files(p); /* blocking */
  1301. bad_fork_cleanup_semundo:
  1302. exit_sem(p);
  1303. bad_fork_cleanup_audit:
  1304. audit_free(p);
  1305. bad_fork_cleanup_policy:
  1306. perf_event_free_task(p);
  1307. #ifdef CONFIG_NUMA
  1308. mpol_put(p->mempolicy);
  1309. bad_fork_cleanup_cgroup:
  1310. #endif
  1311. if (clone_flags & CLONE_THREAD)
  1312. threadgroup_change_end(current);
  1313. cgroup_exit(p, 0);
  1314. delayacct_tsk_free(p);
  1315. module_put(task_thread_info(p)->exec_domain->module);
  1316. bad_fork_cleanup_count:
  1317. atomic_dec(&p->cred->user->processes);
  1318. exit_creds(p);
  1319. bad_fork_free:
  1320. free_task(p);
  1321. fork_out:
  1322. return ERR_PTR(retval);
  1323. }
  1324. static inline void init_idle_pids(struct pid_link *links)
  1325. {
  1326. enum pid_type type;
  1327. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1328. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1329. links[type].pid = &init_struct_pid;
  1330. }
  1331. }
  1332. struct task_struct *fork_idle(int cpu)
  1333. {
  1334. struct task_struct *task;
  1335. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1336. if (!IS_ERR(task)) {
  1337. init_idle_pids(task->pids);
  1338. init_idle(task, cpu);
  1339. }
  1340. return task;
  1341. }
  1342. /*
  1343. * Ok, this is the main fork-routine.
  1344. *
  1345. * It copies the process, and if successful kick-starts
  1346. * it and waits for it to finish using the VM if required.
  1347. */
  1348. long do_fork(unsigned long clone_flags,
  1349. unsigned long stack_start,
  1350. unsigned long stack_size,
  1351. int __user *parent_tidptr,
  1352. int __user *child_tidptr)
  1353. {
  1354. struct task_struct *p;
  1355. int trace = 0;
  1356. long nr;
  1357. /*
  1358. * Determine whether and which event to report to ptracer. When
  1359. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1360. * requested, no event is reported; otherwise, report if the event
  1361. * for the type of forking is enabled.
  1362. */
  1363. if (!(clone_flags & CLONE_UNTRACED)) {
  1364. if (clone_flags & CLONE_VFORK)
  1365. trace = PTRACE_EVENT_VFORK;
  1366. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1367. trace = PTRACE_EVENT_CLONE;
  1368. else
  1369. trace = PTRACE_EVENT_FORK;
  1370. if (likely(!ptrace_event_enabled(current, trace)))
  1371. trace = 0;
  1372. }
  1373. p = copy_process(clone_flags, stack_start, stack_size,
  1374. child_tidptr, NULL, trace);
  1375. /*
  1376. * Do this prior waking up the new thread - the thread pointer
  1377. * might get invalid after that point, if the thread exits quickly.
  1378. */
  1379. if (!IS_ERR(p)) {
  1380. struct completion vfork;
  1381. trace_sched_process_fork(current, p);
  1382. nr = task_pid_vnr(p);
  1383. if (clone_flags & CLONE_PARENT_SETTID)
  1384. put_user(nr, parent_tidptr);
  1385. if (clone_flags & CLONE_VFORK) {
  1386. p->vfork_done = &vfork;
  1387. init_completion(&vfork);
  1388. get_task_struct(p);
  1389. }
  1390. wake_up_new_task(p);
  1391. /* forking complete and child started to run, tell ptracer */
  1392. if (unlikely(trace))
  1393. ptrace_event(trace, nr);
  1394. if (clone_flags & CLONE_VFORK) {
  1395. if (!wait_for_vfork_done(p, &vfork))
  1396. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1397. }
  1398. } else {
  1399. nr = PTR_ERR(p);
  1400. }
  1401. return nr;
  1402. }
  1403. /*
  1404. * Create a kernel thread.
  1405. */
  1406. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1407. {
  1408. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1409. (unsigned long)arg, NULL, NULL);
  1410. }
  1411. #ifdef __ARCH_WANT_SYS_FORK
  1412. SYSCALL_DEFINE0(fork)
  1413. {
  1414. #ifdef CONFIG_MMU
  1415. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1416. #else
  1417. /* can not support in nommu mode */
  1418. return(-EINVAL);
  1419. #endif
  1420. }
  1421. #endif
  1422. #ifdef __ARCH_WANT_SYS_VFORK
  1423. SYSCALL_DEFINE0(vfork)
  1424. {
  1425. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1426. 0, NULL, NULL);
  1427. }
  1428. #endif
  1429. #ifdef __ARCH_WANT_SYS_CLONE
  1430. #ifdef CONFIG_CLONE_BACKWARDS
  1431. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1432. int __user *, parent_tidptr,
  1433. int, tls_val,
  1434. int __user *, child_tidptr)
  1435. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1436. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1437. int __user *, parent_tidptr,
  1438. int __user *, child_tidptr,
  1439. int, tls_val)
  1440. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1441. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1442. int, stack_size,
  1443. int __user *, parent_tidptr,
  1444. int __user *, child_tidptr,
  1445. int, tls_val)
  1446. #else
  1447. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1448. int __user *, parent_tidptr,
  1449. int __user *, child_tidptr,
  1450. int, tls_val)
  1451. #endif
  1452. {
  1453. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1454. }
  1455. #endif
  1456. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1457. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1458. #endif
  1459. static void sighand_ctor(void *data)
  1460. {
  1461. struct sighand_struct *sighand = data;
  1462. spin_lock_init(&sighand->siglock);
  1463. init_waitqueue_head(&sighand->signalfd_wqh);
  1464. }
  1465. void __init proc_caches_init(void)
  1466. {
  1467. sighand_cachep = kmem_cache_create("sighand_cache",
  1468. sizeof(struct sighand_struct), 0,
  1469. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1470. SLAB_NOTRACK, sighand_ctor);
  1471. signal_cachep = kmem_cache_create("signal_cache",
  1472. sizeof(struct signal_struct), 0,
  1473. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1474. files_cachep = kmem_cache_create("files_cache",
  1475. sizeof(struct files_struct), 0,
  1476. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1477. fs_cachep = kmem_cache_create("fs_cache",
  1478. sizeof(struct fs_struct), 0,
  1479. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1480. /*
  1481. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1482. * whole struct cpumask for the OFFSTACK case. We could change
  1483. * this to *only* allocate as much of it as required by the
  1484. * maximum number of CPU's we can ever have. The cpumask_allocation
  1485. * is at the end of the structure, exactly for that reason.
  1486. */
  1487. mm_cachep = kmem_cache_create("mm_struct",
  1488. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1489. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1490. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1491. mmap_init();
  1492. nsproxy_cache_init();
  1493. }
  1494. /*
  1495. * Check constraints on flags passed to the unshare system call.
  1496. */
  1497. static int check_unshare_flags(unsigned long unshare_flags)
  1498. {
  1499. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1500. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1501. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1502. CLONE_NEWUSER|CLONE_NEWPID))
  1503. return -EINVAL;
  1504. /*
  1505. * Not implemented, but pretend it works if there is nothing to
  1506. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1507. * needs to unshare vm.
  1508. */
  1509. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1510. /* FIXME: get_task_mm() increments ->mm_users */
  1511. if (atomic_read(&current->mm->mm_users) > 1)
  1512. return -EINVAL;
  1513. }
  1514. return 0;
  1515. }
  1516. /*
  1517. * Unshare the filesystem structure if it is being shared
  1518. */
  1519. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1520. {
  1521. struct fs_struct *fs = current->fs;
  1522. if (!(unshare_flags & CLONE_FS) || !fs)
  1523. return 0;
  1524. /* don't need lock here; in the worst case we'll do useless copy */
  1525. if (fs->users == 1)
  1526. return 0;
  1527. *new_fsp = copy_fs_struct(fs);
  1528. if (!*new_fsp)
  1529. return -ENOMEM;
  1530. return 0;
  1531. }
  1532. /*
  1533. * Unshare file descriptor table if it is being shared
  1534. */
  1535. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1536. {
  1537. struct files_struct *fd = current->files;
  1538. int error = 0;
  1539. if ((unshare_flags & CLONE_FILES) &&
  1540. (fd && atomic_read(&fd->count) > 1)) {
  1541. *new_fdp = dup_fd(fd, &error);
  1542. if (!*new_fdp)
  1543. return error;
  1544. }
  1545. return 0;
  1546. }
  1547. /*
  1548. * unshare allows a process to 'unshare' part of the process
  1549. * context which was originally shared using clone. copy_*
  1550. * functions used by do_fork() cannot be used here directly
  1551. * because they modify an inactive task_struct that is being
  1552. * constructed. Here we are modifying the current, active,
  1553. * task_struct.
  1554. */
  1555. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1556. {
  1557. struct fs_struct *fs, *new_fs = NULL;
  1558. struct files_struct *fd, *new_fd = NULL;
  1559. struct cred *new_cred = NULL;
  1560. struct nsproxy *new_nsproxy = NULL;
  1561. int do_sysvsem = 0;
  1562. int err;
  1563. /*
  1564. * If unsharing a user namespace must also unshare the thread.
  1565. */
  1566. if (unshare_flags & CLONE_NEWUSER)
  1567. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1568. /*
  1569. * If unsharing a thread from a thread group, must also unshare vm.
  1570. */
  1571. if (unshare_flags & CLONE_THREAD)
  1572. unshare_flags |= CLONE_VM;
  1573. /*
  1574. * If unsharing vm, must also unshare signal handlers.
  1575. */
  1576. if (unshare_flags & CLONE_VM)
  1577. unshare_flags |= CLONE_SIGHAND;
  1578. /*
  1579. * If unsharing namespace, must also unshare filesystem information.
  1580. */
  1581. if (unshare_flags & CLONE_NEWNS)
  1582. unshare_flags |= CLONE_FS;
  1583. err = check_unshare_flags(unshare_flags);
  1584. if (err)
  1585. goto bad_unshare_out;
  1586. /*
  1587. * CLONE_NEWIPC must also detach from the undolist: after switching
  1588. * to a new ipc namespace, the semaphore arrays from the old
  1589. * namespace are unreachable.
  1590. */
  1591. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1592. do_sysvsem = 1;
  1593. err = unshare_fs(unshare_flags, &new_fs);
  1594. if (err)
  1595. goto bad_unshare_out;
  1596. err = unshare_fd(unshare_flags, &new_fd);
  1597. if (err)
  1598. goto bad_unshare_cleanup_fs;
  1599. err = unshare_userns(unshare_flags, &new_cred);
  1600. if (err)
  1601. goto bad_unshare_cleanup_fd;
  1602. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1603. new_cred, new_fs);
  1604. if (err)
  1605. goto bad_unshare_cleanup_cred;
  1606. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1607. if (do_sysvsem) {
  1608. /*
  1609. * CLONE_SYSVSEM is equivalent to sys_exit().
  1610. */
  1611. exit_sem(current);
  1612. }
  1613. if (new_nsproxy)
  1614. switch_task_namespaces(current, new_nsproxy);
  1615. task_lock(current);
  1616. if (new_fs) {
  1617. fs = current->fs;
  1618. spin_lock(&fs->lock);
  1619. current->fs = new_fs;
  1620. if (--fs->users)
  1621. new_fs = NULL;
  1622. else
  1623. new_fs = fs;
  1624. spin_unlock(&fs->lock);
  1625. }
  1626. if (new_fd) {
  1627. fd = current->files;
  1628. current->files = new_fd;
  1629. new_fd = fd;
  1630. }
  1631. task_unlock(current);
  1632. if (new_cred) {
  1633. /* Install the new user namespace */
  1634. commit_creds(new_cred);
  1635. new_cred = NULL;
  1636. }
  1637. }
  1638. bad_unshare_cleanup_cred:
  1639. if (new_cred)
  1640. put_cred(new_cred);
  1641. bad_unshare_cleanup_fd:
  1642. if (new_fd)
  1643. put_files_struct(new_fd);
  1644. bad_unshare_cleanup_fs:
  1645. if (new_fs)
  1646. free_fs_struct(new_fs);
  1647. bad_unshare_out:
  1648. return err;
  1649. }
  1650. /*
  1651. * Helper to unshare the files of the current task.
  1652. * We don't want to expose copy_files internals to
  1653. * the exec layer of the kernel.
  1654. */
  1655. int unshare_files(struct files_struct **displaced)
  1656. {
  1657. struct task_struct *task = current;
  1658. struct files_struct *copy = NULL;
  1659. int error;
  1660. error = unshare_fd(CLONE_FILES, &copy);
  1661. if (error || !copy) {
  1662. *displaced = NULL;
  1663. return error;
  1664. }
  1665. *displaced = task->files;
  1666. task_lock(task);
  1667. task->files = copy;
  1668. task_unlock(task);
  1669. return 0;
  1670. }