messenger.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. static void queue_con(struct ceph_connection *con);
  36. static void con_work(struct work_struct *);
  37. static void ceph_fault(struct ceph_connection *con);
  38. /*
  39. * Nicely render a sockaddr as a string. An array of formatted
  40. * strings is used, to approximate reentrancy.
  41. */
  42. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  43. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  44. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  45. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  46. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  47. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  48. static struct page *zero_page; /* used in certain error cases */
  49. static void *zero_page_address; /* kernel virtual addr of zero_page */
  50. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  51. {
  52. int i;
  53. char *s;
  54. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  55. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  56. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  57. s = addr_str[i];
  58. switch (ss->ss_family) {
  59. case AF_INET:
  60. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  61. ntohs(in4->sin_port));
  62. break;
  63. case AF_INET6:
  64. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  65. ntohs(in6->sin6_port));
  66. break;
  67. default:
  68. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
  69. (int)ss->ss_family);
  70. }
  71. return s;
  72. }
  73. EXPORT_SYMBOL(ceph_pr_addr);
  74. static void encode_my_addr(struct ceph_messenger *msgr)
  75. {
  76. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  77. ceph_encode_addr(&msgr->my_enc_addr);
  78. }
  79. /*
  80. * work queue for all reading and writing to/from the socket.
  81. */
  82. static struct workqueue_struct *ceph_msgr_wq;
  83. int ceph_msgr_init(void)
  84. {
  85. BUG_ON(zero_page != NULL);
  86. zero_page = ZERO_PAGE(0);
  87. page_cache_get(zero_page);
  88. BUG_ON(zero_page_address != NULL);
  89. zero_page_address = kmap(zero_page);
  90. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  91. if (!ceph_msgr_wq) {
  92. pr_err("msgr_init failed to create workqueue\n");
  93. zero_page_address = NULL;
  94. kunmap(zero_page);
  95. page_cache_release(zero_page);
  96. zero_page = NULL;
  97. return -ENOMEM;
  98. }
  99. return 0;
  100. }
  101. EXPORT_SYMBOL(ceph_msgr_init);
  102. void ceph_msgr_exit(void)
  103. {
  104. BUG_ON(ceph_msgr_wq == NULL);
  105. destroy_workqueue(ceph_msgr_wq);
  106. BUG_ON(zero_page_address == NULL);
  107. zero_page_address = NULL;
  108. BUG_ON(zero_page == NULL);
  109. kunmap(zero_page);
  110. page_cache_release(zero_page);
  111. zero_page = NULL;
  112. }
  113. EXPORT_SYMBOL(ceph_msgr_exit);
  114. void ceph_msgr_flush(void)
  115. {
  116. flush_workqueue(ceph_msgr_wq);
  117. }
  118. EXPORT_SYMBOL(ceph_msgr_flush);
  119. /*
  120. * socket callback functions
  121. */
  122. /* data available on socket, or listen socket received a connect */
  123. static void ceph_data_ready(struct sock *sk, int count_unused)
  124. {
  125. struct ceph_connection *con = sk->sk_user_data;
  126. if (sk->sk_state != TCP_CLOSE_WAIT) {
  127. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  128. con, con->state);
  129. queue_con(con);
  130. }
  131. }
  132. /* socket has buffer space for writing */
  133. static void ceph_write_space(struct sock *sk)
  134. {
  135. struct ceph_connection *con =
  136. (struct ceph_connection *)sk->sk_user_data;
  137. /* only queue to workqueue if there is data we want to write,
  138. * and there is sufficient space in the socket buffer to accept
  139. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  140. * doesn't get called again until try_write() fills the socket
  141. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  142. * and net/core/stream.c:sk_stream_write_space().
  143. */
  144. if (test_bit(WRITE_PENDING, &con->state)) {
  145. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  146. dout("ceph_write_space %p queueing write work\n", con);
  147. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  148. queue_con(con);
  149. }
  150. } else {
  151. dout("ceph_write_space %p nothing to write\n", con);
  152. }
  153. }
  154. /* socket's state has changed */
  155. static void ceph_state_change(struct sock *sk)
  156. {
  157. struct ceph_connection *con = sk->sk_user_data;
  158. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  159. con, con->state, sk->sk_state);
  160. if (test_bit(CLOSED, &con->state))
  161. return;
  162. switch (sk->sk_state) {
  163. case TCP_CLOSE:
  164. dout("ceph_state_change TCP_CLOSE\n");
  165. case TCP_CLOSE_WAIT:
  166. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  167. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  168. if (test_bit(CONNECTING, &con->state))
  169. con->error_msg = "connection failed";
  170. else
  171. con->error_msg = "socket closed";
  172. queue_con(con);
  173. }
  174. break;
  175. case TCP_ESTABLISHED:
  176. dout("ceph_state_change TCP_ESTABLISHED\n");
  177. queue_con(con);
  178. break;
  179. }
  180. }
  181. /*
  182. * set up socket callbacks
  183. */
  184. static void set_sock_callbacks(struct socket *sock,
  185. struct ceph_connection *con)
  186. {
  187. struct sock *sk = sock->sk;
  188. sk->sk_user_data = con;
  189. sk->sk_data_ready = ceph_data_ready;
  190. sk->sk_write_space = ceph_write_space;
  191. sk->sk_state_change = ceph_state_change;
  192. }
  193. /*
  194. * socket helpers
  195. */
  196. /*
  197. * initiate connection to a remote socket.
  198. */
  199. static struct socket *ceph_tcp_connect(struct ceph_connection *con)
  200. {
  201. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  202. struct socket *sock;
  203. int ret;
  204. BUG_ON(con->sock);
  205. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  206. IPPROTO_TCP, &sock);
  207. if (ret)
  208. return ERR_PTR(ret);
  209. sock->sk->sk_allocation = GFP_NOFS;
  210. #ifdef CONFIG_LOCKDEP
  211. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  212. #endif
  213. set_sock_callbacks(sock, con);
  214. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  215. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  216. O_NONBLOCK);
  217. if (ret == -EINPROGRESS) {
  218. dout("connect %s EINPROGRESS sk_state = %u\n",
  219. ceph_pr_addr(&con->peer_addr.in_addr),
  220. sock->sk->sk_state);
  221. } else if (ret < 0) {
  222. pr_err("connect %s error %d\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  224. sock_release(sock);
  225. con->error_msg = "connect error";
  226. return ERR_PTR(ret);
  227. }
  228. con->sock = sock;
  229. return sock;
  230. }
  231. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  232. {
  233. struct kvec iov = {buf, len};
  234. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  235. int r;
  236. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  237. if (r == -EAGAIN)
  238. r = 0;
  239. return r;
  240. }
  241. /*
  242. * write something. @more is true if caller will be sending more data
  243. * shortly.
  244. */
  245. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  246. size_t kvlen, size_t len, int more)
  247. {
  248. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  249. int r;
  250. if (more)
  251. msg.msg_flags |= MSG_MORE;
  252. else
  253. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  254. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  255. if (r == -EAGAIN)
  256. r = 0;
  257. return r;
  258. }
  259. /*
  260. * Shutdown/close the socket for the given connection.
  261. */
  262. static int con_close_socket(struct ceph_connection *con)
  263. {
  264. int rc;
  265. dout("con_close_socket on %p sock %p\n", con, con->sock);
  266. if (!con->sock)
  267. return 0;
  268. set_bit(SOCK_CLOSED, &con->state);
  269. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  270. sock_release(con->sock);
  271. con->sock = NULL;
  272. clear_bit(SOCK_CLOSED, &con->state);
  273. return rc;
  274. }
  275. /*
  276. * Reset a connection. Discard all incoming and outgoing messages
  277. * and clear *_seq state.
  278. */
  279. static void ceph_msg_remove(struct ceph_msg *msg)
  280. {
  281. list_del_init(&msg->list_head);
  282. ceph_msg_put(msg);
  283. }
  284. static void ceph_msg_remove_list(struct list_head *head)
  285. {
  286. while (!list_empty(head)) {
  287. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  288. list_head);
  289. ceph_msg_remove(msg);
  290. }
  291. }
  292. static void reset_connection(struct ceph_connection *con)
  293. {
  294. /* reset connection, out_queue, msg_ and connect_seq */
  295. /* discard existing out_queue and msg_seq */
  296. ceph_msg_remove_list(&con->out_queue);
  297. ceph_msg_remove_list(&con->out_sent);
  298. if (con->in_msg) {
  299. ceph_msg_put(con->in_msg);
  300. con->in_msg = NULL;
  301. }
  302. con->connect_seq = 0;
  303. con->out_seq = 0;
  304. if (con->out_msg) {
  305. ceph_msg_put(con->out_msg);
  306. con->out_msg = NULL;
  307. }
  308. con->in_seq = 0;
  309. con->in_seq_acked = 0;
  310. }
  311. /*
  312. * mark a peer down. drop any open connections.
  313. */
  314. void ceph_con_close(struct ceph_connection *con)
  315. {
  316. dout("con_close %p peer %s\n", con,
  317. ceph_pr_addr(&con->peer_addr.in_addr));
  318. set_bit(CLOSED, &con->state); /* in case there's queued work */
  319. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  320. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  321. clear_bit(KEEPALIVE_PENDING, &con->state);
  322. clear_bit(WRITE_PENDING, &con->state);
  323. mutex_lock(&con->mutex);
  324. reset_connection(con);
  325. con->peer_global_seq = 0;
  326. cancel_delayed_work(&con->work);
  327. mutex_unlock(&con->mutex);
  328. queue_con(con);
  329. }
  330. EXPORT_SYMBOL(ceph_con_close);
  331. /*
  332. * Reopen a closed connection, with a new peer address.
  333. */
  334. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  335. {
  336. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  337. set_bit(OPENING, &con->state);
  338. clear_bit(CLOSED, &con->state);
  339. memcpy(&con->peer_addr, addr, sizeof(*addr));
  340. con->delay = 0; /* reset backoff memory */
  341. queue_con(con);
  342. }
  343. EXPORT_SYMBOL(ceph_con_open);
  344. /*
  345. * return true if this connection ever successfully opened
  346. */
  347. bool ceph_con_opened(struct ceph_connection *con)
  348. {
  349. return con->connect_seq > 0;
  350. }
  351. /*
  352. * generic get/put
  353. */
  354. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  355. {
  356. dout("con_get %p nref = %d -> %d\n", con,
  357. atomic_read(&con->nref), atomic_read(&con->nref) + 1);
  358. if (atomic_inc_not_zero(&con->nref))
  359. return con;
  360. return NULL;
  361. }
  362. void ceph_con_put(struct ceph_connection *con)
  363. {
  364. dout("con_put %p nref = %d -> %d\n", con,
  365. atomic_read(&con->nref), atomic_read(&con->nref) - 1);
  366. BUG_ON(atomic_read(&con->nref) == 0);
  367. if (atomic_dec_and_test(&con->nref)) {
  368. BUG_ON(con->sock);
  369. kfree(con);
  370. }
  371. }
  372. /*
  373. * initialize a new connection.
  374. */
  375. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  376. {
  377. dout("con_init %p\n", con);
  378. memset(con, 0, sizeof(*con));
  379. atomic_set(&con->nref, 1);
  380. con->msgr = msgr;
  381. mutex_init(&con->mutex);
  382. INIT_LIST_HEAD(&con->out_queue);
  383. INIT_LIST_HEAD(&con->out_sent);
  384. INIT_DELAYED_WORK(&con->work, con_work);
  385. }
  386. EXPORT_SYMBOL(ceph_con_init);
  387. /*
  388. * We maintain a global counter to order connection attempts. Get
  389. * a unique seq greater than @gt.
  390. */
  391. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  392. {
  393. u32 ret;
  394. spin_lock(&msgr->global_seq_lock);
  395. if (msgr->global_seq < gt)
  396. msgr->global_seq = gt;
  397. ret = ++msgr->global_seq;
  398. spin_unlock(&msgr->global_seq_lock);
  399. return ret;
  400. }
  401. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  402. {
  403. con->out_kvec_left = 0;
  404. con->out_kvec_bytes = 0;
  405. con->out_kvec_cur = &con->out_kvec[0];
  406. }
  407. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  408. size_t size, void *data)
  409. {
  410. int index;
  411. index = con->out_kvec_left;
  412. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  413. con->out_kvec[index].iov_len = size;
  414. con->out_kvec[index].iov_base = data;
  415. con->out_kvec_left++;
  416. con->out_kvec_bytes += size;
  417. }
  418. /*
  419. * Prepare footer for currently outgoing message, and finish things
  420. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  421. */
  422. static void prepare_write_message_footer(struct ceph_connection *con)
  423. {
  424. struct ceph_msg *m = con->out_msg;
  425. int v = con->out_kvec_left;
  426. dout("prepare_write_message_footer %p\n", con);
  427. con->out_kvec_is_msg = true;
  428. con->out_kvec[v].iov_base = &m->footer;
  429. con->out_kvec[v].iov_len = sizeof(m->footer);
  430. con->out_kvec_bytes += sizeof(m->footer);
  431. con->out_kvec_left++;
  432. con->out_more = m->more_to_follow;
  433. con->out_msg_done = true;
  434. }
  435. /*
  436. * Prepare headers for the next outgoing message.
  437. */
  438. static void prepare_write_message(struct ceph_connection *con)
  439. {
  440. struct ceph_msg *m;
  441. ceph_con_out_kvec_reset(con);
  442. con->out_kvec_is_msg = true;
  443. con->out_msg_done = false;
  444. /* Sneak an ack in there first? If we can get it into the same
  445. * TCP packet that's a good thing. */
  446. if (con->in_seq > con->in_seq_acked) {
  447. con->in_seq_acked = con->in_seq;
  448. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  449. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  450. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  451. &con->out_temp_ack);
  452. }
  453. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  454. con->out_msg = m;
  455. /* put message on sent list */
  456. ceph_msg_get(m);
  457. list_move_tail(&m->list_head, &con->out_sent);
  458. /*
  459. * only assign outgoing seq # if we haven't sent this message
  460. * yet. if it is requeued, resend with it's original seq.
  461. */
  462. if (m->needs_out_seq) {
  463. m->hdr.seq = cpu_to_le64(++con->out_seq);
  464. m->needs_out_seq = false;
  465. }
  466. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  467. m, con->out_seq, le16_to_cpu(m->hdr.type),
  468. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  469. le32_to_cpu(m->hdr.data_len),
  470. m->nr_pages);
  471. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  472. /* tag + hdr + front + middle */
  473. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  474. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  475. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  476. if (m->middle)
  477. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  478. m->middle->vec.iov_base);
  479. /* fill in crc (except data pages), footer */
  480. con->out_msg->hdr.crc =
  481. cpu_to_le32(crc32c(0, &m->hdr,
  482. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  483. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  484. con->out_msg->footer.front_crc =
  485. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  486. if (m->middle)
  487. con->out_msg->footer.middle_crc =
  488. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  489. m->middle->vec.iov_len));
  490. else
  491. con->out_msg->footer.middle_crc = 0;
  492. con->out_msg->footer.data_crc = 0;
  493. dout("prepare_write_message front_crc %u data_crc %u\n",
  494. le32_to_cpu(con->out_msg->footer.front_crc),
  495. le32_to_cpu(con->out_msg->footer.middle_crc));
  496. /* is there a data payload? */
  497. if (le32_to_cpu(m->hdr.data_len) > 0) {
  498. /* initialize page iterator */
  499. con->out_msg_pos.page = 0;
  500. if (m->pages)
  501. con->out_msg_pos.page_pos = m->page_alignment;
  502. else
  503. con->out_msg_pos.page_pos = 0;
  504. con->out_msg_pos.data_pos = 0;
  505. con->out_msg_pos.did_page_crc = 0;
  506. con->out_more = 1; /* data + footer will follow */
  507. } else {
  508. /* no, queue up footer too and be done */
  509. prepare_write_message_footer(con);
  510. }
  511. set_bit(WRITE_PENDING, &con->state);
  512. }
  513. /*
  514. * Prepare an ack.
  515. */
  516. static void prepare_write_ack(struct ceph_connection *con)
  517. {
  518. dout("prepare_write_ack %p %llu -> %llu\n", con,
  519. con->in_seq_acked, con->in_seq);
  520. con->in_seq_acked = con->in_seq;
  521. ceph_con_out_kvec_reset(con);
  522. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  523. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  524. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  525. &con->out_temp_ack);
  526. con->out_more = 1; /* more will follow.. eventually.. */
  527. set_bit(WRITE_PENDING, &con->state);
  528. }
  529. /*
  530. * Prepare to write keepalive byte.
  531. */
  532. static void prepare_write_keepalive(struct ceph_connection *con)
  533. {
  534. dout("prepare_write_keepalive %p\n", con);
  535. ceph_con_out_kvec_reset(con);
  536. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  537. set_bit(WRITE_PENDING, &con->state);
  538. }
  539. /*
  540. * Connection negotiation.
  541. */
  542. static int prepare_connect_authorizer(struct ceph_connection *con)
  543. {
  544. void *auth_buf;
  545. int auth_len = 0;
  546. int auth_protocol = 0;
  547. mutex_unlock(&con->mutex);
  548. if (con->ops->get_authorizer)
  549. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  550. &auth_protocol, &con->auth_reply_buf,
  551. &con->auth_reply_buf_len,
  552. con->auth_retry);
  553. mutex_lock(&con->mutex);
  554. if (test_bit(CLOSED, &con->state) ||
  555. test_bit(OPENING, &con->state))
  556. return -EAGAIN;
  557. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  558. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  559. if (auth_len)
  560. ceph_con_out_kvec_add(con, auth_len, auth_buf);
  561. return 0;
  562. }
  563. /*
  564. * We connected to a peer and are saying hello.
  565. */
  566. static void prepare_write_banner(struct ceph_messenger *msgr,
  567. struct ceph_connection *con)
  568. {
  569. ceph_con_out_kvec_reset(con);
  570. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  571. ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
  572. &msgr->my_enc_addr);
  573. con->out_more = 0;
  574. set_bit(WRITE_PENDING, &con->state);
  575. }
  576. static int prepare_write_connect(struct ceph_messenger *msgr,
  577. struct ceph_connection *con,
  578. int include_banner)
  579. {
  580. unsigned global_seq = get_global_seq(con->msgr, 0);
  581. int proto;
  582. switch (con->peer_name.type) {
  583. case CEPH_ENTITY_TYPE_MON:
  584. proto = CEPH_MONC_PROTOCOL;
  585. break;
  586. case CEPH_ENTITY_TYPE_OSD:
  587. proto = CEPH_OSDC_PROTOCOL;
  588. break;
  589. case CEPH_ENTITY_TYPE_MDS:
  590. proto = CEPH_MDSC_PROTOCOL;
  591. break;
  592. default:
  593. BUG();
  594. }
  595. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  596. con->connect_seq, global_seq, proto);
  597. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  598. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  599. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  600. con->out_connect.global_seq = cpu_to_le32(global_seq);
  601. con->out_connect.protocol_version = cpu_to_le32(proto);
  602. con->out_connect.flags = 0;
  603. if (include_banner)
  604. prepare_write_banner(msgr, con);
  605. else
  606. ceph_con_out_kvec_reset(con);
  607. ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
  608. con->out_more = 0;
  609. set_bit(WRITE_PENDING, &con->state);
  610. return prepare_connect_authorizer(con);
  611. }
  612. /*
  613. * write as much of pending kvecs to the socket as we can.
  614. * 1 -> done
  615. * 0 -> socket full, but more to do
  616. * <0 -> error
  617. */
  618. static int write_partial_kvec(struct ceph_connection *con)
  619. {
  620. int ret;
  621. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  622. while (con->out_kvec_bytes > 0) {
  623. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  624. con->out_kvec_left, con->out_kvec_bytes,
  625. con->out_more);
  626. if (ret <= 0)
  627. goto out;
  628. con->out_kvec_bytes -= ret;
  629. if (con->out_kvec_bytes == 0)
  630. break; /* done */
  631. while (ret > 0) {
  632. if (ret >= con->out_kvec_cur->iov_len) {
  633. ret -= con->out_kvec_cur->iov_len;
  634. con->out_kvec_cur++;
  635. con->out_kvec_left--;
  636. } else {
  637. con->out_kvec_cur->iov_len -= ret;
  638. con->out_kvec_cur->iov_base += ret;
  639. ret = 0;
  640. break;
  641. }
  642. }
  643. }
  644. con->out_kvec_left = 0;
  645. con->out_kvec_is_msg = false;
  646. ret = 1;
  647. out:
  648. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  649. con->out_kvec_bytes, con->out_kvec_left, ret);
  650. return ret; /* done! */
  651. }
  652. #ifdef CONFIG_BLOCK
  653. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  654. {
  655. if (!bio) {
  656. *iter = NULL;
  657. *seg = 0;
  658. return;
  659. }
  660. *iter = bio;
  661. *seg = bio->bi_idx;
  662. }
  663. static void iter_bio_next(struct bio **bio_iter, int *seg)
  664. {
  665. if (*bio_iter == NULL)
  666. return;
  667. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  668. (*seg)++;
  669. if (*seg == (*bio_iter)->bi_vcnt)
  670. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  671. }
  672. #endif
  673. /*
  674. * Write as much message data payload as we can. If we finish, queue
  675. * up the footer.
  676. * 1 -> done, footer is now queued in out_kvec[].
  677. * 0 -> socket full, but more to do
  678. * <0 -> error
  679. */
  680. static int write_partial_msg_pages(struct ceph_connection *con)
  681. {
  682. struct ceph_msg *msg = con->out_msg;
  683. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  684. size_t len;
  685. int crc = con->msgr->nocrc;
  686. int ret;
  687. int total_max_write;
  688. int in_trail = 0;
  689. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  690. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  691. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  692. con->out_msg_pos.page_pos);
  693. #ifdef CONFIG_BLOCK
  694. if (msg->bio && !msg->bio_iter)
  695. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  696. #endif
  697. while (data_len > con->out_msg_pos.data_pos) {
  698. struct page *page = NULL;
  699. void *kaddr = NULL;
  700. int max_write = PAGE_SIZE;
  701. int page_shift = 0;
  702. total_max_write = data_len - trail_len -
  703. con->out_msg_pos.data_pos;
  704. /*
  705. * if we are calculating the data crc (the default), we need
  706. * to map the page. if our pages[] has been revoked, use the
  707. * zero page.
  708. */
  709. /* have we reached the trail part of the data? */
  710. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  711. in_trail = 1;
  712. total_max_write = data_len - con->out_msg_pos.data_pos;
  713. page = list_first_entry(&msg->trail->head,
  714. struct page, lru);
  715. if (crc)
  716. kaddr = kmap(page);
  717. max_write = PAGE_SIZE;
  718. } else if (msg->pages) {
  719. page = msg->pages[con->out_msg_pos.page];
  720. if (crc)
  721. kaddr = kmap(page);
  722. } else if (msg->pagelist) {
  723. page = list_first_entry(&msg->pagelist->head,
  724. struct page, lru);
  725. if (crc)
  726. kaddr = kmap(page);
  727. #ifdef CONFIG_BLOCK
  728. } else if (msg->bio) {
  729. struct bio_vec *bv;
  730. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  731. page = bv->bv_page;
  732. page_shift = bv->bv_offset;
  733. if (crc)
  734. kaddr = kmap(page) + page_shift;
  735. max_write = bv->bv_len;
  736. #endif
  737. } else {
  738. page = zero_page;
  739. if (crc)
  740. kaddr = zero_page_address;
  741. }
  742. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  743. total_max_write);
  744. if (crc && !con->out_msg_pos.did_page_crc) {
  745. void *base = kaddr + con->out_msg_pos.page_pos;
  746. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  747. BUG_ON(kaddr == NULL);
  748. con->out_msg->footer.data_crc =
  749. cpu_to_le32(crc32c(tmpcrc, base, len));
  750. con->out_msg_pos.did_page_crc = 1;
  751. }
  752. ret = kernel_sendpage(con->sock, page,
  753. con->out_msg_pos.page_pos + page_shift,
  754. len,
  755. MSG_DONTWAIT | MSG_NOSIGNAL |
  756. MSG_MORE);
  757. if (crc &&
  758. (msg->pages || msg->pagelist || msg->bio || in_trail))
  759. kunmap(page);
  760. if (ret == -EAGAIN)
  761. ret = 0;
  762. if (ret <= 0)
  763. goto out;
  764. con->out_msg_pos.data_pos += ret;
  765. con->out_msg_pos.page_pos += ret;
  766. if (ret == len) {
  767. con->out_msg_pos.page_pos = 0;
  768. con->out_msg_pos.page++;
  769. con->out_msg_pos.did_page_crc = 0;
  770. if (in_trail)
  771. list_move_tail(&page->lru,
  772. &msg->trail->head);
  773. else if (msg->pagelist)
  774. list_move_tail(&page->lru,
  775. &msg->pagelist->head);
  776. #ifdef CONFIG_BLOCK
  777. else if (msg->bio)
  778. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  779. #endif
  780. }
  781. }
  782. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  783. /* prepare and queue up footer, too */
  784. if (!crc)
  785. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  786. ceph_con_out_kvec_reset(con);
  787. prepare_write_message_footer(con);
  788. ret = 1;
  789. out:
  790. return ret;
  791. }
  792. /*
  793. * write some zeros
  794. */
  795. static int write_partial_skip(struct ceph_connection *con)
  796. {
  797. int ret;
  798. while (con->out_skip > 0) {
  799. struct kvec iov = {
  800. .iov_base = zero_page_address,
  801. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  802. };
  803. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  804. if (ret <= 0)
  805. goto out;
  806. con->out_skip -= ret;
  807. }
  808. ret = 1;
  809. out:
  810. return ret;
  811. }
  812. /*
  813. * Prepare to read connection handshake, or an ack.
  814. */
  815. static void prepare_read_banner(struct ceph_connection *con)
  816. {
  817. dout("prepare_read_banner %p\n", con);
  818. con->in_base_pos = 0;
  819. }
  820. static void prepare_read_connect(struct ceph_connection *con)
  821. {
  822. dout("prepare_read_connect %p\n", con);
  823. con->in_base_pos = 0;
  824. }
  825. static void prepare_read_ack(struct ceph_connection *con)
  826. {
  827. dout("prepare_read_ack %p\n", con);
  828. con->in_base_pos = 0;
  829. }
  830. static void prepare_read_tag(struct ceph_connection *con)
  831. {
  832. dout("prepare_read_tag %p\n", con);
  833. con->in_base_pos = 0;
  834. con->in_tag = CEPH_MSGR_TAG_READY;
  835. }
  836. /*
  837. * Prepare to read a message.
  838. */
  839. static int prepare_read_message(struct ceph_connection *con)
  840. {
  841. dout("prepare_read_message %p\n", con);
  842. BUG_ON(con->in_msg != NULL);
  843. con->in_base_pos = 0;
  844. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  845. return 0;
  846. }
  847. static int read_partial(struct ceph_connection *con,
  848. int *to, int size, void *object)
  849. {
  850. *to += size;
  851. while (con->in_base_pos < *to) {
  852. int left = *to - con->in_base_pos;
  853. int have = size - left;
  854. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  855. if (ret <= 0)
  856. return ret;
  857. con->in_base_pos += ret;
  858. }
  859. return 1;
  860. }
  861. /*
  862. * Read all or part of the connect-side handshake on a new connection
  863. */
  864. static int read_partial_banner(struct ceph_connection *con)
  865. {
  866. int ret, to = 0;
  867. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  868. /* peer's banner */
  869. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  870. if (ret <= 0)
  871. goto out;
  872. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  873. &con->actual_peer_addr);
  874. if (ret <= 0)
  875. goto out;
  876. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  877. &con->peer_addr_for_me);
  878. if (ret <= 0)
  879. goto out;
  880. out:
  881. return ret;
  882. }
  883. static int read_partial_connect(struct ceph_connection *con)
  884. {
  885. int ret, to = 0;
  886. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  887. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  888. if (ret <= 0)
  889. goto out;
  890. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  891. con->auth_reply_buf);
  892. if (ret <= 0)
  893. goto out;
  894. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  895. con, (int)con->in_reply.tag,
  896. le32_to_cpu(con->in_reply.connect_seq),
  897. le32_to_cpu(con->in_reply.global_seq));
  898. out:
  899. return ret;
  900. }
  901. /*
  902. * Verify the hello banner looks okay.
  903. */
  904. static int verify_hello(struct ceph_connection *con)
  905. {
  906. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  907. pr_err("connect to %s got bad banner\n",
  908. ceph_pr_addr(&con->peer_addr.in_addr));
  909. con->error_msg = "protocol error, bad banner";
  910. return -1;
  911. }
  912. return 0;
  913. }
  914. static bool addr_is_blank(struct sockaddr_storage *ss)
  915. {
  916. switch (ss->ss_family) {
  917. case AF_INET:
  918. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  919. case AF_INET6:
  920. return
  921. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  922. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  923. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  924. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  925. }
  926. return false;
  927. }
  928. static int addr_port(struct sockaddr_storage *ss)
  929. {
  930. switch (ss->ss_family) {
  931. case AF_INET:
  932. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  933. case AF_INET6:
  934. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  935. }
  936. return 0;
  937. }
  938. static void addr_set_port(struct sockaddr_storage *ss, int p)
  939. {
  940. switch (ss->ss_family) {
  941. case AF_INET:
  942. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  943. break;
  944. case AF_INET6:
  945. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  946. break;
  947. }
  948. }
  949. /*
  950. * Unlike other *_pton function semantics, zero indicates success.
  951. */
  952. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  953. char delim, const char **ipend)
  954. {
  955. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  956. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  957. memset(ss, 0, sizeof(*ss));
  958. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  959. ss->ss_family = AF_INET;
  960. return 0;
  961. }
  962. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  963. ss->ss_family = AF_INET6;
  964. return 0;
  965. }
  966. return -EINVAL;
  967. }
  968. /*
  969. * Extract hostname string and resolve using kernel DNS facility.
  970. */
  971. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  972. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  973. struct sockaddr_storage *ss, char delim, const char **ipend)
  974. {
  975. const char *end, *delim_p;
  976. char *colon_p, *ip_addr = NULL;
  977. int ip_len, ret;
  978. /*
  979. * The end of the hostname occurs immediately preceding the delimiter or
  980. * the port marker (':') where the delimiter takes precedence.
  981. */
  982. delim_p = memchr(name, delim, namelen);
  983. colon_p = memchr(name, ':', namelen);
  984. if (delim_p && colon_p)
  985. end = delim_p < colon_p ? delim_p : colon_p;
  986. else if (!delim_p && colon_p)
  987. end = colon_p;
  988. else {
  989. end = delim_p;
  990. if (!end) /* case: hostname:/ */
  991. end = name + namelen;
  992. }
  993. if (end <= name)
  994. return -EINVAL;
  995. /* do dns_resolve upcall */
  996. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  997. if (ip_len > 0)
  998. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  999. else
  1000. ret = -ESRCH;
  1001. kfree(ip_addr);
  1002. *ipend = end;
  1003. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1004. ret, ret ? "failed" : ceph_pr_addr(ss));
  1005. return ret;
  1006. }
  1007. #else
  1008. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1009. struct sockaddr_storage *ss, char delim, const char **ipend)
  1010. {
  1011. return -EINVAL;
  1012. }
  1013. #endif
  1014. /*
  1015. * Parse a server name (IP or hostname). If a valid IP address is not found
  1016. * then try to extract a hostname to resolve using userspace DNS upcall.
  1017. */
  1018. static int ceph_parse_server_name(const char *name, size_t namelen,
  1019. struct sockaddr_storage *ss, char delim, const char **ipend)
  1020. {
  1021. int ret;
  1022. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1023. if (ret)
  1024. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1025. return ret;
  1026. }
  1027. /*
  1028. * Parse an ip[:port] list into an addr array. Use the default
  1029. * monitor port if a port isn't specified.
  1030. */
  1031. int ceph_parse_ips(const char *c, const char *end,
  1032. struct ceph_entity_addr *addr,
  1033. int max_count, int *count)
  1034. {
  1035. int i, ret = -EINVAL;
  1036. const char *p = c;
  1037. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1038. for (i = 0; i < max_count; i++) {
  1039. const char *ipend;
  1040. struct sockaddr_storage *ss = &addr[i].in_addr;
  1041. int port;
  1042. char delim = ',';
  1043. if (*p == '[') {
  1044. delim = ']';
  1045. p++;
  1046. }
  1047. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1048. if (ret)
  1049. goto bad;
  1050. ret = -EINVAL;
  1051. p = ipend;
  1052. if (delim == ']') {
  1053. if (*p != ']') {
  1054. dout("missing matching ']'\n");
  1055. goto bad;
  1056. }
  1057. p++;
  1058. }
  1059. /* port? */
  1060. if (p < end && *p == ':') {
  1061. port = 0;
  1062. p++;
  1063. while (p < end && *p >= '0' && *p <= '9') {
  1064. port = (port * 10) + (*p - '0');
  1065. p++;
  1066. }
  1067. if (port > 65535 || port == 0)
  1068. goto bad;
  1069. } else {
  1070. port = CEPH_MON_PORT;
  1071. }
  1072. addr_set_port(ss, port);
  1073. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1074. if (p == end)
  1075. break;
  1076. if (*p != ',')
  1077. goto bad;
  1078. p++;
  1079. }
  1080. if (p != end)
  1081. goto bad;
  1082. if (count)
  1083. *count = i + 1;
  1084. return 0;
  1085. bad:
  1086. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1087. return ret;
  1088. }
  1089. EXPORT_SYMBOL(ceph_parse_ips);
  1090. static int process_banner(struct ceph_connection *con)
  1091. {
  1092. dout("process_banner on %p\n", con);
  1093. if (verify_hello(con) < 0)
  1094. return -1;
  1095. ceph_decode_addr(&con->actual_peer_addr);
  1096. ceph_decode_addr(&con->peer_addr_for_me);
  1097. /*
  1098. * Make sure the other end is who we wanted. note that the other
  1099. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1100. * them the benefit of the doubt.
  1101. */
  1102. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1103. sizeof(con->peer_addr)) != 0 &&
  1104. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1105. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1106. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1107. ceph_pr_addr(&con->peer_addr.in_addr),
  1108. (int)le32_to_cpu(con->peer_addr.nonce),
  1109. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1110. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1111. con->error_msg = "wrong peer at address";
  1112. return -1;
  1113. }
  1114. /*
  1115. * did we learn our address?
  1116. */
  1117. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1118. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1119. memcpy(&con->msgr->inst.addr.in_addr,
  1120. &con->peer_addr_for_me.in_addr,
  1121. sizeof(con->peer_addr_for_me.in_addr));
  1122. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1123. encode_my_addr(con->msgr);
  1124. dout("process_banner learned my addr is %s\n",
  1125. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1126. }
  1127. set_bit(NEGOTIATING, &con->state);
  1128. prepare_read_connect(con);
  1129. return 0;
  1130. }
  1131. static void fail_protocol(struct ceph_connection *con)
  1132. {
  1133. reset_connection(con);
  1134. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1135. mutex_unlock(&con->mutex);
  1136. if (con->ops->bad_proto)
  1137. con->ops->bad_proto(con);
  1138. mutex_lock(&con->mutex);
  1139. }
  1140. static int process_connect(struct ceph_connection *con)
  1141. {
  1142. u64 sup_feat = con->msgr->supported_features;
  1143. u64 req_feat = con->msgr->required_features;
  1144. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1145. int ret;
  1146. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1147. switch (con->in_reply.tag) {
  1148. case CEPH_MSGR_TAG_FEATURES:
  1149. pr_err("%s%lld %s feature set mismatch,"
  1150. " my %llx < server's %llx, missing %llx\n",
  1151. ENTITY_NAME(con->peer_name),
  1152. ceph_pr_addr(&con->peer_addr.in_addr),
  1153. sup_feat, server_feat, server_feat & ~sup_feat);
  1154. con->error_msg = "missing required protocol features";
  1155. fail_protocol(con);
  1156. return -1;
  1157. case CEPH_MSGR_TAG_BADPROTOVER:
  1158. pr_err("%s%lld %s protocol version mismatch,"
  1159. " my %d != server's %d\n",
  1160. ENTITY_NAME(con->peer_name),
  1161. ceph_pr_addr(&con->peer_addr.in_addr),
  1162. le32_to_cpu(con->out_connect.protocol_version),
  1163. le32_to_cpu(con->in_reply.protocol_version));
  1164. con->error_msg = "protocol version mismatch";
  1165. fail_protocol(con);
  1166. return -1;
  1167. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1168. con->auth_retry++;
  1169. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1170. con->auth_retry);
  1171. if (con->auth_retry == 2) {
  1172. con->error_msg = "connect authorization failure";
  1173. return -1;
  1174. }
  1175. con->auth_retry = 1;
  1176. ret = prepare_write_connect(con->msgr, con, 0);
  1177. if (ret < 0)
  1178. return ret;
  1179. prepare_read_connect(con);
  1180. break;
  1181. case CEPH_MSGR_TAG_RESETSESSION:
  1182. /*
  1183. * If we connected with a large connect_seq but the peer
  1184. * has no record of a session with us (no connection, or
  1185. * connect_seq == 0), they will send RESETSESION to indicate
  1186. * that they must have reset their session, and may have
  1187. * dropped messages.
  1188. */
  1189. dout("process_connect got RESET peer seq %u\n",
  1190. le32_to_cpu(con->in_connect.connect_seq));
  1191. pr_err("%s%lld %s connection reset\n",
  1192. ENTITY_NAME(con->peer_name),
  1193. ceph_pr_addr(&con->peer_addr.in_addr));
  1194. reset_connection(con);
  1195. prepare_write_connect(con->msgr, con, 0);
  1196. prepare_read_connect(con);
  1197. /* Tell ceph about it. */
  1198. mutex_unlock(&con->mutex);
  1199. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1200. if (con->ops->peer_reset)
  1201. con->ops->peer_reset(con);
  1202. mutex_lock(&con->mutex);
  1203. if (test_bit(CLOSED, &con->state) ||
  1204. test_bit(OPENING, &con->state))
  1205. return -EAGAIN;
  1206. break;
  1207. case CEPH_MSGR_TAG_RETRY_SESSION:
  1208. /*
  1209. * If we sent a smaller connect_seq than the peer has, try
  1210. * again with a larger value.
  1211. */
  1212. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1213. le32_to_cpu(con->out_connect.connect_seq),
  1214. le32_to_cpu(con->in_connect.connect_seq));
  1215. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1216. prepare_write_connect(con->msgr, con, 0);
  1217. prepare_read_connect(con);
  1218. break;
  1219. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1220. /*
  1221. * If we sent a smaller global_seq than the peer has, try
  1222. * again with a larger value.
  1223. */
  1224. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1225. con->peer_global_seq,
  1226. le32_to_cpu(con->in_connect.global_seq));
  1227. get_global_seq(con->msgr,
  1228. le32_to_cpu(con->in_connect.global_seq));
  1229. prepare_write_connect(con->msgr, con, 0);
  1230. prepare_read_connect(con);
  1231. break;
  1232. case CEPH_MSGR_TAG_READY:
  1233. if (req_feat & ~server_feat) {
  1234. pr_err("%s%lld %s protocol feature mismatch,"
  1235. " my required %llx > server's %llx, need %llx\n",
  1236. ENTITY_NAME(con->peer_name),
  1237. ceph_pr_addr(&con->peer_addr.in_addr),
  1238. req_feat, server_feat, req_feat & ~server_feat);
  1239. con->error_msg = "missing required protocol features";
  1240. fail_protocol(con);
  1241. return -1;
  1242. }
  1243. clear_bit(CONNECTING, &con->state);
  1244. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1245. con->connect_seq++;
  1246. con->peer_features = server_feat;
  1247. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1248. con->peer_global_seq,
  1249. le32_to_cpu(con->in_reply.connect_seq),
  1250. con->connect_seq);
  1251. WARN_ON(con->connect_seq !=
  1252. le32_to_cpu(con->in_reply.connect_seq));
  1253. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1254. set_bit(LOSSYTX, &con->state);
  1255. prepare_read_tag(con);
  1256. break;
  1257. case CEPH_MSGR_TAG_WAIT:
  1258. /*
  1259. * If there is a connection race (we are opening
  1260. * connections to each other), one of us may just have
  1261. * to WAIT. This shouldn't happen if we are the
  1262. * client.
  1263. */
  1264. pr_err("process_connect got WAIT as client\n");
  1265. con->error_msg = "protocol error, got WAIT as client";
  1266. return -1;
  1267. default:
  1268. pr_err("connect protocol error, will retry\n");
  1269. con->error_msg = "protocol error, garbage tag during connect";
  1270. return -1;
  1271. }
  1272. return 0;
  1273. }
  1274. /*
  1275. * read (part of) an ack
  1276. */
  1277. static int read_partial_ack(struct ceph_connection *con)
  1278. {
  1279. int to = 0;
  1280. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1281. &con->in_temp_ack);
  1282. }
  1283. /*
  1284. * We can finally discard anything that's been acked.
  1285. */
  1286. static void process_ack(struct ceph_connection *con)
  1287. {
  1288. struct ceph_msg *m;
  1289. u64 ack = le64_to_cpu(con->in_temp_ack);
  1290. u64 seq;
  1291. while (!list_empty(&con->out_sent)) {
  1292. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1293. list_head);
  1294. seq = le64_to_cpu(m->hdr.seq);
  1295. if (seq > ack)
  1296. break;
  1297. dout("got ack for seq %llu type %d at %p\n", seq,
  1298. le16_to_cpu(m->hdr.type), m);
  1299. m->ack_stamp = jiffies;
  1300. ceph_msg_remove(m);
  1301. }
  1302. prepare_read_tag(con);
  1303. }
  1304. static int read_partial_message_section(struct ceph_connection *con,
  1305. struct kvec *section,
  1306. unsigned int sec_len, u32 *crc)
  1307. {
  1308. int ret, left;
  1309. BUG_ON(!section);
  1310. while (section->iov_len < sec_len) {
  1311. BUG_ON(section->iov_base == NULL);
  1312. left = sec_len - section->iov_len;
  1313. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1314. section->iov_len, left);
  1315. if (ret <= 0)
  1316. return ret;
  1317. section->iov_len += ret;
  1318. if (section->iov_len == sec_len)
  1319. *crc = crc32c(0, section->iov_base,
  1320. section->iov_len);
  1321. }
  1322. return 1;
  1323. }
  1324. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1325. struct ceph_msg_header *hdr,
  1326. int *skip);
  1327. static int read_partial_message_pages(struct ceph_connection *con,
  1328. struct page **pages,
  1329. unsigned data_len, int datacrc)
  1330. {
  1331. void *p;
  1332. int ret;
  1333. int left;
  1334. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1335. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1336. /* (page) data */
  1337. BUG_ON(pages == NULL);
  1338. p = kmap(pages[con->in_msg_pos.page]);
  1339. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1340. left);
  1341. if (ret > 0 && datacrc)
  1342. con->in_data_crc =
  1343. crc32c(con->in_data_crc,
  1344. p + con->in_msg_pos.page_pos, ret);
  1345. kunmap(pages[con->in_msg_pos.page]);
  1346. if (ret <= 0)
  1347. return ret;
  1348. con->in_msg_pos.data_pos += ret;
  1349. con->in_msg_pos.page_pos += ret;
  1350. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1351. con->in_msg_pos.page_pos = 0;
  1352. con->in_msg_pos.page++;
  1353. }
  1354. return ret;
  1355. }
  1356. #ifdef CONFIG_BLOCK
  1357. static int read_partial_message_bio(struct ceph_connection *con,
  1358. struct bio **bio_iter, int *bio_seg,
  1359. unsigned data_len, int datacrc)
  1360. {
  1361. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1362. void *p;
  1363. int ret, left;
  1364. if (IS_ERR(bv))
  1365. return PTR_ERR(bv);
  1366. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1367. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1368. p = kmap(bv->bv_page) + bv->bv_offset;
  1369. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1370. left);
  1371. if (ret > 0 && datacrc)
  1372. con->in_data_crc =
  1373. crc32c(con->in_data_crc,
  1374. p + con->in_msg_pos.page_pos, ret);
  1375. kunmap(bv->bv_page);
  1376. if (ret <= 0)
  1377. return ret;
  1378. con->in_msg_pos.data_pos += ret;
  1379. con->in_msg_pos.page_pos += ret;
  1380. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1381. con->in_msg_pos.page_pos = 0;
  1382. iter_bio_next(bio_iter, bio_seg);
  1383. }
  1384. return ret;
  1385. }
  1386. #endif
  1387. /*
  1388. * read (part of) a message.
  1389. */
  1390. static int read_partial_message(struct ceph_connection *con)
  1391. {
  1392. struct ceph_msg *m = con->in_msg;
  1393. int ret;
  1394. int to, left;
  1395. unsigned front_len, middle_len, data_len;
  1396. int datacrc = con->msgr->nocrc;
  1397. int skip;
  1398. u64 seq;
  1399. dout("read_partial_message con %p msg %p\n", con, m);
  1400. /* header */
  1401. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1402. left = sizeof(con->in_hdr) - con->in_base_pos;
  1403. ret = ceph_tcp_recvmsg(con->sock,
  1404. (char *)&con->in_hdr + con->in_base_pos,
  1405. left);
  1406. if (ret <= 0)
  1407. return ret;
  1408. con->in_base_pos += ret;
  1409. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1410. u32 crc = crc32c(0, &con->in_hdr,
  1411. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1412. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1413. pr_err("read_partial_message bad hdr "
  1414. " crc %u != expected %u\n",
  1415. crc, con->in_hdr.crc);
  1416. return -EBADMSG;
  1417. }
  1418. }
  1419. }
  1420. front_len = le32_to_cpu(con->in_hdr.front_len);
  1421. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1422. return -EIO;
  1423. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1424. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1425. return -EIO;
  1426. data_len = le32_to_cpu(con->in_hdr.data_len);
  1427. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1428. return -EIO;
  1429. /* verify seq# */
  1430. seq = le64_to_cpu(con->in_hdr.seq);
  1431. if ((s64)seq - (s64)con->in_seq < 1) {
  1432. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1433. ENTITY_NAME(con->peer_name),
  1434. ceph_pr_addr(&con->peer_addr.in_addr),
  1435. seq, con->in_seq + 1);
  1436. con->in_base_pos = -front_len - middle_len - data_len -
  1437. sizeof(m->footer);
  1438. con->in_tag = CEPH_MSGR_TAG_READY;
  1439. return 0;
  1440. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1441. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1442. seq, con->in_seq + 1);
  1443. con->error_msg = "bad message sequence # for incoming message";
  1444. return -EBADMSG;
  1445. }
  1446. /* allocate message? */
  1447. if (!con->in_msg) {
  1448. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1449. con->in_hdr.front_len, con->in_hdr.data_len);
  1450. skip = 0;
  1451. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1452. if (skip) {
  1453. /* skip this message */
  1454. dout("alloc_msg said skip message\n");
  1455. BUG_ON(con->in_msg);
  1456. con->in_base_pos = -front_len - middle_len - data_len -
  1457. sizeof(m->footer);
  1458. con->in_tag = CEPH_MSGR_TAG_READY;
  1459. con->in_seq++;
  1460. return 0;
  1461. }
  1462. if (!con->in_msg) {
  1463. con->error_msg =
  1464. "error allocating memory for incoming message";
  1465. return -ENOMEM;
  1466. }
  1467. m = con->in_msg;
  1468. m->front.iov_len = 0; /* haven't read it yet */
  1469. if (m->middle)
  1470. m->middle->vec.iov_len = 0;
  1471. con->in_msg_pos.page = 0;
  1472. if (m->pages)
  1473. con->in_msg_pos.page_pos = m->page_alignment;
  1474. else
  1475. con->in_msg_pos.page_pos = 0;
  1476. con->in_msg_pos.data_pos = 0;
  1477. }
  1478. /* front */
  1479. ret = read_partial_message_section(con, &m->front, front_len,
  1480. &con->in_front_crc);
  1481. if (ret <= 0)
  1482. return ret;
  1483. /* middle */
  1484. if (m->middle) {
  1485. ret = read_partial_message_section(con, &m->middle->vec,
  1486. middle_len,
  1487. &con->in_middle_crc);
  1488. if (ret <= 0)
  1489. return ret;
  1490. }
  1491. #ifdef CONFIG_BLOCK
  1492. if (m->bio && !m->bio_iter)
  1493. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1494. #endif
  1495. /* (page) data */
  1496. while (con->in_msg_pos.data_pos < data_len) {
  1497. if (m->pages) {
  1498. ret = read_partial_message_pages(con, m->pages,
  1499. data_len, datacrc);
  1500. if (ret <= 0)
  1501. return ret;
  1502. #ifdef CONFIG_BLOCK
  1503. } else if (m->bio) {
  1504. ret = read_partial_message_bio(con,
  1505. &m->bio_iter, &m->bio_seg,
  1506. data_len, datacrc);
  1507. if (ret <= 0)
  1508. return ret;
  1509. #endif
  1510. } else {
  1511. BUG_ON(1);
  1512. }
  1513. }
  1514. /* footer */
  1515. to = sizeof(m->hdr) + sizeof(m->footer);
  1516. while (con->in_base_pos < to) {
  1517. left = to - con->in_base_pos;
  1518. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1519. (con->in_base_pos - sizeof(m->hdr)),
  1520. left);
  1521. if (ret <= 0)
  1522. return ret;
  1523. con->in_base_pos += ret;
  1524. }
  1525. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1526. m, front_len, m->footer.front_crc, middle_len,
  1527. m->footer.middle_crc, data_len, m->footer.data_crc);
  1528. /* crc ok? */
  1529. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1530. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1531. m, con->in_front_crc, m->footer.front_crc);
  1532. return -EBADMSG;
  1533. }
  1534. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1535. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1536. m, con->in_middle_crc, m->footer.middle_crc);
  1537. return -EBADMSG;
  1538. }
  1539. if (datacrc &&
  1540. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1541. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1542. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1543. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1544. return -EBADMSG;
  1545. }
  1546. return 1; /* done! */
  1547. }
  1548. /*
  1549. * Process message. This happens in the worker thread. The callback should
  1550. * be careful not to do anything that waits on other incoming messages or it
  1551. * may deadlock.
  1552. */
  1553. static void process_message(struct ceph_connection *con)
  1554. {
  1555. struct ceph_msg *msg;
  1556. msg = con->in_msg;
  1557. con->in_msg = NULL;
  1558. /* if first message, set peer_name */
  1559. if (con->peer_name.type == 0)
  1560. con->peer_name = msg->hdr.src;
  1561. con->in_seq++;
  1562. mutex_unlock(&con->mutex);
  1563. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1564. msg, le64_to_cpu(msg->hdr.seq),
  1565. ENTITY_NAME(msg->hdr.src),
  1566. le16_to_cpu(msg->hdr.type),
  1567. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1568. le32_to_cpu(msg->hdr.front_len),
  1569. le32_to_cpu(msg->hdr.data_len),
  1570. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1571. con->ops->dispatch(con, msg);
  1572. mutex_lock(&con->mutex);
  1573. prepare_read_tag(con);
  1574. }
  1575. /*
  1576. * Write something to the socket. Called in a worker thread when the
  1577. * socket appears to be writeable and we have something ready to send.
  1578. */
  1579. static int try_write(struct ceph_connection *con)
  1580. {
  1581. struct ceph_messenger *msgr = con->msgr;
  1582. int ret = 1;
  1583. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1584. atomic_read(&con->nref));
  1585. more:
  1586. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1587. /* open the socket first? */
  1588. if (con->sock == NULL) {
  1589. prepare_write_connect(msgr, con, 1);
  1590. prepare_read_banner(con);
  1591. set_bit(CONNECTING, &con->state);
  1592. clear_bit(NEGOTIATING, &con->state);
  1593. BUG_ON(con->in_msg);
  1594. con->in_tag = CEPH_MSGR_TAG_READY;
  1595. dout("try_write initiating connect on %p new state %lu\n",
  1596. con, con->state);
  1597. con->sock = ceph_tcp_connect(con);
  1598. if (IS_ERR(con->sock)) {
  1599. con->sock = NULL;
  1600. con->error_msg = "connect error";
  1601. ret = -1;
  1602. goto out;
  1603. }
  1604. }
  1605. more_kvec:
  1606. /* kvec data queued? */
  1607. if (con->out_skip) {
  1608. ret = write_partial_skip(con);
  1609. if (ret <= 0)
  1610. goto out;
  1611. }
  1612. if (con->out_kvec_left) {
  1613. ret = write_partial_kvec(con);
  1614. if (ret <= 0)
  1615. goto out;
  1616. }
  1617. /* msg pages? */
  1618. if (con->out_msg) {
  1619. if (con->out_msg_done) {
  1620. ceph_msg_put(con->out_msg);
  1621. con->out_msg = NULL; /* we're done with this one */
  1622. goto do_next;
  1623. }
  1624. ret = write_partial_msg_pages(con);
  1625. if (ret == 1)
  1626. goto more_kvec; /* we need to send the footer, too! */
  1627. if (ret == 0)
  1628. goto out;
  1629. if (ret < 0) {
  1630. dout("try_write write_partial_msg_pages err %d\n",
  1631. ret);
  1632. goto out;
  1633. }
  1634. }
  1635. do_next:
  1636. if (!test_bit(CONNECTING, &con->state)) {
  1637. /* is anything else pending? */
  1638. if (!list_empty(&con->out_queue)) {
  1639. prepare_write_message(con);
  1640. goto more;
  1641. }
  1642. if (con->in_seq > con->in_seq_acked) {
  1643. prepare_write_ack(con);
  1644. goto more;
  1645. }
  1646. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1647. prepare_write_keepalive(con);
  1648. goto more;
  1649. }
  1650. }
  1651. /* Nothing to do! */
  1652. clear_bit(WRITE_PENDING, &con->state);
  1653. dout("try_write nothing else to write.\n");
  1654. ret = 0;
  1655. out:
  1656. dout("try_write done on %p ret %d\n", con, ret);
  1657. return ret;
  1658. }
  1659. /*
  1660. * Read what we can from the socket.
  1661. */
  1662. static int try_read(struct ceph_connection *con)
  1663. {
  1664. int ret = -1;
  1665. if (!con->sock)
  1666. return 0;
  1667. if (test_bit(STANDBY, &con->state))
  1668. return 0;
  1669. dout("try_read start on %p\n", con);
  1670. more:
  1671. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1672. con->in_base_pos);
  1673. /*
  1674. * process_connect and process_message drop and re-take
  1675. * con->mutex. make sure we handle a racing close or reopen.
  1676. */
  1677. if (test_bit(CLOSED, &con->state) ||
  1678. test_bit(OPENING, &con->state)) {
  1679. ret = -EAGAIN;
  1680. goto out;
  1681. }
  1682. if (test_bit(CONNECTING, &con->state)) {
  1683. if (!test_bit(NEGOTIATING, &con->state)) {
  1684. dout("try_read connecting\n");
  1685. ret = read_partial_banner(con);
  1686. if (ret <= 0)
  1687. goto out;
  1688. ret = process_banner(con);
  1689. if (ret < 0)
  1690. goto out;
  1691. }
  1692. ret = read_partial_connect(con);
  1693. if (ret <= 0)
  1694. goto out;
  1695. ret = process_connect(con);
  1696. if (ret < 0)
  1697. goto out;
  1698. goto more;
  1699. }
  1700. if (con->in_base_pos < 0) {
  1701. /*
  1702. * skipping + discarding content.
  1703. *
  1704. * FIXME: there must be a better way to do this!
  1705. */
  1706. static char buf[1024];
  1707. int skip = min(1024, -con->in_base_pos);
  1708. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1709. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1710. if (ret <= 0)
  1711. goto out;
  1712. con->in_base_pos += ret;
  1713. if (con->in_base_pos)
  1714. goto more;
  1715. }
  1716. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1717. /*
  1718. * what's next?
  1719. */
  1720. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1721. if (ret <= 0)
  1722. goto out;
  1723. dout("try_read got tag %d\n", (int)con->in_tag);
  1724. switch (con->in_tag) {
  1725. case CEPH_MSGR_TAG_MSG:
  1726. prepare_read_message(con);
  1727. break;
  1728. case CEPH_MSGR_TAG_ACK:
  1729. prepare_read_ack(con);
  1730. break;
  1731. case CEPH_MSGR_TAG_CLOSE:
  1732. set_bit(CLOSED, &con->state); /* fixme */
  1733. goto out;
  1734. default:
  1735. goto bad_tag;
  1736. }
  1737. }
  1738. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1739. ret = read_partial_message(con);
  1740. if (ret <= 0) {
  1741. switch (ret) {
  1742. case -EBADMSG:
  1743. con->error_msg = "bad crc";
  1744. ret = -EIO;
  1745. break;
  1746. case -EIO:
  1747. con->error_msg = "io error";
  1748. break;
  1749. }
  1750. goto out;
  1751. }
  1752. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1753. goto more;
  1754. process_message(con);
  1755. goto more;
  1756. }
  1757. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1758. ret = read_partial_ack(con);
  1759. if (ret <= 0)
  1760. goto out;
  1761. process_ack(con);
  1762. goto more;
  1763. }
  1764. out:
  1765. dout("try_read done on %p ret %d\n", con, ret);
  1766. return ret;
  1767. bad_tag:
  1768. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1769. con->error_msg = "protocol error, garbage tag";
  1770. ret = -1;
  1771. goto out;
  1772. }
  1773. /*
  1774. * Atomically queue work on a connection. Bump @con reference to
  1775. * avoid races with connection teardown.
  1776. */
  1777. static void queue_con(struct ceph_connection *con)
  1778. {
  1779. if (test_bit(DEAD, &con->state)) {
  1780. dout("queue_con %p ignoring: DEAD\n",
  1781. con);
  1782. return;
  1783. }
  1784. if (!con->ops->get(con)) {
  1785. dout("queue_con %p ref count 0\n", con);
  1786. return;
  1787. }
  1788. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1789. dout("queue_con %p - already queued\n", con);
  1790. con->ops->put(con);
  1791. } else {
  1792. dout("queue_con %p\n", con);
  1793. }
  1794. }
  1795. /*
  1796. * Do some work on a connection. Drop a connection ref when we're done.
  1797. */
  1798. static void con_work(struct work_struct *work)
  1799. {
  1800. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1801. work.work);
  1802. int ret;
  1803. mutex_lock(&con->mutex);
  1804. restart:
  1805. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1806. dout("con_work %p backing off\n", con);
  1807. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1808. round_jiffies_relative(con->delay))) {
  1809. dout("con_work %p backoff %lu\n", con, con->delay);
  1810. mutex_unlock(&con->mutex);
  1811. return;
  1812. } else {
  1813. con->ops->put(con);
  1814. dout("con_work %p FAILED to back off %lu\n", con,
  1815. con->delay);
  1816. }
  1817. }
  1818. if (test_bit(STANDBY, &con->state)) {
  1819. dout("con_work %p STANDBY\n", con);
  1820. goto done;
  1821. }
  1822. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1823. dout("con_work CLOSED\n");
  1824. con_close_socket(con);
  1825. goto done;
  1826. }
  1827. if (test_and_clear_bit(OPENING, &con->state)) {
  1828. /* reopen w/ new peer */
  1829. dout("con_work OPENING\n");
  1830. con_close_socket(con);
  1831. }
  1832. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1833. goto fault;
  1834. ret = try_read(con);
  1835. if (ret == -EAGAIN)
  1836. goto restart;
  1837. if (ret < 0)
  1838. goto fault;
  1839. ret = try_write(con);
  1840. if (ret == -EAGAIN)
  1841. goto restart;
  1842. if (ret < 0)
  1843. goto fault;
  1844. done:
  1845. mutex_unlock(&con->mutex);
  1846. done_unlocked:
  1847. con->ops->put(con);
  1848. return;
  1849. fault:
  1850. mutex_unlock(&con->mutex);
  1851. ceph_fault(con); /* error/fault path */
  1852. goto done_unlocked;
  1853. }
  1854. /*
  1855. * Generic error/fault handler. A retry mechanism is used with
  1856. * exponential backoff
  1857. */
  1858. static void ceph_fault(struct ceph_connection *con)
  1859. {
  1860. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1861. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1862. dout("fault %p state %lu to peer %s\n",
  1863. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1864. if (test_bit(LOSSYTX, &con->state)) {
  1865. dout("fault on LOSSYTX channel\n");
  1866. goto out;
  1867. }
  1868. mutex_lock(&con->mutex);
  1869. if (test_bit(CLOSED, &con->state))
  1870. goto out_unlock;
  1871. con_close_socket(con);
  1872. if (con->in_msg) {
  1873. ceph_msg_put(con->in_msg);
  1874. con->in_msg = NULL;
  1875. }
  1876. /* Requeue anything that hasn't been acked */
  1877. list_splice_init(&con->out_sent, &con->out_queue);
  1878. /* If there are no messages queued or keepalive pending, place
  1879. * the connection in a STANDBY state */
  1880. if (list_empty(&con->out_queue) &&
  1881. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1882. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1883. clear_bit(WRITE_PENDING, &con->state);
  1884. set_bit(STANDBY, &con->state);
  1885. } else {
  1886. /* retry after a delay. */
  1887. if (con->delay == 0)
  1888. con->delay = BASE_DELAY_INTERVAL;
  1889. else if (con->delay < MAX_DELAY_INTERVAL)
  1890. con->delay *= 2;
  1891. con->ops->get(con);
  1892. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1893. round_jiffies_relative(con->delay))) {
  1894. dout("fault queued %p delay %lu\n", con, con->delay);
  1895. } else {
  1896. con->ops->put(con);
  1897. dout("fault failed to queue %p delay %lu, backoff\n",
  1898. con, con->delay);
  1899. /*
  1900. * In many cases we see a socket state change
  1901. * while con_work is running and end up
  1902. * queuing (non-delayed) work, such that we
  1903. * can't backoff with a delay. Set a flag so
  1904. * that when con_work restarts we schedule the
  1905. * delay then.
  1906. */
  1907. set_bit(BACKOFF, &con->state);
  1908. }
  1909. }
  1910. out_unlock:
  1911. mutex_unlock(&con->mutex);
  1912. out:
  1913. /*
  1914. * in case we faulted due to authentication, invalidate our
  1915. * current tickets so that we can get new ones.
  1916. */
  1917. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1918. dout("calling invalidate_authorizer()\n");
  1919. con->ops->invalidate_authorizer(con);
  1920. }
  1921. if (con->ops->fault)
  1922. con->ops->fault(con);
  1923. }
  1924. /*
  1925. * create a new messenger instance
  1926. */
  1927. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1928. u32 supported_features,
  1929. u32 required_features)
  1930. {
  1931. struct ceph_messenger *msgr;
  1932. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1933. if (msgr == NULL)
  1934. return ERR_PTR(-ENOMEM);
  1935. msgr->supported_features = supported_features;
  1936. msgr->required_features = required_features;
  1937. spin_lock_init(&msgr->global_seq_lock);
  1938. if (myaddr)
  1939. msgr->inst.addr = *myaddr;
  1940. /* select a random nonce */
  1941. msgr->inst.addr.type = 0;
  1942. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1943. encode_my_addr(msgr);
  1944. dout("messenger_create %p\n", msgr);
  1945. return msgr;
  1946. }
  1947. EXPORT_SYMBOL(ceph_messenger_create);
  1948. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1949. {
  1950. dout("destroy %p\n", msgr);
  1951. kfree(msgr);
  1952. dout("destroyed messenger %p\n", msgr);
  1953. }
  1954. EXPORT_SYMBOL(ceph_messenger_destroy);
  1955. static void clear_standby(struct ceph_connection *con)
  1956. {
  1957. /* come back from STANDBY? */
  1958. if (test_and_clear_bit(STANDBY, &con->state)) {
  1959. mutex_lock(&con->mutex);
  1960. dout("clear_standby %p and ++connect_seq\n", con);
  1961. con->connect_seq++;
  1962. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1963. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1964. mutex_unlock(&con->mutex);
  1965. }
  1966. }
  1967. /*
  1968. * Queue up an outgoing message on the given connection.
  1969. */
  1970. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1971. {
  1972. if (test_bit(CLOSED, &con->state)) {
  1973. dout("con_send %p closed, dropping %p\n", con, msg);
  1974. ceph_msg_put(msg);
  1975. return;
  1976. }
  1977. /* set src+dst */
  1978. msg->hdr.src = con->msgr->inst.name;
  1979. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1980. msg->needs_out_seq = true;
  1981. /* queue */
  1982. mutex_lock(&con->mutex);
  1983. BUG_ON(!list_empty(&msg->list_head));
  1984. list_add_tail(&msg->list_head, &con->out_queue);
  1985. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1986. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1987. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1988. le32_to_cpu(msg->hdr.front_len),
  1989. le32_to_cpu(msg->hdr.middle_len),
  1990. le32_to_cpu(msg->hdr.data_len));
  1991. mutex_unlock(&con->mutex);
  1992. /* if there wasn't anything waiting to send before, queue
  1993. * new work */
  1994. clear_standby(con);
  1995. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1996. queue_con(con);
  1997. }
  1998. EXPORT_SYMBOL(ceph_con_send);
  1999. /*
  2000. * Revoke a message that was previously queued for send
  2001. */
  2002. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2003. {
  2004. mutex_lock(&con->mutex);
  2005. if (!list_empty(&msg->list_head)) {
  2006. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2007. list_del_init(&msg->list_head);
  2008. ceph_msg_put(msg);
  2009. msg->hdr.seq = 0;
  2010. }
  2011. if (con->out_msg == msg) {
  2012. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2013. con->out_msg = NULL;
  2014. if (con->out_kvec_is_msg) {
  2015. con->out_skip = con->out_kvec_bytes;
  2016. con->out_kvec_is_msg = false;
  2017. }
  2018. ceph_msg_put(msg);
  2019. msg->hdr.seq = 0;
  2020. }
  2021. mutex_unlock(&con->mutex);
  2022. }
  2023. /*
  2024. * Revoke a message that we may be reading data into
  2025. */
  2026. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2027. {
  2028. mutex_lock(&con->mutex);
  2029. if (con->in_msg && con->in_msg == msg) {
  2030. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2031. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2032. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2033. /* skip rest of message */
  2034. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2035. con->in_base_pos = con->in_base_pos -
  2036. sizeof(struct ceph_msg_header) -
  2037. front_len -
  2038. middle_len -
  2039. data_len -
  2040. sizeof(struct ceph_msg_footer);
  2041. ceph_msg_put(con->in_msg);
  2042. con->in_msg = NULL;
  2043. con->in_tag = CEPH_MSGR_TAG_READY;
  2044. con->in_seq++;
  2045. } else {
  2046. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2047. con, con->in_msg, msg);
  2048. }
  2049. mutex_unlock(&con->mutex);
  2050. }
  2051. /*
  2052. * Queue a keepalive byte to ensure the tcp connection is alive.
  2053. */
  2054. void ceph_con_keepalive(struct ceph_connection *con)
  2055. {
  2056. dout("con_keepalive %p\n", con);
  2057. clear_standby(con);
  2058. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2059. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2060. queue_con(con);
  2061. }
  2062. EXPORT_SYMBOL(ceph_con_keepalive);
  2063. /*
  2064. * construct a new message with given type, size
  2065. * the new msg has a ref count of 1.
  2066. */
  2067. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2068. bool can_fail)
  2069. {
  2070. struct ceph_msg *m;
  2071. m = kmalloc(sizeof(*m), flags);
  2072. if (m == NULL)
  2073. goto out;
  2074. kref_init(&m->kref);
  2075. INIT_LIST_HEAD(&m->list_head);
  2076. m->hdr.tid = 0;
  2077. m->hdr.type = cpu_to_le16(type);
  2078. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2079. m->hdr.version = 0;
  2080. m->hdr.front_len = cpu_to_le32(front_len);
  2081. m->hdr.middle_len = 0;
  2082. m->hdr.data_len = 0;
  2083. m->hdr.data_off = 0;
  2084. m->hdr.reserved = 0;
  2085. m->footer.front_crc = 0;
  2086. m->footer.middle_crc = 0;
  2087. m->footer.data_crc = 0;
  2088. m->footer.flags = 0;
  2089. m->front_max = front_len;
  2090. m->front_is_vmalloc = false;
  2091. m->more_to_follow = false;
  2092. m->ack_stamp = 0;
  2093. m->pool = NULL;
  2094. /* middle */
  2095. m->middle = NULL;
  2096. /* data */
  2097. m->nr_pages = 0;
  2098. m->page_alignment = 0;
  2099. m->pages = NULL;
  2100. m->pagelist = NULL;
  2101. m->bio = NULL;
  2102. m->bio_iter = NULL;
  2103. m->bio_seg = 0;
  2104. m->trail = NULL;
  2105. /* front */
  2106. if (front_len) {
  2107. if (front_len > PAGE_CACHE_SIZE) {
  2108. m->front.iov_base = __vmalloc(front_len, flags,
  2109. PAGE_KERNEL);
  2110. m->front_is_vmalloc = true;
  2111. } else {
  2112. m->front.iov_base = kmalloc(front_len, flags);
  2113. }
  2114. if (m->front.iov_base == NULL) {
  2115. dout("ceph_msg_new can't allocate %d bytes\n",
  2116. front_len);
  2117. goto out2;
  2118. }
  2119. } else {
  2120. m->front.iov_base = NULL;
  2121. }
  2122. m->front.iov_len = front_len;
  2123. dout("ceph_msg_new %p front %d\n", m, front_len);
  2124. return m;
  2125. out2:
  2126. ceph_msg_put(m);
  2127. out:
  2128. if (!can_fail) {
  2129. pr_err("msg_new can't create type %d front %d\n", type,
  2130. front_len);
  2131. WARN_ON(1);
  2132. } else {
  2133. dout("msg_new can't create type %d front %d\n", type,
  2134. front_len);
  2135. }
  2136. return NULL;
  2137. }
  2138. EXPORT_SYMBOL(ceph_msg_new);
  2139. /*
  2140. * Allocate "middle" portion of a message, if it is needed and wasn't
  2141. * allocated by alloc_msg. This allows us to read a small fixed-size
  2142. * per-type header in the front and then gracefully fail (i.e.,
  2143. * propagate the error to the caller based on info in the front) when
  2144. * the middle is too large.
  2145. */
  2146. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2147. {
  2148. int type = le16_to_cpu(msg->hdr.type);
  2149. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2150. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2151. ceph_msg_type_name(type), middle_len);
  2152. BUG_ON(!middle_len);
  2153. BUG_ON(msg->middle);
  2154. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2155. if (!msg->middle)
  2156. return -ENOMEM;
  2157. return 0;
  2158. }
  2159. /*
  2160. * Generic message allocator, for incoming messages.
  2161. */
  2162. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2163. struct ceph_msg_header *hdr,
  2164. int *skip)
  2165. {
  2166. int type = le16_to_cpu(hdr->type);
  2167. int front_len = le32_to_cpu(hdr->front_len);
  2168. int middle_len = le32_to_cpu(hdr->middle_len);
  2169. struct ceph_msg *msg = NULL;
  2170. int ret;
  2171. if (con->ops->alloc_msg) {
  2172. mutex_unlock(&con->mutex);
  2173. msg = con->ops->alloc_msg(con, hdr, skip);
  2174. mutex_lock(&con->mutex);
  2175. if (!msg || *skip)
  2176. return NULL;
  2177. }
  2178. if (!msg) {
  2179. *skip = 0;
  2180. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2181. if (!msg) {
  2182. pr_err("unable to allocate msg type %d len %d\n",
  2183. type, front_len);
  2184. return NULL;
  2185. }
  2186. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2187. }
  2188. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2189. if (middle_len && !msg->middle) {
  2190. ret = ceph_alloc_middle(con, msg);
  2191. if (ret < 0) {
  2192. ceph_msg_put(msg);
  2193. return NULL;
  2194. }
  2195. }
  2196. return msg;
  2197. }
  2198. /*
  2199. * Free a generically kmalloc'd message.
  2200. */
  2201. void ceph_msg_kfree(struct ceph_msg *m)
  2202. {
  2203. dout("msg_kfree %p\n", m);
  2204. if (m->front_is_vmalloc)
  2205. vfree(m->front.iov_base);
  2206. else
  2207. kfree(m->front.iov_base);
  2208. kfree(m);
  2209. }
  2210. /*
  2211. * Drop a msg ref. Destroy as needed.
  2212. */
  2213. void ceph_msg_last_put(struct kref *kref)
  2214. {
  2215. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2216. dout("ceph_msg_put last one on %p\n", m);
  2217. WARN_ON(!list_empty(&m->list_head));
  2218. /* drop middle, data, if any */
  2219. if (m->middle) {
  2220. ceph_buffer_put(m->middle);
  2221. m->middle = NULL;
  2222. }
  2223. m->nr_pages = 0;
  2224. m->pages = NULL;
  2225. if (m->pagelist) {
  2226. ceph_pagelist_release(m->pagelist);
  2227. kfree(m->pagelist);
  2228. m->pagelist = NULL;
  2229. }
  2230. m->trail = NULL;
  2231. if (m->pool)
  2232. ceph_msgpool_put(m->pool, m);
  2233. else
  2234. ceph_msg_kfree(m);
  2235. }
  2236. EXPORT_SYMBOL(ceph_msg_last_put);
  2237. void ceph_msg_dump(struct ceph_msg *msg)
  2238. {
  2239. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2240. msg->front_max, msg->nr_pages);
  2241. print_hex_dump(KERN_DEBUG, "header: ",
  2242. DUMP_PREFIX_OFFSET, 16, 1,
  2243. &msg->hdr, sizeof(msg->hdr), true);
  2244. print_hex_dump(KERN_DEBUG, " front: ",
  2245. DUMP_PREFIX_OFFSET, 16, 1,
  2246. msg->front.iov_base, msg->front.iov_len, true);
  2247. if (msg->middle)
  2248. print_hex_dump(KERN_DEBUG, "middle: ",
  2249. DUMP_PREFIX_OFFSET, 16, 1,
  2250. msg->middle->vec.iov_base,
  2251. msg->middle->vec.iov_len, true);
  2252. print_hex_dump(KERN_DEBUG, "footer: ",
  2253. DUMP_PREFIX_OFFSET, 16, 1,
  2254. &msg->footer, sizeof(msg->footer), true);
  2255. }
  2256. EXPORT_SYMBOL(ceph_msg_dump);