task_mmu.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <asm/elf.h>
  16. #include <asm/uaccess.h>
  17. #include <asm/tlbflush.h>
  18. #include "internal.h"
  19. void task_mem(struct seq_file *m, struct mm_struct *mm)
  20. {
  21. unsigned long data, text, lib, swap;
  22. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  23. /*
  24. * Note: to minimize their overhead, mm maintains hiwater_vm and
  25. * hiwater_rss only when about to *lower* total_vm or rss. Any
  26. * collector of these hiwater stats must therefore get total_vm
  27. * and rss too, which will usually be the higher. Barriers? not
  28. * worth the effort, such snapshots can always be inconsistent.
  29. */
  30. hiwater_vm = total_vm = mm->total_vm;
  31. if (hiwater_vm < mm->hiwater_vm)
  32. hiwater_vm = mm->hiwater_vm;
  33. hiwater_rss = total_rss = get_mm_rss(mm);
  34. if (hiwater_rss < mm->hiwater_rss)
  35. hiwater_rss = mm->hiwater_rss;
  36. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  37. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  38. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  39. swap = get_mm_counter(mm, MM_SWAPENTS);
  40. seq_printf(m,
  41. "VmPeak:\t%8lu kB\n"
  42. "VmSize:\t%8lu kB\n"
  43. "VmLck:\t%8lu kB\n"
  44. "VmPin:\t%8lu kB\n"
  45. "VmHWM:\t%8lu kB\n"
  46. "VmRSS:\t%8lu kB\n"
  47. "VmData:\t%8lu kB\n"
  48. "VmStk:\t%8lu kB\n"
  49. "VmExe:\t%8lu kB\n"
  50. "VmLib:\t%8lu kB\n"
  51. "VmPTE:\t%8lu kB\n"
  52. "VmSwap:\t%8lu kB\n",
  53. hiwater_vm << (PAGE_SHIFT-10),
  54. total_vm << (PAGE_SHIFT-10),
  55. mm->locked_vm << (PAGE_SHIFT-10),
  56. mm->pinned_vm << (PAGE_SHIFT-10),
  57. hiwater_rss << (PAGE_SHIFT-10),
  58. total_rss << (PAGE_SHIFT-10),
  59. data << (PAGE_SHIFT-10),
  60. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  61. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  62. swap << (PAGE_SHIFT-10));
  63. }
  64. unsigned long task_vsize(struct mm_struct *mm)
  65. {
  66. return PAGE_SIZE * mm->total_vm;
  67. }
  68. unsigned long task_statm(struct mm_struct *mm,
  69. unsigned long *shared, unsigned long *text,
  70. unsigned long *data, unsigned long *resident)
  71. {
  72. *shared = get_mm_counter(mm, MM_FILEPAGES);
  73. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  74. >> PAGE_SHIFT;
  75. *data = mm->total_vm - mm->shared_vm;
  76. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  77. return mm->total_vm;
  78. }
  79. static void pad_len_spaces(struct seq_file *m, int len)
  80. {
  81. len = 25 + sizeof(void*) * 6 - len;
  82. if (len < 1)
  83. len = 1;
  84. seq_printf(m, "%*c", len, ' ');
  85. }
  86. #ifdef CONFIG_NUMA
  87. /*
  88. * These functions are for numa_maps but called in generic **maps seq_file
  89. * ->start(), ->stop() ops.
  90. *
  91. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  92. * Each mempolicy object is controlled by reference counting. The problem here
  93. * is how to avoid accessing dead mempolicy object.
  94. *
  95. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  96. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  97. *
  98. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  99. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  100. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  101. * gurantee the task never exits under us. But taking task_lock() around
  102. * get_vma_plicy() causes lock order problem.
  103. *
  104. * To access task->mempolicy without lock, we hold a reference count of an
  105. * object pointed by task->mempolicy and remember it. This will guarantee
  106. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  107. */
  108. static void hold_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. struct task_struct *task = priv->task;
  111. task_lock(task);
  112. priv->task_mempolicy = task->mempolicy;
  113. mpol_get(priv->task_mempolicy);
  114. task_unlock(task);
  115. }
  116. static void release_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. mpol_put(priv->task_mempolicy);
  119. }
  120. #else
  121. static void hold_task_mempolicy(struct proc_maps_private *priv)
  122. {
  123. }
  124. static void release_task_mempolicy(struct proc_maps_private *priv)
  125. {
  126. }
  127. #endif
  128. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  129. {
  130. if (vma && vma != priv->tail_vma) {
  131. struct mm_struct *mm = vma->vm_mm;
  132. release_task_mempolicy(priv);
  133. up_read(&mm->mmap_sem);
  134. mmput(mm);
  135. }
  136. }
  137. static void *m_start(struct seq_file *m, loff_t *pos)
  138. {
  139. struct proc_maps_private *priv = m->private;
  140. unsigned long last_addr = m->version;
  141. struct mm_struct *mm;
  142. struct vm_area_struct *vma, *tail_vma = NULL;
  143. loff_t l = *pos;
  144. /* Clear the per syscall fields in priv */
  145. priv->task = NULL;
  146. priv->tail_vma = NULL;
  147. /*
  148. * We remember last_addr rather than next_addr to hit with
  149. * mmap_cache most of the time. We have zero last_addr at
  150. * the beginning and also after lseek. We will have -1 last_addr
  151. * after the end of the vmas.
  152. */
  153. if (last_addr == -1UL)
  154. return NULL;
  155. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  156. if (!priv->task)
  157. return ERR_PTR(-ESRCH);
  158. mm = mm_access(priv->task, PTRACE_MODE_READ);
  159. if (!mm || IS_ERR(mm))
  160. return mm;
  161. down_read(&mm->mmap_sem);
  162. tail_vma = get_gate_vma(priv->task->mm);
  163. priv->tail_vma = tail_vma;
  164. hold_task_mempolicy(priv);
  165. /* Start with last addr hint */
  166. vma = find_vma(mm, last_addr);
  167. if (last_addr && vma) {
  168. vma = vma->vm_next;
  169. goto out;
  170. }
  171. /*
  172. * Check the vma index is within the range and do
  173. * sequential scan until m_index.
  174. */
  175. vma = NULL;
  176. if ((unsigned long)l < mm->map_count) {
  177. vma = mm->mmap;
  178. while (l-- && vma)
  179. vma = vma->vm_next;
  180. goto out;
  181. }
  182. if (l != mm->map_count)
  183. tail_vma = NULL; /* After gate vma */
  184. out:
  185. if (vma)
  186. return vma;
  187. release_task_mempolicy(priv);
  188. /* End of vmas has been reached */
  189. m->version = (tail_vma != NULL)? 0: -1UL;
  190. up_read(&mm->mmap_sem);
  191. mmput(mm);
  192. return tail_vma;
  193. }
  194. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  195. {
  196. struct proc_maps_private *priv = m->private;
  197. struct vm_area_struct *vma = v;
  198. struct vm_area_struct *tail_vma = priv->tail_vma;
  199. (*pos)++;
  200. if (vma && (vma != tail_vma) && vma->vm_next)
  201. return vma->vm_next;
  202. vma_stop(priv, vma);
  203. return (vma != tail_vma)? tail_vma: NULL;
  204. }
  205. static void m_stop(struct seq_file *m, void *v)
  206. {
  207. struct proc_maps_private *priv = m->private;
  208. struct vm_area_struct *vma = v;
  209. if (!IS_ERR(vma))
  210. vma_stop(priv, vma);
  211. if (priv->task)
  212. put_task_struct(priv->task);
  213. }
  214. static int do_maps_open(struct inode *inode, struct file *file,
  215. const struct seq_operations *ops)
  216. {
  217. struct proc_maps_private *priv;
  218. int ret = -ENOMEM;
  219. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  220. if (priv) {
  221. priv->pid = proc_pid(inode);
  222. ret = seq_open(file, ops);
  223. if (!ret) {
  224. struct seq_file *m = file->private_data;
  225. m->private = priv;
  226. } else {
  227. kfree(priv);
  228. }
  229. }
  230. return ret;
  231. }
  232. static void
  233. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  234. {
  235. struct mm_struct *mm = vma->vm_mm;
  236. struct file *file = vma->vm_file;
  237. struct proc_maps_private *priv = m->private;
  238. struct task_struct *task = priv->task;
  239. vm_flags_t flags = vma->vm_flags;
  240. unsigned long ino = 0;
  241. unsigned long long pgoff = 0;
  242. unsigned long start, end;
  243. dev_t dev = 0;
  244. int len;
  245. const char *name = NULL;
  246. if (file) {
  247. struct inode *inode = file_inode(vma->vm_file);
  248. dev = inode->i_sb->s_dev;
  249. ino = inode->i_ino;
  250. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  251. }
  252. /* We don't show the stack guard page in /proc/maps */
  253. start = vma->vm_start;
  254. if (stack_guard_page_start(vma, start))
  255. start += PAGE_SIZE;
  256. end = vma->vm_end;
  257. if (stack_guard_page_end(vma, end))
  258. end -= PAGE_SIZE;
  259. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  260. start,
  261. end,
  262. flags & VM_READ ? 'r' : '-',
  263. flags & VM_WRITE ? 'w' : '-',
  264. flags & VM_EXEC ? 'x' : '-',
  265. flags & VM_MAYSHARE ? 's' : 'p',
  266. pgoff,
  267. MAJOR(dev), MINOR(dev), ino, &len);
  268. /*
  269. * Print the dentry name for named mappings, and a
  270. * special [heap] marker for the heap:
  271. */
  272. if (file) {
  273. pad_len_spaces(m, len);
  274. seq_path(m, &file->f_path, "\n");
  275. goto done;
  276. }
  277. name = arch_vma_name(vma);
  278. if (!name) {
  279. pid_t tid;
  280. if (!mm) {
  281. name = "[vdso]";
  282. goto done;
  283. }
  284. if (vma->vm_start <= mm->brk &&
  285. vma->vm_end >= mm->start_brk) {
  286. name = "[heap]";
  287. goto done;
  288. }
  289. tid = vm_is_stack(task, vma, is_pid);
  290. if (tid != 0) {
  291. /*
  292. * Thread stack in /proc/PID/task/TID/maps or
  293. * the main process stack.
  294. */
  295. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  296. vma->vm_end >= mm->start_stack)) {
  297. name = "[stack]";
  298. } else {
  299. /* Thread stack in /proc/PID/maps */
  300. pad_len_spaces(m, len);
  301. seq_printf(m, "[stack:%d]", tid);
  302. }
  303. }
  304. }
  305. done:
  306. if (name) {
  307. pad_len_spaces(m, len);
  308. seq_puts(m, name);
  309. }
  310. seq_putc(m, '\n');
  311. }
  312. static int show_map(struct seq_file *m, void *v, int is_pid)
  313. {
  314. struct vm_area_struct *vma = v;
  315. struct proc_maps_private *priv = m->private;
  316. struct task_struct *task = priv->task;
  317. show_map_vma(m, vma, is_pid);
  318. if (m->count < m->size) /* vma is copied successfully */
  319. m->version = (vma != get_gate_vma(task->mm))
  320. ? vma->vm_start : 0;
  321. return 0;
  322. }
  323. static int show_pid_map(struct seq_file *m, void *v)
  324. {
  325. return show_map(m, v, 1);
  326. }
  327. static int show_tid_map(struct seq_file *m, void *v)
  328. {
  329. return show_map(m, v, 0);
  330. }
  331. static const struct seq_operations proc_pid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_pid_map
  336. };
  337. static const struct seq_operations proc_tid_maps_op = {
  338. .start = m_start,
  339. .next = m_next,
  340. .stop = m_stop,
  341. .show = show_tid_map
  342. };
  343. static int pid_maps_open(struct inode *inode, struct file *file)
  344. {
  345. return do_maps_open(inode, file, &proc_pid_maps_op);
  346. }
  347. static int tid_maps_open(struct inode *inode, struct file *file)
  348. {
  349. return do_maps_open(inode, file, &proc_tid_maps_op);
  350. }
  351. const struct file_operations proc_pid_maps_operations = {
  352. .open = pid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = seq_release_private,
  356. };
  357. const struct file_operations proc_tid_maps_operations = {
  358. .open = tid_maps_open,
  359. .read = seq_read,
  360. .llseek = seq_lseek,
  361. .release = seq_release_private,
  362. };
  363. /*
  364. * Proportional Set Size(PSS): my share of RSS.
  365. *
  366. * PSS of a process is the count of pages it has in memory, where each
  367. * page is divided by the number of processes sharing it. So if a
  368. * process has 1000 pages all to itself, and 1000 shared with one other
  369. * process, its PSS will be 1500.
  370. *
  371. * To keep (accumulated) division errors low, we adopt a 64bit
  372. * fixed-point pss counter to minimize division errors. So (pss >>
  373. * PSS_SHIFT) would be the real byte count.
  374. *
  375. * A shift of 12 before division means (assuming 4K page size):
  376. * - 1M 3-user-pages add up to 8KB errors;
  377. * - supports mapcount up to 2^24, or 16M;
  378. * - supports PSS up to 2^52 bytes, or 4PB.
  379. */
  380. #define PSS_SHIFT 12
  381. #ifdef CONFIG_PROC_PAGE_MONITOR
  382. struct mem_size_stats {
  383. struct vm_area_struct *vma;
  384. unsigned long resident;
  385. unsigned long shared_clean;
  386. unsigned long shared_dirty;
  387. unsigned long private_clean;
  388. unsigned long private_dirty;
  389. unsigned long referenced;
  390. unsigned long anonymous;
  391. unsigned long anonymous_thp;
  392. unsigned long swap;
  393. unsigned long nonlinear;
  394. u64 pss;
  395. };
  396. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  397. unsigned long ptent_size, struct mm_walk *walk)
  398. {
  399. struct mem_size_stats *mss = walk->private;
  400. struct vm_area_struct *vma = mss->vma;
  401. pgoff_t pgoff = linear_page_index(vma, addr);
  402. struct page *page = NULL;
  403. int mapcount;
  404. if (pte_present(ptent)) {
  405. page = vm_normal_page(vma, addr, ptent);
  406. } else if (is_swap_pte(ptent)) {
  407. swp_entry_t swpent = pte_to_swp_entry(ptent);
  408. if (!non_swap_entry(swpent))
  409. mss->swap += ptent_size;
  410. else if (is_migration_entry(swpent))
  411. page = migration_entry_to_page(swpent);
  412. } else if (pte_file(ptent)) {
  413. if (pte_to_pgoff(ptent) != pgoff)
  414. mss->nonlinear += ptent_size;
  415. }
  416. if (!page)
  417. return;
  418. if (PageAnon(page))
  419. mss->anonymous += ptent_size;
  420. if (page->index != pgoff)
  421. mss->nonlinear += ptent_size;
  422. mss->resident += ptent_size;
  423. /* Accumulate the size in pages that have been accessed. */
  424. if (pte_young(ptent) || PageReferenced(page))
  425. mss->referenced += ptent_size;
  426. mapcount = page_mapcount(page);
  427. if (mapcount >= 2) {
  428. if (pte_dirty(ptent) || PageDirty(page))
  429. mss->shared_dirty += ptent_size;
  430. else
  431. mss->shared_clean += ptent_size;
  432. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  433. } else {
  434. if (pte_dirty(ptent) || PageDirty(page))
  435. mss->private_dirty += ptent_size;
  436. else
  437. mss->private_clean += ptent_size;
  438. mss->pss += (ptent_size << PSS_SHIFT);
  439. }
  440. }
  441. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  442. struct mm_walk *walk)
  443. {
  444. struct mem_size_stats *mss = walk->private;
  445. struct vm_area_struct *vma = mss->vma;
  446. pte_t *pte;
  447. spinlock_t *ptl;
  448. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  449. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  450. spin_unlock(&walk->mm->page_table_lock);
  451. mss->anonymous_thp += HPAGE_PMD_SIZE;
  452. return 0;
  453. }
  454. if (pmd_trans_unstable(pmd))
  455. return 0;
  456. /*
  457. * The mmap_sem held all the way back in m_start() is what
  458. * keeps khugepaged out of here and from collapsing things
  459. * in here.
  460. */
  461. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  462. for (; addr != end; pte++, addr += PAGE_SIZE)
  463. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  464. pte_unmap_unlock(pte - 1, ptl);
  465. cond_resched();
  466. return 0;
  467. }
  468. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  469. {
  470. /*
  471. * Don't forget to update Documentation/ on changes.
  472. */
  473. static const char mnemonics[BITS_PER_LONG][2] = {
  474. /*
  475. * In case if we meet a flag we don't know about.
  476. */
  477. [0 ... (BITS_PER_LONG-1)] = "??",
  478. [ilog2(VM_READ)] = "rd",
  479. [ilog2(VM_WRITE)] = "wr",
  480. [ilog2(VM_EXEC)] = "ex",
  481. [ilog2(VM_SHARED)] = "sh",
  482. [ilog2(VM_MAYREAD)] = "mr",
  483. [ilog2(VM_MAYWRITE)] = "mw",
  484. [ilog2(VM_MAYEXEC)] = "me",
  485. [ilog2(VM_MAYSHARE)] = "ms",
  486. [ilog2(VM_GROWSDOWN)] = "gd",
  487. [ilog2(VM_PFNMAP)] = "pf",
  488. [ilog2(VM_DENYWRITE)] = "dw",
  489. [ilog2(VM_LOCKED)] = "lo",
  490. [ilog2(VM_IO)] = "io",
  491. [ilog2(VM_SEQ_READ)] = "sr",
  492. [ilog2(VM_RAND_READ)] = "rr",
  493. [ilog2(VM_DONTCOPY)] = "dc",
  494. [ilog2(VM_DONTEXPAND)] = "de",
  495. [ilog2(VM_ACCOUNT)] = "ac",
  496. [ilog2(VM_NORESERVE)] = "nr",
  497. [ilog2(VM_HUGETLB)] = "ht",
  498. [ilog2(VM_NONLINEAR)] = "nl",
  499. [ilog2(VM_ARCH_1)] = "ar",
  500. [ilog2(VM_DONTDUMP)] = "dd",
  501. [ilog2(VM_MIXEDMAP)] = "mm",
  502. [ilog2(VM_HUGEPAGE)] = "hg",
  503. [ilog2(VM_NOHUGEPAGE)] = "nh",
  504. [ilog2(VM_MERGEABLE)] = "mg",
  505. };
  506. size_t i;
  507. seq_puts(m, "VmFlags: ");
  508. for (i = 0; i < BITS_PER_LONG; i++) {
  509. if (vma->vm_flags & (1UL << i)) {
  510. seq_printf(m, "%c%c ",
  511. mnemonics[i][0], mnemonics[i][1]);
  512. }
  513. }
  514. seq_putc(m, '\n');
  515. }
  516. static int show_smap(struct seq_file *m, void *v, int is_pid)
  517. {
  518. struct proc_maps_private *priv = m->private;
  519. struct task_struct *task = priv->task;
  520. struct vm_area_struct *vma = v;
  521. struct mem_size_stats mss;
  522. struct mm_walk smaps_walk = {
  523. .pmd_entry = smaps_pte_range,
  524. .mm = vma->vm_mm,
  525. .private = &mss,
  526. };
  527. memset(&mss, 0, sizeof mss);
  528. mss.vma = vma;
  529. /* mmap_sem is held in m_start */
  530. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  531. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  532. show_map_vma(m, vma, is_pid);
  533. seq_printf(m,
  534. "Size: %8lu kB\n"
  535. "Rss: %8lu kB\n"
  536. "Pss: %8lu kB\n"
  537. "Shared_Clean: %8lu kB\n"
  538. "Shared_Dirty: %8lu kB\n"
  539. "Private_Clean: %8lu kB\n"
  540. "Private_Dirty: %8lu kB\n"
  541. "Referenced: %8lu kB\n"
  542. "Anonymous: %8lu kB\n"
  543. "AnonHugePages: %8lu kB\n"
  544. "Swap: %8lu kB\n"
  545. "KernelPageSize: %8lu kB\n"
  546. "MMUPageSize: %8lu kB\n"
  547. "Locked: %8lu kB\n",
  548. (vma->vm_end - vma->vm_start) >> 10,
  549. mss.resident >> 10,
  550. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  551. mss.shared_clean >> 10,
  552. mss.shared_dirty >> 10,
  553. mss.private_clean >> 10,
  554. mss.private_dirty >> 10,
  555. mss.referenced >> 10,
  556. mss.anonymous >> 10,
  557. mss.anonymous_thp >> 10,
  558. mss.swap >> 10,
  559. vma_kernel_pagesize(vma) >> 10,
  560. vma_mmu_pagesize(vma) >> 10,
  561. (vma->vm_flags & VM_LOCKED) ?
  562. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  563. if (vma->vm_flags & VM_NONLINEAR)
  564. seq_printf(m, "Nonlinear: %8lu kB\n",
  565. mss.nonlinear >> 10);
  566. show_smap_vma_flags(m, vma);
  567. if (m->count < m->size) /* vma is copied successfully */
  568. m->version = (vma != get_gate_vma(task->mm))
  569. ? vma->vm_start : 0;
  570. return 0;
  571. }
  572. static int show_pid_smap(struct seq_file *m, void *v)
  573. {
  574. return show_smap(m, v, 1);
  575. }
  576. static int show_tid_smap(struct seq_file *m, void *v)
  577. {
  578. return show_smap(m, v, 0);
  579. }
  580. static const struct seq_operations proc_pid_smaps_op = {
  581. .start = m_start,
  582. .next = m_next,
  583. .stop = m_stop,
  584. .show = show_pid_smap
  585. };
  586. static const struct seq_operations proc_tid_smaps_op = {
  587. .start = m_start,
  588. .next = m_next,
  589. .stop = m_stop,
  590. .show = show_tid_smap
  591. };
  592. static int pid_smaps_open(struct inode *inode, struct file *file)
  593. {
  594. return do_maps_open(inode, file, &proc_pid_smaps_op);
  595. }
  596. static int tid_smaps_open(struct inode *inode, struct file *file)
  597. {
  598. return do_maps_open(inode, file, &proc_tid_smaps_op);
  599. }
  600. const struct file_operations proc_pid_smaps_operations = {
  601. .open = pid_smaps_open,
  602. .read = seq_read,
  603. .llseek = seq_lseek,
  604. .release = seq_release_private,
  605. };
  606. const struct file_operations proc_tid_smaps_operations = {
  607. .open = tid_smaps_open,
  608. .read = seq_read,
  609. .llseek = seq_lseek,
  610. .release = seq_release_private,
  611. };
  612. /*
  613. * We do not want to have constant page-shift bits sitting in
  614. * pagemap entries and are about to reuse them some time soon.
  615. *
  616. * Here's the "migration strategy":
  617. * 1. when the system boots these bits remain what they are,
  618. * but a warning about future change is printed in log;
  619. * 2. once anyone clears soft-dirty bits via clear_refs file,
  620. * these flag is set to denote, that user is aware of the
  621. * new API and those page-shift bits change their meaning.
  622. * The respective warning is printed in dmesg;
  623. * 3. In a couple of releases we will remove all the mentions
  624. * of page-shift in pagemap entries.
  625. */
  626. static bool soft_dirty_cleared __read_mostly;
  627. enum clear_refs_types {
  628. CLEAR_REFS_ALL = 1,
  629. CLEAR_REFS_ANON,
  630. CLEAR_REFS_MAPPED,
  631. CLEAR_REFS_SOFT_DIRTY,
  632. CLEAR_REFS_LAST,
  633. };
  634. struct clear_refs_private {
  635. struct vm_area_struct *vma;
  636. enum clear_refs_types type;
  637. };
  638. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  639. unsigned long addr, pte_t *pte)
  640. {
  641. #ifdef CONFIG_MEM_SOFT_DIRTY
  642. /*
  643. * The soft-dirty tracker uses #PF-s to catch writes
  644. * to pages, so write-protect the pte as well. See the
  645. * Documentation/vm/soft-dirty.txt for full description
  646. * of how soft-dirty works.
  647. */
  648. pte_t ptent = *pte;
  649. if (pte_present(ptent)) {
  650. ptent = pte_wrprotect(ptent);
  651. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  652. } else if (is_swap_pte(ptent)) {
  653. ptent = pte_swp_clear_soft_dirty(ptent);
  654. } else if (pte_file(ptent)) {
  655. ptent = pte_file_clear_soft_dirty(ptent);
  656. }
  657. set_pte_at(vma->vm_mm, addr, pte, ptent);
  658. #endif
  659. }
  660. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  661. unsigned long end, struct mm_walk *walk)
  662. {
  663. struct clear_refs_private *cp = walk->private;
  664. struct vm_area_struct *vma = cp->vma;
  665. pte_t *pte, ptent;
  666. spinlock_t *ptl;
  667. struct page *page;
  668. split_huge_page_pmd(vma, addr, pmd);
  669. if (pmd_trans_unstable(pmd))
  670. return 0;
  671. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  672. for (; addr != end; pte++, addr += PAGE_SIZE) {
  673. ptent = *pte;
  674. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  675. clear_soft_dirty(vma, addr, pte);
  676. continue;
  677. }
  678. if (!pte_present(ptent))
  679. continue;
  680. page = vm_normal_page(vma, addr, ptent);
  681. if (!page)
  682. continue;
  683. /* Clear accessed and referenced bits. */
  684. ptep_test_and_clear_young(vma, addr, pte);
  685. ClearPageReferenced(page);
  686. }
  687. pte_unmap_unlock(pte - 1, ptl);
  688. cond_resched();
  689. return 0;
  690. }
  691. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  692. size_t count, loff_t *ppos)
  693. {
  694. struct task_struct *task;
  695. char buffer[PROC_NUMBUF];
  696. struct mm_struct *mm;
  697. struct vm_area_struct *vma;
  698. enum clear_refs_types type;
  699. int itype;
  700. int rv;
  701. memset(buffer, 0, sizeof(buffer));
  702. if (count > sizeof(buffer) - 1)
  703. count = sizeof(buffer) - 1;
  704. if (copy_from_user(buffer, buf, count))
  705. return -EFAULT;
  706. rv = kstrtoint(strstrip(buffer), 10, &itype);
  707. if (rv < 0)
  708. return rv;
  709. type = (enum clear_refs_types)itype;
  710. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  711. return -EINVAL;
  712. if (type == CLEAR_REFS_SOFT_DIRTY) {
  713. soft_dirty_cleared = true;
  714. pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
  715. "See the linux/Documentation/vm/pagemap.txt for details.\n");
  716. }
  717. task = get_proc_task(file_inode(file));
  718. if (!task)
  719. return -ESRCH;
  720. mm = get_task_mm(task);
  721. if (mm) {
  722. struct clear_refs_private cp = {
  723. .type = type,
  724. };
  725. struct mm_walk clear_refs_walk = {
  726. .pmd_entry = clear_refs_pte_range,
  727. .mm = mm,
  728. .private = &cp,
  729. };
  730. down_read(&mm->mmap_sem);
  731. if (type == CLEAR_REFS_SOFT_DIRTY)
  732. mmu_notifier_invalidate_range_start(mm, 0, -1);
  733. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  734. cp.vma = vma;
  735. if (is_vm_hugetlb_page(vma))
  736. continue;
  737. /*
  738. * Writing 1 to /proc/pid/clear_refs affects all pages.
  739. *
  740. * Writing 2 to /proc/pid/clear_refs only affects
  741. * Anonymous pages.
  742. *
  743. * Writing 3 to /proc/pid/clear_refs only affects file
  744. * mapped pages.
  745. */
  746. if (type == CLEAR_REFS_ANON && vma->vm_file)
  747. continue;
  748. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  749. continue;
  750. walk_page_range(vma->vm_start, vma->vm_end,
  751. &clear_refs_walk);
  752. }
  753. if (type == CLEAR_REFS_SOFT_DIRTY)
  754. mmu_notifier_invalidate_range_end(mm, 0, -1);
  755. flush_tlb_mm(mm);
  756. up_read(&mm->mmap_sem);
  757. mmput(mm);
  758. }
  759. put_task_struct(task);
  760. return count;
  761. }
  762. const struct file_operations proc_clear_refs_operations = {
  763. .write = clear_refs_write,
  764. .llseek = noop_llseek,
  765. };
  766. typedef struct {
  767. u64 pme;
  768. } pagemap_entry_t;
  769. struct pagemapread {
  770. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  771. pagemap_entry_t *buffer;
  772. bool v2;
  773. };
  774. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  775. #define PAGEMAP_WALK_MASK (PMD_MASK)
  776. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  777. #define PM_STATUS_BITS 3
  778. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  779. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  780. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  781. #define PM_PSHIFT_BITS 6
  782. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  783. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  784. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  785. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  786. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  787. /* in "new" pagemap pshift bits are occupied with more status bits */
  788. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  789. #define __PM_SOFT_DIRTY (1LL)
  790. #define PM_PRESENT PM_STATUS(4LL)
  791. #define PM_SWAP PM_STATUS(2LL)
  792. #define PM_FILE PM_STATUS(1LL)
  793. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  794. #define PM_END_OF_BUFFER 1
  795. static inline pagemap_entry_t make_pme(u64 val)
  796. {
  797. return (pagemap_entry_t) { .pme = val };
  798. }
  799. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  800. struct pagemapread *pm)
  801. {
  802. pm->buffer[pm->pos++] = *pme;
  803. if (pm->pos >= pm->len)
  804. return PM_END_OF_BUFFER;
  805. return 0;
  806. }
  807. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  808. struct mm_walk *walk)
  809. {
  810. struct pagemapread *pm = walk->private;
  811. unsigned long addr;
  812. int err = 0;
  813. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  814. for (addr = start; addr < end; addr += PAGE_SIZE) {
  815. err = add_to_pagemap(addr, &pme, pm);
  816. if (err)
  817. break;
  818. }
  819. return err;
  820. }
  821. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  822. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  823. {
  824. u64 frame, flags;
  825. struct page *page = NULL;
  826. int flags2 = 0;
  827. if (pte_present(pte)) {
  828. frame = pte_pfn(pte);
  829. flags = PM_PRESENT;
  830. page = vm_normal_page(vma, addr, pte);
  831. } else if (is_swap_pte(pte)) {
  832. swp_entry_t entry;
  833. if (pte_swp_soft_dirty(pte))
  834. flags2 |= __PM_SOFT_DIRTY;
  835. entry = pte_to_swp_entry(pte);
  836. frame = swp_type(entry) |
  837. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  838. flags = PM_SWAP;
  839. if (is_migration_entry(entry))
  840. page = migration_entry_to_page(entry);
  841. } else {
  842. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  843. return;
  844. }
  845. if (page && !PageAnon(page))
  846. flags |= PM_FILE;
  847. if (pte_soft_dirty(pte))
  848. flags2 |= __PM_SOFT_DIRTY;
  849. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  850. }
  851. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  852. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  853. pmd_t pmd, int offset, int pmd_flags2)
  854. {
  855. /*
  856. * Currently pmd for thp is always present because thp can not be
  857. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  858. * This if-check is just to prepare for future implementation.
  859. */
  860. if (pmd_present(pmd))
  861. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  862. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  863. else
  864. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  865. }
  866. #else
  867. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  868. pmd_t pmd, int offset, int pmd_flags2)
  869. {
  870. }
  871. #endif
  872. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  873. struct mm_walk *walk)
  874. {
  875. struct vm_area_struct *vma;
  876. struct pagemapread *pm = walk->private;
  877. pte_t *pte;
  878. int err = 0;
  879. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  880. /* find the first VMA at or above 'addr' */
  881. vma = find_vma(walk->mm, addr);
  882. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  883. int pmd_flags2;
  884. pmd_flags2 = (pmd_soft_dirty(*pmd) ? __PM_SOFT_DIRTY : 0);
  885. for (; addr != end; addr += PAGE_SIZE) {
  886. unsigned long offset;
  887. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  888. PAGE_SHIFT;
  889. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  890. err = add_to_pagemap(addr, &pme, pm);
  891. if (err)
  892. break;
  893. }
  894. spin_unlock(&walk->mm->page_table_lock);
  895. return err;
  896. }
  897. if (pmd_trans_unstable(pmd))
  898. return 0;
  899. for (; addr != end; addr += PAGE_SIZE) {
  900. /* check to see if we've left 'vma' behind
  901. * and need a new, higher one */
  902. if (vma && (addr >= vma->vm_end)) {
  903. vma = find_vma(walk->mm, addr);
  904. pme = make_pme(PM_NOT_PRESENT(pm->v2));
  905. }
  906. /* check that 'vma' actually covers this address,
  907. * and that it isn't a huge page vma */
  908. if (vma && (vma->vm_start <= addr) &&
  909. !is_vm_hugetlb_page(vma)) {
  910. pte = pte_offset_map(pmd, addr);
  911. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  912. /* unmap before userspace copy */
  913. pte_unmap(pte);
  914. }
  915. err = add_to_pagemap(addr, &pme, pm);
  916. if (err)
  917. return err;
  918. }
  919. cond_resched();
  920. return err;
  921. }
  922. #ifdef CONFIG_HUGETLB_PAGE
  923. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  924. pte_t pte, int offset)
  925. {
  926. if (pte_present(pte))
  927. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  928. | PM_STATUS2(pm->v2, 0) | PM_PRESENT);
  929. else
  930. *pme = make_pme(PM_NOT_PRESENT(pm->v2));
  931. }
  932. /* This function walks within one hugetlb entry in the single call */
  933. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  934. unsigned long addr, unsigned long end,
  935. struct mm_walk *walk)
  936. {
  937. struct pagemapread *pm = walk->private;
  938. int err = 0;
  939. pagemap_entry_t pme;
  940. for (; addr != end; addr += PAGE_SIZE) {
  941. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  942. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset);
  943. err = add_to_pagemap(addr, &pme, pm);
  944. if (err)
  945. return err;
  946. }
  947. cond_resched();
  948. return err;
  949. }
  950. #endif /* HUGETLB_PAGE */
  951. /*
  952. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  953. *
  954. * For each page in the address space, this file contains one 64-bit entry
  955. * consisting of the following:
  956. *
  957. * Bits 0-54 page frame number (PFN) if present
  958. * Bits 0-4 swap type if swapped
  959. * Bits 5-54 swap offset if swapped
  960. * Bits 55-60 page shift (page size = 1<<page shift)
  961. * Bit 61 page is file-page or shared-anon
  962. * Bit 62 page swapped
  963. * Bit 63 page present
  964. *
  965. * If the page is not present but in swap, then the PFN contains an
  966. * encoding of the swap file number and the page's offset into the
  967. * swap. Unmapped pages return a null PFN. This allows determining
  968. * precisely which pages are mapped (or in swap) and comparing mapped
  969. * pages between processes.
  970. *
  971. * Efficient users of this interface will use /proc/pid/maps to
  972. * determine which areas of memory are actually mapped and llseek to
  973. * skip over unmapped regions.
  974. */
  975. static ssize_t pagemap_read(struct file *file, char __user *buf,
  976. size_t count, loff_t *ppos)
  977. {
  978. struct task_struct *task = get_proc_task(file_inode(file));
  979. struct mm_struct *mm;
  980. struct pagemapread pm;
  981. int ret = -ESRCH;
  982. struct mm_walk pagemap_walk = {};
  983. unsigned long src;
  984. unsigned long svpfn;
  985. unsigned long start_vaddr;
  986. unsigned long end_vaddr;
  987. int copied = 0;
  988. if (!task)
  989. goto out;
  990. ret = -EINVAL;
  991. /* file position must be aligned */
  992. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  993. goto out_task;
  994. ret = 0;
  995. if (!count)
  996. goto out_task;
  997. pm.v2 = soft_dirty_cleared;
  998. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  999. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1000. ret = -ENOMEM;
  1001. if (!pm.buffer)
  1002. goto out_task;
  1003. mm = mm_access(task, PTRACE_MODE_READ);
  1004. ret = PTR_ERR(mm);
  1005. if (!mm || IS_ERR(mm))
  1006. goto out_free;
  1007. pagemap_walk.pmd_entry = pagemap_pte_range;
  1008. pagemap_walk.pte_hole = pagemap_pte_hole;
  1009. #ifdef CONFIG_HUGETLB_PAGE
  1010. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1011. #endif
  1012. pagemap_walk.mm = mm;
  1013. pagemap_walk.private = &pm;
  1014. src = *ppos;
  1015. svpfn = src / PM_ENTRY_BYTES;
  1016. start_vaddr = svpfn << PAGE_SHIFT;
  1017. end_vaddr = TASK_SIZE_OF(task);
  1018. /* watch out for wraparound */
  1019. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1020. start_vaddr = end_vaddr;
  1021. /*
  1022. * The odds are that this will stop walking way
  1023. * before end_vaddr, because the length of the
  1024. * user buffer is tracked in "pm", and the walk
  1025. * will stop when we hit the end of the buffer.
  1026. */
  1027. ret = 0;
  1028. while (count && (start_vaddr < end_vaddr)) {
  1029. int len;
  1030. unsigned long end;
  1031. pm.pos = 0;
  1032. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1033. /* overflow ? */
  1034. if (end < start_vaddr || end > end_vaddr)
  1035. end = end_vaddr;
  1036. down_read(&mm->mmap_sem);
  1037. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1038. up_read(&mm->mmap_sem);
  1039. start_vaddr = end;
  1040. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1041. if (copy_to_user(buf, pm.buffer, len)) {
  1042. ret = -EFAULT;
  1043. goto out_mm;
  1044. }
  1045. copied += len;
  1046. buf += len;
  1047. count -= len;
  1048. }
  1049. *ppos += copied;
  1050. if (!ret || ret == PM_END_OF_BUFFER)
  1051. ret = copied;
  1052. out_mm:
  1053. mmput(mm);
  1054. out_free:
  1055. kfree(pm.buffer);
  1056. out_task:
  1057. put_task_struct(task);
  1058. out:
  1059. return ret;
  1060. }
  1061. static int pagemap_open(struct inode *inode, struct file *file)
  1062. {
  1063. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1064. "to stop being page-shift some time soon. See the "
  1065. "linux/Documentation/vm/pagemap.txt for details.\n");
  1066. return 0;
  1067. }
  1068. const struct file_operations proc_pagemap_operations = {
  1069. .llseek = mem_lseek, /* borrow this */
  1070. .read = pagemap_read,
  1071. .open = pagemap_open,
  1072. };
  1073. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1074. #ifdef CONFIG_NUMA
  1075. struct numa_maps {
  1076. struct vm_area_struct *vma;
  1077. unsigned long pages;
  1078. unsigned long anon;
  1079. unsigned long active;
  1080. unsigned long writeback;
  1081. unsigned long mapcount_max;
  1082. unsigned long dirty;
  1083. unsigned long swapcache;
  1084. unsigned long node[MAX_NUMNODES];
  1085. };
  1086. struct numa_maps_private {
  1087. struct proc_maps_private proc_maps;
  1088. struct numa_maps md;
  1089. };
  1090. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1091. unsigned long nr_pages)
  1092. {
  1093. int count = page_mapcount(page);
  1094. md->pages += nr_pages;
  1095. if (pte_dirty || PageDirty(page))
  1096. md->dirty += nr_pages;
  1097. if (PageSwapCache(page))
  1098. md->swapcache += nr_pages;
  1099. if (PageActive(page) || PageUnevictable(page))
  1100. md->active += nr_pages;
  1101. if (PageWriteback(page))
  1102. md->writeback += nr_pages;
  1103. if (PageAnon(page))
  1104. md->anon += nr_pages;
  1105. if (count > md->mapcount_max)
  1106. md->mapcount_max = count;
  1107. md->node[page_to_nid(page)] += nr_pages;
  1108. }
  1109. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1110. unsigned long addr)
  1111. {
  1112. struct page *page;
  1113. int nid;
  1114. if (!pte_present(pte))
  1115. return NULL;
  1116. page = vm_normal_page(vma, addr, pte);
  1117. if (!page)
  1118. return NULL;
  1119. if (PageReserved(page))
  1120. return NULL;
  1121. nid = page_to_nid(page);
  1122. if (!node_isset(nid, node_states[N_MEMORY]))
  1123. return NULL;
  1124. return page;
  1125. }
  1126. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1127. unsigned long end, struct mm_walk *walk)
  1128. {
  1129. struct numa_maps *md;
  1130. spinlock_t *ptl;
  1131. pte_t *orig_pte;
  1132. pte_t *pte;
  1133. md = walk->private;
  1134. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  1135. pte_t huge_pte = *(pte_t *)pmd;
  1136. struct page *page;
  1137. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1138. if (page)
  1139. gather_stats(page, md, pte_dirty(huge_pte),
  1140. HPAGE_PMD_SIZE/PAGE_SIZE);
  1141. spin_unlock(&walk->mm->page_table_lock);
  1142. return 0;
  1143. }
  1144. if (pmd_trans_unstable(pmd))
  1145. return 0;
  1146. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1147. do {
  1148. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1149. if (!page)
  1150. continue;
  1151. gather_stats(page, md, pte_dirty(*pte), 1);
  1152. } while (pte++, addr += PAGE_SIZE, addr != end);
  1153. pte_unmap_unlock(orig_pte, ptl);
  1154. return 0;
  1155. }
  1156. #ifdef CONFIG_HUGETLB_PAGE
  1157. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1158. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1159. {
  1160. struct numa_maps *md;
  1161. struct page *page;
  1162. if (pte_none(*pte))
  1163. return 0;
  1164. page = pte_page(*pte);
  1165. if (!page)
  1166. return 0;
  1167. md = walk->private;
  1168. gather_stats(page, md, pte_dirty(*pte), 1);
  1169. return 0;
  1170. }
  1171. #else
  1172. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1173. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1174. {
  1175. return 0;
  1176. }
  1177. #endif
  1178. /*
  1179. * Display pages allocated per node and memory policy via /proc.
  1180. */
  1181. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1182. {
  1183. struct numa_maps_private *numa_priv = m->private;
  1184. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1185. struct vm_area_struct *vma = v;
  1186. struct numa_maps *md = &numa_priv->md;
  1187. struct file *file = vma->vm_file;
  1188. struct task_struct *task = proc_priv->task;
  1189. struct mm_struct *mm = vma->vm_mm;
  1190. struct mm_walk walk = {};
  1191. struct mempolicy *pol;
  1192. int n;
  1193. char buffer[50];
  1194. if (!mm)
  1195. return 0;
  1196. /* Ensure we start with an empty set of numa_maps statistics. */
  1197. memset(md, 0, sizeof(*md));
  1198. md->vma = vma;
  1199. walk.hugetlb_entry = gather_hugetbl_stats;
  1200. walk.pmd_entry = gather_pte_stats;
  1201. walk.private = md;
  1202. walk.mm = mm;
  1203. pol = get_vma_policy(task, vma, vma->vm_start);
  1204. mpol_to_str(buffer, sizeof(buffer), pol);
  1205. mpol_cond_put(pol);
  1206. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1207. if (file) {
  1208. seq_printf(m, " file=");
  1209. seq_path(m, &file->f_path, "\n\t= ");
  1210. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1211. seq_printf(m, " heap");
  1212. } else {
  1213. pid_t tid = vm_is_stack(task, vma, is_pid);
  1214. if (tid != 0) {
  1215. /*
  1216. * Thread stack in /proc/PID/task/TID/maps or
  1217. * the main process stack.
  1218. */
  1219. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1220. vma->vm_end >= mm->start_stack))
  1221. seq_printf(m, " stack");
  1222. else
  1223. seq_printf(m, " stack:%d", tid);
  1224. }
  1225. }
  1226. if (is_vm_hugetlb_page(vma))
  1227. seq_printf(m, " huge");
  1228. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1229. if (!md->pages)
  1230. goto out;
  1231. if (md->anon)
  1232. seq_printf(m, " anon=%lu", md->anon);
  1233. if (md->dirty)
  1234. seq_printf(m, " dirty=%lu", md->dirty);
  1235. if (md->pages != md->anon && md->pages != md->dirty)
  1236. seq_printf(m, " mapped=%lu", md->pages);
  1237. if (md->mapcount_max > 1)
  1238. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1239. if (md->swapcache)
  1240. seq_printf(m, " swapcache=%lu", md->swapcache);
  1241. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1242. seq_printf(m, " active=%lu", md->active);
  1243. if (md->writeback)
  1244. seq_printf(m, " writeback=%lu", md->writeback);
  1245. for_each_node_state(n, N_MEMORY)
  1246. if (md->node[n])
  1247. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1248. out:
  1249. seq_putc(m, '\n');
  1250. if (m->count < m->size)
  1251. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1252. return 0;
  1253. }
  1254. static int show_pid_numa_map(struct seq_file *m, void *v)
  1255. {
  1256. return show_numa_map(m, v, 1);
  1257. }
  1258. static int show_tid_numa_map(struct seq_file *m, void *v)
  1259. {
  1260. return show_numa_map(m, v, 0);
  1261. }
  1262. static const struct seq_operations proc_pid_numa_maps_op = {
  1263. .start = m_start,
  1264. .next = m_next,
  1265. .stop = m_stop,
  1266. .show = show_pid_numa_map,
  1267. };
  1268. static const struct seq_operations proc_tid_numa_maps_op = {
  1269. .start = m_start,
  1270. .next = m_next,
  1271. .stop = m_stop,
  1272. .show = show_tid_numa_map,
  1273. };
  1274. static int numa_maps_open(struct inode *inode, struct file *file,
  1275. const struct seq_operations *ops)
  1276. {
  1277. struct numa_maps_private *priv;
  1278. int ret = -ENOMEM;
  1279. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1280. if (priv) {
  1281. priv->proc_maps.pid = proc_pid(inode);
  1282. ret = seq_open(file, ops);
  1283. if (!ret) {
  1284. struct seq_file *m = file->private_data;
  1285. m->private = priv;
  1286. } else {
  1287. kfree(priv);
  1288. }
  1289. }
  1290. return ret;
  1291. }
  1292. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1293. {
  1294. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1295. }
  1296. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1297. {
  1298. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1299. }
  1300. const struct file_operations proc_pid_numa_maps_operations = {
  1301. .open = pid_numa_maps_open,
  1302. .read = seq_read,
  1303. .llseek = seq_lseek,
  1304. .release = seq_release_private,
  1305. };
  1306. const struct file_operations proc_tid_numa_maps_operations = {
  1307. .open = tid_numa_maps_open,
  1308. .read = seq_read,
  1309. .llseek = seq_lseek,
  1310. .release = seq_release_private,
  1311. };
  1312. #endif /* CONFIG_NUMA */