md.c 141 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (request_queue_t *q, struct bio *bio)
  178. {
  179. bio_io_error(bio, bio->bi_size);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_unregister(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->queue = blk_alloc_queue(GFP_KERNEL);
  233. if (!new->queue) {
  234. kfree(new);
  235. return NULL;
  236. }
  237. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  238. blk_queue_make_request(new->queue, md_fail_request);
  239. goto retry;
  240. }
  241. static inline int mddev_lock(mddev_t * mddev)
  242. {
  243. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  244. }
  245. static inline int mddev_trylock(mddev_t * mddev)
  246. {
  247. return mutex_trylock(&mddev->reconfig_mutex);
  248. }
  249. static inline void mddev_unlock(mddev_t * mddev)
  250. {
  251. mutex_unlock(&mddev->reconfig_mutex);
  252. md_wakeup_thread(mddev->thread);
  253. }
  254. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  255. {
  256. mdk_rdev_t * rdev;
  257. struct list_head *tmp;
  258. ITERATE_RDEV(mddev,rdev,tmp) {
  259. if (rdev->desc_nr == nr)
  260. return rdev;
  261. }
  262. return NULL;
  263. }
  264. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  265. {
  266. struct list_head *tmp;
  267. mdk_rdev_t *rdev;
  268. ITERATE_RDEV(mddev,rdev,tmp) {
  269. if (rdev->bdev->bd_dev == dev)
  270. return rdev;
  271. }
  272. return NULL;
  273. }
  274. static struct mdk_personality *find_pers(int level, char *clevel)
  275. {
  276. struct mdk_personality *pers;
  277. list_for_each_entry(pers, &pers_list, list) {
  278. if (level != LEVEL_NONE && pers->level == level)
  279. return pers;
  280. if (strcmp(pers->name, clevel)==0)
  281. return pers;
  282. }
  283. return NULL;
  284. }
  285. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  286. {
  287. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  288. return MD_NEW_SIZE_BLOCKS(size);
  289. }
  290. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  291. {
  292. sector_t size;
  293. size = rdev->sb_offset;
  294. if (chunk_size)
  295. size &= ~((sector_t)chunk_size/1024 - 1);
  296. return size;
  297. }
  298. static int alloc_disk_sb(mdk_rdev_t * rdev)
  299. {
  300. if (rdev->sb_page)
  301. MD_BUG();
  302. rdev->sb_page = alloc_page(GFP_KERNEL);
  303. if (!rdev->sb_page) {
  304. printk(KERN_ALERT "md: out of memory.\n");
  305. return -EINVAL;
  306. }
  307. return 0;
  308. }
  309. static void free_disk_sb(mdk_rdev_t * rdev)
  310. {
  311. if (rdev->sb_page) {
  312. put_page(rdev->sb_page);
  313. rdev->sb_loaded = 0;
  314. rdev->sb_page = NULL;
  315. rdev->sb_offset = 0;
  316. rdev->size = 0;
  317. }
  318. }
  319. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  320. {
  321. mdk_rdev_t *rdev = bio->bi_private;
  322. mddev_t *mddev = rdev->mddev;
  323. if (bio->bi_size)
  324. return 1;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. return 0;
  335. }
  336. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  337. {
  338. struct bio *bio2 = bio->bi_private;
  339. mdk_rdev_t *rdev = bio2->bi_private;
  340. mddev_t *mddev = rdev->mddev;
  341. if (bio->bi_size)
  342. return 1;
  343. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  344. error == -EOPNOTSUPP) {
  345. unsigned long flags;
  346. /* barriers don't appear to be supported :-( */
  347. set_bit(BarriersNotsupp, &rdev->flags);
  348. mddev->barriers_work = 0;
  349. spin_lock_irqsave(&mddev->write_lock, flags);
  350. bio2->bi_next = mddev->biolist;
  351. mddev->biolist = bio2;
  352. spin_unlock_irqrestore(&mddev->write_lock, flags);
  353. wake_up(&mddev->sb_wait);
  354. bio_put(bio);
  355. return 0;
  356. }
  357. bio_put(bio2);
  358. bio->bi_private = rdev;
  359. return super_written(bio, bytes_done, error);
  360. }
  361. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  362. sector_t sector, int size, struct page *page)
  363. {
  364. /* write first size bytes of page to sector of rdev
  365. * Increment mddev->pending_writes before returning
  366. * and decrement it on completion, waking up sb_wait
  367. * if zero is reached.
  368. * If an error occurred, call md_error
  369. *
  370. * As we might need to resubmit the request if BIO_RW_BARRIER
  371. * causes ENOTSUPP, we allocate a spare bio...
  372. */
  373. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  374. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  375. bio->bi_bdev = rdev->bdev;
  376. bio->bi_sector = sector;
  377. bio_add_page(bio, page, size, 0);
  378. bio->bi_private = rdev;
  379. bio->bi_end_io = super_written;
  380. bio->bi_rw = rw;
  381. atomic_inc(&mddev->pending_writes);
  382. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  383. struct bio *rbio;
  384. rw |= (1<<BIO_RW_BARRIER);
  385. rbio = bio_clone(bio, GFP_NOIO);
  386. rbio->bi_private = bio;
  387. rbio->bi_end_io = super_written_barrier;
  388. submit_bio(rw, rbio);
  389. } else
  390. submit_bio(rw, bio);
  391. }
  392. void md_super_wait(mddev_t *mddev)
  393. {
  394. /* wait for all superblock writes that were scheduled to complete.
  395. * if any had to be retried (due to BARRIER problems), retry them
  396. */
  397. DEFINE_WAIT(wq);
  398. for(;;) {
  399. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  400. if (atomic_read(&mddev->pending_writes)==0)
  401. break;
  402. while (mddev->biolist) {
  403. struct bio *bio;
  404. spin_lock_irq(&mddev->write_lock);
  405. bio = mddev->biolist;
  406. mddev->biolist = bio->bi_next ;
  407. bio->bi_next = NULL;
  408. spin_unlock_irq(&mddev->write_lock);
  409. submit_bio(bio->bi_rw, bio);
  410. }
  411. schedule();
  412. }
  413. finish_wait(&mddev->sb_wait, &wq);
  414. }
  415. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  416. {
  417. if (bio->bi_size)
  418. return 1;
  419. complete((struct completion*)bio->bi_private);
  420. return 0;
  421. }
  422. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  423. struct page *page, int rw)
  424. {
  425. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  426. struct completion event;
  427. int ret;
  428. rw |= (1 << BIO_RW_SYNC);
  429. bio->bi_bdev = bdev;
  430. bio->bi_sector = sector;
  431. bio_add_page(bio, page, size, 0);
  432. init_completion(&event);
  433. bio->bi_private = &event;
  434. bio->bi_end_io = bi_complete;
  435. submit_bio(rw, bio);
  436. wait_for_completion(&event);
  437. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  438. bio_put(bio);
  439. return ret;
  440. }
  441. EXPORT_SYMBOL_GPL(sync_page_io);
  442. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  443. {
  444. char b[BDEVNAME_SIZE];
  445. if (!rdev->sb_page) {
  446. MD_BUG();
  447. return -EINVAL;
  448. }
  449. if (rdev->sb_loaded)
  450. return 0;
  451. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  452. goto fail;
  453. rdev->sb_loaded = 1;
  454. return 0;
  455. fail:
  456. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  457. bdevname(rdev->bdev,b));
  458. return -EINVAL;
  459. }
  460. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  461. {
  462. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  463. (sb1->set_uuid1 == sb2->set_uuid1) &&
  464. (sb1->set_uuid2 == sb2->set_uuid2) &&
  465. (sb1->set_uuid3 == sb2->set_uuid3))
  466. return 1;
  467. return 0;
  468. }
  469. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  470. {
  471. int ret;
  472. mdp_super_t *tmp1, *tmp2;
  473. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  474. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  475. if (!tmp1 || !tmp2) {
  476. ret = 0;
  477. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  478. goto abort;
  479. }
  480. *tmp1 = *sb1;
  481. *tmp2 = *sb2;
  482. /*
  483. * nr_disks is not constant
  484. */
  485. tmp1->nr_disks = 0;
  486. tmp2->nr_disks = 0;
  487. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  488. ret = 0;
  489. else
  490. ret = 1;
  491. abort:
  492. kfree(tmp1);
  493. kfree(tmp2);
  494. return ret;
  495. }
  496. static unsigned int calc_sb_csum(mdp_super_t * sb)
  497. {
  498. unsigned int disk_csum, csum;
  499. disk_csum = sb->sb_csum;
  500. sb->sb_csum = 0;
  501. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  502. sb->sb_csum = disk_csum;
  503. return csum;
  504. }
  505. /*
  506. * Handle superblock details.
  507. * We want to be able to handle multiple superblock formats
  508. * so we have a common interface to them all, and an array of
  509. * different handlers.
  510. * We rely on user-space to write the initial superblock, and support
  511. * reading and updating of superblocks.
  512. * Interface methods are:
  513. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  514. * loads and validates a superblock on dev.
  515. * if refdev != NULL, compare superblocks on both devices
  516. * Return:
  517. * 0 - dev has a superblock that is compatible with refdev
  518. * 1 - dev has a superblock that is compatible and newer than refdev
  519. * so dev should be used as the refdev in future
  520. * -EINVAL superblock incompatible or invalid
  521. * -othererror e.g. -EIO
  522. *
  523. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  524. * Verify that dev is acceptable into mddev.
  525. * The first time, mddev->raid_disks will be 0, and data from
  526. * dev should be merged in. Subsequent calls check that dev
  527. * is new enough. Return 0 or -EINVAL
  528. *
  529. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  530. * Update the superblock for rdev with data in mddev
  531. * This does not write to disc.
  532. *
  533. */
  534. struct super_type {
  535. char *name;
  536. struct module *owner;
  537. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  538. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  539. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  540. };
  541. /*
  542. * load_super for 0.90.0
  543. */
  544. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  545. {
  546. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  547. mdp_super_t *sb;
  548. int ret;
  549. sector_t sb_offset;
  550. /*
  551. * Calculate the position of the superblock,
  552. * it's at the end of the disk.
  553. *
  554. * It also happens to be a multiple of 4Kb.
  555. */
  556. sb_offset = calc_dev_sboffset(rdev->bdev);
  557. rdev->sb_offset = sb_offset;
  558. ret = read_disk_sb(rdev, MD_SB_BYTES);
  559. if (ret) return ret;
  560. ret = -EINVAL;
  561. bdevname(rdev->bdev, b);
  562. sb = (mdp_super_t*)page_address(rdev->sb_page);
  563. if (sb->md_magic != MD_SB_MAGIC) {
  564. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  565. b);
  566. goto abort;
  567. }
  568. if (sb->major_version != 0 ||
  569. sb->minor_version < 90 ||
  570. sb->minor_version > 91) {
  571. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  572. sb->major_version, sb->minor_version,
  573. b);
  574. goto abort;
  575. }
  576. if (sb->raid_disks <= 0)
  577. goto abort;
  578. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  579. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  580. b);
  581. goto abort;
  582. }
  583. rdev->preferred_minor = sb->md_minor;
  584. rdev->data_offset = 0;
  585. rdev->sb_size = MD_SB_BYTES;
  586. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  587. if (sb->level != 1 && sb->level != 4
  588. && sb->level != 5 && sb->level != 6
  589. && sb->level != 10) {
  590. /* FIXME use a better test */
  591. printk(KERN_WARNING
  592. "md: bitmaps not supported for this level.\n");
  593. goto abort;
  594. }
  595. }
  596. if (sb->level == LEVEL_MULTIPATH)
  597. rdev->desc_nr = -1;
  598. else
  599. rdev->desc_nr = sb->this_disk.number;
  600. if (refdev == 0)
  601. ret = 1;
  602. else {
  603. __u64 ev1, ev2;
  604. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  605. if (!uuid_equal(refsb, sb)) {
  606. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  607. b, bdevname(refdev->bdev,b2));
  608. goto abort;
  609. }
  610. if (!sb_equal(refsb, sb)) {
  611. printk(KERN_WARNING "md: %s has same UUID"
  612. " but different superblock to %s\n",
  613. b, bdevname(refdev->bdev, b2));
  614. goto abort;
  615. }
  616. ev1 = md_event(sb);
  617. ev2 = md_event(refsb);
  618. if (ev1 > ev2)
  619. ret = 1;
  620. else
  621. ret = 0;
  622. }
  623. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  624. if (rdev->size < sb->size && sb->level > 1)
  625. /* "this cannot possibly happen" ... */
  626. ret = -EINVAL;
  627. abort:
  628. return ret;
  629. }
  630. /*
  631. * validate_super for 0.90.0
  632. */
  633. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  634. {
  635. mdp_disk_t *desc;
  636. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  637. __u64 ev1 = md_event(sb);
  638. rdev->raid_disk = -1;
  639. rdev->flags = 0;
  640. if (mddev->raid_disks == 0) {
  641. mddev->major_version = 0;
  642. mddev->minor_version = sb->minor_version;
  643. mddev->patch_version = sb->patch_version;
  644. mddev->persistent = ! sb->not_persistent;
  645. mddev->chunk_size = sb->chunk_size;
  646. mddev->ctime = sb->ctime;
  647. mddev->utime = sb->utime;
  648. mddev->level = sb->level;
  649. mddev->clevel[0] = 0;
  650. mddev->layout = sb->layout;
  651. mddev->raid_disks = sb->raid_disks;
  652. mddev->size = sb->size;
  653. mddev->events = ev1;
  654. mddev->bitmap_offset = 0;
  655. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  656. if (mddev->minor_version >= 91) {
  657. mddev->reshape_position = sb->reshape_position;
  658. mddev->delta_disks = sb->delta_disks;
  659. mddev->new_level = sb->new_level;
  660. mddev->new_layout = sb->new_layout;
  661. mddev->new_chunk = sb->new_chunk;
  662. } else {
  663. mddev->reshape_position = MaxSector;
  664. mddev->delta_disks = 0;
  665. mddev->new_level = mddev->level;
  666. mddev->new_layout = mddev->layout;
  667. mddev->new_chunk = mddev->chunk_size;
  668. }
  669. if (sb->state & (1<<MD_SB_CLEAN))
  670. mddev->recovery_cp = MaxSector;
  671. else {
  672. if (sb->events_hi == sb->cp_events_hi &&
  673. sb->events_lo == sb->cp_events_lo) {
  674. mddev->recovery_cp = sb->recovery_cp;
  675. } else
  676. mddev->recovery_cp = 0;
  677. }
  678. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  679. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  680. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  681. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  682. mddev->max_disks = MD_SB_DISKS;
  683. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  684. mddev->bitmap_file == NULL)
  685. mddev->bitmap_offset = mddev->default_bitmap_offset;
  686. } else if (mddev->pers == NULL) {
  687. /* Insist on good event counter while assembling */
  688. ++ev1;
  689. if (ev1 < mddev->events)
  690. return -EINVAL;
  691. } else if (mddev->bitmap) {
  692. /* if adding to array with a bitmap, then we can accept an
  693. * older device ... but not too old.
  694. */
  695. if (ev1 < mddev->bitmap->events_cleared)
  696. return 0;
  697. } else {
  698. if (ev1 < mddev->events)
  699. /* just a hot-add of a new device, leave raid_disk at -1 */
  700. return 0;
  701. }
  702. if (mddev->level != LEVEL_MULTIPATH) {
  703. desc = sb->disks + rdev->desc_nr;
  704. if (desc->state & (1<<MD_DISK_FAULTY))
  705. set_bit(Faulty, &rdev->flags);
  706. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  707. desc->raid_disk < mddev->raid_disks */) {
  708. set_bit(In_sync, &rdev->flags);
  709. rdev->raid_disk = desc->raid_disk;
  710. }
  711. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  712. set_bit(WriteMostly, &rdev->flags);
  713. } else /* MULTIPATH are always insync */
  714. set_bit(In_sync, &rdev->flags);
  715. return 0;
  716. }
  717. /*
  718. * sync_super for 0.90.0
  719. */
  720. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  721. {
  722. mdp_super_t *sb;
  723. struct list_head *tmp;
  724. mdk_rdev_t *rdev2;
  725. int next_spare = mddev->raid_disks;
  726. /* make rdev->sb match mddev data..
  727. *
  728. * 1/ zero out disks
  729. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  730. * 3/ any empty disks < next_spare become removed
  731. *
  732. * disks[0] gets initialised to REMOVED because
  733. * we cannot be sure from other fields if it has
  734. * been initialised or not.
  735. */
  736. int i;
  737. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  738. rdev->sb_size = MD_SB_BYTES;
  739. sb = (mdp_super_t*)page_address(rdev->sb_page);
  740. memset(sb, 0, sizeof(*sb));
  741. sb->md_magic = MD_SB_MAGIC;
  742. sb->major_version = mddev->major_version;
  743. sb->patch_version = mddev->patch_version;
  744. sb->gvalid_words = 0; /* ignored */
  745. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  746. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  747. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  748. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  749. sb->ctime = mddev->ctime;
  750. sb->level = mddev->level;
  751. sb->size = mddev->size;
  752. sb->raid_disks = mddev->raid_disks;
  753. sb->md_minor = mddev->md_minor;
  754. sb->not_persistent = !mddev->persistent;
  755. sb->utime = mddev->utime;
  756. sb->state = 0;
  757. sb->events_hi = (mddev->events>>32);
  758. sb->events_lo = (u32)mddev->events;
  759. if (mddev->reshape_position == MaxSector)
  760. sb->minor_version = 90;
  761. else {
  762. sb->minor_version = 91;
  763. sb->reshape_position = mddev->reshape_position;
  764. sb->new_level = mddev->new_level;
  765. sb->delta_disks = mddev->delta_disks;
  766. sb->new_layout = mddev->new_layout;
  767. sb->new_chunk = mddev->new_chunk;
  768. }
  769. mddev->minor_version = sb->minor_version;
  770. if (mddev->in_sync)
  771. {
  772. sb->recovery_cp = mddev->recovery_cp;
  773. sb->cp_events_hi = (mddev->events>>32);
  774. sb->cp_events_lo = (u32)mddev->events;
  775. if (mddev->recovery_cp == MaxSector)
  776. sb->state = (1<< MD_SB_CLEAN);
  777. } else
  778. sb->recovery_cp = 0;
  779. sb->layout = mddev->layout;
  780. sb->chunk_size = mddev->chunk_size;
  781. if (mddev->bitmap && mddev->bitmap_file == NULL)
  782. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  783. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  784. ITERATE_RDEV(mddev,rdev2,tmp) {
  785. mdp_disk_t *d;
  786. int desc_nr;
  787. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  788. && !test_bit(Faulty, &rdev2->flags))
  789. desc_nr = rdev2->raid_disk;
  790. else
  791. desc_nr = next_spare++;
  792. rdev2->desc_nr = desc_nr;
  793. d = &sb->disks[rdev2->desc_nr];
  794. nr_disks++;
  795. d->number = rdev2->desc_nr;
  796. d->major = MAJOR(rdev2->bdev->bd_dev);
  797. d->minor = MINOR(rdev2->bdev->bd_dev);
  798. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  799. && !test_bit(Faulty, &rdev2->flags))
  800. d->raid_disk = rdev2->raid_disk;
  801. else
  802. d->raid_disk = rdev2->desc_nr; /* compatibility */
  803. if (test_bit(Faulty, &rdev2->flags))
  804. d->state = (1<<MD_DISK_FAULTY);
  805. else if (test_bit(In_sync, &rdev2->flags)) {
  806. d->state = (1<<MD_DISK_ACTIVE);
  807. d->state |= (1<<MD_DISK_SYNC);
  808. active++;
  809. working++;
  810. } else {
  811. d->state = 0;
  812. spare++;
  813. working++;
  814. }
  815. if (test_bit(WriteMostly, &rdev2->flags))
  816. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  817. }
  818. /* now set the "removed" and "faulty" bits on any missing devices */
  819. for (i=0 ; i < mddev->raid_disks ; i++) {
  820. mdp_disk_t *d = &sb->disks[i];
  821. if (d->state == 0 && d->number == 0) {
  822. d->number = i;
  823. d->raid_disk = i;
  824. d->state = (1<<MD_DISK_REMOVED);
  825. d->state |= (1<<MD_DISK_FAULTY);
  826. failed++;
  827. }
  828. }
  829. sb->nr_disks = nr_disks;
  830. sb->active_disks = active;
  831. sb->working_disks = working;
  832. sb->failed_disks = failed;
  833. sb->spare_disks = spare;
  834. sb->this_disk = sb->disks[rdev->desc_nr];
  835. sb->sb_csum = calc_sb_csum(sb);
  836. }
  837. /*
  838. * version 1 superblock
  839. */
  840. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  841. {
  842. __le32 disk_csum;
  843. u32 csum;
  844. unsigned long long newcsum;
  845. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  846. __le32 *isuper = (__le32*)sb;
  847. int i;
  848. disk_csum = sb->sb_csum;
  849. sb->sb_csum = 0;
  850. newcsum = 0;
  851. for (i=0; size>=4; size -= 4 )
  852. newcsum += le32_to_cpu(*isuper++);
  853. if (size == 2)
  854. newcsum += le16_to_cpu(*(__le16*) isuper);
  855. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  856. sb->sb_csum = disk_csum;
  857. return cpu_to_le32(csum);
  858. }
  859. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  860. {
  861. struct mdp_superblock_1 *sb;
  862. int ret;
  863. sector_t sb_offset;
  864. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  865. int bmask;
  866. /*
  867. * Calculate the position of the superblock.
  868. * It is always aligned to a 4K boundary and
  869. * depeding on minor_version, it can be:
  870. * 0: At least 8K, but less than 12K, from end of device
  871. * 1: At start of device
  872. * 2: 4K from start of device.
  873. */
  874. switch(minor_version) {
  875. case 0:
  876. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  877. sb_offset -= 8*2;
  878. sb_offset &= ~(sector_t)(4*2-1);
  879. /* convert from sectors to K */
  880. sb_offset /= 2;
  881. break;
  882. case 1:
  883. sb_offset = 0;
  884. break;
  885. case 2:
  886. sb_offset = 4;
  887. break;
  888. default:
  889. return -EINVAL;
  890. }
  891. rdev->sb_offset = sb_offset;
  892. /* superblock is rarely larger than 1K, but it can be larger,
  893. * and it is safe to read 4k, so we do that
  894. */
  895. ret = read_disk_sb(rdev, 4096);
  896. if (ret) return ret;
  897. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  898. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  899. sb->major_version != cpu_to_le32(1) ||
  900. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  901. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  902. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  903. return -EINVAL;
  904. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  905. printk("md: invalid superblock checksum on %s\n",
  906. bdevname(rdev->bdev,b));
  907. return -EINVAL;
  908. }
  909. if (le64_to_cpu(sb->data_size) < 10) {
  910. printk("md: data_size too small on %s\n",
  911. bdevname(rdev->bdev,b));
  912. return -EINVAL;
  913. }
  914. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  915. if (sb->level != cpu_to_le32(1) &&
  916. sb->level != cpu_to_le32(4) &&
  917. sb->level != cpu_to_le32(5) &&
  918. sb->level != cpu_to_le32(6) &&
  919. sb->level != cpu_to_le32(10)) {
  920. printk(KERN_WARNING
  921. "md: bitmaps not supported for this level.\n");
  922. return -EINVAL;
  923. }
  924. }
  925. rdev->preferred_minor = 0xffff;
  926. rdev->data_offset = le64_to_cpu(sb->data_offset);
  927. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  928. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  929. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  930. if (rdev->sb_size & bmask)
  931. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  932. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  933. rdev->desc_nr = -1;
  934. else
  935. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  936. if (refdev == 0)
  937. ret = 1;
  938. else {
  939. __u64 ev1, ev2;
  940. struct mdp_superblock_1 *refsb =
  941. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  942. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  943. sb->level != refsb->level ||
  944. sb->layout != refsb->layout ||
  945. sb->chunksize != refsb->chunksize) {
  946. printk(KERN_WARNING "md: %s has strangely different"
  947. " superblock to %s\n",
  948. bdevname(rdev->bdev,b),
  949. bdevname(refdev->bdev,b2));
  950. return -EINVAL;
  951. }
  952. ev1 = le64_to_cpu(sb->events);
  953. ev2 = le64_to_cpu(refsb->events);
  954. if (ev1 > ev2)
  955. ret = 1;
  956. else
  957. ret = 0;
  958. }
  959. if (minor_version)
  960. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  961. else
  962. rdev->size = rdev->sb_offset;
  963. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  964. return -EINVAL;
  965. rdev->size = le64_to_cpu(sb->data_size)/2;
  966. if (le32_to_cpu(sb->chunksize))
  967. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  968. if (le64_to_cpu(sb->size) > rdev->size*2)
  969. return -EINVAL;
  970. return ret;
  971. }
  972. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  973. {
  974. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  975. __u64 ev1 = le64_to_cpu(sb->events);
  976. rdev->raid_disk = -1;
  977. rdev->flags = 0;
  978. if (mddev->raid_disks == 0) {
  979. mddev->major_version = 1;
  980. mddev->patch_version = 0;
  981. mddev->persistent = 1;
  982. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  983. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  984. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  985. mddev->level = le32_to_cpu(sb->level);
  986. mddev->clevel[0] = 0;
  987. mddev->layout = le32_to_cpu(sb->layout);
  988. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  989. mddev->size = le64_to_cpu(sb->size)/2;
  990. mddev->events = ev1;
  991. mddev->bitmap_offset = 0;
  992. mddev->default_bitmap_offset = 1024 >> 9;
  993. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  994. memcpy(mddev->uuid, sb->set_uuid, 16);
  995. mddev->max_disks = (4096-256)/2;
  996. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  997. mddev->bitmap_file == NULL )
  998. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  999. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1000. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1001. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1002. mddev->new_level = le32_to_cpu(sb->new_level);
  1003. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1004. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1005. } else {
  1006. mddev->reshape_position = MaxSector;
  1007. mddev->delta_disks = 0;
  1008. mddev->new_level = mddev->level;
  1009. mddev->new_layout = mddev->layout;
  1010. mddev->new_chunk = mddev->chunk_size;
  1011. }
  1012. } else if (mddev->pers == NULL) {
  1013. /* Insist of good event counter while assembling */
  1014. ++ev1;
  1015. if (ev1 < mddev->events)
  1016. return -EINVAL;
  1017. } else if (mddev->bitmap) {
  1018. /* If adding to array with a bitmap, then we can accept an
  1019. * older device, but not too old.
  1020. */
  1021. if (ev1 < mddev->bitmap->events_cleared)
  1022. return 0;
  1023. } else {
  1024. if (ev1 < mddev->events)
  1025. /* just a hot-add of a new device, leave raid_disk at -1 */
  1026. return 0;
  1027. }
  1028. if (mddev->level != LEVEL_MULTIPATH) {
  1029. int role;
  1030. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1031. switch(role) {
  1032. case 0xffff: /* spare */
  1033. break;
  1034. case 0xfffe: /* faulty */
  1035. set_bit(Faulty, &rdev->flags);
  1036. break;
  1037. default:
  1038. if ((le32_to_cpu(sb->feature_map) &
  1039. MD_FEATURE_RECOVERY_OFFSET))
  1040. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1041. else
  1042. set_bit(In_sync, &rdev->flags);
  1043. rdev->raid_disk = role;
  1044. break;
  1045. }
  1046. if (sb->devflags & WriteMostly1)
  1047. set_bit(WriteMostly, &rdev->flags);
  1048. } else /* MULTIPATH are always insync */
  1049. set_bit(In_sync, &rdev->flags);
  1050. return 0;
  1051. }
  1052. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1053. {
  1054. struct mdp_superblock_1 *sb;
  1055. struct list_head *tmp;
  1056. mdk_rdev_t *rdev2;
  1057. int max_dev, i;
  1058. /* make rdev->sb match mddev and rdev data. */
  1059. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1060. sb->feature_map = 0;
  1061. sb->pad0 = 0;
  1062. sb->recovery_offset = cpu_to_le64(0);
  1063. memset(sb->pad1, 0, sizeof(sb->pad1));
  1064. memset(sb->pad2, 0, sizeof(sb->pad2));
  1065. memset(sb->pad3, 0, sizeof(sb->pad3));
  1066. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1067. sb->events = cpu_to_le64(mddev->events);
  1068. if (mddev->in_sync)
  1069. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1070. else
  1071. sb->resync_offset = cpu_to_le64(0);
  1072. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1073. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1074. sb->size = cpu_to_le64(mddev->size<<1);
  1075. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1076. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1077. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1078. }
  1079. if (rdev->raid_disk >= 0 &&
  1080. !test_bit(In_sync, &rdev->flags) &&
  1081. rdev->recovery_offset > 0) {
  1082. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1083. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1084. }
  1085. if (mddev->reshape_position != MaxSector) {
  1086. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1087. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1088. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1089. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1090. sb->new_level = cpu_to_le32(mddev->new_level);
  1091. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1092. }
  1093. max_dev = 0;
  1094. ITERATE_RDEV(mddev,rdev2,tmp)
  1095. if (rdev2->desc_nr+1 > max_dev)
  1096. max_dev = rdev2->desc_nr+1;
  1097. sb->max_dev = cpu_to_le32(max_dev);
  1098. for (i=0; i<max_dev;i++)
  1099. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1100. ITERATE_RDEV(mddev,rdev2,tmp) {
  1101. i = rdev2->desc_nr;
  1102. if (test_bit(Faulty, &rdev2->flags))
  1103. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1104. else if (test_bit(In_sync, &rdev2->flags))
  1105. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1106. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1107. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1108. else
  1109. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1110. }
  1111. sb->sb_csum = calc_sb_1_csum(sb);
  1112. }
  1113. static struct super_type super_types[] = {
  1114. [0] = {
  1115. .name = "0.90.0",
  1116. .owner = THIS_MODULE,
  1117. .load_super = super_90_load,
  1118. .validate_super = super_90_validate,
  1119. .sync_super = super_90_sync,
  1120. },
  1121. [1] = {
  1122. .name = "md-1",
  1123. .owner = THIS_MODULE,
  1124. .load_super = super_1_load,
  1125. .validate_super = super_1_validate,
  1126. .sync_super = super_1_sync,
  1127. },
  1128. };
  1129. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1130. {
  1131. struct list_head *tmp, *tmp2;
  1132. mdk_rdev_t *rdev, *rdev2;
  1133. ITERATE_RDEV(mddev1,rdev,tmp)
  1134. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1135. if (rdev->bdev->bd_contains ==
  1136. rdev2->bdev->bd_contains)
  1137. return 1;
  1138. return 0;
  1139. }
  1140. static LIST_HEAD(pending_raid_disks);
  1141. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1142. {
  1143. char b[BDEVNAME_SIZE];
  1144. struct kobject *ko;
  1145. char *s;
  1146. int err;
  1147. if (rdev->mddev) {
  1148. MD_BUG();
  1149. return -EINVAL;
  1150. }
  1151. /* make sure rdev->size exceeds mddev->size */
  1152. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1153. if (mddev->pers)
  1154. /* Cannot change size, so fail */
  1155. return -ENOSPC;
  1156. else
  1157. mddev->size = rdev->size;
  1158. }
  1159. /* Verify rdev->desc_nr is unique.
  1160. * If it is -1, assign a free number, else
  1161. * check number is not in use
  1162. */
  1163. if (rdev->desc_nr < 0) {
  1164. int choice = 0;
  1165. if (mddev->pers) choice = mddev->raid_disks;
  1166. while (find_rdev_nr(mddev, choice))
  1167. choice++;
  1168. rdev->desc_nr = choice;
  1169. } else {
  1170. if (find_rdev_nr(mddev, rdev->desc_nr))
  1171. return -EBUSY;
  1172. }
  1173. bdevname(rdev->bdev,b);
  1174. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1175. return -ENOMEM;
  1176. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1177. *s = '!';
  1178. rdev->mddev = mddev;
  1179. printk(KERN_INFO "md: bind<%s>\n", b);
  1180. rdev->kobj.parent = &mddev->kobj;
  1181. if ((err = kobject_add(&rdev->kobj)))
  1182. goto fail;
  1183. if (rdev->bdev->bd_part)
  1184. ko = &rdev->bdev->bd_part->kobj;
  1185. else
  1186. ko = &rdev->bdev->bd_disk->kobj;
  1187. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1188. kobject_del(&rdev->kobj);
  1189. goto fail;
  1190. }
  1191. list_add(&rdev->same_set, &mddev->disks);
  1192. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1193. return 0;
  1194. fail:
  1195. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1196. b, mdname(mddev));
  1197. return err;
  1198. }
  1199. static void delayed_delete(struct work_struct *ws)
  1200. {
  1201. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1202. kobject_del(&rdev->kobj);
  1203. }
  1204. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1205. {
  1206. char b[BDEVNAME_SIZE];
  1207. if (!rdev->mddev) {
  1208. MD_BUG();
  1209. return;
  1210. }
  1211. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1212. list_del_init(&rdev->same_set);
  1213. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1214. rdev->mddev = NULL;
  1215. sysfs_remove_link(&rdev->kobj, "block");
  1216. /* We need to delay this, otherwise we can deadlock when
  1217. * writing to 'remove' to "dev/state"
  1218. */
  1219. INIT_WORK(&rdev->del_work, delayed_delete);
  1220. schedule_work(&rdev->del_work);
  1221. }
  1222. /*
  1223. * prevent the device from being mounted, repartitioned or
  1224. * otherwise reused by a RAID array (or any other kernel
  1225. * subsystem), by bd_claiming the device.
  1226. */
  1227. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1228. {
  1229. int err = 0;
  1230. struct block_device *bdev;
  1231. char b[BDEVNAME_SIZE];
  1232. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1233. if (IS_ERR(bdev)) {
  1234. printk(KERN_ERR "md: could not open %s.\n",
  1235. __bdevname(dev, b));
  1236. return PTR_ERR(bdev);
  1237. }
  1238. err = bd_claim(bdev, rdev);
  1239. if (err) {
  1240. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1241. bdevname(bdev, b));
  1242. blkdev_put(bdev);
  1243. return err;
  1244. }
  1245. rdev->bdev = bdev;
  1246. return err;
  1247. }
  1248. static void unlock_rdev(mdk_rdev_t *rdev)
  1249. {
  1250. struct block_device *bdev = rdev->bdev;
  1251. rdev->bdev = NULL;
  1252. if (!bdev)
  1253. MD_BUG();
  1254. bd_release(bdev);
  1255. blkdev_put(bdev);
  1256. }
  1257. void md_autodetect_dev(dev_t dev);
  1258. static void export_rdev(mdk_rdev_t * rdev)
  1259. {
  1260. char b[BDEVNAME_SIZE];
  1261. printk(KERN_INFO "md: export_rdev(%s)\n",
  1262. bdevname(rdev->bdev,b));
  1263. if (rdev->mddev)
  1264. MD_BUG();
  1265. free_disk_sb(rdev);
  1266. list_del_init(&rdev->same_set);
  1267. #ifndef MODULE
  1268. md_autodetect_dev(rdev->bdev->bd_dev);
  1269. #endif
  1270. unlock_rdev(rdev);
  1271. kobject_put(&rdev->kobj);
  1272. }
  1273. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1274. {
  1275. unbind_rdev_from_array(rdev);
  1276. export_rdev(rdev);
  1277. }
  1278. static void export_array(mddev_t *mddev)
  1279. {
  1280. struct list_head *tmp;
  1281. mdk_rdev_t *rdev;
  1282. ITERATE_RDEV(mddev,rdev,tmp) {
  1283. if (!rdev->mddev) {
  1284. MD_BUG();
  1285. continue;
  1286. }
  1287. kick_rdev_from_array(rdev);
  1288. }
  1289. if (!list_empty(&mddev->disks))
  1290. MD_BUG();
  1291. mddev->raid_disks = 0;
  1292. mddev->major_version = 0;
  1293. }
  1294. static void print_desc(mdp_disk_t *desc)
  1295. {
  1296. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1297. desc->major,desc->minor,desc->raid_disk,desc->state);
  1298. }
  1299. static void print_sb(mdp_super_t *sb)
  1300. {
  1301. int i;
  1302. printk(KERN_INFO
  1303. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1304. sb->major_version, sb->minor_version, sb->patch_version,
  1305. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1306. sb->ctime);
  1307. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1308. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1309. sb->md_minor, sb->layout, sb->chunk_size);
  1310. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1311. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1312. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1313. sb->failed_disks, sb->spare_disks,
  1314. sb->sb_csum, (unsigned long)sb->events_lo);
  1315. printk(KERN_INFO);
  1316. for (i = 0; i < MD_SB_DISKS; i++) {
  1317. mdp_disk_t *desc;
  1318. desc = sb->disks + i;
  1319. if (desc->number || desc->major || desc->minor ||
  1320. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1321. printk(" D %2d: ", i);
  1322. print_desc(desc);
  1323. }
  1324. }
  1325. printk(KERN_INFO "md: THIS: ");
  1326. print_desc(&sb->this_disk);
  1327. }
  1328. static void print_rdev(mdk_rdev_t *rdev)
  1329. {
  1330. char b[BDEVNAME_SIZE];
  1331. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1332. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1333. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1334. rdev->desc_nr);
  1335. if (rdev->sb_loaded) {
  1336. printk(KERN_INFO "md: rdev superblock:\n");
  1337. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1338. } else
  1339. printk(KERN_INFO "md: no rdev superblock!\n");
  1340. }
  1341. static void md_print_devices(void)
  1342. {
  1343. struct list_head *tmp, *tmp2;
  1344. mdk_rdev_t *rdev;
  1345. mddev_t *mddev;
  1346. char b[BDEVNAME_SIZE];
  1347. printk("\n");
  1348. printk("md: **********************************\n");
  1349. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1350. printk("md: **********************************\n");
  1351. ITERATE_MDDEV(mddev,tmp) {
  1352. if (mddev->bitmap)
  1353. bitmap_print_sb(mddev->bitmap);
  1354. else
  1355. printk("%s: ", mdname(mddev));
  1356. ITERATE_RDEV(mddev,rdev,tmp2)
  1357. printk("<%s>", bdevname(rdev->bdev,b));
  1358. printk("\n");
  1359. ITERATE_RDEV(mddev,rdev,tmp2)
  1360. print_rdev(rdev);
  1361. }
  1362. printk("md: **********************************\n");
  1363. printk("\n");
  1364. }
  1365. static void sync_sbs(mddev_t * mddev, int nospares)
  1366. {
  1367. /* Update each superblock (in-memory image), but
  1368. * if we are allowed to, skip spares which already
  1369. * have the right event counter, or have one earlier
  1370. * (which would mean they aren't being marked as dirty
  1371. * with the rest of the array)
  1372. */
  1373. mdk_rdev_t *rdev;
  1374. struct list_head *tmp;
  1375. ITERATE_RDEV(mddev,rdev,tmp) {
  1376. if (rdev->sb_events == mddev->events ||
  1377. (nospares &&
  1378. rdev->raid_disk < 0 &&
  1379. (rdev->sb_events&1)==0 &&
  1380. rdev->sb_events+1 == mddev->events)) {
  1381. /* Don't update this superblock */
  1382. rdev->sb_loaded = 2;
  1383. } else {
  1384. super_types[mddev->major_version].
  1385. sync_super(mddev, rdev);
  1386. rdev->sb_loaded = 1;
  1387. }
  1388. }
  1389. }
  1390. static void md_update_sb(mddev_t * mddev, int force_change)
  1391. {
  1392. int err;
  1393. struct list_head *tmp;
  1394. mdk_rdev_t *rdev;
  1395. int sync_req;
  1396. int nospares = 0;
  1397. repeat:
  1398. spin_lock_irq(&mddev->write_lock);
  1399. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1400. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1401. force_change = 1;
  1402. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1403. /* just a clean<-> dirty transition, possibly leave spares alone,
  1404. * though if events isn't the right even/odd, we will have to do
  1405. * spares after all
  1406. */
  1407. nospares = 1;
  1408. if (force_change)
  1409. nospares = 0;
  1410. if (mddev->degraded)
  1411. /* If the array is degraded, then skipping spares is both
  1412. * dangerous and fairly pointless.
  1413. * Dangerous because a device that was removed from the array
  1414. * might have a event_count that still looks up-to-date,
  1415. * so it can be re-added without a resync.
  1416. * Pointless because if there are any spares to skip,
  1417. * then a recovery will happen and soon that array won't
  1418. * be degraded any more and the spare can go back to sleep then.
  1419. */
  1420. nospares = 0;
  1421. sync_req = mddev->in_sync;
  1422. mddev->utime = get_seconds();
  1423. /* If this is just a dirty<->clean transition, and the array is clean
  1424. * and 'events' is odd, we can roll back to the previous clean state */
  1425. if (nospares
  1426. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1427. && (mddev->events & 1)
  1428. && mddev->events != 1)
  1429. mddev->events--;
  1430. else {
  1431. /* otherwise we have to go forward and ... */
  1432. mddev->events ++;
  1433. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1434. /* .. if the array isn't clean, insist on an odd 'events' */
  1435. if ((mddev->events&1)==0) {
  1436. mddev->events++;
  1437. nospares = 0;
  1438. }
  1439. } else {
  1440. /* otherwise insist on an even 'events' (for clean states) */
  1441. if ((mddev->events&1)) {
  1442. mddev->events++;
  1443. nospares = 0;
  1444. }
  1445. }
  1446. }
  1447. if (!mddev->events) {
  1448. /*
  1449. * oops, this 64-bit counter should never wrap.
  1450. * Either we are in around ~1 trillion A.C., assuming
  1451. * 1 reboot per second, or we have a bug:
  1452. */
  1453. MD_BUG();
  1454. mddev->events --;
  1455. }
  1456. sync_sbs(mddev, nospares);
  1457. /*
  1458. * do not write anything to disk if using
  1459. * nonpersistent superblocks
  1460. */
  1461. if (!mddev->persistent) {
  1462. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1463. spin_unlock_irq(&mddev->write_lock);
  1464. wake_up(&mddev->sb_wait);
  1465. return;
  1466. }
  1467. spin_unlock_irq(&mddev->write_lock);
  1468. dprintk(KERN_INFO
  1469. "md: updating %s RAID superblock on device (in sync %d)\n",
  1470. mdname(mddev),mddev->in_sync);
  1471. err = bitmap_update_sb(mddev->bitmap);
  1472. ITERATE_RDEV(mddev,rdev,tmp) {
  1473. char b[BDEVNAME_SIZE];
  1474. dprintk(KERN_INFO "md: ");
  1475. if (rdev->sb_loaded != 1)
  1476. continue; /* no noise on spare devices */
  1477. if (test_bit(Faulty, &rdev->flags))
  1478. dprintk("(skipping faulty ");
  1479. dprintk("%s ", bdevname(rdev->bdev,b));
  1480. if (!test_bit(Faulty, &rdev->flags)) {
  1481. md_super_write(mddev,rdev,
  1482. rdev->sb_offset<<1, rdev->sb_size,
  1483. rdev->sb_page);
  1484. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1485. bdevname(rdev->bdev,b),
  1486. (unsigned long long)rdev->sb_offset);
  1487. rdev->sb_events = mddev->events;
  1488. } else
  1489. dprintk(")\n");
  1490. if (mddev->level == LEVEL_MULTIPATH)
  1491. /* only need to write one superblock... */
  1492. break;
  1493. }
  1494. md_super_wait(mddev);
  1495. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1496. spin_lock_irq(&mddev->write_lock);
  1497. if (mddev->in_sync != sync_req ||
  1498. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1499. /* have to write it out again */
  1500. spin_unlock_irq(&mddev->write_lock);
  1501. goto repeat;
  1502. }
  1503. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1504. spin_unlock_irq(&mddev->write_lock);
  1505. wake_up(&mddev->sb_wait);
  1506. }
  1507. /* words written to sysfs files may, or my not, be \n terminated.
  1508. * We want to accept with case. For this we use cmd_match.
  1509. */
  1510. static int cmd_match(const char *cmd, const char *str)
  1511. {
  1512. /* See if cmd, written into a sysfs file, matches
  1513. * str. They must either be the same, or cmd can
  1514. * have a trailing newline
  1515. */
  1516. while (*cmd && *str && *cmd == *str) {
  1517. cmd++;
  1518. str++;
  1519. }
  1520. if (*cmd == '\n')
  1521. cmd++;
  1522. if (*str || *cmd)
  1523. return 0;
  1524. return 1;
  1525. }
  1526. struct rdev_sysfs_entry {
  1527. struct attribute attr;
  1528. ssize_t (*show)(mdk_rdev_t *, char *);
  1529. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1530. };
  1531. static ssize_t
  1532. state_show(mdk_rdev_t *rdev, char *page)
  1533. {
  1534. char *sep = "";
  1535. int len=0;
  1536. if (test_bit(Faulty, &rdev->flags)) {
  1537. len+= sprintf(page+len, "%sfaulty",sep);
  1538. sep = ",";
  1539. }
  1540. if (test_bit(In_sync, &rdev->flags)) {
  1541. len += sprintf(page+len, "%sin_sync",sep);
  1542. sep = ",";
  1543. }
  1544. if (test_bit(WriteMostly, &rdev->flags)) {
  1545. len += sprintf(page+len, "%swrite_mostly",sep);
  1546. sep = ",";
  1547. }
  1548. if (!test_bit(Faulty, &rdev->flags) &&
  1549. !test_bit(In_sync, &rdev->flags)) {
  1550. len += sprintf(page+len, "%sspare", sep);
  1551. sep = ",";
  1552. }
  1553. return len+sprintf(page+len, "\n");
  1554. }
  1555. static ssize_t
  1556. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1557. {
  1558. /* can write
  1559. * faulty - simulates and error
  1560. * remove - disconnects the device
  1561. * writemostly - sets write_mostly
  1562. * -writemostly - clears write_mostly
  1563. */
  1564. int err = -EINVAL;
  1565. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1566. md_error(rdev->mddev, rdev);
  1567. err = 0;
  1568. } else if (cmd_match(buf, "remove")) {
  1569. if (rdev->raid_disk >= 0)
  1570. err = -EBUSY;
  1571. else {
  1572. mddev_t *mddev = rdev->mddev;
  1573. kick_rdev_from_array(rdev);
  1574. if (mddev->pers)
  1575. md_update_sb(mddev, 1);
  1576. md_new_event(mddev);
  1577. err = 0;
  1578. }
  1579. } else if (cmd_match(buf, "writemostly")) {
  1580. set_bit(WriteMostly, &rdev->flags);
  1581. err = 0;
  1582. } else if (cmd_match(buf, "-writemostly")) {
  1583. clear_bit(WriteMostly, &rdev->flags);
  1584. err = 0;
  1585. }
  1586. return err ? err : len;
  1587. }
  1588. static struct rdev_sysfs_entry rdev_state =
  1589. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1590. static ssize_t
  1591. super_show(mdk_rdev_t *rdev, char *page)
  1592. {
  1593. if (rdev->sb_loaded && rdev->sb_size) {
  1594. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1595. return rdev->sb_size;
  1596. } else
  1597. return 0;
  1598. }
  1599. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1600. static ssize_t
  1601. errors_show(mdk_rdev_t *rdev, char *page)
  1602. {
  1603. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1604. }
  1605. static ssize_t
  1606. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1607. {
  1608. char *e;
  1609. unsigned long n = simple_strtoul(buf, &e, 10);
  1610. if (*buf && (*e == 0 || *e == '\n')) {
  1611. atomic_set(&rdev->corrected_errors, n);
  1612. return len;
  1613. }
  1614. return -EINVAL;
  1615. }
  1616. static struct rdev_sysfs_entry rdev_errors =
  1617. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1618. static ssize_t
  1619. slot_show(mdk_rdev_t *rdev, char *page)
  1620. {
  1621. if (rdev->raid_disk < 0)
  1622. return sprintf(page, "none\n");
  1623. else
  1624. return sprintf(page, "%d\n", rdev->raid_disk);
  1625. }
  1626. static ssize_t
  1627. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1628. {
  1629. char *e;
  1630. int slot = simple_strtoul(buf, &e, 10);
  1631. if (strncmp(buf, "none", 4)==0)
  1632. slot = -1;
  1633. else if (e==buf || (*e && *e!= '\n'))
  1634. return -EINVAL;
  1635. if (rdev->mddev->pers)
  1636. /* Cannot set slot in active array (yet) */
  1637. return -EBUSY;
  1638. if (slot >= rdev->mddev->raid_disks)
  1639. return -ENOSPC;
  1640. rdev->raid_disk = slot;
  1641. /* assume it is working */
  1642. rdev->flags = 0;
  1643. set_bit(In_sync, &rdev->flags);
  1644. return len;
  1645. }
  1646. static struct rdev_sysfs_entry rdev_slot =
  1647. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1648. static ssize_t
  1649. offset_show(mdk_rdev_t *rdev, char *page)
  1650. {
  1651. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1652. }
  1653. static ssize_t
  1654. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1655. {
  1656. char *e;
  1657. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1658. if (e==buf || (*e && *e != '\n'))
  1659. return -EINVAL;
  1660. if (rdev->mddev->pers)
  1661. return -EBUSY;
  1662. rdev->data_offset = offset;
  1663. return len;
  1664. }
  1665. static struct rdev_sysfs_entry rdev_offset =
  1666. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1667. static ssize_t
  1668. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1669. {
  1670. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1671. }
  1672. static ssize_t
  1673. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1674. {
  1675. char *e;
  1676. unsigned long long size = simple_strtoull(buf, &e, 10);
  1677. if (e==buf || (*e && *e != '\n'))
  1678. return -EINVAL;
  1679. if (rdev->mddev->pers)
  1680. return -EBUSY;
  1681. rdev->size = size;
  1682. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1683. rdev->mddev->size = size;
  1684. return len;
  1685. }
  1686. static struct rdev_sysfs_entry rdev_size =
  1687. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1688. static struct attribute *rdev_default_attrs[] = {
  1689. &rdev_state.attr,
  1690. &rdev_super.attr,
  1691. &rdev_errors.attr,
  1692. &rdev_slot.attr,
  1693. &rdev_offset.attr,
  1694. &rdev_size.attr,
  1695. NULL,
  1696. };
  1697. static ssize_t
  1698. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1699. {
  1700. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1701. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1702. if (!entry->show)
  1703. return -EIO;
  1704. return entry->show(rdev, page);
  1705. }
  1706. static ssize_t
  1707. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1708. const char *page, size_t length)
  1709. {
  1710. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1711. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1712. if (!entry->store)
  1713. return -EIO;
  1714. if (!capable(CAP_SYS_ADMIN))
  1715. return -EACCES;
  1716. return entry->store(rdev, page, length);
  1717. }
  1718. static void rdev_free(struct kobject *ko)
  1719. {
  1720. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1721. kfree(rdev);
  1722. }
  1723. static struct sysfs_ops rdev_sysfs_ops = {
  1724. .show = rdev_attr_show,
  1725. .store = rdev_attr_store,
  1726. };
  1727. static struct kobj_type rdev_ktype = {
  1728. .release = rdev_free,
  1729. .sysfs_ops = &rdev_sysfs_ops,
  1730. .default_attrs = rdev_default_attrs,
  1731. };
  1732. /*
  1733. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1734. *
  1735. * mark the device faulty if:
  1736. *
  1737. * - the device is nonexistent (zero size)
  1738. * - the device has no valid superblock
  1739. *
  1740. * a faulty rdev _never_ has rdev->sb set.
  1741. */
  1742. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1743. {
  1744. char b[BDEVNAME_SIZE];
  1745. int err;
  1746. mdk_rdev_t *rdev;
  1747. sector_t size;
  1748. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1749. if (!rdev) {
  1750. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1751. return ERR_PTR(-ENOMEM);
  1752. }
  1753. if ((err = alloc_disk_sb(rdev)))
  1754. goto abort_free;
  1755. err = lock_rdev(rdev, newdev);
  1756. if (err)
  1757. goto abort_free;
  1758. rdev->kobj.parent = NULL;
  1759. rdev->kobj.ktype = &rdev_ktype;
  1760. kobject_init(&rdev->kobj);
  1761. rdev->desc_nr = -1;
  1762. rdev->saved_raid_disk = -1;
  1763. rdev->raid_disk = -1;
  1764. rdev->flags = 0;
  1765. rdev->data_offset = 0;
  1766. rdev->sb_events = 0;
  1767. atomic_set(&rdev->nr_pending, 0);
  1768. atomic_set(&rdev->read_errors, 0);
  1769. atomic_set(&rdev->corrected_errors, 0);
  1770. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1771. if (!size) {
  1772. printk(KERN_WARNING
  1773. "md: %s has zero or unknown size, marking faulty!\n",
  1774. bdevname(rdev->bdev,b));
  1775. err = -EINVAL;
  1776. goto abort_free;
  1777. }
  1778. if (super_format >= 0) {
  1779. err = super_types[super_format].
  1780. load_super(rdev, NULL, super_minor);
  1781. if (err == -EINVAL) {
  1782. printk(KERN_WARNING
  1783. "md: %s has invalid sb, not importing!\n",
  1784. bdevname(rdev->bdev,b));
  1785. goto abort_free;
  1786. }
  1787. if (err < 0) {
  1788. printk(KERN_WARNING
  1789. "md: could not read %s's sb, not importing!\n",
  1790. bdevname(rdev->bdev,b));
  1791. goto abort_free;
  1792. }
  1793. }
  1794. INIT_LIST_HEAD(&rdev->same_set);
  1795. return rdev;
  1796. abort_free:
  1797. if (rdev->sb_page) {
  1798. if (rdev->bdev)
  1799. unlock_rdev(rdev);
  1800. free_disk_sb(rdev);
  1801. }
  1802. kfree(rdev);
  1803. return ERR_PTR(err);
  1804. }
  1805. /*
  1806. * Check a full RAID array for plausibility
  1807. */
  1808. static void analyze_sbs(mddev_t * mddev)
  1809. {
  1810. int i;
  1811. struct list_head *tmp;
  1812. mdk_rdev_t *rdev, *freshest;
  1813. char b[BDEVNAME_SIZE];
  1814. freshest = NULL;
  1815. ITERATE_RDEV(mddev,rdev,tmp)
  1816. switch (super_types[mddev->major_version].
  1817. load_super(rdev, freshest, mddev->minor_version)) {
  1818. case 1:
  1819. freshest = rdev;
  1820. break;
  1821. case 0:
  1822. break;
  1823. default:
  1824. printk( KERN_ERR \
  1825. "md: fatal superblock inconsistency in %s"
  1826. " -- removing from array\n",
  1827. bdevname(rdev->bdev,b));
  1828. kick_rdev_from_array(rdev);
  1829. }
  1830. super_types[mddev->major_version].
  1831. validate_super(mddev, freshest);
  1832. i = 0;
  1833. ITERATE_RDEV(mddev,rdev,tmp) {
  1834. if (rdev != freshest)
  1835. if (super_types[mddev->major_version].
  1836. validate_super(mddev, rdev)) {
  1837. printk(KERN_WARNING "md: kicking non-fresh %s"
  1838. " from array!\n",
  1839. bdevname(rdev->bdev,b));
  1840. kick_rdev_from_array(rdev);
  1841. continue;
  1842. }
  1843. if (mddev->level == LEVEL_MULTIPATH) {
  1844. rdev->desc_nr = i++;
  1845. rdev->raid_disk = rdev->desc_nr;
  1846. set_bit(In_sync, &rdev->flags);
  1847. }
  1848. }
  1849. if (mddev->recovery_cp != MaxSector &&
  1850. mddev->level >= 1)
  1851. printk(KERN_ERR "md: %s: raid array is not clean"
  1852. " -- starting background reconstruction\n",
  1853. mdname(mddev));
  1854. }
  1855. static ssize_t
  1856. safe_delay_show(mddev_t *mddev, char *page)
  1857. {
  1858. int msec = (mddev->safemode_delay*1000)/HZ;
  1859. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1860. }
  1861. static ssize_t
  1862. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1863. {
  1864. int scale=1;
  1865. int dot=0;
  1866. int i;
  1867. unsigned long msec;
  1868. char buf[30];
  1869. char *e;
  1870. /* remove a period, and count digits after it */
  1871. if (len >= sizeof(buf))
  1872. return -EINVAL;
  1873. strlcpy(buf, cbuf, len);
  1874. buf[len] = 0;
  1875. for (i=0; i<len; i++) {
  1876. if (dot) {
  1877. if (isdigit(buf[i])) {
  1878. buf[i-1] = buf[i];
  1879. scale *= 10;
  1880. }
  1881. buf[i] = 0;
  1882. } else if (buf[i] == '.') {
  1883. dot=1;
  1884. buf[i] = 0;
  1885. }
  1886. }
  1887. msec = simple_strtoul(buf, &e, 10);
  1888. if (e == buf || (*e && *e != '\n'))
  1889. return -EINVAL;
  1890. msec = (msec * 1000) / scale;
  1891. if (msec == 0)
  1892. mddev->safemode_delay = 0;
  1893. else {
  1894. mddev->safemode_delay = (msec*HZ)/1000;
  1895. if (mddev->safemode_delay == 0)
  1896. mddev->safemode_delay = 1;
  1897. }
  1898. return len;
  1899. }
  1900. static struct md_sysfs_entry md_safe_delay =
  1901. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1902. static ssize_t
  1903. level_show(mddev_t *mddev, char *page)
  1904. {
  1905. struct mdk_personality *p = mddev->pers;
  1906. if (p)
  1907. return sprintf(page, "%s\n", p->name);
  1908. else if (mddev->clevel[0])
  1909. return sprintf(page, "%s\n", mddev->clevel);
  1910. else if (mddev->level != LEVEL_NONE)
  1911. return sprintf(page, "%d\n", mddev->level);
  1912. else
  1913. return 0;
  1914. }
  1915. static ssize_t
  1916. level_store(mddev_t *mddev, const char *buf, size_t len)
  1917. {
  1918. int rv = len;
  1919. if (mddev->pers)
  1920. return -EBUSY;
  1921. if (len == 0)
  1922. return 0;
  1923. if (len >= sizeof(mddev->clevel))
  1924. return -ENOSPC;
  1925. strncpy(mddev->clevel, buf, len);
  1926. if (mddev->clevel[len-1] == '\n')
  1927. len--;
  1928. mddev->clevel[len] = 0;
  1929. mddev->level = LEVEL_NONE;
  1930. return rv;
  1931. }
  1932. static struct md_sysfs_entry md_level =
  1933. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1934. static ssize_t
  1935. layout_show(mddev_t *mddev, char *page)
  1936. {
  1937. /* just a number, not meaningful for all levels */
  1938. return sprintf(page, "%d\n", mddev->layout);
  1939. }
  1940. static ssize_t
  1941. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1942. {
  1943. char *e;
  1944. unsigned long n = simple_strtoul(buf, &e, 10);
  1945. if (mddev->pers)
  1946. return -EBUSY;
  1947. if (!*buf || (*e && *e != '\n'))
  1948. return -EINVAL;
  1949. mddev->layout = n;
  1950. return len;
  1951. }
  1952. static struct md_sysfs_entry md_layout =
  1953. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1954. static ssize_t
  1955. raid_disks_show(mddev_t *mddev, char *page)
  1956. {
  1957. if (mddev->raid_disks == 0)
  1958. return 0;
  1959. return sprintf(page, "%d\n", mddev->raid_disks);
  1960. }
  1961. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1962. static ssize_t
  1963. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1964. {
  1965. char *e;
  1966. int rv = 0;
  1967. unsigned long n = simple_strtoul(buf, &e, 10);
  1968. if (!*buf || (*e && *e != '\n'))
  1969. return -EINVAL;
  1970. if (mddev->pers)
  1971. rv = update_raid_disks(mddev, n);
  1972. else
  1973. mddev->raid_disks = n;
  1974. return rv ? rv : len;
  1975. }
  1976. static struct md_sysfs_entry md_raid_disks =
  1977. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  1978. static ssize_t
  1979. chunk_size_show(mddev_t *mddev, char *page)
  1980. {
  1981. return sprintf(page, "%d\n", mddev->chunk_size);
  1982. }
  1983. static ssize_t
  1984. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1985. {
  1986. /* can only set chunk_size if array is not yet active */
  1987. char *e;
  1988. unsigned long n = simple_strtoul(buf, &e, 10);
  1989. if (mddev->pers)
  1990. return -EBUSY;
  1991. if (!*buf || (*e && *e != '\n'))
  1992. return -EINVAL;
  1993. mddev->chunk_size = n;
  1994. return len;
  1995. }
  1996. static struct md_sysfs_entry md_chunk_size =
  1997. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  1998. static ssize_t
  1999. resync_start_show(mddev_t *mddev, char *page)
  2000. {
  2001. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2002. }
  2003. static ssize_t
  2004. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2005. {
  2006. /* can only set chunk_size if array is not yet active */
  2007. char *e;
  2008. unsigned long long n = simple_strtoull(buf, &e, 10);
  2009. if (mddev->pers)
  2010. return -EBUSY;
  2011. if (!*buf || (*e && *e != '\n'))
  2012. return -EINVAL;
  2013. mddev->recovery_cp = n;
  2014. return len;
  2015. }
  2016. static struct md_sysfs_entry md_resync_start =
  2017. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2018. /*
  2019. * The array state can be:
  2020. *
  2021. * clear
  2022. * No devices, no size, no level
  2023. * Equivalent to STOP_ARRAY ioctl
  2024. * inactive
  2025. * May have some settings, but array is not active
  2026. * all IO results in error
  2027. * When written, doesn't tear down array, but just stops it
  2028. * suspended (not supported yet)
  2029. * All IO requests will block. The array can be reconfigured.
  2030. * Writing this, if accepted, will block until array is quiessent
  2031. * readonly
  2032. * no resync can happen. no superblocks get written.
  2033. * write requests fail
  2034. * read-auto
  2035. * like readonly, but behaves like 'clean' on a write request.
  2036. *
  2037. * clean - no pending writes, but otherwise active.
  2038. * When written to inactive array, starts without resync
  2039. * If a write request arrives then
  2040. * if metadata is known, mark 'dirty' and switch to 'active'.
  2041. * if not known, block and switch to write-pending
  2042. * If written to an active array that has pending writes, then fails.
  2043. * active
  2044. * fully active: IO and resync can be happening.
  2045. * When written to inactive array, starts with resync
  2046. *
  2047. * write-pending
  2048. * clean, but writes are blocked waiting for 'active' to be written.
  2049. *
  2050. * active-idle
  2051. * like active, but no writes have been seen for a while (100msec).
  2052. *
  2053. */
  2054. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2055. write_pending, active_idle, bad_word};
  2056. static char *array_states[] = {
  2057. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2058. "write-pending", "active-idle", NULL };
  2059. static int match_word(const char *word, char **list)
  2060. {
  2061. int n;
  2062. for (n=0; list[n]; n++)
  2063. if (cmd_match(word, list[n]))
  2064. break;
  2065. return n;
  2066. }
  2067. static ssize_t
  2068. array_state_show(mddev_t *mddev, char *page)
  2069. {
  2070. enum array_state st = inactive;
  2071. if (mddev->pers)
  2072. switch(mddev->ro) {
  2073. case 1:
  2074. st = readonly;
  2075. break;
  2076. case 2:
  2077. st = read_auto;
  2078. break;
  2079. case 0:
  2080. if (mddev->in_sync)
  2081. st = clean;
  2082. else if (mddev->safemode)
  2083. st = active_idle;
  2084. else
  2085. st = active;
  2086. }
  2087. else {
  2088. if (list_empty(&mddev->disks) &&
  2089. mddev->raid_disks == 0 &&
  2090. mddev->size == 0)
  2091. st = clear;
  2092. else
  2093. st = inactive;
  2094. }
  2095. return sprintf(page, "%s\n", array_states[st]);
  2096. }
  2097. static int do_md_stop(mddev_t * mddev, int ro);
  2098. static int do_md_run(mddev_t * mddev);
  2099. static int restart_array(mddev_t *mddev);
  2100. static ssize_t
  2101. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2102. {
  2103. int err = -EINVAL;
  2104. enum array_state st = match_word(buf, array_states);
  2105. switch(st) {
  2106. case bad_word:
  2107. break;
  2108. case clear:
  2109. /* stopping an active array */
  2110. if (mddev->pers) {
  2111. if (atomic_read(&mddev->active) > 1)
  2112. return -EBUSY;
  2113. err = do_md_stop(mddev, 0);
  2114. }
  2115. break;
  2116. case inactive:
  2117. /* stopping an active array */
  2118. if (mddev->pers) {
  2119. if (atomic_read(&mddev->active) > 1)
  2120. return -EBUSY;
  2121. err = do_md_stop(mddev, 2);
  2122. }
  2123. break;
  2124. case suspended:
  2125. break; /* not supported yet */
  2126. case readonly:
  2127. if (mddev->pers)
  2128. err = do_md_stop(mddev, 1);
  2129. else {
  2130. mddev->ro = 1;
  2131. err = do_md_run(mddev);
  2132. }
  2133. break;
  2134. case read_auto:
  2135. /* stopping an active array */
  2136. if (mddev->pers) {
  2137. err = do_md_stop(mddev, 1);
  2138. if (err == 0)
  2139. mddev->ro = 2; /* FIXME mark devices writable */
  2140. } else {
  2141. mddev->ro = 2;
  2142. err = do_md_run(mddev);
  2143. }
  2144. break;
  2145. case clean:
  2146. if (mddev->pers) {
  2147. restart_array(mddev);
  2148. spin_lock_irq(&mddev->write_lock);
  2149. if (atomic_read(&mddev->writes_pending) == 0) {
  2150. mddev->in_sync = 1;
  2151. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2152. }
  2153. spin_unlock_irq(&mddev->write_lock);
  2154. } else {
  2155. mddev->ro = 0;
  2156. mddev->recovery_cp = MaxSector;
  2157. err = do_md_run(mddev);
  2158. }
  2159. break;
  2160. case active:
  2161. if (mddev->pers) {
  2162. restart_array(mddev);
  2163. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2164. wake_up(&mddev->sb_wait);
  2165. err = 0;
  2166. } else {
  2167. mddev->ro = 0;
  2168. err = do_md_run(mddev);
  2169. }
  2170. break;
  2171. case write_pending:
  2172. case active_idle:
  2173. /* these cannot be set */
  2174. break;
  2175. }
  2176. if (err)
  2177. return err;
  2178. else
  2179. return len;
  2180. }
  2181. static struct md_sysfs_entry md_array_state =
  2182. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2183. static ssize_t
  2184. null_show(mddev_t *mddev, char *page)
  2185. {
  2186. return -EINVAL;
  2187. }
  2188. static ssize_t
  2189. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2190. {
  2191. /* buf must be %d:%d\n? giving major and minor numbers */
  2192. /* The new device is added to the array.
  2193. * If the array has a persistent superblock, we read the
  2194. * superblock to initialise info and check validity.
  2195. * Otherwise, only checking done is that in bind_rdev_to_array,
  2196. * which mainly checks size.
  2197. */
  2198. char *e;
  2199. int major = simple_strtoul(buf, &e, 10);
  2200. int minor;
  2201. dev_t dev;
  2202. mdk_rdev_t *rdev;
  2203. int err;
  2204. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2205. return -EINVAL;
  2206. minor = simple_strtoul(e+1, &e, 10);
  2207. if (*e && *e != '\n')
  2208. return -EINVAL;
  2209. dev = MKDEV(major, minor);
  2210. if (major != MAJOR(dev) ||
  2211. minor != MINOR(dev))
  2212. return -EOVERFLOW;
  2213. if (mddev->persistent) {
  2214. rdev = md_import_device(dev, mddev->major_version,
  2215. mddev->minor_version);
  2216. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2217. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2218. mdk_rdev_t, same_set);
  2219. err = super_types[mddev->major_version]
  2220. .load_super(rdev, rdev0, mddev->minor_version);
  2221. if (err < 0)
  2222. goto out;
  2223. }
  2224. } else
  2225. rdev = md_import_device(dev, -1, -1);
  2226. if (IS_ERR(rdev))
  2227. return PTR_ERR(rdev);
  2228. err = bind_rdev_to_array(rdev, mddev);
  2229. out:
  2230. if (err)
  2231. export_rdev(rdev);
  2232. return err ? err : len;
  2233. }
  2234. static struct md_sysfs_entry md_new_device =
  2235. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2236. static ssize_t
  2237. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2238. {
  2239. char *end;
  2240. unsigned long chunk, end_chunk;
  2241. if (!mddev->bitmap)
  2242. goto out;
  2243. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2244. while (*buf) {
  2245. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2246. if (buf == end) break;
  2247. if (*end == '-') { /* range */
  2248. buf = end + 1;
  2249. end_chunk = simple_strtoul(buf, &end, 0);
  2250. if (buf == end) break;
  2251. }
  2252. if (*end && !isspace(*end)) break;
  2253. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2254. buf = end;
  2255. while (isspace(*buf)) buf++;
  2256. }
  2257. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2258. out:
  2259. return len;
  2260. }
  2261. static struct md_sysfs_entry md_bitmap =
  2262. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2263. static ssize_t
  2264. size_show(mddev_t *mddev, char *page)
  2265. {
  2266. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2267. }
  2268. static int update_size(mddev_t *mddev, unsigned long size);
  2269. static ssize_t
  2270. size_store(mddev_t *mddev, const char *buf, size_t len)
  2271. {
  2272. /* If array is inactive, we can reduce the component size, but
  2273. * not increase it (except from 0).
  2274. * If array is active, we can try an on-line resize
  2275. */
  2276. char *e;
  2277. int err = 0;
  2278. unsigned long long size = simple_strtoull(buf, &e, 10);
  2279. if (!*buf || *buf == '\n' ||
  2280. (*e && *e != '\n'))
  2281. return -EINVAL;
  2282. if (mddev->pers) {
  2283. err = update_size(mddev, size);
  2284. md_update_sb(mddev, 1);
  2285. } else {
  2286. if (mddev->size == 0 ||
  2287. mddev->size > size)
  2288. mddev->size = size;
  2289. else
  2290. err = -ENOSPC;
  2291. }
  2292. return err ? err : len;
  2293. }
  2294. static struct md_sysfs_entry md_size =
  2295. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2296. /* Metdata version.
  2297. * This is either 'none' for arrays with externally managed metadata,
  2298. * or N.M for internally known formats
  2299. */
  2300. static ssize_t
  2301. metadata_show(mddev_t *mddev, char *page)
  2302. {
  2303. if (mddev->persistent)
  2304. return sprintf(page, "%d.%d\n",
  2305. mddev->major_version, mddev->minor_version);
  2306. else
  2307. return sprintf(page, "none\n");
  2308. }
  2309. static ssize_t
  2310. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2311. {
  2312. int major, minor;
  2313. char *e;
  2314. if (!list_empty(&mddev->disks))
  2315. return -EBUSY;
  2316. if (cmd_match(buf, "none")) {
  2317. mddev->persistent = 0;
  2318. mddev->major_version = 0;
  2319. mddev->minor_version = 90;
  2320. return len;
  2321. }
  2322. major = simple_strtoul(buf, &e, 10);
  2323. if (e==buf || *e != '.')
  2324. return -EINVAL;
  2325. buf = e+1;
  2326. minor = simple_strtoul(buf, &e, 10);
  2327. if (e==buf || (*e && *e != '\n') )
  2328. return -EINVAL;
  2329. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2330. return -ENOENT;
  2331. mddev->major_version = major;
  2332. mddev->minor_version = minor;
  2333. mddev->persistent = 1;
  2334. return len;
  2335. }
  2336. static struct md_sysfs_entry md_metadata =
  2337. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2338. static ssize_t
  2339. action_show(mddev_t *mddev, char *page)
  2340. {
  2341. char *type = "idle";
  2342. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2343. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2344. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2345. type = "reshape";
  2346. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2347. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2348. type = "resync";
  2349. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2350. type = "check";
  2351. else
  2352. type = "repair";
  2353. } else
  2354. type = "recover";
  2355. }
  2356. return sprintf(page, "%s\n", type);
  2357. }
  2358. static ssize_t
  2359. action_store(mddev_t *mddev, const char *page, size_t len)
  2360. {
  2361. if (!mddev->pers || !mddev->pers->sync_request)
  2362. return -EINVAL;
  2363. if (cmd_match(page, "idle")) {
  2364. if (mddev->sync_thread) {
  2365. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2366. md_unregister_thread(mddev->sync_thread);
  2367. mddev->sync_thread = NULL;
  2368. mddev->recovery = 0;
  2369. }
  2370. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2371. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2372. return -EBUSY;
  2373. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2374. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2375. else if (cmd_match(page, "reshape")) {
  2376. int err;
  2377. if (mddev->pers->start_reshape == NULL)
  2378. return -EINVAL;
  2379. err = mddev->pers->start_reshape(mddev);
  2380. if (err)
  2381. return err;
  2382. } else {
  2383. if (cmd_match(page, "check"))
  2384. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2385. else if (!cmd_match(page, "repair"))
  2386. return -EINVAL;
  2387. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2388. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2389. }
  2390. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2391. md_wakeup_thread(mddev->thread);
  2392. return len;
  2393. }
  2394. static ssize_t
  2395. mismatch_cnt_show(mddev_t *mddev, char *page)
  2396. {
  2397. return sprintf(page, "%llu\n",
  2398. (unsigned long long) mddev->resync_mismatches);
  2399. }
  2400. static struct md_sysfs_entry md_scan_mode =
  2401. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2402. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2403. static ssize_t
  2404. sync_min_show(mddev_t *mddev, char *page)
  2405. {
  2406. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2407. mddev->sync_speed_min ? "local": "system");
  2408. }
  2409. static ssize_t
  2410. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2411. {
  2412. int min;
  2413. char *e;
  2414. if (strncmp(buf, "system", 6)==0) {
  2415. mddev->sync_speed_min = 0;
  2416. return len;
  2417. }
  2418. min = simple_strtoul(buf, &e, 10);
  2419. if (buf == e || (*e && *e != '\n') || min <= 0)
  2420. return -EINVAL;
  2421. mddev->sync_speed_min = min;
  2422. return len;
  2423. }
  2424. static struct md_sysfs_entry md_sync_min =
  2425. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2426. static ssize_t
  2427. sync_max_show(mddev_t *mddev, char *page)
  2428. {
  2429. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2430. mddev->sync_speed_max ? "local": "system");
  2431. }
  2432. static ssize_t
  2433. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2434. {
  2435. int max;
  2436. char *e;
  2437. if (strncmp(buf, "system", 6)==0) {
  2438. mddev->sync_speed_max = 0;
  2439. return len;
  2440. }
  2441. max = simple_strtoul(buf, &e, 10);
  2442. if (buf == e || (*e && *e != '\n') || max <= 0)
  2443. return -EINVAL;
  2444. mddev->sync_speed_max = max;
  2445. return len;
  2446. }
  2447. static struct md_sysfs_entry md_sync_max =
  2448. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2449. static ssize_t
  2450. sync_speed_show(mddev_t *mddev, char *page)
  2451. {
  2452. unsigned long resync, dt, db;
  2453. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2454. dt = ((jiffies - mddev->resync_mark) / HZ);
  2455. if (!dt) dt++;
  2456. db = resync - (mddev->resync_mark_cnt);
  2457. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2458. }
  2459. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2460. static ssize_t
  2461. sync_completed_show(mddev_t *mddev, char *page)
  2462. {
  2463. unsigned long max_blocks, resync;
  2464. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2465. max_blocks = mddev->resync_max_sectors;
  2466. else
  2467. max_blocks = mddev->size << 1;
  2468. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2469. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2470. }
  2471. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2472. static ssize_t
  2473. suspend_lo_show(mddev_t *mddev, char *page)
  2474. {
  2475. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2476. }
  2477. static ssize_t
  2478. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2479. {
  2480. char *e;
  2481. unsigned long long new = simple_strtoull(buf, &e, 10);
  2482. if (mddev->pers->quiesce == NULL)
  2483. return -EINVAL;
  2484. if (buf == e || (*e && *e != '\n'))
  2485. return -EINVAL;
  2486. if (new >= mddev->suspend_hi ||
  2487. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2488. mddev->suspend_lo = new;
  2489. mddev->pers->quiesce(mddev, 2);
  2490. return len;
  2491. } else
  2492. return -EINVAL;
  2493. }
  2494. static struct md_sysfs_entry md_suspend_lo =
  2495. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2496. static ssize_t
  2497. suspend_hi_show(mddev_t *mddev, char *page)
  2498. {
  2499. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2500. }
  2501. static ssize_t
  2502. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2503. {
  2504. char *e;
  2505. unsigned long long new = simple_strtoull(buf, &e, 10);
  2506. if (mddev->pers->quiesce == NULL)
  2507. return -EINVAL;
  2508. if (buf == e || (*e && *e != '\n'))
  2509. return -EINVAL;
  2510. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2511. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2512. mddev->suspend_hi = new;
  2513. mddev->pers->quiesce(mddev, 1);
  2514. mddev->pers->quiesce(mddev, 0);
  2515. return len;
  2516. } else
  2517. return -EINVAL;
  2518. }
  2519. static struct md_sysfs_entry md_suspend_hi =
  2520. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2521. static struct attribute *md_default_attrs[] = {
  2522. &md_level.attr,
  2523. &md_layout.attr,
  2524. &md_raid_disks.attr,
  2525. &md_chunk_size.attr,
  2526. &md_size.attr,
  2527. &md_resync_start.attr,
  2528. &md_metadata.attr,
  2529. &md_new_device.attr,
  2530. &md_safe_delay.attr,
  2531. &md_array_state.attr,
  2532. NULL,
  2533. };
  2534. static struct attribute *md_redundancy_attrs[] = {
  2535. &md_scan_mode.attr,
  2536. &md_mismatches.attr,
  2537. &md_sync_min.attr,
  2538. &md_sync_max.attr,
  2539. &md_sync_speed.attr,
  2540. &md_sync_completed.attr,
  2541. &md_suspend_lo.attr,
  2542. &md_suspend_hi.attr,
  2543. &md_bitmap.attr,
  2544. NULL,
  2545. };
  2546. static struct attribute_group md_redundancy_group = {
  2547. .name = NULL,
  2548. .attrs = md_redundancy_attrs,
  2549. };
  2550. static ssize_t
  2551. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2552. {
  2553. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2554. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2555. ssize_t rv;
  2556. if (!entry->show)
  2557. return -EIO;
  2558. rv = mddev_lock(mddev);
  2559. if (!rv) {
  2560. rv = entry->show(mddev, page);
  2561. mddev_unlock(mddev);
  2562. }
  2563. return rv;
  2564. }
  2565. static ssize_t
  2566. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2567. const char *page, size_t length)
  2568. {
  2569. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2570. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2571. ssize_t rv;
  2572. if (!entry->store)
  2573. return -EIO;
  2574. if (!capable(CAP_SYS_ADMIN))
  2575. return -EACCES;
  2576. rv = mddev_lock(mddev);
  2577. if (!rv) {
  2578. rv = entry->store(mddev, page, length);
  2579. mddev_unlock(mddev);
  2580. }
  2581. return rv;
  2582. }
  2583. static void md_free(struct kobject *ko)
  2584. {
  2585. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2586. kfree(mddev);
  2587. }
  2588. static struct sysfs_ops md_sysfs_ops = {
  2589. .show = md_attr_show,
  2590. .store = md_attr_store,
  2591. };
  2592. static struct kobj_type md_ktype = {
  2593. .release = md_free,
  2594. .sysfs_ops = &md_sysfs_ops,
  2595. .default_attrs = md_default_attrs,
  2596. };
  2597. int mdp_major = 0;
  2598. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2599. {
  2600. static DEFINE_MUTEX(disks_mutex);
  2601. mddev_t *mddev = mddev_find(dev);
  2602. struct gendisk *disk;
  2603. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2604. int shift = partitioned ? MdpMinorShift : 0;
  2605. int unit = MINOR(dev) >> shift;
  2606. if (!mddev)
  2607. return NULL;
  2608. mutex_lock(&disks_mutex);
  2609. if (mddev->gendisk) {
  2610. mutex_unlock(&disks_mutex);
  2611. mddev_put(mddev);
  2612. return NULL;
  2613. }
  2614. disk = alloc_disk(1 << shift);
  2615. if (!disk) {
  2616. mutex_unlock(&disks_mutex);
  2617. mddev_put(mddev);
  2618. return NULL;
  2619. }
  2620. disk->major = MAJOR(dev);
  2621. disk->first_minor = unit << shift;
  2622. if (partitioned)
  2623. sprintf(disk->disk_name, "md_d%d", unit);
  2624. else
  2625. sprintf(disk->disk_name, "md%d", unit);
  2626. disk->fops = &md_fops;
  2627. disk->private_data = mddev;
  2628. disk->queue = mddev->queue;
  2629. add_disk(disk);
  2630. mddev->gendisk = disk;
  2631. mutex_unlock(&disks_mutex);
  2632. mddev->kobj.parent = &disk->kobj;
  2633. mddev->kobj.k_name = NULL;
  2634. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2635. mddev->kobj.ktype = &md_ktype;
  2636. if (kobject_register(&mddev->kobj))
  2637. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2638. disk->disk_name);
  2639. return NULL;
  2640. }
  2641. static void md_safemode_timeout(unsigned long data)
  2642. {
  2643. mddev_t *mddev = (mddev_t *) data;
  2644. mddev->safemode = 1;
  2645. md_wakeup_thread(mddev->thread);
  2646. }
  2647. static int start_dirty_degraded;
  2648. static int do_md_run(mddev_t * mddev)
  2649. {
  2650. int err;
  2651. int chunk_size;
  2652. struct list_head *tmp;
  2653. mdk_rdev_t *rdev;
  2654. struct gendisk *disk;
  2655. struct mdk_personality *pers;
  2656. char b[BDEVNAME_SIZE];
  2657. if (list_empty(&mddev->disks))
  2658. /* cannot run an array with no devices.. */
  2659. return -EINVAL;
  2660. if (mddev->pers)
  2661. return -EBUSY;
  2662. /*
  2663. * Analyze all RAID superblock(s)
  2664. */
  2665. if (!mddev->raid_disks)
  2666. analyze_sbs(mddev);
  2667. chunk_size = mddev->chunk_size;
  2668. if (chunk_size) {
  2669. if (chunk_size > MAX_CHUNK_SIZE) {
  2670. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2671. chunk_size, MAX_CHUNK_SIZE);
  2672. return -EINVAL;
  2673. }
  2674. /*
  2675. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2676. */
  2677. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2678. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2679. return -EINVAL;
  2680. }
  2681. if (chunk_size < PAGE_SIZE) {
  2682. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2683. chunk_size, PAGE_SIZE);
  2684. return -EINVAL;
  2685. }
  2686. /* devices must have minimum size of one chunk */
  2687. ITERATE_RDEV(mddev,rdev,tmp) {
  2688. if (test_bit(Faulty, &rdev->flags))
  2689. continue;
  2690. if (rdev->size < chunk_size / 1024) {
  2691. printk(KERN_WARNING
  2692. "md: Dev %s smaller than chunk_size:"
  2693. " %lluk < %dk\n",
  2694. bdevname(rdev->bdev,b),
  2695. (unsigned long long)rdev->size,
  2696. chunk_size / 1024);
  2697. return -EINVAL;
  2698. }
  2699. }
  2700. }
  2701. #ifdef CONFIG_KMOD
  2702. if (mddev->level != LEVEL_NONE)
  2703. request_module("md-level-%d", mddev->level);
  2704. else if (mddev->clevel[0])
  2705. request_module("md-%s", mddev->clevel);
  2706. #endif
  2707. /*
  2708. * Drop all container device buffers, from now on
  2709. * the only valid external interface is through the md
  2710. * device.
  2711. * Also find largest hardsector size
  2712. */
  2713. ITERATE_RDEV(mddev,rdev,tmp) {
  2714. if (test_bit(Faulty, &rdev->flags))
  2715. continue;
  2716. sync_blockdev(rdev->bdev);
  2717. invalidate_bdev(rdev->bdev);
  2718. }
  2719. md_probe(mddev->unit, NULL, NULL);
  2720. disk = mddev->gendisk;
  2721. if (!disk)
  2722. return -ENOMEM;
  2723. spin_lock(&pers_lock);
  2724. pers = find_pers(mddev->level, mddev->clevel);
  2725. if (!pers || !try_module_get(pers->owner)) {
  2726. spin_unlock(&pers_lock);
  2727. if (mddev->level != LEVEL_NONE)
  2728. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2729. mddev->level);
  2730. else
  2731. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2732. mddev->clevel);
  2733. return -EINVAL;
  2734. }
  2735. mddev->pers = pers;
  2736. spin_unlock(&pers_lock);
  2737. mddev->level = pers->level;
  2738. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2739. if (mddev->reshape_position != MaxSector &&
  2740. pers->start_reshape == NULL) {
  2741. /* This personality cannot handle reshaping... */
  2742. mddev->pers = NULL;
  2743. module_put(pers->owner);
  2744. return -EINVAL;
  2745. }
  2746. if (pers->sync_request) {
  2747. /* Warn if this is a potentially silly
  2748. * configuration.
  2749. */
  2750. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2751. mdk_rdev_t *rdev2;
  2752. struct list_head *tmp2;
  2753. int warned = 0;
  2754. ITERATE_RDEV(mddev, rdev, tmp) {
  2755. ITERATE_RDEV(mddev, rdev2, tmp2) {
  2756. if (rdev < rdev2 &&
  2757. rdev->bdev->bd_contains ==
  2758. rdev2->bdev->bd_contains) {
  2759. printk(KERN_WARNING
  2760. "%s: WARNING: %s appears to be"
  2761. " on the same physical disk as"
  2762. " %s.\n",
  2763. mdname(mddev),
  2764. bdevname(rdev->bdev,b),
  2765. bdevname(rdev2->bdev,b2));
  2766. warned = 1;
  2767. }
  2768. }
  2769. }
  2770. if (warned)
  2771. printk(KERN_WARNING
  2772. "True protection against single-disk"
  2773. " failure might be compromised.\n");
  2774. }
  2775. mddev->recovery = 0;
  2776. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2777. mddev->barriers_work = 1;
  2778. mddev->ok_start_degraded = start_dirty_degraded;
  2779. if (start_readonly)
  2780. mddev->ro = 2; /* read-only, but switch on first write */
  2781. err = mddev->pers->run(mddev);
  2782. if (!err && mddev->pers->sync_request) {
  2783. err = bitmap_create(mddev);
  2784. if (err) {
  2785. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2786. mdname(mddev), err);
  2787. mddev->pers->stop(mddev);
  2788. }
  2789. }
  2790. if (err) {
  2791. printk(KERN_ERR "md: pers->run() failed ...\n");
  2792. module_put(mddev->pers->owner);
  2793. mddev->pers = NULL;
  2794. bitmap_destroy(mddev);
  2795. return err;
  2796. }
  2797. if (mddev->pers->sync_request) {
  2798. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2799. printk(KERN_WARNING
  2800. "md: cannot register extra attributes for %s\n",
  2801. mdname(mddev));
  2802. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2803. mddev->ro = 0;
  2804. atomic_set(&mddev->writes_pending,0);
  2805. mddev->safemode = 0;
  2806. mddev->safemode_timer.function = md_safemode_timeout;
  2807. mddev->safemode_timer.data = (unsigned long) mddev;
  2808. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2809. mddev->in_sync = 1;
  2810. ITERATE_RDEV(mddev,rdev,tmp)
  2811. if (rdev->raid_disk >= 0) {
  2812. char nm[20];
  2813. sprintf(nm, "rd%d", rdev->raid_disk);
  2814. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  2815. printk("md: cannot register %s for %s\n",
  2816. nm, mdname(mddev));
  2817. }
  2818. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2819. if (mddev->flags)
  2820. md_update_sb(mddev, 0);
  2821. set_capacity(disk, mddev->array_size<<1);
  2822. /* If we call blk_queue_make_request here, it will
  2823. * re-initialise max_sectors etc which may have been
  2824. * refined inside -> run. So just set the bits we need to set.
  2825. * Most initialisation happended when we called
  2826. * blk_queue_make_request(..., md_fail_request)
  2827. * earlier.
  2828. */
  2829. mddev->queue->queuedata = mddev;
  2830. mddev->queue->make_request_fn = mddev->pers->make_request;
  2831. /* If there is a partially-recovered drive we need to
  2832. * start recovery here. If we leave it to md_check_recovery,
  2833. * it will remove the drives and not do the right thing
  2834. */
  2835. if (mddev->degraded && !mddev->sync_thread) {
  2836. struct list_head *rtmp;
  2837. int spares = 0;
  2838. ITERATE_RDEV(mddev,rdev,rtmp)
  2839. if (rdev->raid_disk >= 0 &&
  2840. !test_bit(In_sync, &rdev->flags) &&
  2841. !test_bit(Faulty, &rdev->flags))
  2842. /* complete an interrupted recovery */
  2843. spares++;
  2844. if (spares && mddev->pers->sync_request) {
  2845. mddev->recovery = 0;
  2846. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2847. mddev->sync_thread = md_register_thread(md_do_sync,
  2848. mddev,
  2849. "%s_resync");
  2850. if (!mddev->sync_thread) {
  2851. printk(KERN_ERR "%s: could not start resync"
  2852. " thread...\n",
  2853. mdname(mddev));
  2854. /* leave the spares where they are, it shouldn't hurt */
  2855. mddev->recovery = 0;
  2856. }
  2857. }
  2858. }
  2859. md_wakeup_thread(mddev->thread);
  2860. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2861. mddev->changed = 1;
  2862. md_new_event(mddev);
  2863. kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
  2864. return 0;
  2865. }
  2866. static int restart_array(mddev_t *mddev)
  2867. {
  2868. struct gendisk *disk = mddev->gendisk;
  2869. int err;
  2870. /*
  2871. * Complain if it has no devices
  2872. */
  2873. err = -ENXIO;
  2874. if (list_empty(&mddev->disks))
  2875. goto out;
  2876. if (mddev->pers) {
  2877. err = -EBUSY;
  2878. if (!mddev->ro)
  2879. goto out;
  2880. mddev->safemode = 0;
  2881. mddev->ro = 0;
  2882. set_disk_ro(disk, 0);
  2883. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2884. mdname(mddev));
  2885. /*
  2886. * Kick recovery or resync if necessary
  2887. */
  2888. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2889. md_wakeup_thread(mddev->thread);
  2890. md_wakeup_thread(mddev->sync_thread);
  2891. err = 0;
  2892. } else
  2893. err = -EINVAL;
  2894. out:
  2895. return err;
  2896. }
  2897. /* similar to deny_write_access, but accounts for our holding a reference
  2898. * to the file ourselves */
  2899. static int deny_bitmap_write_access(struct file * file)
  2900. {
  2901. struct inode *inode = file->f_mapping->host;
  2902. spin_lock(&inode->i_lock);
  2903. if (atomic_read(&inode->i_writecount) > 1) {
  2904. spin_unlock(&inode->i_lock);
  2905. return -ETXTBSY;
  2906. }
  2907. atomic_set(&inode->i_writecount, -1);
  2908. spin_unlock(&inode->i_lock);
  2909. return 0;
  2910. }
  2911. static void restore_bitmap_write_access(struct file *file)
  2912. {
  2913. struct inode *inode = file->f_mapping->host;
  2914. spin_lock(&inode->i_lock);
  2915. atomic_set(&inode->i_writecount, 1);
  2916. spin_unlock(&inode->i_lock);
  2917. }
  2918. /* mode:
  2919. * 0 - completely stop and dis-assemble array
  2920. * 1 - switch to readonly
  2921. * 2 - stop but do not disassemble array
  2922. */
  2923. static int do_md_stop(mddev_t * mddev, int mode)
  2924. {
  2925. int err = 0;
  2926. struct gendisk *disk = mddev->gendisk;
  2927. if (mddev->pers) {
  2928. if (atomic_read(&mddev->active)>2) {
  2929. printk("md: %s still in use.\n",mdname(mddev));
  2930. return -EBUSY;
  2931. }
  2932. if (mddev->sync_thread) {
  2933. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2934. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2935. md_unregister_thread(mddev->sync_thread);
  2936. mddev->sync_thread = NULL;
  2937. }
  2938. del_timer_sync(&mddev->safemode_timer);
  2939. invalidate_partition(disk, 0);
  2940. switch(mode) {
  2941. case 1: /* readonly */
  2942. err = -ENXIO;
  2943. if (mddev->ro==1)
  2944. goto out;
  2945. mddev->ro = 1;
  2946. break;
  2947. case 0: /* disassemble */
  2948. case 2: /* stop */
  2949. bitmap_flush(mddev);
  2950. md_super_wait(mddev);
  2951. if (mddev->ro)
  2952. set_disk_ro(disk, 0);
  2953. blk_queue_make_request(mddev->queue, md_fail_request);
  2954. mddev->pers->stop(mddev);
  2955. mddev->queue->merge_bvec_fn = NULL;
  2956. mddev->queue->unplug_fn = NULL;
  2957. mddev->queue->issue_flush_fn = NULL;
  2958. mddev->queue->backing_dev_info.congested_fn = NULL;
  2959. if (mddev->pers->sync_request)
  2960. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2961. module_put(mddev->pers->owner);
  2962. mddev->pers = NULL;
  2963. set_capacity(disk, 0);
  2964. mddev->changed = 1;
  2965. if (mddev->ro)
  2966. mddev->ro = 0;
  2967. }
  2968. if (!mddev->in_sync || mddev->flags) {
  2969. /* mark array as shutdown cleanly */
  2970. mddev->in_sync = 1;
  2971. md_update_sb(mddev, 1);
  2972. }
  2973. if (mode == 1)
  2974. set_disk_ro(disk, 1);
  2975. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2976. }
  2977. /*
  2978. * Free resources if final stop
  2979. */
  2980. if (mode == 0) {
  2981. mdk_rdev_t *rdev;
  2982. struct list_head *tmp;
  2983. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2984. bitmap_destroy(mddev);
  2985. if (mddev->bitmap_file) {
  2986. restore_bitmap_write_access(mddev->bitmap_file);
  2987. fput(mddev->bitmap_file);
  2988. mddev->bitmap_file = NULL;
  2989. }
  2990. mddev->bitmap_offset = 0;
  2991. ITERATE_RDEV(mddev,rdev,tmp)
  2992. if (rdev->raid_disk >= 0) {
  2993. char nm[20];
  2994. sprintf(nm, "rd%d", rdev->raid_disk);
  2995. sysfs_remove_link(&mddev->kobj, nm);
  2996. }
  2997. /* make sure all delayed_delete calls have finished */
  2998. flush_scheduled_work();
  2999. export_array(mddev);
  3000. mddev->array_size = 0;
  3001. mddev->size = 0;
  3002. mddev->raid_disks = 0;
  3003. mddev->recovery_cp = 0;
  3004. } else if (mddev->pers)
  3005. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3006. mdname(mddev));
  3007. err = 0;
  3008. md_new_event(mddev);
  3009. out:
  3010. return err;
  3011. }
  3012. #ifndef MODULE
  3013. static void autorun_array(mddev_t *mddev)
  3014. {
  3015. mdk_rdev_t *rdev;
  3016. struct list_head *tmp;
  3017. int err;
  3018. if (list_empty(&mddev->disks))
  3019. return;
  3020. printk(KERN_INFO "md: running: ");
  3021. ITERATE_RDEV(mddev,rdev,tmp) {
  3022. char b[BDEVNAME_SIZE];
  3023. printk("<%s>", bdevname(rdev->bdev,b));
  3024. }
  3025. printk("\n");
  3026. err = do_md_run (mddev);
  3027. if (err) {
  3028. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3029. do_md_stop (mddev, 0);
  3030. }
  3031. }
  3032. /*
  3033. * lets try to run arrays based on all disks that have arrived
  3034. * until now. (those are in pending_raid_disks)
  3035. *
  3036. * the method: pick the first pending disk, collect all disks with
  3037. * the same UUID, remove all from the pending list and put them into
  3038. * the 'same_array' list. Then order this list based on superblock
  3039. * update time (freshest comes first), kick out 'old' disks and
  3040. * compare superblocks. If everything's fine then run it.
  3041. *
  3042. * If "unit" is allocated, then bump its reference count
  3043. */
  3044. static void autorun_devices(int part)
  3045. {
  3046. struct list_head *tmp;
  3047. mdk_rdev_t *rdev0, *rdev;
  3048. mddev_t *mddev;
  3049. char b[BDEVNAME_SIZE];
  3050. printk(KERN_INFO "md: autorun ...\n");
  3051. while (!list_empty(&pending_raid_disks)) {
  3052. int unit;
  3053. dev_t dev;
  3054. LIST_HEAD(candidates);
  3055. rdev0 = list_entry(pending_raid_disks.next,
  3056. mdk_rdev_t, same_set);
  3057. printk(KERN_INFO "md: considering %s ...\n",
  3058. bdevname(rdev0->bdev,b));
  3059. INIT_LIST_HEAD(&candidates);
  3060. ITERATE_RDEV_PENDING(rdev,tmp)
  3061. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3062. printk(KERN_INFO "md: adding %s ...\n",
  3063. bdevname(rdev->bdev,b));
  3064. list_move(&rdev->same_set, &candidates);
  3065. }
  3066. /*
  3067. * now we have a set of devices, with all of them having
  3068. * mostly sane superblocks. It's time to allocate the
  3069. * mddev.
  3070. */
  3071. if (part) {
  3072. dev = MKDEV(mdp_major,
  3073. rdev0->preferred_minor << MdpMinorShift);
  3074. unit = MINOR(dev) >> MdpMinorShift;
  3075. } else {
  3076. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3077. unit = MINOR(dev);
  3078. }
  3079. if (rdev0->preferred_minor != unit) {
  3080. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3081. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3082. break;
  3083. }
  3084. md_probe(dev, NULL, NULL);
  3085. mddev = mddev_find(dev);
  3086. if (!mddev) {
  3087. printk(KERN_ERR
  3088. "md: cannot allocate memory for md drive.\n");
  3089. break;
  3090. }
  3091. if (mddev_lock(mddev))
  3092. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3093. mdname(mddev));
  3094. else if (mddev->raid_disks || mddev->major_version
  3095. || !list_empty(&mddev->disks)) {
  3096. printk(KERN_WARNING
  3097. "md: %s already running, cannot run %s\n",
  3098. mdname(mddev), bdevname(rdev0->bdev,b));
  3099. mddev_unlock(mddev);
  3100. } else {
  3101. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3102. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3103. list_del_init(&rdev->same_set);
  3104. if (bind_rdev_to_array(rdev, mddev))
  3105. export_rdev(rdev);
  3106. }
  3107. autorun_array(mddev);
  3108. mddev_unlock(mddev);
  3109. }
  3110. /* on success, candidates will be empty, on error
  3111. * it won't...
  3112. */
  3113. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3114. export_rdev(rdev);
  3115. mddev_put(mddev);
  3116. }
  3117. printk(KERN_INFO "md: ... autorun DONE.\n");
  3118. }
  3119. #endif /* !MODULE */
  3120. static int get_version(void __user * arg)
  3121. {
  3122. mdu_version_t ver;
  3123. ver.major = MD_MAJOR_VERSION;
  3124. ver.minor = MD_MINOR_VERSION;
  3125. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3126. if (copy_to_user(arg, &ver, sizeof(ver)))
  3127. return -EFAULT;
  3128. return 0;
  3129. }
  3130. static int get_array_info(mddev_t * mddev, void __user * arg)
  3131. {
  3132. mdu_array_info_t info;
  3133. int nr,working,active,failed,spare;
  3134. mdk_rdev_t *rdev;
  3135. struct list_head *tmp;
  3136. nr=working=active=failed=spare=0;
  3137. ITERATE_RDEV(mddev,rdev,tmp) {
  3138. nr++;
  3139. if (test_bit(Faulty, &rdev->flags))
  3140. failed++;
  3141. else {
  3142. working++;
  3143. if (test_bit(In_sync, &rdev->flags))
  3144. active++;
  3145. else
  3146. spare++;
  3147. }
  3148. }
  3149. info.major_version = mddev->major_version;
  3150. info.minor_version = mddev->minor_version;
  3151. info.patch_version = MD_PATCHLEVEL_VERSION;
  3152. info.ctime = mddev->ctime;
  3153. info.level = mddev->level;
  3154. info.size = mddev->size;
  3155. if (info.size != mddev->size) /* overflow */
  3156. info.size = -1;
  3157. info.nr_disks = nr;
  3158. info.raid_disks = mddev->raid_disks;
  3159. info.md_minor = mddev->md_minor;
  3160. info.not_persistent= !mddev->persistent;
  3161. info.utime = mddev->utime;
  3162. info.state = 0;
  3163. if (mddev->in_sync)
  3164. info.state = (1<<MD_SB_CLEAN);
  3165. if (mddev->bitmap && mddev->bitmap_offset)
  3166. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3167. info.active_disks = active;
  3168. info.working_disks = working;
  3169. info.failed_disks = failed;
  3170. info.spare_disks = spare;
  3171. info.layout = mddev->layout;
  3172. info.chunk_size = mddev->chunk_size;
  3173. if (copy_to_user(arg, &info, sizeof(info)))
  3174. return -EFAULT;
  3175. return 0;
  3176. }
  3177. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3178. {
  3179. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3180. char *ptr, *buf = NULL;
  3181. int err = -ENOMEM;
  3182. md_allow_write(mddev);
  3183. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3184. if (!file)
  3185. goto out;
  3186. /* bitmap disabled, zero the first byte and copy out */
  3187. if (!mddev->bitmap || !mddev->bitmap->file) {
  3188. file->pathname[0] = '\0';
  3189. goto copy_out;
  3190. }
  3191. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3192. if (!buf)
  3193. goto out;
  3194. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3195. if (!ptr)
  3196. goto out;
  3197. strcpy(file->pathname, ptr);
  3198. copy_out:
  3199. err = 0;
  3200. if (copy_to_user(arg, file, sizeof(*file)))
  3201. err = -EFAULT;
  3202. out:
  3203. kfree(buf);
  3204. kfree(file);
  3205. return err;
  3206. }
  3207. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3208. {
  3209. mdu_disk_info_t info;
  3210. unsigned int nr;
  3211. mdk_rdev_t *rdev;
  3212. if (copy_from_user(&info, arg, sizeof(info)))
  3213. return -EFAULT;
  3214. nr = info.number;
  3215. rdev = find_rdev_nr(mddev, nr);
  3216. if (rdev) {
  3217. info.major = MAJOR(rdev->bdev->bd_dev);
  3218. info.minor = MINOR(rdev->bdev->bd_dev);
  3219. info.raid_disk = rdev->raid_disk;
  3220. info.state = 0;
  3221. if (test_bit(Faulty, &rdev->flags))
  3222. info.state |= (1<<MD_DISK_FAULTY);
  3223. else if (test_bit(In_sync, &rdev->flags)) {
  3224. info.state |= (1<<MD_DISK_ACTIVE);
  3225. info.state |= (1<<MD_DISK_SYNC);
  3226. }
  3227. if (test_bit(WriteMostly, &rdev->flags))
  3228. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3229. } else {
  3230. info.major = info.minor = 0;
  3231. info.raid_disk = -1;
  3232. info.state = (1<<MD_DISK_REMOVED);
  3233. }
  3234. if (copy_to_user(arg, &info, sizeof(info)))
  3235. return -EFAULT;
  3236. return 0;
  3237. }
  3238. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3239. {
  3240. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3241. mdk_rdev_t *rdev;
  3242. dev_t dev = MKDEV(info->major,info->minor);
  3243. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3244. return -EOVERFLOW;
  3245. if (!mddev->raid_disks) {
  3246. int err;
  3247. /* expecting a device which has a superblock */
  3248. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3249. if (IS_ERR(rdev)) {
  3250. printk(KERN_WARNING
  3251. "md: md_import_device returned %ld\n",
  3252. PTR_ERR(rdev));
  3253. return PTR_ERR(rdev);
  3254. }
  3255. if (!list_empty(&mddev->disks)) {
  3256. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3257. mdk_rdev_t, same_set);
  3258. int err = super_types[mddev->major_version]
  3259. .load_super(rdev, rdev0, mddev->minor_version);
  3260. if (err < 0) {
  3261. printk(KERN_WARNING
  3262. "md: %s has different UUID to %s\n",
  3263. bdevname(rdev->bdev,b),
  3264. bdevname(rdev0->bdev,b2));
  3265. export_rdev(rdev);
  3266. return -EINVAL;
  3267. }
  3268. }
  3269. err = bind_rdev_to_array(rdev, mddev);
  3270. if (err)
  3271. export_rdev(rdev);
  3272. return err;
  3273. }
  3274. /*
  3275. * add_new_disk can be used once the array is assembled
  3276. * to add "hot spares". They must already have a superblock
  3277. * written
  3278. */
  3279. if (mddev->pers) {
  3280. int err;
  3281. if (!mddev->pers->hot_add_disk) {
  3282. printk(KERN_WARNING
  3283. "%s: personality does not support diskops!\n",
  3284. mdname(mddev));
  3285. return -EINVAL;
  3286. }
  3287. if (mddev->persistent)
  3288. rdev = md_import_device(dev, mddev->major_version,
  3289. mddev->minor_version);
  3290. else
  3291. rdev = md_import_device(dev, -1, -1);
  3292. if (IS_ERR(rdev)) {
  3293. printk(KERN_WARNING
  3294. "md: md_import_device returned %ld\n",
  3295. PTR_ERR(rdev));
  3296. return PTR_ERR(rdev);
  3297. }
  3298. /* set save_raid_disk if appropriate */
  3299. if (!mddev->persistent) {
  3300. if (info->state & (1<<MD_DISK_SYNC) &&
  3301. info->raid_disk < mddev->raid_disks)
  3302. rdev->raid_disk = info->raid_disk;
  3303. else
  3304. rdev->raid_disk = -1;
  3305. } else
  3306. super_types[mddev->major_version].
  3307. validate_super(mddev, rdev);
  3308. rdev->saved_raid_disk = rdev->raid_disk;
  3309. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3310. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3311. set_bit(WriteMostly, &rdev->flags);
  3312. rdev->raid_disk = -1;
  3313. err = bind_rdev_to_array(rdev, mddev);
  3314. if (!err && !mddev->pers->hot_remove_disk) {
  3315. /* If there is hot_add_disk but no hot_remove_disk
  3316. * then added disks for geometry changes,
  3317. * and should be added immediately.
  3318. */
  3319. super_types[mddev->major_version].
  3320. validate_super(mddev, rdev);
  3321. err = mddev->pers->hot_add_disk(mddev, rdev);
  3322. if (err)
  3323. unbind_rdev_from_array(rdev);
  3324. }
  3325. if (err)
  3326. export_rdev(rdev);
  3327. md_update_sb(mddev, 1);
  3328. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3329. md_wakeup_thread(mddev->thread);
  3330. return err;
  3331. }
  3332. /* otherwise, add_new_disk is only allowed
  3333. * for major_version==0 superblocks
  3334. */
  3335. if (mddev->major_version != 0) {
  3336. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3337. mdname(mddev));
  3338. return -EINVAL;
  3339. }
  3340. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3341. int err;
  3342. rdev = md_import_device (dev, -1, 0);
  3343. if (IS_ERR(rdev)) {
  3344. printk(KERN_WARNING
  3345. "md: error, md_import_device() returned %ld\n",
  3346. PTR_ERR(rdev));
  3347. return PTR_ERR(rdev);
  3348. }
  3349. rdev->desc_nr = info->number;
  3350. if (info->raid_disk < mddev->raid_disks)
  3351. rdev->raid_disk = info->raid_disk;
  3352. else
  3353. rdev->raid_disk = -1;
  3354. rdev->flags = 0;
  3355. if (rdev->raid_disk < mddev->raid_disks)
  3356. if (info->state & (1<<MD_DISK_SYNC))
  3357. set_bit(In_sync, &rdev->flags);
  3358. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3359. set_bit(WriteMostly, &rdev->flags);
  3360. if (!mddev->persistent) {
  3361. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3362. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3363. } else
  3364. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3365. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3366. err = bind_rdev_to_array(rdev, mddev);
  3367. if (err) {
  3368. export_rdev(rdev);
  3369. return err;
  3370. }
  3371. }
  3372. return 0;
  3373. }
  3374. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3375. {
  3376. char b[BDEVNAME_SIZE];
  3377. mdk_rdev_t *rdev;
  3378. if (!mddev->pers)
  3379. return -ENODEV;
  3380. rdev = find_rdev(mddev, dev);
  3381. if (!rdev)
  3382. return -ENXIO;
  3383. if (rdev->raid_disk >= 0)
  3384. goto busy;
  3385. kick_rdev_from_array(rdev);
  3386. md_update_sb(mddev, 1);
  3387. md_new_event(mddev);
  3388. return 0;
  3389. busy:
  3390. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3391. bdevname(rdev->bdev,b), mdname(mddev));
  3392. return -EBUSY;
  3393. }
  3394. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3395. {
  3396. char b[BDEVNAME_SIZE];
  3397. int err;
  3398. unsigned int size;
  3399. mdk_rdev_t *rdev;
  3400. if (!mddev->pers)
  3401. return -ENODEV;
  3402. if (mddev->major_version != 0) {
  3403. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3404. " version-0 superblocks.\n",
  3405. mdname(mddev));
  3406. return -EINVAL;
  3407. }
  3408. if (!mddev->pers->hot_add_disk) {
  3409. printk(KERN_WARNING
  3410. "%s: personality does not support diskops!\n",
  3411. mdname(mddev));
  3412. return -EINVAL;
  3413. }
  3414. rdev = md_import_device (dev, -1, 0);
  3415. if (IS_ERR(rdev)) {
  3416. printk(KERN_WARNING
  3417. "md: error, md_import_device() returned %ld\n",
  3418. PTR_ERR(rdev));
  3419. return -EINVAL;
  3420. }
  3421. if (mddev->persistent)
  3422. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3423. else
  3424. rdev->sb_offset =
  3425. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3426. size = calc_dev_size(rdev, mddev->chunk_size);
  3427. rdev->size = size;
  3428. if (test_bit(Faulty, &rdev->flags)) {
  3429. printk(KERN_WARNING
  3430. "md: can not hot-add faulty %s disk to %s!\n",
  3431. bdevname(rdev->bdev,b), mdname(mddev));
  3432. err = -EINVAL;
  3433. goto abort_export;
  3434. }
  3435. clear_bit(In_sync, &rdev->flags);
  3436. rdev->desc_nr = -1;
  3437. rdev->saved_raid_disk = -1;
  3438. err = bind_rdev_to_array(rdev, mddev);
  3439. if (err)
  3440. goto abort_export;
  3441. /*
  3442. * The rest should better be atomic, we can have disk failures
  3443. * noticed in interrupt contexts ...
  3444. */
  3445. if (rdev->desc_nr == mddev->max_disks) {
  3446. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3447. mdname(mddev));
  3448. err = -EBUSY;
  3449. goto abort_unbind_export;
  3450. }
  3451. rdev->raid_disk = -1;
  3452. md_update_sb(mddev, 1);
  3453. /*
  3454. * Kick recovery, maybe this spare has to be added to the
  3455. * array immediately.
  3456. */
  3457. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3458. md_wakeup_thread(mddev->thread);
  3459. md_new_event(mddev);
  3460. return 0;
  3461. abort_unbind_export:
  3462. unbind_rdev_from_array(rdev);
  3463. abort_export:
  3464. export_rdev(rdev);
  3465. return err;
  3466. }
  3467. static int set_bitmap_file(mddev_t *mddev, int fd)
  3468. {
  3469. int err;
  3470. if (mddev->pers) {
  3471. if (!mddev->pers->quiesce)
  3472. return -EBUSY;
  3473. if (mddev->recovery || mddev->sync_thread)
  3474. return -EBUSY;
  3475. /* we should be able to change the bitmap.. */
  3476. }
  3477. if (fd >= 0) {
  3478. if (mddev->bitmap)
  3479. return -EEXIST; /* cannot add when bitmap is present */
  3480. mddev->bitmap_file = fget(fd);
  3481. if (mddev->bitmap_file == NULL) {
  3482. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3483. mdname(mddev));
  3484. return -EBADF;
  3485. }
  3486. err = deny_bitmap_write_access(mddev->bitmap_file);
  3487. if (err) {
  3488. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3489. mdname(mddev));
  3490. fput(mddev->bitmap_file);
  3491. mddev->bitmap_file = NULL;
  3492. return err;
  3493. }
  3494. mddev->bitmap_offset = 0; /* file overrides offset */
  3495. } else if (mddev->bitmap == NULL)
  3496. return -ENOENT; /* cannot remove what isn't there */
  3497. err = 0;
  3498. if (mddev->pers) {
  3499. mddev->pers->quiesce(mddev, 1);
  3500. if (fd >= 0)
  3501. err = bitmap_create(mddev);
  3502. if (fd < 0 || err) {
  3503. bitmap_destroy(mddev);
  3504. fd = -1; /* make sure to put the file */
  3505. }
  3506. mddev->pers->quiesce(mddev, 0);
  3507. }
  3508. if (fd < 0) {
  3509. if (mddev->bitmap_file) {
  3510. restore_bitmap_write_access(mddev->bitmap_file);
  3511. fput(mddev->bitmap_file);
  3512. }
  3513. mddev->bitmap_file = NULL;
  3514. }
  3515. return err;
  3516. }
  3517. /*
  3518. * set_array_info is used two different ways
  3519. * The original usage is when creating a new array.
  3520. * In this usage, raid_disks is > 0 and it together with
  3521. * level, size, not_persistent,layout,chunksize determine the
  3522. * shape of the array.
  3523. * This will always create an array with a type-0.90.0 superblock.
  3524. * The newer usage is when assembling an array.
  3525. * In this case raid_disks will be 0, and the major_version field is
  3526. * use to determine which style super-blocks are to be found on the devices.
  3527. * The minor and patch _version numbers are also kept incase the
  3528. * super_block handler wishes to interpret them.
  3529. */
  3530. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3531. {
  3532. if (info->raid_disks == 0) {
  3533. /* just setting version number for superblock loading */
  3534. if (info->major_version < 0 ||
  3535. info->major_version >= ARRAY_SIZE(super_types) ||
  3536. super_types[info->major_version].name == NULL) {
  3537. /* maybe try to auto-load a module? */
  3538. printk(KERN_INFO
  3539. "md: superblock version %d not known\n",
  3540. info->major_version);
  3541. return -EINVAL;
  3542. }
  3543. mddev->major_version = info->major_version;
  3544. mddev->minor_version = info->minor_version;
  3545. mddev->patch_version = info->patch_version;
  3546. mddev->persistent = !info->not_persistent;
  3547. return 0;
  3548. }
  3549. mddev->major_version = MD_MAJOR_VERSION;
  3550. mddev->minor_version = MD_MINOR_VERSION;
  3551. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3552. mddev->ctime = get_seconds();
  3553. mddev->level = info->level;
  3554. mddev->clevel[0] = 0;
  3555. mddev->size = info->size;
  3556. mddev->raid_disks = info->raid_disks;
  3557. /* don't set md_minor, it is determined by which /dev/md* was
  3558. * openned
  3559. */
  3560. if (info->state & (1<<MD_SB_CLEAN))
  3561. mddev->recovery_cp = MaxSector;
  3562. else
  3563. mddev->recovery_cp = 0;
  3564. mddev->persistent = ! info->not_persistent;
  3565. mddev->layout = info->layout;
  3566. mddev->chunk_size = info->chunk_size;
  3567. mddev->max_disks = MD_SB_DISKS;
  3568. mddev->flags = 0;
  3569. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3570. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3571. mddev->bitmap_offset = 0;
  3572. mddev->reshape_position = MaxSector;
  3573. /*
  3574. * Generate a 128 bit UUID
  3575. */
  3576. get_random_bytes(mddev->uuid, 16);
  3577. mddev->new_level = mddev->level;
  3578. mddev->new_chunk = mddev->chunk_size;
  3579. mddev->new_layout = mddev->layout;
  3580. mddev->delta_disks = 0;
  3581. return 0;
  3582. }
  3583. static int update_size(mddev_t *mddev, unsigned long size)
  3584. {
  3585. mdk_rdev_t * rdev;
  3586. int rv;
  3587. struct list_head *tmp;
  3588. int fit = (size == 0);
  3589. if (mddev->pers->resize == NULL)
  3590. return -EINVAL;
  3591. /* The "size" is the amount of each device that is used.
  3592. * This can only make sense for arrays with redundancy.
  3593. * linear and raid0 always use whatever space is available
  3594. * We can only consider changing the size if no resync
  3595. * or reconstruction is happening, and if the new size
  3596. * is acceptable. It must fit before the sb_offset or,
  3597. * if that is <data_offset, it must fit before the
  3598. * size of each device.
  3599. * If size is zero, we find the largest size that fits.
  3600. */
  3601. if (mddev->sync_thread)
  3602. return -EBUSY;
  3603. ITERATE_RDEV(mddev,rdev,tmp) {
  3604. sector_t avail;
  3605. avail = rdev->size * 2;
  3606. if (fit && (size == 0 || size > avail/2))
  3607. size = avail/2;
  3608. if (avail < ((sector_t)size << 1))
  3609. return -ENOSPC;
  3610. }
  3611. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3612. if (!rv) {
  3613. struct block_device *bdev;
  3614. bdev = bdget_disk(mddev->gendisk, 0);
  3615. if (bdev) {
  3616. mutex_lock(&bdev->bd_inode->i_mutex);
  3617. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3618. mutex_unlock(&bdev->bd_inode->i_mutex);
  3619. bdput(bdev);
  3620. }
  3621. }
  3622. return rv;
  3623. }
  3624. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3625. {
  3626. int rv;
  3627. /* change the number of raid disks */
  3628. if (mddev->pers->check_reshape == NULL)
  3629. return -EINVAL;
  3630. if (raid_disks <= 0 ||
  3631. raid_disks >= mddev->max_disks)
  3632. return -EINVAL;
  3633. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3634. return -EBUSY;
  3635. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3636. rv = mddev->pers->check_reshape(mddev);
  3637. return rv;
  3638. }
  3639. /*
  3640. * update_array_info is used to change the configuration of an
  3641. * on-line array.
  3642. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3643. * fields in the info are checked against the array.
  3644. * Any differences that cannot be handled will cause an error.
  3645. * Normally, only one change can be managed at a time.
  3646. */
  3647. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3648. {
  3649. int rv = 0;
  3650. int cnt = 0;
  3651. int state = 0;
  3652. /* calculate expected state,ignoring low bits */
  3653. if (mddev->bitmap && mddev->bitmap_offset)
  3654. state |= (1 << MD_SB_BITMAP_PRESENT);
  3655. if (mddev->major_version != info->major_version ||
  3656. mddev->minor_version != info->minor_version ||
  3657. /* mddev->patch_version != info->patch_version || */
  3658. mddev->ctime != info->ctime ||
  3659. mddev->level != info->level ||
  3660. /* mddev->layout != info->layout || */
  3661. !mddev->persistent != info->not_persistent||
  3662. mddev->chunk_size != info->chunk_size ||
  3663. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3664. ((state^info->state) & 0xfffffe00)
  3665. )
  3666. return -EINVAL;
  3667. /* Check there is only one change */
  3668. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3669. if (mddev->raid_disks != info->raid_disks) cnt++;
  3670. if (mddev->layout != info->layout) cnt++;
  3671. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3672. if (cnt == 0) return 0;
  3673. if (cnt > 1) return -EINVAL;
  3674. if (mddev->layout != info->layout) {
  3675. /* Change layout
  3676. * we don't need to do anything at the md level, the
  3677. * personality will take care of it all.
  3678. */
  3679. if (mddev->pers->reconfig == NULL)
  3680. return -EINVAL;
  3681. else
  3682. return mddev->pers->reconfig(mddev, info->layout, -1);
  3683. }
  3684. if (info->size >= 0 && mddev->size != info->size)
  3685. rv = update_size(mddev, info->size);
  3686. if (mddev->raid_disks != info->raid_disks)
  3687. rv = update_raid_disks(mddev, info->raid_disks);
  3688. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3689. if (mddev->pers->quiesce == NULL)
  3690. return -EINVAL;
  3691. if (mddev->recovery || mddev->sync_thread)
  3692. return -EBUSY;
  3693. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3694. /* add the bitmap */
  3695. if (mddev->bitmap)
  3696. return -EEXIST;
  3697. if (mddev->default_bitmap_offset == 0)
  3698. return -EINVAL;
  3699. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3700. mddev->pers->quiesce(mddev, 1);
  3701. rv = bitmap_create(mddev);
  3702. if (rv)
  3703. bitmap_destroy(mddev);
  3704. mddev->pers->quiesce(mddev, 0);
  3705. } else {
  3706. /* remove the bitmap */
  3707. if (!mddev->bitmap)
  3708. return -ENOENT;
  3709. if (mddev->bitmap->file)
  3710. return -EINVAL;
  3711. mddev->pers->quiesce(mddev, 1);
  3712. bitmap_destroy(mddev);
  3713. mddev->pers->quiesce(mddev, 0);
  3714. mddev->bitmap_offset = 0;
  3715. }
  3716. }
  3717. md_update_sb(mddev, 1);
  3718. return rv;
  3719. }
  3720. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3721. {
  3722. mdk_rdev_t *rdev;
  3723. if (mddev->pers == NULL)
  3724. return -ENODEV;
  3725. rdev = find_rdev(mddev, dev);
  3726. if (!rdev)
  3727. return -ENODEV;
  3728. md_error(mddev, rdev);
  3729. return 0;
  3730. }
  3731. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3732. {
  3733. mddev_t *mddev = bdev->bd_disk->private_data;
  3734. geo->heads = 2;
  3735. geo->sectors = 4;
  3736. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3737. return 0;
  3738. }
  3739. static int md_ioctl(struct inode *inode, struct file *file,
  3740. unsigned int cmd, unsigned long arg)
  3741. {
  3742. int err = 0;
  3743. void __user *argp = (void __user *)arg;
  3744. mddev_t *mddev = NULL;
  3745. if (!capable(CAP_SYS_ADMIN))
  3746. return -EACCES;
  3747. /*
  3748. * Commands dealing with the RAID driver but not any
  3749. * particular array:
  3750. */
  3751. switch (cmd)
  3752. {
  3753. case RAID_VERSION:
  3754. err = get_version(argp);
  3755. goto done;
  3756. case PRINT_RAID_DEBUG:
  3757. err = 0;
  3758. md_print_devices();
  3759. goto done;
  3760. #ifndef MODULE
  3761. case RAID_AUTORUN:
  3762. err = 0;
  3763. autostart_arrays(arg);
  3764. goto done;
  3765. #endif
  3766. default:;
  3767. }
  3768. /*
  3769. * Commands creating/starting a new array:
  3770. */
  3771. mddev = inode->i_bdev->bd_disk->private_data;
  3772. if (!mddev) {
  3773. BUG();
  3774. goto abort;
  3775. }
  3776. err = mddev_lock(mddev);
  3777. if (err) {
  3778. printk(KERN_INFO
  3779. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3780. err, cmd);
  3781. goto abort;
  3782. }
  3783. switch (cmd)
  3784. {
  3785. case SET_ARRAY_INFO:
  3786. {
  3787. mdu_array_info_t info;
  3788. if (!arg)
  3789. memset(&info, 0, sizeof(info));
  3790. else if (copy_from_user(&info, argp, sizeof(info))) {
  3791. err = -EFAULT;
  3792. goto abort_unlock;
  3793. }
  3794. if (mddev->pers) {
  3795. err = update_array_info(mddev, &info);
  3796. if (err) {
  3797. printk(KERN_WARNING "md: couldn't update"
  3798. " array info. %d\n", err);
  3799. goto abort_unlock;
  3800. }
  3801. goto done_unlock;
  3802. }
  3803. if (!list_empty(&mddev->disks)) {
  3804. printk(KERN_WARNING
  3805. "md: array %s already has disks!\n",
  3806. mdname(mddev));
  3807. err = -EBUSY;
  3808. goto abort_unlock;
  3809. }
  3810. if (mddev->raid_disks) {
  3811. printk(KERN_WARNING
  3812. "md: array %s already initialised!\n",
  3813. mdname(mddev));
  3814. err = -EBUSY;
  3815. goto abort_unlock;
  3816. }
  3817. err = set_array_info(mddev, &info);
  3818. if (err) {
  3819. printk(KERN_WARNING "md: couldn't set"
  3820. " array info. %d\n", err);
  3821. goto abort_unlock;
  3822. }
  3823. }
  3824. goto done_unlock;
  3825. default:;
  3826. }
  3827. /*
  3828. * Commands querying/configuring an existing array:
  3829. */
  3830. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3831. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  3832. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3833. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  3834. && cmd != GET_BITMAP_FILE) {
  3835. err = -ENODEV;
  3836. goto abort_unlock;
  3837. }
  3838. /*
  3839. * Commands even a read-only array can execute:
  3840. */
  3841. switch (cmd)
  3842. {
  3843. case GET_ARRAY_INFO:
  3844. err = get_array_info(mddev, argp);
  3845. goto done_unlock;
  3846. case GET_BITMAP_FILE:
  3847. err = get_bitmap_file(mddev, argp);
  3848. goto done_unlock;
  3849. case GET_DISK_INFO:
  3850. err = get_disk_info(mddev, argp);
  3851. goto done_unlock;
  3852. case RESTART_ARRAY_RW:
  3853. err = restart_array(mddev);
  3854. goto done_unlock;
  3855. case STOP_ARRAY:
  3856. err = do_md_stop (mddev, 0);
  3857. goto done_unlock;
  3858. case STOP_ARRAY_RO:
  3859. err = do_md_stop (mddev, 1);
  3860. goto done_unlock;
  3861. /*
  3862. * We have a problem here : there is no easy way to give a CHS
  3863. * virtual geometry. We currently pretend that we have a 2 heads
  3864. * 4 sectors (with a BIG number of cylinders...). This drives
  3865. * dosfs just mad... ;-)
  3866. */
  3867. }
  3868. /*
  3869. * The remaining ioctls are changing the state of the
  3870. * superblock, so we do not allow them on read-only arrays.
  3871. * However non-MD ioctls (e.g. get-size) will still come through
  3872. * here and hit the 'default' below, so only disallow
  3873. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3874. */
  3875. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3876. mddev->ro && mddev->pers) {
  3877. if (mddev->ro == 2) {
  3878. mddev->ro = 0;
  3879. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3880. md_wakeup_thread(mddev->thread);
  3881. } else {
  3882. err = -EROFS;
  3883. goto abort_unlock;
  3884. }
  3885. }
  3886. switch (cmd)
  3887. {
  3888. case ADD_NEW_DISK:
  3889. {
  3890. mdu_disk_info_t info;
  3891. if (copy_from_user(&info, argp, sizeof(info)))
  3892. err = -EFAULT;
  3893. else
  3894. err = add_new_disk(mddev, &info);
  3895. goto done_unlock;
  3896. }
  3897. case HOT_REMOVE_DISK:
  3898. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3899. goto done_unlock;
  3900. case HOT_ADD_DISK:
  3901. err = hot_add_disk(mddev, new_decode_dev(arg));
  3902. goto done_unlock;
  3903. case SET_DISK_FAULTY:
  3904. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3905. goto done_unlock;
  3906. case RUN_ARRAY:
  3907. err = do_md_run (mddev);
  3908. goto done_unlock;
  3909. case SET_BITMAP_FILE:
  3910. err = set_bitmap_file(mddev, (int)arg);
  3911. goto done_unlock;
  3912. default:
  3913. err = -EINVAL;
  3914. goto abort_unlock;
  3915. }
  3916. done_unlock:
  3917. abort_unlock:
  3918. mddev_unlock(mddev);
  3919. return err;
  3920. done:
  3921. if (err)
  3922. MD_BUG();
  3923. abort:
  3924. return err;
  3925. }
  3926. static int md_open(struct inode *inode, struct file *file)
  3927. {
  3928. /*
  3929. * Succeed if we can lock the mddev, which confirms that
  3930. * it isn't being stopped right now.
  3931. */
  3932. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3933. int err;
  3934. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  3935. goto out;
  3936. err = 0;
  3937. mddev_get(mddev);
  3938. mddev_unlock(mddev);
  3939. check_disk_change(inode->i_bdev);
  3940. out:
  3941. return err;
  3942. }
  3943. static int md_release(struct inode *inode, struct file * file)
  3944. {
  3945. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3946. BUG_ON(!mddev);
  3947. mddev_put(mddev);
  3948. return 0;
  3949. }
  3950. static int md_media_changed(struct gendisk *disk)
  3951. {
  3952. mddev_t *mddev = disk->private_data;
  3953. return mddev->changed;
  3954. }
  3955. static int md_revalidate(struct gendisk *disk)
  3956. {
  3957. mddev_t *mddev = disk->private_data;
  3958. mddev->changed = 0;
  3959. return 0;
  3960. }
  3961. static struct block_device_operations md_fops =
  3962. {
  3963. .owner = THIS_MODULE,
  3964. .open = md_open,
  3965. .release = md_release,
  3966. .ioctl = md_ioctl,
  3967. .getgeo = md_getgeo,
  3968. .media_changed = md_media_changed,
  3969. .revalidate_disk= md_revalidate,
  3970. };
  3971. static int md_thread(void * arg)
  3972. {
  3973. mdk_thread_t *thread = arg;
  3974. /*
  3975. * md_thread is a 'system-thread', it's priority should be very
  3976. * high. We avoid resource deadlocks individually in each
  3977. * raid personality. (RAID5 does preallocation) We also use RR and
  3978. * the very same RT priority as kswapd, thus we will never get
  3979. * into a priority inversion deadlock.
  3980. *
  3981. * we definitely have to have equal or higher priority than
  3982. * bdflush, otherwise bdflush will deadlock if there are too
  3983. * many dirty RAID5 blocks.
  3984. */
  3985. current->flags |= PF_NOFREEZE;
  3986. allow_signal(SIGKILL);
  3987. while (!kthread_should_stop()) {
  3988. /* We need to wait INTERRUPTIBLE so that
  3989. * we don't add to the load-average.
  3990. * That means we need to be sure no signals are
  3991. * pending
  3992. */
  3993. if (signal_pending(current))
  3994. flush_signals(current);
  3995. wait_event_interruptible_timeout
  3996. (thread->wqueue,
  3997. test_bit(THREAD_WAKEUP, &thread->flags)
  3998. || kthread_should_stop(),
  3999. thread->timeout);
  4000. clear_bit(THREAD_WAKEUP, &thread->flags);
  4001. thread->run(thread->mddev);
  4002. }
  4003. return 0;
  4004. }
  4005. void md_wakeup_thread(mdk_thread_t *thread)
  4006. {
  4007. if (thread) {
  4008. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4009. set_bit(THREAD_WAKEUP, &thread->flags);
  4010. wake_up(&thread->wqueue);
  4011. }
  4012. }
  4013. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4014. const char *name)
  4015. {
  4016. mdk_thread_t *thread;
  4017. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4018. if (!thread)
  4019. return NULL;
  4020. init_waitqueue_head(&thread->wqueue);
  4021. thread->run = run;
  4022. thread->mddev = mddev;
  4023. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4024. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4025. if (IS_ERR(thread->tsk)) {
  4026. kfree(thread);
  4027. return NULL;
  4028. }
  4029. return thread;
  4030. }
  4031. void md_unregister_thread(mdk_thread_t *thread)
  4032. {
  4033. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4034. kthread_stop(thread->tsk);
  4035. kfree(thread);
  4036. }
  4037. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4038. {
  4039. if (!mddev) {
  4040. MD_BUG();
  4041. return;
  4042. }
  4043. if (!rdev || test_bit(Faulty, &rdev->flags))
  4044. return;
  4045. /*
  4046. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4047. mdname(mddev),
  4048. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4049. __builtin_return_address(0),__builtin_return_address(1),
  4050. __builtin_return_address(2),__builtin_return_address(3));
  4051. */
  4052. if (!mddev->pers)
  4053. return;
  4054. if (!mddev->pers->error_handler)
  4055. return;
  4056. mddev->pers->error_handler(mddev,rdev);
  4057. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4058. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4059. md_wakeup_thread(mddev->thread);
  4060. md_new_event_inintr(mddev);
  4061. }
  4062. /* seq_file implementation /proc/mdstat */
  4063. static void status_unused(struct seq_file *seq)
  4064. {
  4065. int i = 0;
  4066. mdk_rdev_t *rdev;
  4067. struct list_head *tmp;
  4068. seq_printf(seq, "unused devices: ");
  4069. ITERATE_RDEV_PENDING(rdev,tmp) {
  4070. char b[BDEVNAME_SIZE];
  4071. i++;
  4072. seq_printf(seq, "%s ",
  4073. bdevname(rdev->bdev,b));
  4074. }
  4075. if (!i)
  4076. seq_printf(seq, "<none>");
  4077. seq_printf(seq, "\n");
  4078. }
  4079. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4080. {
  4081. sector_t max_blocks, resync, res;
  4082. unsigned long dt, db, rt;
  4083. int scale;
  4084. unsigned int per_milli;
  4085. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4086. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4087. max_blocks = mddev->resync_max_sectors >> 1;
  4088. else
  4089. max_blocks = mddev->size;
  4090. /*
  4091. * Should not happen.
  4092. */
  4093. if (!max_blocks) {
  4094. MD_BUG();
  4095. return;
  4096. }
  4097. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4098. * in a sector_t, and (max_blocks>>scale) will fit in a
  4099. * u32, as those are the requirements for sector_div.
  4100. * Thus 'scale' must be at least 10
  4101. */
  4102. scale = 10;
  4103. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4104. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4105. scale++;
  4106. }
  4107. res = (resync>>scale)*1000;
  4108. sector_div(res, (u32)((max_blocks>>scale)+1));
  4109. per_milli = res;
  4110. {
  4111. int i, x = per_milli/50, y = 20-x;
  4112. seq_printf(seq, "[");
  4113. for (i = 0; i < x; i++)
  4114. seq_printf(seq, "=");
  4115. seq_printf(seq, ">");
  4116. for (i = 0; i < y; i++)
  4117. seq_printf(seq, ".");
  4118. seq_printf(seq, "] ");
  4119. }
  4120. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4121. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4122. "reshape" :
  4123. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4124. "check" :
  4125. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4126. "resync" : "recovery"))),
  4127. per_milli/10, per_milli % 10,
  4128. (unsigned long long) resync,
  4129. (unsigned long long) max_blocks);
  4130. /*
  4131. * We do not want to overflow, so the order of operands and
  4132. * the * 100 / 100 trick are important. We do a +1 to be
  4133. * safe against division by zero. We only estimate anyway.
  4134. *
  4135. * dt: time from mark until now
  4136. * db: blocks written from mark until now
  4137. * rt: remaining time
  4138. */
  4139. dt = ((jiffies - mddev->resync_mark) / HZ);
  4140. if (!dt) dt++;
  4141. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4142. - mddev->resync_mark_cnt;
  4143. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4144. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4145. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4146. }
  4147. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4148. {
  4149. struct list_head *tmp;
  4150. loff_t l = *pos;
  4151. mddev_t *mddev;
  4152. if (l >= 0x10000)
  4153. return NULL;
  4154. if (!l--)
  4155. /* header */
  4156. return (void*)1;
  4157. spin_lock(&all_mddevs_lock);
  4158. list_for_each(tmp,&all_mddevs)
  4159. if (!l--) {
  4160. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4161. mddev_get(mddev);
  4162. spin_unlock(&all_mddevs_lock);
  4163. return mddev;
  4164. }
  4165. spin_unlock(&all_mddevs_lock);
  4166. if (!l--)
  4167. return (void*)2;/* tail */
  4168. return NULL;
  4169. }
  4170. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4171. {
  4172. struct list_head *tmp;
  4173. mddev_t *next_mddev, *mddev = v;
  4174. ++*pos;
  4175. if (v == (void*)2)
  4176. return NULL;
  4177. spin_lock(&all_mddevs_lock);
  4178. if (v == (void*)1)
  4179. tmp = all_mddevs.next;
  4180. else
  4181. tmp = mddev->all_mddevs.next;
  4182. if (tmp != &all_mddevs)
  4183. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4184. else {
  4185. next_mddev = (void*)2;
  4186. *pos = 0x10000;
  4187. }
  4188. spin_unlock(&all_mddevs_lock);
  4189. if (v != (void*)1)
  4190. mddev_put(mddev);
  4191. return next_mddev;
  4192. }
  4193. static void md_seq_stop(struct seq_file *seq, void *v)
  4194. {
  4195. mddev_t *mddev = v;
  4196. if (mddev && v != (void*)1 && v != (void*)2)
  4197. mddev_put(mddev);
  4198. }
  4199. struct mdstat_info {
  4200. int event;
  4201. };
  4202. static int md_seq_show(struct seq_file *seq, void *v)
  4203. {
  4204. mddev_t *mddev = v;
  4205. sector_t size;
  4206. struct list_head *tmp2;
  4207. mdk_rdev_t *rdev;
  4208. struct mdstat_info *mi = seq->private;
  4209. struct bitmap *bitmap;
  4210. if (v == (void*)1) {
  4211. struct mdk_personality *pers;
  4212. seq_printf(seq, "Personalities : ");
  4213. spin_lock(&pers_lock);
  4214. list_for_each_entry(pers, &pers_list, list)
  4215. seq_printf(seq, "[%s] ", pers->name);
  4216. spin_unlock(&pers_lock);
  4217. seq_printf(seq, "\n");
  4218. mi->event = atomic_read(&md_event_count);
  4219. return 0;
  4220. }
  4221. if (v == (void*)2) {
  4222. status_unused(seq);
  4223. return 0;
  4224. }
  4225. if (mddev_lock(mddev) < 0)
  4226. return -EINTR;
  4227. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4228. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4229. mddev->pers ? "" : "in");
  4230. if (mddev->pers) {
  4231. if (mddev->ro==1)
  4232. seq_printf(seq, " (read-only)");
  4233. if (mddev->ro==2)
  4234. seq_printf(seq, "(auto-read-only)");
  4235. seq_printf(seq, " %s", mddev->pers->name);
  4236. }
  4237. size = 0;
  4238. ITERATE_RDEV(mddev,rdev,tmp2) {
  4239. char b[BDEVNAME_SIZE];
  4240. seq_printf(seq, " %s[%d]",
  4241. bdevname(rdev->bdev,b), rdev->desc_nr);
  4242. if (test_bit(WriteMostly, &rdev->flags))
  4243. seq_printf(seq, "(W)");
  4244. if (test_bit(Faulty, &rdev->flags)) {
  4245. seq_printf(seq, "(F)");
  4246. continue;
  4247. } else if (rdev->raid_disk < 0)
  4248. seq_printf(seq, "(S)"); /* spare */
  4249. size += rdev->size;
  4250. }
  4251. if (!list_empty(&mddev->disks)) {
  4252. if (mddev->pers)
  4253. seq_printf(seq, "\n %llu blocks",
  4254. (unsigned long long)mddev->array_size);
  4255. else
  4256. seq_printf(seq, "\n %llu blocks",
  4257. (unsigned long long)size);
  4258. }
  4259. if (mddev->persistent) {
  4260. if (mddev->major_version != 0 ||
  4261. mddev->minor_version != 90) {
  4262. seq_printf(seq," super %d.%d",
  4263. mddev->major_version,
  4264. mddev->minor_version);
  4265. }
  4266. } else
  4267. seq_printf(seq, " super non-persistent");
  4268. if (mddev->pers) {
  4269. mddev->pers->status (seq, mddev);
  4270. seq_printf(seq, "\n ");
  4271. if (mddev->pers->sync_request) {
  4272. if (mddev->curr_resync > 2) {
  4273. status_resync (seq, mddev);
  4274. seq_printf(seq, "\n ");
  4275. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4276. seq_printf(seq, "\tresync=DELAYED\n ");
  4277. else if (mddev->recovery_cp < MaxSector)
  4278. seq_printf(seq, "\tresync=PENDING\n ");
  4279. }
  4280. } else
  4281. seq_printf(seq, "\n ");
  4282. if ((bitmap = mddev->bitmap)) {
  4283. unsigned long chunk_kb;
  4284. unsigned long flags;
  4285. spin_lock_irqsave(&bitmap->lock, flags);
  4286. chunk_kb = bitmap->chunksize >> 10;
  4287. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4288. "%lu%s chunk",
  4289. bitmap->pages - bitmap->missing_pages,
  4290. bitmap->pages,
  4291. (bitmap->pages - bitmap->missing_pages)
  4292. << (PAGE_SHIFT - 10),
  4293. chunk_kb ? chunk_kb : bitmap->chunksize,
  4294. chunk_kb ? "KB" : "B");
  4295. if (bitmap->file) {
  4296. seq_printf(seq, ", file: ");
  4297. seq_path(seq, bitmap->file->f_path.mnt,
  4298. bitmap->file->f_path.dentry," \t\n");
  4299. }
  4300. seq_printf(seq, "\n");
  4301. spin_unlock_irqrestore(&bitmap->lock, flags);
  4302. }
  4303. seq_printf(seq, "\n");
  4304. }
  4305. mddev_unlock(mddev);
  4306. return 0;
  4307. }
  4308. static struct seq_operations md_seq_ops = {
  4309. .start = md_seq_start,
  4310. .next = md_seq_next,
  4311. .stop = md_seq_stop,
  4312. .show = md_seq_show,
  4313. };
  4314. static int md_seq_open(struct inode *inode, struct file *file)
  4315. {
  4316. int error;
  4317. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4318. if (mi == NULL)
  4319. return -ENOMEM;
  4320. error = seq_open(file, &md_seq_ops);
  4321. if (error)
  4322. kfree(mi);
  4323. else {
  4324. struct seq_file *p = file->private_data;
  4325. p->private = mi;
  4326. mi->event = atomic_read(&md_event_count);
  4327. }
  4328. return error;
  4329. }
  4330. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4331. {
  4332. struct seq_file *m = filp->private_data;
  4333. struct mdstat_info *mi = m->private;
  4334. int mask;
  4335. poll_wait(filp, &md_event_waiters, wait);
  4336. /* always allow read */
  4337. mask = POLLIN | POLLRDNORM;
  4338. if (mi->event != atomic_read(&md_event_count))
  4339. mask |= POLLERR | POLLPRI;
  4340. return mask;
  4341. }
  4342. static const struct file_operations md_seq_fops = {
  4343. .owner = THIS_MODULE,
  4344. .open = md_seq_open,
  4345. .read = seq_read,
  4346. .llseek = seq_lseek,
  4347. .release = seq_release_private,
  4348. .poll = mdstat_poll,
  4349. };
  4350. int register_md_personality(struct mdk_personality *p)
  4351. {
  4352. spin_lock(&pers_lock);
  4353. list_add_tail(&p->list, &pers_list);
  4354. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4355. spin_unlock(&pers_lock);
  4356. return 0;
  4357. }
  4358. int unregister_md_personality(struct mdk_personality *p)
  4359. {
  4360. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4361. spin_lock(&pers_lock);
  4362. list_del_init(&p->list);
  4363. spin_unlock(&pers_lock);
  4364. return 0;
  4365. }
  4366. static int is_mddev_idle(mddev_t *mddev)
  4367. {
  4368. mdk_rdev_t * rdev;
  4369. struct list_head *tmp;
  4370. int idle;
  4371. unsigned long curr_events;
  4372. idle = 1;
  4373. ITERATE_RDEV(mddev,rdev,tmp) {
  4374. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4375. curr_events = disk_stat_read(disk, sectors[0]) +
  4376. disk_stat_read(disk, sectors[1]) -
  4377. atomic_read(&disk->sync_io);
  4378. /* The difference between curr_events and last_events
  4379. * will be affected by any new non-sync IO (making
  4380. * curr_events bigger) and any difference in the amount of
  4381. * in-flight syncio (making current_events bigger or smaller)
  4382. * The amount in-flight is currently limited to
  4383. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4384. * which is at most 4096 sectors.
  4385. * These numbers are fairly fragile and should be made
  4386. * more robust, probably by enforcing the
  4387. * 'window size' that md_do_sync sort-of uses.
  4388. *
  4389. * Note: the following is an unsigned comparison.
  4390. */
  4391. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4392. rdev->last_events = curr_events;
  4393. idle = 0;
  4394. }
  4395. }
  4396. return idle;
  4397. }
  4398. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4399. {
  4400. /* another "blocks" (512byte) blocks have been synced */
  4401. atomic_sub(blocks, &mddev->recovery_active);
  4402. wake_up(&mddev->recovery_wait);
  4403. if (!ok) {
  4404. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4405. md_wakeup_thread(mddev->thread);
  4406. // stop recovery, signal do_sync ....
  4407. }
  4408. }
  4409. /* md_write_start(mddev, bi)
  4410. * If we need to update some array metadata (e.g. 'active' flag
  4411. * in superblock) before writing, schedule a superblock update
  4412. * and wait for it to complete.
  4413. */
  4414. void md_write_start(mddev_t *mddev, struct bio *bi)
  4415. {
  4416. if (bio_data_dir(bi) != WRITE)
  4417. return;
  4418. BUG_ON(mddev->ro == 1);
  4419. if (mddev->ro == 2) {
  4420. /* need to switch to read/write */
  4421. mddev->ro = 0;
  4422. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4423. md_wakeup_thread(mddev->thread);
  4424. }
  4425. atomic_inc(&mddev->writes_pending);
  4426. if (mddev->in_sync) {
  4427. spin_lock_irq(&mddev->write_lock);
  4428. if (mddev->in_sync) {
  4429. mddev->in_sync = 0;
  4430. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4431. md_wakeup_thread(mddev->thread);
  4432. }
  4433. spin_unlock_irq(&mddev->write_lock);
  4434. }
  4435. wait_event(mddev->sb_wait, mddev->flags==0);
  4436. }
  4437. void md_write_end(mddev_t *mddev)
  4438. {
  4439. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4440. if (mddev->safemode == 2)
  4441. md_wakeup_thread(mddev->thread);
  4442. else if (mddev->safemode_delay)
  4443. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4444. }
  4445. }
  4446. /* md_allow_write(mddev)
  4447. * Calling this ensures that the array is marked 'active' so that writes
  4448. * may proceed without blocking. It is important to call this before
  4449. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4450. * Must be called with mddev_lock held.
  4451. */
  4452. void md_allow_write(mddev_t *mddev)
  4453. {
  4454. if (!mddev->pers)
  4455. return;
  4456. if (mddev->ro)
  4457. return;
  4458. spin_lock_irq(&mddev->write_lock);
  4459. if (mddev->in_sync) {
  4460. mddev->in_sync = 0;
  4461. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4462. if (mddev->safemode_delay &&
  4463. mddev->safemode == 0)
  4464. mddev->safemode = 1;
  4465. spin_unlock_irq(&mddev->write_lock);
  4466. md_update_sb(mddev, 0);
  4467. } else
  4468. spin_unlock_irq(&mddev->write_lock);
  4469. }
  4470. EXPORT_SYMBOL_GPL(md_allow_write);
  4471. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4472. #define SYNC_MARKS 10
  4473. #define SYNC_MARK_STEP (3*HZ)
  4474. void md_do_sync(mddev_t *mddev)
  4475. {
  4476. mddev_t *mddev2;
  4477. unsigned int currspeed = 0,
  4478. window;
  4479. sector_t max_sectors,j, io_sectors;
  4480. unsigned long mark[SYNC_MARKS];
  4481. sector_t mark_cnt[SYNC_MARKS];
  4482. int last_mark,m;
  4483. struct list_head *tmp;
  4484. sector_t last_check;
  4485. int skipped = 0;
  4486. struct list_head *rtmp;
  4487. mdk_rdev_t *rdev;
  4488. char *desc;
  4489. /* just incase thread restarts... */
  4490. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4491. return;
  4492. if (mddev->ro) /* never try to sync a read-only array */
  4493. return;
  4494. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4495. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4496. desc = "data-check";
  4497. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4498. desc = "requested-resync";
  4499. else
  4500. desc = "resync";
  4501. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4502. desc = "reshape";
  4503. else
  4504. desc = "recovery";
  4505. /* we overload curr_resync somewhat here.
  4506. * 0 == not engaged in resync at all
  4507. * 2 == checking that there is no conflict with another sync
  4508. * 1 == like 2, but have yielded to allow conflicting resync to
  4509. * commense
  4510. * other == active in resync - this many blocks
  4511. *
  4512. * Before starting a resync we must have set curr_resync to
  4513. * 2, and then checked that every "conflicting" array has curr_resync
  4514. * less than ours. When we find one that is the same or higher
  4515. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4516. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4517. * This will mean we have to start checking from the beginning again.
  4518. *
  4519. */
  4520. do {
  4521. mddev->curr_resync = 2;
  4522. try_again:
  4523. if (kthread_should_stop()) {
  4524. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4525. goto skip;
  4526. }
  4527. ITERATE_MDDEV(mddev2,tmp) {
  4528. if (mddev2 == mddev)
  4529. continue;
  4530. if (mddev2->curr_resync &&
  4531. match_mddev_units(mddev,mddev2)) {
  4532. DEFINE_WAIT(wq);
  4533. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4534. /* arbitrarily yield */
  4535. mddev->curr_resync = 1;
  4536. wake_up(&resync_wait);
  4537. }
  4538. if (mddev > mddev2 && mddev->curr_resync == 1)
  4539. /* no need to wait here, we can wait the next
  4540. * time 'round when curr_resync == 2
  4541. */
  4542. continue;
  4543. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4544. if (!kthread_should_stop() &&
  4545. mddev2->curr_resync >= mddev->curr_resync) {
  4546. printk(KERN_INFO "md: delaying %s of %s"
  4547. " until %s has finished (they"
  4548. " share one or more physical units)\n",
  4549. desc, mdname(mddev), mdname(mddev2));
  4550. mddev_put(mddev2);
  4551. schedule();
  4552. finish_wait(&resync_wait, &wq);
  4553. goto try_again;
  4554. }
  4555. finish_wait(&resync_wait, &wq);
  4556. }
  4557. }
  4558. } while (mddev->curr_resync < 2);
  4559. j = 0;
  4560. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4561. /* resync follows the size requested by the personality,
  4562. * which defaults to physical size, but can be virtual size
  4563. */
  4564. max_sectors = mddev->resync_max_sectors;
  4565. mddev->resync_mismatches = 0;
  4566. /* we don't use the checkpoint if there's a bitmap */
  4567. if (!mddev->bitmap &&
  4568. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4569. j = mddev->recovery_cp;
  4570. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4571. max_sectors = mddev->size << 1;
  4572. else {
  4573. /* recovery follows the physical size of devices */
  4574. max_sectors = mddev->size << 1;
  4575. j = MaxSector;
  4576. ITERATE_RDEV(mddev,rdev,rtmp)
  4577. if (rdev->raid_disk >= 0 &&
  4578. !test_bit(Faulty, &rdev->flags) &&
  4579. !test_bit(In_sync, &rdev->flags) &&
  4580. rdev->recovery_offset < j)
  4581. j = rdev->recovery_offset;
  4582. }
  4583. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4584. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4585. " %d KB/sec/disk.\n", speed_min(mddev));
  4586. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4587. "(but not more than %d KB/sec) for %s.\n",
  4588. speed_max(mddev), desc);
  4589. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4590. io_sectors = 0;
  4591. for (m = 0; m < SYNC_MARKS; m++) {
  4592. mark[m] = jiffies;
  4593. mark_cnt[m] = io_sectors;
  4594. }
  4595. last_mark = 0;
  4596. mddev->resync_mark = mark[last_mark];
  4597. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4598. /*
  4599. * Tune reconstruction:
  4600. */
  4601. window = 32*(PAGE_SIZE/512);
  4602. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4603. window/2,(unsigned long long) max_sectors/2);
  4604. atomic_set(&mddev->recovery_active, 0);
  4605. init_waitqueue_head(&mddev->recovery_wait);
  4606. last_check = 0;
  4607. if (j>2) {
  4608. printk(KERN_INFO
  4609. "md: resuming %s of %s from checkpoint.\n",
  4610. desc, mdname(mddev));
  4611. mddev->curr_resync = j;
  4612. }
  4613. while (j < max_sectors) {
  4614. sector_t sectors;
  4615. skipped = 0;
  4616. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4617. currspeed < speed_min(mddev));
  4618. if (sectors == 0) {
  4619. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4620. goto out;
  4621. }
  4622. if (!skipped) { /* actual IO requested */
  4623. io_sectors += sectors;
  4624. atomic_add(sectors, &mddev->recovery_active);
  4625. }
  4626. j += sectors;
  4627. if (j>1) mddev->curr_resync = j;
  4628. mddev->curr_mark_cnt = io_sectors;
  4629. if (last_check == 0)
  4630. /* this is the earliers that rebuilt will be
  4631. * visible in /proc/mdstat
  4632. */
  4633. md_new_event(mddev);
  4634. if (last_check + window > io_sectors || j == max_sectors)
  4635. continue;
  4636. last_check = io_sectors;
  4637. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4638. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4639. break;
  4640. repeat:
  4641. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4642. /* step marks */
  4643. int next = (last_mark+1) % SYNC_MARKS;
  4644. mddev->resync_mark = mark[next];
  4645. mddev->resync_mark_cnt = mark_cnt[next];
  4646. mark[next] = jiffies;
  4647. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4648. last_mark = next;
  4649. }
  4650. if (kthread_should_stop()) {
  4651. /*
  4652. * got a signal, exit.
  4653. */
  4654. printk(KERN_INFO
  4655. "md: md_do_sync() got signal ... exiting\n");
  4656. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4657. goto out;
  4658. }
  4659. /*
  4660. * this loop exits only if either when we are slower than
  4661. * the 'hard' speed limit, or the system was IO-idle for
  4662. * a jiffy.
  4663. * the system might be non-idle CPU-wise, but we only care
  4664. * about not overloading the IO subsystem. (things like an
  4665. * e2fsck being done on the RAID array should execute fast)
  4666. */
  4667. mddev->queue->unplug_fn(mddev->queue);
  4668. cond_resched();
  4669. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4670. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4671. if (currspeed > speed_min(mddev)) {
  4672. if ((currspeed > speed_max(mddev)) ||
  4673. !is_mddev_idle(mddev)) {
  4674. msleep(500);
  4675. goto repeat;
  4676. }
  4677. }
  4678. }
  4679. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4680. /*
  4681. * this also signals 'finished resyncing' to md_stop
  4682. */
  4683. out:
  4684. mddev->queue->unplug_fn(mddev->queue);
  4685. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4686. /* tell personality that we are finished */
  4687. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4688. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4689. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4690. mddev->curr_resync > 2) {
  4691. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4692. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4693. if (mddev->curr_resync >= mddev->recovery_cp) {
  4694. printk(KERN_INFO
  4695. "md: checkpointing %s of %s.\n",
  4696. desc, mdname(mddev));
  4697. mddev->recovery_cp = mddev->curr_resync;
  4698. }
  4699. } else
  4700. mddev->recovery_cp = MaxSector;
  4701. } else {
  4702. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4703. mddev->curr_resync = MaxSector;
  4704. ITERATE_RDEV(mddev,rdev,rtmp)
  4705. if (rdev->raid_disk >= 0 &&
  4706. !test_bit(Faulty, &rdev->flags) &&
  4707. !test_bit(In_sync, &rdev->flags) &&
  4708. rdev->recovery_offset < mddev->curr_resync)
  4709. rdev->recovery_offset = mddev->curr_resync;
  4710. }
  4711. }
  4712. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4713. skip:
  4714. mddev->curr_resync = 0;
  4715. wake_up(&resync_wait);
  4716. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4717. md_wakeup_thread(mddev->thread);
  4718. }
  4719. EXPORT_SYMBOL_GPL(md_do_sync);
  4720. static int remove_and_add_spares(mddev_t *mddev)
  4721. {
  4722. mdk_rdev_t *rdev;
  4723. struct list_head *rtmp;
  4724. int spares = 0;
  4725. ITERATE_RDEV(mddev,rdev,rtmp)
  4726. if (rdev->raid_disk >= 0 &&
  4727. (test_bit(Faulty, &rdev->flags) ||
  4728. ! test_bit(In_sync, &rdev->flags)) &&
  4729. atomic_read(&rdev->nr_pending)==0) {
  4730. if (mddev->pers->hot_remove_disk(
  4731. mddev, rdev->raid_disk)==0) {
  4732. char nm[20];
  4733. sprintf(nm,"rd%d", rdev->raid_disk);
  4734. sysfs_remove_link(&mddev->kobj, nm);
  4735. rdev->raid_disk = -1;
  4736. }
  4737. }
  4738. if (mddev->degraded) {
  4739. ITERATE_RDEV(mddev,rdev,rtmp)
  4740. if (rdev->raid_disk < 0
  4741. && !test_bit(Faulty, &rdev->flags)) {
  4742. rdev->recovery_offset = 0;
  4743. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4744. char nm[20];
  4745. sprintf(nm, "rd%d", rdev->raid_disk);
  4746. if (sysfs_create_link(&mddev->kobj,
  4747. &rdev->kobj, nm))
  4748. printk(KERN_WARNING
  4749. "md: cannot register "
  4750. "%s for %s\n",
  4751. nm, mdname(mddev));
  4752. spares++;
  4753. md_new_event(mddev);
  4754. } else
  4755. break;
  4756. }
  4757. }
  4758. return spares;
  4759. }
  4760. /*
  4761. * This routine is regularly called by all per-raid-array threads to
  4762. * deal with generic issues like resync and super-block update.
  4763. * Raid personalities that don't have a thread (linear/raid0) do not
  4764. * need this as they never do any recovery or update the superblock.
  4765. *
  4766. * It does not do any resync itself, but rather "forks" off other threads
  4767. * to do that as needed.
  4768. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4769. * "->recovery" and create a thread at ->sync_thread.
  4770. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4771. * and wakeups up this thread which will reap the thread and finish up.
  4772. * This thread also removes any faulty devices (with nr_pending == 0).
  4773. *
  4774. * The overall approach is:
  4775. * 1/ if the superblock needs updating, update it.
  4776. * 2/ If a recovery thread is running, don't do anything else.
  4777. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4778. * 4/ If there are any faulty devices, remove them.
  4779. * 5/ If array is degraded, try to add spares devices
  4780. * 6/ If array has spares or is not in-sync, start a resync thread.
  4781. */
  4782. void md_check_recovery(mddev_t *mddev)
  4783. {
  4784. mdk_rdev_t *rdev;
  4785. struct list_head *rtmp;
  4786. if (mddev->bitmap)
  4787. bitmap_daemon_work(mddev->bitmap);
  4788. if (mddev->ro)
  4789. return;
  4790. if (signal_pending(current)) {
  4791. if (mddev->pers->sync_request) {
  4792. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4793. mdname(mddev));
  4794. mddev->safemode = 2;
  4795. }
  4796. flush_signals(current);
  4797. }
  4798. if ( ! (
  4799. mddev->flags ||
  4800. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4801. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4802. (mddev->safemode == 1) ||
  4803. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4804. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4805. ))
  4806. return;
  4807. if (mddev_trylock(mddev)) {
  4808. int spares = 0;
  4809. spin_lock_irq(&mddev->write_lock);
  4810. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4811. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4812. mddev->in_sync = 1;
  4813. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4814. }
  4815. if (mddev->safemode == 1)
  4816. mddev->safemode = 0;
  4817. spin_unlock_irq(&mddev->write_lock);
  4818. if (mddev->flags)
  4819. md_update_sb(mddev, 0);
  4820. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4821. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4822. /* resync/recovery still happening */
  4823. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4824. goto unlock;
  4825. }
  4826. if (mddev->sync_thread) {
  4827. /* resync has finished, collect result */
  4828. md_unregister_thread(mddev->sync_thread);
  4829. mddev->sync_thread = NULL;
  4830. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4831. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4832. /* success...*/
  4833. /* activate any spares */
  4834. mddev->pers->spare_active(mddev);
  4835. }
  4836. md_update_sb(mddev, 1);
  4837. /* if array is no-longer degraded, then any saved_raid_disk
  4838. * information must be scrapped
  4839. */
  4840. if (!mddev->degraded)
  4841. ITERATE_RDEV(mddev,rdev,rtmp)
  4842. rdev->saved_raid_disk = -1;
  4843. mddev->recovery = 0;
  4844. /* flag recovery needed just to double check */
  4845. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4846. md_new_event(mddev);
  4847. goto unlock;
  4848. }
  4849. /* Clear some bits that don't mean anything, but
  4850. * might be left set
  4851. */
  4852. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4853. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4854. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4855. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4856. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4857. goto unlock;
  4858. /* no recovery is running.
  4859. * remove any failed drives, then
  4860. * add spares if possible.
  4861. * Spare are also removed and re-added, to allow
  4862. * the personality to fail the re-add.
  4863. */
  4864. if (mddev->reshape_position != MaxSector) {
  4865. if (mddev->pers->check_reshape(mddev) != 0)
  4866. /* Cannot proceed */
  4867. goto unlock;
  4868. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4869. } else if ((spares = remove_and_add_spares(mddev))) {
  4870. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4871. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4872. } else if (mddev->recovery_cp < MaxSector) {
  4873. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4874. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4875. /* nothing to be done ... */
  4876. goto unlock;
  4877. if (mddev->pers->sync_request) {
  4878. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4879. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4880. /* We are adding a device or devices to an array
  4881. * which has the bitmap stored on all devices.
  4882. * So make sure all bitmap pages get written
  4883. */
  4884. bitmap_write_all(mddev->bitmap);
  4885. }
  4886. mddev->sync_thread = md_register_thread(md_do_sync,
  4887. mddev,
  4888. "%s_resync");
  4889. if (!mddev->sync_thread) {
  4890. printk(KERN_ERR "%s: could not start resync"
  4891. " thread...\n",
  4892. mdname(mddev));
  4893. /* leave the spares where they are, it shouldn't hurt */
  4894. mddev->recovery = 0;
  4895. } else
  4896. md_wakeup_thread(mddev->sync_thread);
  4897. md_new_event(mddev);
  4898. }
  4899. unlock:
  4900. mddev_unlock(mddev);
  4901. }
  4902. }
  4903. static int md_notify_reboot(struct notifier_block *this,
  4904. unsigned long code, void *x)
  4905. {
  4906. struct list_head *tmp;
  4907. mddev_t *mddev;
  4908. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4909. printk(KERN_INFO "md: stopping all md devices.\n");
  4910. ITERATE_MDDEV(mddev,tmp)
  4911. if (mddev_trylock(mddev)) {
  4912. do_md_stop (mddev, 1);
  4913. mddev_unlock(mddev);
  4914. }
  4915. /*
  4916. * certain more exotic SCSI devices are known to be
  4917. * volatile wrt too early system reboots. While the
  4918. * right place to handle this issue is the given
  4919. * driver, we do want to have a safe RAID driver ...
  4920. */
  4921. mdelay(1000*1);
  4922. }
  4923. return NOTIFY_DONE;
  4924. }
  4925. static struct notifier_block md_notifier = {
  4926. .notifier_call = md_notify_reboot,
  4927. .next = NULL,
  4928. .priority = INT_MAX, /* before any real devices */
  4929. };
  4930. static void md_geninit(void)
  4931. {
  4932. struct proc_dir_entry *p;
  4933. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4934. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4935. if (p)
  4936. p->proc_fops = &md_seq_fops;
  4937. }
  4938. static int __init md_init(void)
  4939. {
  4940. if (register_blkdev(MAJOR_NR, "md"))
  4941. return -1;
  4942. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4943. unregister_blkdev(MAJOR_NR, "md");
  4944. return -1;
  4945. }
  4946. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  4947. md_probe, NULL, NULL);
  4948. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  4949. md_probe, NULL, NULL);
  4950. register_reboot_notifier(&md_notifier);
  4951. raid_table_header = register_sysctl_table(raid_root_table);
  4952. md_geninit();
  4953. return (0);
  4954. }
  4955. #ifndef MODULE
  4956. /*
  4957. * Searches all registered partitions for autorun RAID arrays
  4958. * at boot time.
  4959. */
  4960. static dev_t detected_devices[128];
  4961. static int dev_cnt;
  4962. void md_autodetect_dev(dev_t dev)
  4963. {
  4964. if (dev_cnt >= 0 && dev_cnt < 127)
  4965. detected_devices[dev_cnt++] = dev;
  4966. }
  4967. static void autostart_arrays(int part)
  4968. {
  4969. mdk_rdev_t *rdev;
  4970. int i;
  4971. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4972. for (i = 0; i < dev_cnt; i++) {
  4973. dev_t dev = detected_devices[i];
  4974. rdev = md_import_device(dev,0, 0);
  4975. if (IS_ERR(rdev))
  4976. continue;
  4977. if (test_bit(Faulty, &rdev->flags)) {
  4978. MD_BUG();
  4979. continue;
  4980. }
  4981. list_add(&rdev->same_set, &pending_raid_disks);
  4982. }
  4983. dev_cnt = 0;
  4984. autorun_devices(part);
  4985. }
  4986. #endif /* !MODULE */
  4987. static __exit void md_exit(void)
  4988. {
  4989. mddev_t *mddev;
  4990. struct list_head *tmp;
  4991. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  4992. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  4993. unregister_blkdev(MAJOR_NR,"md");
  4994. unregister_blkdev(mdp_major, "mdp");
  4995. unregister_reboot_notifier(&md_notifier);
  4996. unregister_sysctl_table(raid_table_header);
  4997. remove_proc_entry("mdstat", NULL);
  4998. ITERATE_MDDEV(mddev,tmp) {
  4999. struct gendisk *disk = mddev->gendisk;
  5000. if (!disk)
  5001. continue;
  5002. export_array(mddev);
  5003. del_gendisk(disk);
  5004. put_disk(disk);
  5005. mddev->gendisk = NULL;
  5006. mddev_put(mddev);
  5007. }
  5008. }
  5009. module_init(md_init)
  5010. module_exit(md_exit)
  5011. static int get_ro(char *buffer, struct kernel_param *kp)
  5012. {
  5013. return sprintf(buffer, "%d", start_readonly);
  5014. }
  5015. static int set_ro(const char *val, struct kernel_param *kp)
  5016. {
  5017. char *e;
  5018. int num = simple_strtoul(val, &e, 10);
  5019. if (*val && (*e == '\0' || *e == '\n')) {
  5020. start_readonly = num;
  5021. return 0;
  5022. }
  5023. return -EINVAL;
  5024. }
  5025. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5026. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5027. EXPORT_SYMBOL(register_md_personality);
  5028. EXPORT_SYMBOL(unregister_md_personality);
  5029. EXPORT_SYMBOL(md_error);
  5030. EXPORT_SYMBOL(md_done_sync);
  5031. EXPORT_SYMBOL(md_write_start);
  5032. EXPORT_SYMBOL(md_write_end);
  5033. EXPORT_SYMBOL(md_register_thread);
  5034. EXPORT_SYMBOL(md_unregister_thread);
  5035. EXPORT_SYMBOL(md_wakeup_thread);
  5036. EXPORT_SYMBOL(md_check_recovery);
  5037. MODULE_LICENSE("GPL");
  5038. MODULE_ALIAS("md");
  5039. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);