i915_gem.c 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. int
  60. i915_gem_check_is_wedged(struct drm_device *dev)
  61. {
  62. struct drm_i915_private *dev_priv = dev->dev_private;
  63. struct completion *x = &dev_priv->error_completion;
  64. unsigned long flags;
  65. int ret;
  66. if (!atomic_read(&dev_priv->mm.wedged))
  67. return 0;
  68. ret = wait_for_completion_interruptible(x);
  69. if (ret)
  70. return ret;
  71. /* Success, we reset the GPU! */
  72. if (!atomic_read(&dev_priv->mm.wedged))
  73. return 0;
  74. /* GPU is hung, bump the completion count to account for
  75. * the token we just consumed so that we never hit zero and
  76. * end up waiting upon a subsequent completion event that
  77. * will never happen.
  78. */
  79. spin_lock_irqsave(&x->wait.lock, flags);
  80. x->done++;
  81. spin_unlock_irqrestore(&x->wait.lock, flags);
  82. return -EIO;
  83. }
  84. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  85. {
  86. struct drm_i915_private *dev_priv = dev->dev_private;
  87. int ret;
  88. ret = i915_gem_check_is_wedged(dev);
  89. if (ret)
  90. return ret;
  91. ret = mutex_lock_interruptible(&dev->struct_mutex);
  92. if (ret)
  93. return ret;
  94. if (atomic_read(&dev_priv->mm.wedged)) {
  95. mutex_unlock(&dev->struct_mutex);
  96. return -EAGAIN;
  97. }
  98. return 0;
  99. }
  100. static inline bool
  101. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  102. {
  103. return obj_priv->gtt_space &&
  104. !obj_priv->active &&
  105. obj_priv->pin_count == 0;
  106. }
  107. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  108. unsigned long end)
  109. {
  110. drm_i915_private_t *dev_priv = dev->dev_private;
  111. if (start >= end ||
  112. (start & (PAGE_SIZE - 1)) != 0 ||
  113. (end & (PAGE_SIZE - 1)) != 0) {
  114. return -EINVAL;
  115. }
  116. drm_mm_init(&dev_priv->mm.gtt_space, start,
  117. end - start);
  118. dev->gtt_total = (uint32_t) (end - start);
  119. return 0;
  120. }
  121. int
  122. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file_priv)
  124. {
  125. struct drm_i915_gem_init *args = data;
  126. int ret;
  127. mutex_lock(&dev->struct_mutex);
  128. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  129. mutex_unlock(&dev->struct_mutex);
  130. return ret;
  131. }
  132. int
  133. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  134. struct drm_file *file_priv)
  135. {
  136. struct drm_i915_gem_get_aperture *args = data;
  137. if (!(dev->driver->driver_features & DRIVER_GEM))
  138. return -ENODEV;
  139. args->aper_size = dev->gtt_total;
  140. args->aper_available_size = (args->aper_size -
  141. atomic_read(&dev->pin_memory));
  142. return 0;
  143. }
  144. /**
  145. * Creates a new mm object and returns a handle to it.
  146. */
  147. int
  148. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  149. struct drm_file *file_priv)
  150. {
  151. struct drm_i915_gem_create *args = data;
  152. struct drm_gem_object *obj;
  153. int ret;
  154. u32 handle;
  155. args->size = roundup(args->size, PAGE_SIZE);
  156. /* Allocate the new object */
  157. obj = i915_gem_alloc_object(dev, args->size);
  158. if (obj == NULL)
  159. return -ENOMEM;
  160. ret = drm_gem_handle_create(file_priv, obj, &handle);
  161. if (ret) {
  162. drm_gem_object_unreference_unlocked(obj);
  163. return ret;
  164. }
  165. /* Sink the floating reference from kref_init(handlecount) */
  166. drm_gem_object_handle_unreference_unlocked(obj);
  167. args->handle = handle;
  168. return 0;
  169. }
  170. static inline int
  171. fast_shmem_read(struct page **pages,
  172. loff_t page_base, int page_offset,
  173. char __user *data,
  174. int length)
  175. {
  176. char __iomem *vaddr;
  177. int unwritten;
  178. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  179. if (vaddr == NULL)
  180. return -ENOMEM;
  181. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  182. kunmap_atomic(vaddr, KM_USER0);
  183. if (unwritten)
  184. return -EFAULT;
  185. return 0;
  186. }
  187. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  188. {
  189. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  190. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj_priv->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  258. struct drm_i915_gem_pread *args,
  259. struct drm_file *file_priv)
  260. {
  261. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  262. ssize_t remain;
  263. loff_t offset, page_base;
  264. char __user *user_data;
  265. int page_offset, page_length;
  266. int ret;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. ret = i915_mutex_lock_interruptible(dev);
  270. if (ret)
  271. return ret;
  272. ret = i915_gem_object_get_pages(obj, 0);
  273. if (ret != 0)
  274. goto fail_unlock;
  275. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  276. args->size);
  277. if (ret != 0)
  278. goto fail_put_pages;
  279. obj_priv = to_intel_bo(obj);
  280. offset = args->offset;
  281. while (remain > 0) {
  282. /* Operation in this page
  283. *
  284. * page_base = page offset within aperture
  285. * page_offset = offset within page
  286. * page_length = bytes to copy for this page
  287. */
  288. page_base = (offset & ~(PAGE_SIZE-1));
  289. page_offset = offset & (PAGE_SIZE-1);
  290. page_length = remain;
  291. if ((page_offset + remain) > PAGE_SIZE)
  292. page_length = PAGE_SIZE - page_offset;
  293. ret = fast_shmem_read(obj_priv->pages,
  294. page_base, page_offset,
  295. user_data, page_length);
  296. if (ret)
  297. goto fail_put_pages;
  298. remain -= page_length;
  299. user_data += page_length;
  300. offset += page_length;
  301. }
  302. fail_put_pages:
  303. i915_gem_object_put_pages(obj);
  304. fail_unlock:
  305. mutex_unlock(&dev->struct_mutex);
  306. return ret;
  307. }
  308. static int
  309. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  310. {
  311. int ret;
  312. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  313. /* If we've insufficient memory to map in the pages, attempt
  314. * to make some space by throwing out some old buffers.
  315. */
  316. if (ret == -ENOMEM) {
  317. struct drm_device *dev = obj->dev;
  318. ret = i915_gem_evict_something(dev, obj->size,
  319. i915_gem_get_gtt_alignment(obj));
  320. if (ret)
  321. return ret;
  322. ret = i915_gem_object_get_pages(obj, 0);
  323. }
  324. return ret;
  325. }
  326. /**
  327. * This is the fallback shmem pread path, which allocates temporary storage
  328. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  329. * can copy out of the object's backing pages while holding the struct mutex
  330. * and not take page faults.
  331. */
  332. static int
  333. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  334. struct drm_i915_gem_pread *args,
  335. struct drm_file *file_priv)
  336. {
  337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  338. struct mm_struct *mm = current->mm;
  339. struct page **user_pages;
  340. ssize_t remain;
  341. loff_t offset, pinned_pages, i;
  342. loff_t first_data_page, last_data_page, num_pages;
  343. int shmem_page_index, shmem_page_offset;
  344. int data_page_index, data_page_offset;
  345. int page_length;
  346. int ret;
  347. uint64_t data_ptr = args->data_ptr;
  348. int do_bit17_swizzling;
  349. remain = args->size;
  350. /* Pin the user pages containing the data. We can't fault while
  351. * holding the struct mutex, yet we want to hold it while
  352. * dereferencing the user data.
  353. */
  354. first_data_page = data_ptr / PAGE_SIZE;
  355. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  356. num_pages = last_data_page - first_data_page + 1;
  357. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  358. if (user_pages == NULL)
  359. return -ENOMEM;
  360. down_read(&mm->mmap_sem);
  361. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  362. num_pages, 1, 0, user_pages, NULL);
  363. up_read(&mm->mmap_sem);
  364. if (pinned_pages < num_pages) {
  365. ret = -EFAULT;
  366. goto fail_put_user_pages;
  367. }
  368. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  369. ret = i915_mutex_lock_interruptible(dev);
  370. if (ret)
  371. goto fail_put_user_pages;
  372. ret = i915_gem_object_get_pages_or_evict(obj);
  373. if (ret)
  374. goto fail_unlock;
  375. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  376. args->size);
  377. if (ret != 0)
  378. goto fail_put_pages;
  379. obj_priv = to_intel_bo(obj);
  380. offset = args->offset;
  381. while (remain > 0) {
  382. /* Operation in this page
  383. *
  384. * shmem_page_index = page number within shmem file
  385. * shmem_page_offset = offset within page in shmem file
  386. * data_page_index = page number in get_user_pages return
  387. * data_page_offset = offset with data_page_index page.
  388. * page_length = bytes to copy for this page
  389. */
  390. shmem_page_index = offset / PAGE_SIZE;
  391. shmem_page_offset = offset & ~PAGE_MASK;
  392. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  393. data_page_offset = data_ptr & ~PAGE_MASK;
  394. page_length = remain;
  395. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - shmem_page_offset;
  397. if ((data_page_offset + page_length) > PAGE_SIZE)
  398. page_length = PAGE_SIZE - data_page_offset;
  399. if (do_bit17_swizzling) {
  400. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  401. shmem_page_offset,
  402. user_pages[data_page_index],
  403. data_page_offset,
  404. page_length,
  405. 1);
  406. } else {
  407. slow_shmem_copy(user_pages[data_page_index],
  408. data_page_offset,
  409. obj_priv->pages[shmem_page_index],
  410. shmem_page_offset,
  411. page_length);
  412. }
  413. remain -= page_length;
  414. data_ptr += page_length;
  415. offset += page_length;
  416. }
  417. fail_put_pages:
  418. i915_gem_object_put_pages(obj);
  419. fail_unlock:
  420. mutex_unlock(&dev->struct_mutex);
  421. fail_put_user_pages:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. page_cache_release(user_pages[i]);
  425. }
  426. drm_free_large(user_pages);
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file_priv)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_gem_object *obj;
  440. struct drm_i915_gem_object *obj_priv;
  441. int ret;
  442. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  443. if (obj == NULL)
  444. return -ENOENT;
  445. obj_priv = to_intel_bo(obj);
  446. /* Bounds check source.
  447. *
  448. * XXX: This could use review for overflow issues...
  449. */
  450. if (args->offset > obj->size || args->size > obj->size ||
  451. args->offset + args->size > obj->size) {
  452. drm_gem_object_unreference_unlocked(obj);
  453. return -EINVAL;
  454. }
  455. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  456. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  457. } else {
  458. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  459. if (ret != 0)
  460. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  461. file_priv);
  462. }
  463. drm_gem_object_unreference_unlocked(obj);
  464. return ret;
  465. }
  466. /* This is the fast write path which cannot handle
  467. * page faults in the source data
  468. */
  469. static inline int
  470. fast_user_write(struct io_mapping *mapping,
  471. loff_t page_base, int page_offset,
  472. char __user *user_data,
  473. int length)
  474. {
  475. char *vaddr_atomic;
  476. unsigned long unwritten;
  477. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  481. if (unwritten)
  482. return -EFAULT;
  483. return 0;
  484. }
  485. /* Here's the write path which can sleep for
  486. * page faults
  487. */
  488. static inline void
  489. slow_kernel_write(struct io_mapping *mapping,
  490. loff_t gtt_base, int gtt_offset,
  491. struct page *user_page, int user_offset,
  492. int length)
  493. {
  494. char __iomem *dst_vaddr;
  495. char *src_vaddr;
  496. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  497. src_vaddr = kmap(user_page);
  498. memcpy_toio(dst_vaddr + gtt_offset,
  499. src_vaddr + user_offset,
  500. length);
  501. kunmap(user_page);
  502. io_mapping_unmap(dst_vaddr);
  503. }
  504. static inline int
  505. fast_shmem_write(struct page **pages,
  506. loff_t page_base, int page_offset,
  507. char __user *data,
  508. int length)
  509. {
  510. char __iomem *vaddr;
  511. unsigned long unwritten;
  512. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  513. if (vaddr == NULL)
  514. return -ENOMEM;
  515. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  516. kunmap_atomic(vaddr, KM_USER0);
  517. if (unwritten)
  518. return -EFAULT;
  519. return 0;
  520. }
  521. /**
  522. * This is the fast pwrite path, where we copy the data directly from the
  523. * user into the GTT, uncached.
  524. */
  525. static int
  526. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  527. struct drm_i915_gem_pwrite *args,
  528. struct drm_file *file_priv)
  529. {
  530. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  531. drm_i915_private_t *dev_priv = dev->dev_private;
  532. ssize_t remain;
  533. loff_t offset, page_base;
  534. char __user *user_data;
  535. int page_offset, page_length;
  536. int ret;
  537. user_data = (char __user *) (uintptr_t) args->data_ptr;
  538. remain = args->size;
  539. if (!access_ok(VERIFY_READ, user_data, remain))
  540. return -EFAULT;
  541. ret = i915_mutex_lock_interruptible(dev);
  542. if (ret)
  543. return ret;
  544. ret = i915_gem_object_pin(obj, 0);
  545. if (ret) {
  546. mutex_unlock(&dev->struct_mutex);
  547. return ret;
  548. }
  549. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  550. if (ret)
  551. goto fail;
  552. obj_priv = to_intel_bo(obj);
  553. offset = obj_priv->gtt_offset + args->offset;
  554. while (remain > 0) {
  555. /* Operation in this page
  556. *
  557. * page_base = page offset within aperture
  558. * page_offset = offset within page
  559. * page_length = bytes to copy for this page
  560. */
  561. page_base = (offset & ~(PAGE_SIZE-1));
  562. page_offset = offset & (PAGE_SIZE-1);
  563. page_length = remain;
  564. if ((page_offset + remain) > PAGE_SIZE)
  565. page_length = PAGE_SIZE - page_offset;
  566. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  567. page_offset, user_data, page_length);
  568. /* If we get a fault while copying data, then (presumably) our
  569. * source page isn't available. Return the error and we'll
  570. * retry in the slow path.
  571. */
  572. if (ret)
  573. goto fail;
  574. remain -= page_length;
  575. user_data += page_length;
  576. offset += page_length;
  577. }
  578. fail:
  579. i915_gem_object_unpin(obj);
  580. mutex_unlock(&dev->struct_mutex);
  581. return ret;
  582. }
  583. /**
  584. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  585. * the memory and maps it using kmap_atomic for copying.
  586. *
  587. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  588. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  589. */
  590. static int
  591. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  592. struct drm_i915_gem_pwrite *args,
  593. struct drm_file *file_priv)
  594. {
  595. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  596. drm_i915_private_t *dev_priv = dev->dev_private;
  597. ssize_t remain;
  598. loff_t gtt_page_base, offset;
  599. loff_t first_data_page, last_data_page, num_pages;
  600. loff_t pinned_pages, i;
  601. struct page **user_pages;
  602. struct mm_struct *mm = current->mm;
  603. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  604. int ret;
  605. uint64_t data_ptr = args->data_ptr;
  606. remain = args->size;
  607. /* Pin the user pages containing the data. We can't fault while
  608. * holding the struct mutex, and all of the pwrite implementations
  609. * want to hold it while dereferencing the user data.
  610. */
  611. first_data_page = data_ptr / PAGE_SIZE;
  612. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  613. num_pages = last_data_page - first_data_page + 1;
  614. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  615. if (user_pages == NULL)
  616. return -ENOMEM;
  617. down_read(&mm->mmap_sem);
  618. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  619. num_pages, 0, 0, user_pages, NULL);
  620. up_read(&mm->mmap_sem);
  621. if (pinned_pages < num_pages) {
  622. ret = -EFAULT;
  623. goto out_unpin_pages;
  624. }
  625. ret = i915_mutex_lock_interruptible(dev);
  626. if (ret)
  627. goto out_unpin_pages;
  628. ret = i915_gem_object_pin(obj, 0);
  629. if (ret)
  630. goto out_unlock;
  631. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  632. if (ret)
  633. goto out_unpin_object;
  634. obj_priv = to_intel_bo(obj);
  635. offset = obj_priv->gtt_offset + args->offset;
  636. while (remain > 0) {
  637. /* Operation in this page
  638. *
  639. * gtt_page_base = page offset within aperture
  640. * gtt_page_offset = offset within page in aperture
  641. * data_page_index = page number in get_user_pages return
  642. * data_page_offset = offset with data_page_index page.
  643. * page_length = bytes to copy for this page
  644. */
  645. gtt_page_base = offset & PAGE_MASK;
  646. gtt_page_offset = offset & ~PAGE_MASK;
  647. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  648. data_page_offset = data_ptr & ~PAGE_MASK;
  649. page_length = remain;
  650. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  651. page_length = PAGE_SIZE - gtt_page_offset;
  652. if ((data_page_offset + page_length) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - data_page_offset;
  654. slow_kernel_write(dev_priv->mm.gtt_mapping,
  655. gtt_page_base, gtt_page_offset,
  656. user_pages[data_page_index],
  657. data_page_offset,
  658. page_length);
  659. remain -= page_length;
  660. offset += page_length;
  661. data_ptr += page_length;
  662. }
  663. out_unpin_object:
  664. i915_gem_object_unpin(obj);
  665. out_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. out_unpin_pages:
  668. for (i = 0; i < pinned_pages; i++)
  669. page_cache_release(user_pages[i]);
  670. drm_free_large(user_pages);
  671. return ret;
  672. }
  673. /**
  674. * This is the fast shmem pwrite path, which attempts to directly
  675. * copy_from_user into the kmapped pages backing the object.
  676. */
  677. static int
  678. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  679. struct drm_i915_gem_pwrite *args,
  680. struct drm_file *file_priv)
  681. {
  682. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  683. ssize_t remain;
  684. loff_t offset, page_base;
  685. char __user *user_data;
  686. int page_offset, page_length;
  687. int ret;
  688. user_data = (char __user *) (uintptr_t) args->data_ptr;
  689. remain = args->size;
  690. ret = i915_mutex_lock_interruptible(dev);
  691. if (ret)
  692. return ret;
  693. ret = i915_gem_object_get_pages(obj, 0);
  694. if (ret != 0)
  695. goto fail_unlock;
  696. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  697. if (ret != 0)
  698. goto fail_put_pages;
  699. obj_priv = to_intel_bo(obj);
  700. offset = args->offset;
  701. obj_priv->dirty = 1;
  702. while (remain > 0) {
  703. /* Operation in this page
  704. *
  705. * page_base = page offset within aperture
  706. * page_offset = offset within page
  707. * page_length = bytes to copy for this page
  708. */
  709. page_base = (offset & ~(PAGE_SIZE-1));
  710. page_offset = offset & (PAGE_SIZE-1);
  711. page_length = remain;
  712. if ((page_offset + remain) > PAGE_SIZE)
  713. page_length = PAGE_SIZE - page_offset;
  714. ret = fast_shmem_write(obj_priv->pages,
  715. page_base, page_offset,
  716. user_data, page_length);
  717. if (ret)
  718. goto fail_put_pages;
  719. remain -= page_length;
  720. user_data += page_length;
  721. offset += page_length;
  722. }
  723. fail_put_pages:
  724. i915_gem_object_put_pages(obj);
  725. fail_unlock:
  726. mutex_unlock(&dev->struct_mutex);
  727. return ret;
  728. }
  729. /**
  730. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  731. * the memory and maps it using kmap_atomic for copying.
  732. *
  733. * This avoids taking mmap_sem for faulting on the user's address while the
  734. * struct_mutex is held.
  735. */
  736. static int
  737. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  738. struct drm_i915_gem_pwrite *args,
  739. struct drm_file *file_priv)
  740. {
  741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  742. struct mm_struct *mm = current->mm;
  743. struct page **user_pages;
  744. ssize_t remain;
  745. loff_t offset, pinned_pages, i;
  746. loff_t first_data_page, last_data_page, num_pages;
  747. int shmem_page_index, shmem_page_offset;
  748. int data_page_index, data_page_offset;
  749. int page_length;
  750. int ret;
  751. uint64_t data_ptr = args->data_ptr;
  752. int do_bit17_swizzling;
  753. remain = args->size;
  754. /* Pin the user pages containing the data. We can't fault while
  755. * holding the struct mutex, and all of the pwrite implementations
  756. * want to hold it while dereferencing the user data.
  757. */
  758. first_data_page = data_ptr / PAGE_SIZE;
  759. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  760. num_pages = last_data_page - first_data_page + 1;
  761. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  762. if (user_pages == NULL)
  763. return -ENOMEM;
  764. down_read(&mm->mmap_sem);
  765. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  766. num_pages, 0, 0, user_pages, NULL);
  767. up_read(&mm->mmap_sem);
  768. if (pinned_pages < num_pages) {
  769. ret = -EFAULT;
  770. goto fail_put_user_pages;
  771. }
  772. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  773. ret = i915_mutex_lock_interruptible(dev);
  774. if (ret)
  775. goto fail_put_user_pages;
  776. ret = i915_gem_object_get_pages_or_evict(obj);
  777. if (ret)
  778. goto fail_unlock;
  779. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  780. if (ret != 0)
  781. goto fail_put_pages;
  782. obj_priv = to_intel_bo(obj);
  783. offset = args->offset;
  784. obj_priv->dirty = 1;
  785. while (remain > 0) {
  786. /* Operation in this page
  787. *
  788. * shmem_page_index = page number within shmem file
  789. * shmem_page_offset = offset within page in shmem file
  790. * data_page_index = page number in get_user_pages return
  791. * data_page_offset = offset with data_page_index page.
  792. * page_length = bytes to copy for this page
  793. */
  794. shmem_page_index = offset / PAGE_SIZE;
  795. shmem_page_offset = offset & ~PAGE_MASK;
  796. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  797. data_page_offset = data_ptr & ~PAGE_MASK;
  798. page_length = remain;
  799. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  800. page_length = PAGE_SIZE - shmem_page_offset;
  801. if ((data_page_offset + page_length) > PAGE_SIZE)
  802. page_length = PAGE_SIZE - data_page_offset;
  803. if (do_bit17_swizzling) {
  804. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  805. shmem_page_offset,
  806. user_pages[data_page_index],
  807. data_page_offset,
  808. page_length,
  809. 0);
  810. } else {
  811. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  812. shmem_page_offset,
  813. user_pages[data_page_index],
  814. data_page_offset,
  815. page_length);
  816. }
  817. remain -= page_length;
  818. data_ptr += page_length;
  819. offset += page_length;
  820. }
  821. fail_put_pages:
  822. i915_gem_object_put_pages(obj);
  823. fail_unlock:
  824. mutex_unlock(&dev->struct_mutex);
  825. fail_put_user_pages:
  826. for (i = 0; i < pinned_pages; i++)
  827. page_cache_release(user_pages[i]);
  828. drm_free_large(user_pages);
  829. return ret;
  830. }
  831. /**
  832. * Writes data to the object referenced by handle.
  833. *
  834. * On error, the contents of the buffer that were to be modified are undefined.
  835. */
  836. int
  837. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  838. struct drm_file *file_priv)
  839. {
  840. struct drm_i915_gem_pwrite *args = data;
  841. struct drm_gem_object *obj;
  842. struct drm_i915_gem_object *obj_priv;
  843. int ret = 0;
  844. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  845. if (obj == NULL)
  846. return -ENOENT;
  847. obj_priv = to_intel_bo(obj);
  848. /* Bounds check destination.
  849. *
  850. * XXX: This could use review for overflow issues...
  851. */
  852. if (args->offset > obj->size || args->size > obj->size ||
  853. args->offset + args->size > obj->size) {
  854. drm_gem_object_unreference_unlocked(obj);
  855. return -EINVAL;
  856. }
  857. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  858. * it would end up going through the fenced access, and we'll get
  859. * different detiling behavior between reading and writing.
  860. * pread/pwrite currently are reading and writing from the CPU
  861. * perspective, requiring manual detiling by the client.
  862. */
  863. if (obj_priv->phys_obj)
  864. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  865. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  866. dev->gtt_total != 0 &&
  867. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  868. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  869. if (ret == -EFAULT) {
  870. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  871. file_priv);
  872. }
  873. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  874. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  875. } else {
  876. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  877. if (ret == -EFAULT) {
  878. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  879. file_priv);
  880. }
  881. }
  882. #if WATCH_PWRITE
  883. if (ret)
  884. DRM_INFO("pwrite failed %d\n", ret);
  885. #endif
  886. drm_gem_object_unreference_unlocked(obj);
  887. return ret;
  888. }
  889. /**
  890. * Called when user space prepares to use an object with the CPU, either
  891. * through the mmap ioctl's mapping or a GTT mapping.
  892. */
  893. int
  894. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  895. struct drm_file *file_priv)
  896. {
  897. struct drm_i915_private *dev_priv = dev->dev_private;
  898. struct drm_i915_gem_set_domain *args = data;
  899. struct drm_gem_object *obj;
  900. struct drm_i915_gem_object *obj_priv;
  901. uint32_t read_domains = args->read_domains;
  902. uint32_t write_domain = args->write_domain;
  903. int ret;
  904. if (!(dev->driver->driver_features & DRIVER_GEM))
  905. return -ENODEV;
  906. /* Only handle setting domains to types used by the CPU. */
  907. if (write_domain & I915_GEM_GPU_DOMAINS)
  908. return -EINVAL;
  909. if (read_domains & I915_GEM_GPU_DOMAINS)
  910. return -EINVAL;
  911. /* Having something in the write domain implies it's in the read
  912. * domain, and only that read domain. Enforce that in the request.
  913. */
  914. if (write_domain != 0 && read_domains != write_domain)
  915. return -EINVAL;
  916. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  917. if (obj == NULL)
  918. return -ENOENT;
  919. obj_priv = to_intel_bo(obj);
  920. ret = i915_mutex_lock_interruptible(dev);
  921. if (ret) {
  922. drm_gem_object_unreference_unlocked(obj);
  923. return ret;
  924. }
  925. intel_mark_busy(dev, obj);
  926. #if WATCH_BUF
  927. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  928. obj, obj->size, read_domains, write_domain);
  929. #endif
  930. if (read_domains & I915_GEM_DOMAIN_GTT) {
  931. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  932. /* Update the LRU on the fence for the CPU access that's
  933. * about to occur.
  934. */
  935. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  936. struct drm_i915_fence_reg *reg =
  937. &dev_priv->fence_regs[obj_priv->fence_reg];
  938. list_move_tail(&reg->lru_list,
  939. &dev_priv->mm.fence_list);
  940. }
  941. /* Silently promote "you're not bound, there was nothing to do"
  942. * to success, since the client was just asking us to
  943. * make sure everything was done.
  944. */
  945. if (ret == -EINVAL)
  946. ret = 0;
  947. } else {
  948. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  949. }
  950. /* Maintain LRU order of "inactive" objects */
  951. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  952. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  953. drm_gem_object_unreference(obj);
  954. mutex_unlock(&dev->struct_mutex);
  955. return ret;
  956. }
  957. /**
  958. * Called when user space has done writes to this buffer
  959. */
  960. int
  961. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  962. struct drm_file *file_priv)
  963. {
  964. struct drm_i915_gem_sw_finish *args = data;
  965. struct drm_gem_object *obj;
  966. struct drm_i915_gem_object *obj_priv;
  967. int ret = 0;
  968. if (!(dev->driver->driver_features & DRIVER_GEM))
  969. return -ENODEV;
  970. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  971. if (obj == NULL)
  972. return -ENOENT;
  973. ret = i915_mutex_lock_interruptible(dev);
  974. if (ret) {
  975. drm_gem_object_unreference_unlocked(obj);
  976. return ret;
  977. }
  978. #if WATCH_BUF
  979. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  980. __func__, args->handle, obj, obj->size);
  981. #endif
  982. obj_priv = to_intel_bo(obj);
  983. /* Pinned buffers may be scanout, so flush the cache */
  984. if (obj_priv->pin_count)
  985. i915_gem_object_flush_cpu_write_domain(obj);
  986. drm_gem_object_unreference(obj);
  987. mutex_unlock(&dev->struct_mutex);
  988. return ret;
  989. }
  990. /**
  991. * Maps the contents of an object, returning the address it is mapped
  992. * into.
  993. *
  994. * While the mapping holds a reference on the contents of the object, it doesn't
  995. * imply a ref on the object itself.
  996. */
  997. int
  998. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  999. struct drm_file *file_priv)
  1000. {
  1001. struct drm_i915_gem_mmap *args = data;
  1002. struct drm_gem_object *obj;
  1003. loff_t offset;
  1004. unsigned long addr;
  1005. if (!(dev->driver->driver_features & DRIVER_GEM))
  1006. return -ENODEV;
  1007. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1008. if (obj == NULL)
  1009. return -ENOENT;
  1010. offset = args->offset;
  1011. down_write(&current->mm->mmap_sem);
  1012. addr = do_mmap(obj->filp, 0, args->size,
  1013. PROT_READ | PROT_WRITE, MAP_SHARED,
  1014. args->offset);
  1015. up_write(&current->mm->mmap_sem);
  1016. drm_gem_object_unreference_unlocked(obj);
  1017. if (IS_ERR((void *)addr))
  1018. return addr;
  1019. args->addr_ptr = (uint64_t) addr;
  1020. return 0;
  1021. }
  1022. /**
  1023. * i915_gem_fault - fault a page into the GTT
  1024. * vma: VMA in question
  1025. * vmf: fault info
  1026. *
  1027. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1028. * from userspace. The fault handler takes care of binding the object to
  1029. * the GTT (if needed), allocating and programming a fence register (again,
  1030. * only if needed based on whether the old reg is still valid or the object
  1031. * is tiled) and inserting a new PTE into the faulting process.
  1032. *
  1033. * Note that the faulting process may involve evicting existing objects
  1034. * from the GTT and/or fence registers to make room. So performance may
  1035. * suffer if the GTT working set is large or there are few fence registers
  1036. * left.
  1037. */
  1038. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1039. {
  1040. struct drm_gem_object *obj = vma->vm_private_data;
  1041. struct drm_device *dev = obj->dev;
  1042. drm_i915_private_t *dev_priv = dev->dev_private;
  1043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1044. pgoff_t page_offset;
  1045. unsigned long pfn;
  1046. int ret = 0;
  1047. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1048. /* We don't use vmf->pgoff since that has the fake offset */
  1049. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1050. PAGE_SHIFT;
  1051. /* Now bind it into the GTT if needed */
  1052. mutex_lock(&dev->struct_mutex);
  1053. if (!obj_priv->gtt_space) {
  1054. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1055. if (ret)
  1056. goto unlock;
  1057. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1058. if (ret)
  1059. goto unlock;
  1060. }
  1061. /* Need a new fence register? */
  1062. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1063. ret = i915_gem_object_get_fence_reg(obj, true);
  1064. if (ret)
  1065. goto unlock;
  1066. }
  1067. if (i915_gem_object_is_inactive(obj_priv))
  1068. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1069. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1070. page_offset;
  1071. /* Finally, remap it using the new GTT offset */
  1072. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1073. unlock:
  1074. mutex_unlock(&dev->struct_mutex);
  1075. switch (ret) {
  1076. case 0:
  1077. case -ERESTARTSYS:
  1078. return VM_FAULT_NOPAGE;
  1079. case -ENOMEM:
  1080. case -EAGAIN:
  1081. return VM_FAULT_OOM;
  1082. default:
  1083. return VM_FAULT_SIGBUS;
  1084. }
  1085. }
  1086. /**
  1087. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1088. * @obj: obj in question
  1089. *
  1090. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1091. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1092. * up the object based on the offset and sets up the various memory mapping
  1093. * structures.
  1094. *
  1095. * This routine allocates and attaches a fake offset for @obj.
  1096. */
  1097. static int
  1098. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1099. {
  1100. struct drm_device *dev = obj->dev;
  1101. struct drm_gem_mm *mm = dev->mm_private;
  1102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1103. struct drm_map_list *list;
  1104. struct drm_local_map *map;
  1105. int ret = 0;
  1106. /* Set the object up for mmap'ing */
  1107. list = &obj->map_list;
  1108. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1109. if (!list->map)
  1110. return -ENOMEM;
  1111. map = list->map;
  1112. map->type = _DRM_GEM;
  1113. map->size = obj->size;
  1114. map->handle = obj;
  1115. /* Get a DRM GEM mmap offset allocated... */
  1116. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1117. obj->size / PAGE_SIZE, 0, 0);
  1118. if (!list->file_offset_node) {
  1119. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1120. ret = -ENOSPC;
  1121. goto out_free_list;
  1122. }
  1123. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1124. obj->size / PAGE_SIZE, 0);
  1125. if (!list->file_offset_node) {
  1126. ret = -ENOMEM;
  1127. goto out_free_list;
  1128. }
  1129. list->hash.key = list->file_offset_node->start;
  1130. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1131. if (ret) {
  1132. DRM_ERROR("failed to add to map hash\n");
  1133. goto out_free_mm;
  1134. }
  1135. /* By now we should be all set, any drm_mmap request on the offset
  1136. * below will get to our mmap & fault handler */
  1137. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1138. return 0;
  1139. out_free_mm:
  1140. drm_mm_put_block(list->file_offset_node);
  1141. out_free_list:
  1142. kfree(list->map);
  1143. return ret;
  1144. }
  1145. /**
  1146. * i915_gem_release_mmap - remove physical page mappings
  1147. * @obj: obj in question
  1148. *
  1149. * Preserve the reservation of the mmapping with the DRM core code, but
  1150. * relinquish ownership of the pages back to the system.
  1151. *
  1152. * It is vital that we remove the page mapping if we have mapped a tiled
  1153. * object through the GTT and then lose the fence register due to
  1154. * resource pressure. Similarly if the object has been moved out of the
  1155. * aperture, than pages mapped into userspace must be revoked. Removing the
  1156. * mapping will then trigger a page fault on the next user access, allowing
  1157. * fixup by i915_gem_fault().
  1158. */
  1159. void
  1160. i915_gem_release_mmap(struct drm_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->dev;
  1163. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1164. if (dev->dev_mapping)
  1165. unmap_mapping_range(dev->dev_mapping,
  1166. obj_priv->mmap_offset, obj->size, 1);
  1167. }
  1168. static void
  1169. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1170. {
  1171. struct drm_device *dev = obj->dev;
  1172. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1173. struct drm_gem_mm *mm = dev->mm_private;
  1174. struct drm_map_list *list;
  1175. list = &obj->map_list;
  1176. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1177. if (list->file_offset_node) {
  1178. drm_mm_put_block(list->file_offset_node);
  1179. list->file_offset_node = NULL;
  1180. }
  1181. if (list->map) {
  1182. kfree(list->map);
  1183. list->map = NULL;
  1184. }
  1185. obj_priv->mmap_offset = 0;
  1186. }
  1187. /**
  1188. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1189. * @obj: object to check
  1190. *
  1191. * Return the required GTT alignment for an object, taking into account
  1192. * potential fence register mapping if needed.
  1193. */
  1194. static uint32_t
  1195. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1196. {
  1197. struct drm_device *dev = obj->dev;
  1198. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1199. int start, i;
  1200. /*
  1201. * Minimum alignment is 4k (GTT page size), but might be greater
  1202. * if a fence register is needed for the object.
  1203. */
  1204. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1205. return 4096;
  1206. /*
  1207. * Previous chips need to be aligned to the size of the smallest
  1208. * fence register that can contain the object.
  1209. */
  1210. if (INTEL_INFO(dev)->gen == 3)
  1211. start = 1024*1024;
  1212. else
  1213. start = 512*1024;
  1214. for (i = start; i < obj->size; i <<= 1)
  1215. ;
  1216. return i;
  1217. }
  1218. /**
  1219. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1220. * @dev: DRM device
  1221. * @data: GTT mapping ioctl data
  1222. * @file_priv: GEM object info
  1223. *
  1224. * Simply returns the fake offset to userspace so it can mmap it.
  1225. * The mmap call will end up in drm_gem_mmap(), which will set things
  1226. * up so we can get faults in the handler above.
  1227. *
  1228. * The fault handler will take care of binding the object into the GTT
  1229. * (since it may have been evicted to make room for something), allocating
  1230. * a fence register, and mapping the appropriate aperture address into
  1231. * userspace.
  1232. */
  1233. int
  1234. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1235. struct drm_file *file_priv)
  1236. {
  1237. struct drm_i915_gem_mmap_gtt *args = data;
  1238. struct drm_gem_object *obj;
  1239. struct drm_i915_gem_object *obj_priv;
  1240. int ret;
  1241. if (!(dev->driver->driver_features & DRIVER_GEM))
  1242. return -ENODEV;
  1243. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1244. if (obj == NULL)
  1245. return -ENOENT;
  1246. ret = i915_mutex_lock_interruptible(dev);
  1247. if (ret) {
  1248. drm_gem_object_unreference_unlocked(obj);
  1249. return ret;
  1250. }
  1251. obj_priv = to_intel_bo(obj);
  1252. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1253. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1254. drm_gem_object_unreference(obj);
  1255. mutex_unlock(&dev->struct_mutex);
  1256. return -EINVAL;
  1257. }
  1258. if (!obj_priv->mmap_offset) {
  1259. ret = i915_gem_create_mmap_offset(obj);
  1260. if (ret) {
  1261. drm_gem_object_unreference(obj);
  1262. mutex_unlock(&dev->struct_mutex);
  1263. return ret;
  1264. }
  1265. }
  1266. args->offset = obj_priv->mmap_offset;
  1267. /*
  1268. * Pull it into the GTT so that we have a page list (makes the
  1269. * initial fault faster and any subsequent flushing possible).
  1270. */
  1271. if (!obj_priv->agp_mem) {
  1272. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1273. if (ret) {
  1274. drm_gem_object_unreference(obj);
  1275. mutex_unlock(&dev->struct_mutex);
  1276. return ret;
  1277. }
  1278. }
  1279. drm_gem_object_unreference(obj);
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return 0;
  1282. }
  1283. void
  1284. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1285. {
  1286. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1287. int page_count = obj->size / PAGE_SIZE;
  1288. int i;
  1289. BUG_ON(obj_priv->pages_refcount == 0);
  1290. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1291. if (--obj_priv->pages_refcount != 0)
  1292. return;
  1293. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1294. i915_gem_object_save_bit_17_swizzle(obj);
  1295. if (obj_priv->madv == I915_MADV_DONTNEED)
  1296. obj_priv->dirty = 0;
  1297. for (i = 0; i < page_count; i++) {
  1298. if (obj_priv->dirty)
  1299. set_page_dirty(obj_priv->pages[i]);
  1300. if (obj_priv->madv == I915_MADV_WILLNEED)
  1301. mark_page_accessed(obj_priv->pages[i]);
  1302. page_cache_release(obj_priv->pages[i]);
  1303. }
  1304. obj_priv->dirty = 0;
  1305. drm_free_large(obj_priv->pages);
  1306. obj_priv->pages = NULL;
  1307. }
  1308. static uint32_t
  1309. i915_gem_next_request_seqno(struct drm_device *dev,
  1310. struct intel_ring_buffer *ring)
  1311. {
  1312. drm_i915_private_t *dev_priv = dev->dev_private;
  1313. ring->outstanding_lazy_request = true;
  1314. return dev_priv->next_seqno;
  1315. }
  1316. static void
  1317. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1318. struct intel_ring_buffer *ring)
  1319. {
  1320. struct drm_device *dev = obj->dev;
  1321. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1322. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1323. BUG_ON(ring == NULL);
  1324. obj_priv->ring = ring;
  1325. /* Add a reference if we're newly entering the active list. */
  1326. if (!obj_priv->active) {
  1327. drm_gem_object_reference(obj);
  1328. obj_priv->active = 1;
  1329. }
  1330. /* Move from whatever list we were on to the tail of execution. */
  1331. list_move_tail(&obj_priv->list, &ring->active_list);
  1332. obj_priv->last_rendering_seqno = seqno;
  1333. }
  1334. static void
  1335. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1336. {
  1337. struct drm_device *dev = obj->dev;
  1338. drm_i915_private_t *dev_priv = dev->dev_private;
  1339. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1340. BUG_ON(!obj_priv->active);
  1341. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1342. obj_priv->last_rendering_seqno = 0;
  1343. }
  1344. /* Immediately discard the backing storage */
  1345. static void
  1346. i915_gem_object_truncate(struct drm_gem_object *obj)
  1347. {
  1348. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1349. struct inode *inode;
  1350. /* Our goal here is to return as much of the memory as
  1351. * is possible back to the system as we are called from OOM.
  1352. * To do this we must instruct the shmfs to drop all of its
  1353. * backing pages, *now*. Here we mirror the actions taken
  1354. * when by shmem_delete_inode() to release the backing store.
  1355. */
  1356. inode = obj->filp->f_path.dentry->d_inode;
  1357. truncate_inode_pages(inode->i_mapping, 0);
  1358. if (inode->i_op->truncate_range)
  1359. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1360. obj_priv->madv = __I915_MADV_PURGED;
  1361. }
  1362. static inline int
  1363. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1364. {
  1365. return obj_priv->madv == I915_MADV_DONTNEED;
  1366. }
  1367. static void
  1368. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1369. {
  1370. struct drm_device *dev = obj->dev;
  1371. drm_i915_private_t *dev_priv = dev->dev_private;
  1372. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1373. i915_verify_inactive(dev, __FILE__, __LINE__);
  1374. if (obj_priv->pin_count != 0)
  1375. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1376. else
  1377. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1378. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1379. obj_priv->last_rendering_seqno = 0;
  1380. obj_priv->ring = NULL;
  1381. if (obj_priv->active) {
  1382. obj_priv->active = 0;
  1383. drm_gem_object_unreference(obj);
  1384. }
  1385. i915_verify_inactive(dev, __FILE__, __LINE__);
  1386. }
  1387. static void
  1388. i915_gem_process_flushing_list(struct drm_device *dev,
  1389. uint32_t flush_domains,
  1390. struct intel_ring_buffer *ring)
  1391. {
  1392. drm_i915_private_t *dev_priv = dev->dev_private;
  1393. struct drm_i915_gem_object *obj_priv, *next;
  1394. list_for_each_entry_safe(obj_priv, next,
  1395. &dev_priv->mm.gpu_write_list,
  1396. gpu_write_list) {
  1397. struct drm_gem_object *obj = &obj_priv->base;
  1398. if (obj->write_domain & flush_domains &&
  1399. obj_priv->ring == ring) {
  1400. uint32_t old_write_domain = obj->write_domain;
  1401. obj->write_domain = 0;
  1402. list_del_init(&obj_priv->gpu_write_list);
  1403. i915_gem_object_move_to_active(obj, ring);
  1404. /* update the fence lru list */
  1405. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1406. struct drm_i915_fence_reg *reg =
  1407. &dev_priv->fence_regs[obj_priv->fence_reg];
  1408. list_move_tail(&reg->lru_list,
  1409. &dev_priv->mm.fence_list);
  1410. }
  1411. trace_i915_gem_object_change_domain(obj,
  1412. obj->read_domains,
  1413. old_write_domain);
  1414. }
  1415. }
  1416. }
  1417. uint32_t
  1418. i915_add_request(struct drm_device *dev,
  1419. struct drm_file *file,
  1420. struct drm_i915_gem_request *request,
  1421. struct intel_ring_buffer *ring)
  1422. {
  1423. drm_i915_private_t *dev_priv = dev->dev_private;
  1424. struct drm_i915_file_private *file_priv = NULL;
  1425. uint32_t seqno;
  1426. int was_empty;
  1427. if (file != NULL)
  1428. file_priv = file->driver_priv;
  1429. if (request == NULL) {
  1430. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1431. if (request == NULL)
  1432. return 0;
  1433. }
  1434. seqno = ring->add_request(dev, ring, 0);
  1435. ring->outstanding_lazy_request = false;
  1436. request->seqno = seqno;
  1437. request->ring = ring;
  1438. request->emitted_jiffies = jiffies;
  1439. was_empty = list_empty(&ring->request_list);
  1440. list_add_tail(&request->list, &ring->request_list);
  1441. if (file_priv) {
  1442. spin_lock(&file_priv->mm.lock);
  1443. request->file_priv = file_priv;
  1444. list_add_tail(&request->client_list,
  1445. &file_priv->mm.request_list);
  1446. spin_unlock(&file_priv->mm.lock);
  1447. }
  1448. if (!dev_priv->mm.suspended) {
  1449. mod_timer(&dev_priv->hangcheck_timer,
  1450. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1451. if (was_empty)
  1452. queue_delayed_work(dev_priv->wq,
  1453. &dev_priv->mm.retire_work, HZ);
  1454. }
  1455. return seqno;
  1456. }
  1457. /**
  1458. * Command execution barrier
  1459. *
  1460. * Ensures that all commands in the ring are finished
  1461. * before signalling the CPU
  1462. */
  1463. static void
  1464. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1465. {
  1466. uint32_t flush_domains = 0;
  1467. /* The sampler always gets flushed on i965 (sigh) */
  1468. if (INTEL_INFO(dev)->gen >= 4)
  1469. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1470. ring->flush(dev, ring,
  1471. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1472. }
  1473. static inline void
  1474. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1475. {
  1476. struct drm_i915_file_private *file_priv = request->file_priv;
  1477. if (!file_priv)
  1478. return;
  1479. spin_lock(&file_priv->mm.lock);
  1480. list_del(&request->client_list);
  1481. request->file_priv = NULL;
  1482. spin_unlock(&file_priv->mm.lock);
  1483. }
  1484. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1485. struct intel_ring_buffer *ring)
  1486. {
  1487. while (!list_empty(&ring->request_list)) {
  1488. struct drm_i915_gem_request *request;
  1489. request = list_first_entry(&ring->request_list,
  1490. struct drm_i915_gem_request,
  1491. list);
  1492. list_del(&request->list);
  1493. i915_gem_request_remove_from_client(request);
  1494. kfree(request);
  1495. }
  1496. while (!list_empty(&ring->active_list)) {
  1497. struct drm_i915_gem_object *obj_priv;
  1498. obj_priv = list_first_entry(&ring->active_list,
  1499. struct drm_i915_gem_object,
  1500. list);
  1501. obj_priv->base.write_domain = 0;
  1502. list_del_init(&obj_priv->gpu_write_list);
  1503. i915_gem_object_move_to_inactive(&obj_priv->base);
  1504. }
  1505. }
  1506. void i915_gem_reset_lists(struct drm_device *dev)
  1507. {
  1508. struct drm_i915_private *dev_priv = dev->dev_private;
  1509. struct drm_i915_gem_object *obj_priv;
  1510. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1511. if (HAS_BSD(dev))
  1512. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1513. /* Remove anything from the flushing lists. The GPU cache is likely
  1514. * to be lost on reset along with the data, so simply move the
  1515. * lost bo to the inactive list.
  1516. */
  1517. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1518. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1519. struct drm_i915_gem_object,
  1520. list);
  1521. obj_priv->base.write_domain = 0;
  1522. list_del_init(&obj_priv->gpu_write_list);
  1523. i915_gem_object_move_to_inactive(&obj_priv->base);
  1524. }
  1525. /* Move everything out of the GPU domains to ensure we do any
  1526. * necessary invalidation upon reuse.
  1527. */
  1528. list_for_each_entry(obj_priv,
  1529. &dev_priv->mm.inactive_list,
  1530. list)
  1531. {
  1532. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1533. }
  1534. }
  1535. /**
  1536. * This function clears the request list as sequence numbers are passed.
  1537. */
  1538. static void
  1539. i915_gem_retire_requests_ring(struct drm_device *dev,
  1540. struct intel_ring_buffer *ring)
  1541. {
  1542. drm_i915_private_t *dev_priv = dev->dev_private;
  1543. uint32_t seqno;
  1544. if (!ring->status_page.page_addr ||
  1545. list_empty(&ring->request_list))
  1546. return;
  1547. seqno = ring->get_seqno(dev, ring);
  1548. while (!list_empty(&ring->request_list)) {
  1549. struct drm_i915_gem_request *request;
  1550. request = list_first_entry(&ring->request_list,
  1551. struct drm_i915_gem_request,
  1552. list);
  1553. if (!i915_seqno_passed(seqno, request->seqno))
  1554. break;
  1555. trace_i915_gem_request_retire(dev, request->seqno);
  1556. list_del(&request->list);
  1557. i915_gem_request_remove_from_client(request);
  1558. kfree(request);
  1559. }
  1560. /* Move any buffers on the active list that are no longer referenced
  1561. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1562. */
  1563. while (!list_empty(&ring->active_list)) {
  1564. struct drm_gem_object *obj;
  1565. struct drm_i915_gem_object *obj_priv;
  1566. obj_priv = list_first_entry(&ring->active_list,
  1567. struct drm_i915_gem_object,
  1568. list);
  1569. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1570. break;
  1571. obj = &obj_priv->base;
  1572. #if WATCH_LRU
  1573. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1574. __func__, request->seqno, obj);
  1575. #endif
  1576. if (obj->write_domain != 0)
  1577. i915_gem_object_move_to_flushing(obj);
  1578. else
  1579. i915_gem_object_move_to_inactive(obj);
  1580. }
  1581. if (unlikely (dev_priv->trace_irq_seqno &&
  1582. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1583. ring->user_irq_put(dev, ring);
  1584. dev_priv->trace_irq_seqno = 0;
  1585. }
  1586. }
  1587. void
  1588. i915_gem_retire_requests(struct drm_device *dev)
  1589. {
  1590. drm_i915_private_t *dev_priv = dev->dev_private;
  1591. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1592. struct drm_i915_gem_object *obj_priv, *tmp;
  1593. /* We must be careful that during unbind() we do not
  1594. * accidentally infinitely recurse into retire requests.
  1595. * Currently:
  1596. * retire -> free -> unbind -> wait -> retire_ring
  1597. */
  1598. list_for_each_entry_safe(obj_priv, tmp,
  1599. &dev_priv->mm.deferred_free_list,
  1600. list)
  1601. i915_gem_free_object_tail(&obj_priv->base);
  1602. }
  1603. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1604. if (HAS_BSD(dev))
  1605. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1606. }
  1607. static void
  1608. i915_gem_retire_work_handler(struct work_struct *work)
  1609. {
  1610. drm_i915_private_t *dev_priv;
  1611. struct drm_device *dev;
  1612. dev_priv = container_of(work, drm_i915_private_t,
  1613. mm.retire_work.work);
  1614. dev = dev_priv->dev;
  1615. mutex_lock(&dev->struct_mutex);
  1616. i915_gem_retire_requests(dev);
  1617. if (!dev_priv->mm.suspended &&
  1618. (!list_empty(&dev_priv->render_ring.request_list) ||
  1619. (HAS_BSD(dev) &&
  1620. !list_empty(&dev_priv->bsd_ring.request_list))))
  1621. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1622. mutex_unlock(&dev->struct_mutex);
  1623. }
  1624. int
  1625. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1626. bool interruptible, struct intel_ring_buffer *ring)
  1627. {
  1628. drm_i915_private_t *dev_priv = dev->dev_private;
  1629. u32 ier;
  1630. int ret = 0;
  1631. BUG_ON(seqno == 0);
  1632. if (atomic_read(&dev_priv->mm.wedged))
  1633. return -EAGAIN;
  1634. if (ring->outstanding_lazy_request) {
  1635. seqno = i915_add_request(dev, NULL, NULL, ring);
  1636. if (seqno == 0)
  1637. return -ENOMEM;
  1638. }
  1639. BUG_ON(seqno == dev_priv->next_seqno);
  1640. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1641. if (HAS_PCH_SPLIT(dev))
  1642. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1643. else
  1644. ier = I915_READ(IER);
  1645. if (!ier) {
  1646. DRM_ERROR("something (likely vbetool) disabled "
  1647. "interrupts, re-enabling\n");
  1648. i915_driver_irq_preinstall(dev);
  1649. i915_driver_irq_postinstall(dev);
  1650. }
  1651. trace_i915_gem_request_wait_begin(dev, seqno);
  1652. ring->waiting_gem_seqno = seqno;
  1653. ring->user_irq_get(dev, ring);
  1654. if (interruptible)
  1655. ret = wait_event_interruptible(ring->irq_queue,
  1656. i915_seqno_passed(
  1657. ring->get_seqno(dev, ring), seqno)
  1658. || atomic_read(&dev_priv->mm.wedged));
  1659. else
  1660. wait_event(ring->irq_queue,
  1661. i915_seqno_passed(
  1662. ring->get_seqno(dev, ring), seqno)
  1663. || atomic_read(&dev_priv->mm.wedged));
  1664. ring->user_irq_put(dev, ring);
  1665. ring->waiting_gem_seqno = 0;
  1666. trace_i915_gem_request_wait_end(dev, seqno);
  1667. }
  1668. if (atomic_read(&dev_priv->mm.wedged))
  1669. ret = -EAGAIN;
  1670. if (ret && ret != -ERESTARTSYS)
  1671. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1672. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1673. dev_priv->next_seqno);
  1674. /* Directly dispatch request retiring. While we have the work queue
  1675. * to handle this, the waiter on a request often wants an associated
  1676. * buffer to have made it to the inactive list, and we would need
  1677. * a separate wait queue to handle that.
  1678. */
  1679. if (ret == 0)
  1680. i915_gem_retire_requests_ring(dev, ring);
  1681. return ret;
  1682. }
  1683. /**
  1684. * Waits for a sequence number to be signaled, and cleans up the
  1685. * request and object lists appropriately for that event.
  1686. */
  1687. static int
  1688. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1689. struct intel_ring_buffer *ring)
  1690. {
  1691. return i915_do_wait_request(dev, seqno, 1, ring);
  1692. }
  1693. static void
  1694. i915_gem_flush_ring(struct drm_device *dev,
  1695. struct drm_file *file_priv,
  1696. struct intel_ring_buffer *ring,
  1697. uint32_t invalidate_domains,
  1698. uint32_t flush_domains)
  1699. {
  1700. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1701. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1702. }
  1703. static void
  1704. i915_gem_flush(struct drm_device *dev,
  1705. struct drm_file *file_priv,
  1706. uint32_t invalidate_domains,
  1707. uint32_t flush_domains,
  1708. uint32_t flush_rings)
  1709. {
  1710. drm_i915_private_t *dev_priv = dev->dev_private;
  1711. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1712. drm_agp_chipset_flush(dev);
  1713. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1714. if (flush_rings & RING_RENDER)
  1715. i915_gem_flush_ring(dev, file_priv,
  1716. &dev_priv->render_ring,
  1717. invalidate_domains, flush_domains);
  1718. if (flush_rings & RING_BSD)
  1719. i915_gem_flush_ring(dev, file_priv,
  1720. &dev_priv->bsd_ring,
  1721. invalidate_domains, flush_domains);
  1722. }
  1723. }
  1724. /**
  1725. * Ensures that all rendering to the object has completed and the object is
  1726. * safe to unbind from the GTT or access from the CPU.
  1727. */
  1728. static int
  1729. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1730. bool interruptible)
  1731. {
  1732. struct drm_device *dev = obj->dev;
  1733. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1734. int ret;
  1735. /* This function only exists to support waiting for existing rendering,
  1736. * not for emitting required flushes.
  1737. */
  1738. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1739. /* If there is rendering queued on the buffer being evicted, wait for
  1740. * it.
  1741. */
  1742. if (obj_priv->active) {
  1743. #if WATCH_BUF
  1744. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1745. __func__, obj, obj_priv->last_rendering_seqno);
  1746. #endif
  1747. ret = i915_do_wait_request(dev,
  1748. obj_priv->last_rendering_seqno,
  1749. interruptible,
  1750. obj_priv->ring);
  1751. if (ret)
  1752. return ret;
  1753. }
  1754. return 0;
  1755. }
  1756. /**
  1757. * Unbinds an object from the GTT aperture.
  1758. */
  1759. int
  1760. i915_gem_object_unbind(struct drm_gem_object *obj)
  1761. {
  1762. struct drm_device *dev = obj->dev;
  1763. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1764. int ret = 0;
  1765. #if WATCH_BUF
  1766. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1767. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1768. #endif
  1769. if (obj_priv->gtt_space == NULL)
  1770. return 0;
  1771. if (obj_priv->pin_count != 0) {
  1772. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1773. return -EINVAL;
  1774. }
  1775. /* blow away mappings if mapped through GTT */
  1776. i915_gem_release_mmap(obj);
  1777. /* Move the object to the CPU domain to ensure that
  1778. * any possible CPU writes while it's not in the GTT
  1779. * are flushed when we go to remap it. This will
  1780. * also ensure that all pending GPU writes are finished
  1781. * before we unbind.
  1782. */
  1783. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1784. if (ret == -ERESTARTSYS)
  1785. return ret;
  1786. /* Continue on if we fail due to EIO, the GPU is hung so we
  1787. * should be safe and we need to cleanup or else we might
  1788. * cause memory corruption through use-after-free.
  1789. */
  1790. /* release the fence reg _after_ flushing */
  1791. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1792. i915_gem_clear_fence_reg(obj);
  1793. if (obj_priv->agp_mem != NULL) {
  1794. drm_unbind_agp(obj_priv->agp_mem);
  1795. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1796. obj_priv->agp_mem = NULL;
  1797. }
  1798. i915_gem_object_put_pages(obj);
  1799. BUG_ON(obj_priv->pages_refcount);
  1800. if (obj_priv->gtt_space) {
  1801. atomic_dec(&dev->gtt_count);
  1802. atomic_sub(obj->size, &dev->gtt_memory);
  1803. drm_mm_put_block(obj_priv->gtt_space);
  1804. obj_priv->gtt_space = NULL;
  1805. }
  1806. list_del_init(&obj_priv->list);
  1807. if (i915_gem_object_is_purgeable(obj_priv))
  1808. i915_gem_object_truncate(obj);
  1809. trace_i915_gem_object_unbind(obj);
  1810. return ret;
  1811. }
  1812. static int i915_ring_idle(struct drm_device *dev,
  1813. struct intel_ring_buffer *ring)
  1814. {
  1815. i915_gem_flush_ring(dev, NULL, ring,
  1816. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1817. return i915_wait_request(dev,
  1818. i915_gem_next_request_seqno(dev, ring),
  1819. ring);
  1820. }
  1821. int
  1822. i915_gpu_idle(struct drm_device *dev)
  1823. {
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. bool lists_empty;
  1826. int ret;
  1827. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1828. list_empty(&dev_priv->render_ring.active_list) &&
  1829. (!HAS_BSD(dev) ||
  1830. list_empty(&dev_priv->bsd_ring.active_list)));
  1831. if (lists_empty)
  1832. return 0;
  1833. /* Flush everything onto the inactive list. */
  1834. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1835. if (ret)
  1836. return ret;
  1837. if (HAS_BSD(dev)) {
  1838. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1839. if (ret)
  1840. return ret;
  1841. }
  1842. return 0;
  1843. }
  1844. int
  1845. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1846. gfp_t gfpmask)
  1847. {
  1848. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1849. int page_count, i;
  1850. struct address_space *mapping;
  1851. struct inode *inode;
  1852. struct page *page;
  1853. BUG_ON(obj_priv->pages_refcount
  1854. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1855. if (obj_priv->pages_refcount++ != 0)
  1856. return 0;
  1857. /* Get the list of pages out of our struct file. They'll be pinned
  1858. * at this point until we release them.
  1859. */
  1860. page_count = obj->size / PAGE_SIZE;
  1861. BUG_ON(obj_priv->pages != NULL);
  1862. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1863. if (obj_priv->pages == NULL) {
  1864. obj_priv->pages_refcount--;
  1865. return -ENOMEM;
  1866. }
  1867. inode = obj->filp->f_path.dentry->d_inode;
  1868. mapping = inode->i_mapping;
  1869. for (i = 0; i < page_count; i++) {
  1870. page = read_cache_page_gfp(mapping, i,
  1871. GFP_HIGHUSER |
  1872. __GFP_COLD |
  1873. __GFP_RECLAIMABLE |
  1874. gfpmask);
  1875. if (IS_ERR(page))
  1876. goto err_pages;
  1877. obj_priv->pages[i] = page;
  1878. }
  1879. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1880. i915_gem_object_do_bit_17_swizzle(obj);
  1881. return 0;
  1882. err_pages:
  1883. while (i--)
  1884. page_cache_release(obj_priv->pages[i]);
  1885. drm_free_large(obj_priv->pages);
  1886. obj_priv->pages = NULL;
  1887. obj_priv->pages_refcount--;
  1888. return PTR_ERR(page);
  1889. }
  1890. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1891. {
  1892. struct drm_gem_object *obj = reg->obj;
  1893. struct drm_device *dev = obj->dev;
  1894. drm_i915_private_t *dev_priv = dev->dev_private;
  1895. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1896. int regnum = obj_priv->fence_reg;
  1897. uint64_t val;
  1898. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1899. 0xfffff000) << 32;
  1900. val |= obj_priv->gtt_offset & 0xfffff000;
  1901. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1902. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1903. if (obj_priv->tiling_mode == I915_TILING_Y)
  1904. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1905. val |= I965_FENCE_REG_VALID;
  1906. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1907. }
  1908. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1909. {
  1910. struct drm_gem_object *obj = reg->obj;
  1911. struct drm_device *dev = obj->dev;
  1912. drm_i915_private_t *dev_priv = dev->dev_private;
  1913. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1914. int regnum = obj_priv->fence_reg;
  1915. uint64_t val;
  1916. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1917. 0xfffff000) << 32;
  1918. val |= obj_priv->gtt_offset & 0xfffff000;
  1919. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1920. if (obj_priv->tiling_mode == I915_TILING_Y)
  1921. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1922. val |= I965_FENCE_REG_VALID;
  1923. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1924. }
  1925. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1926. {
  1927. struct drm_gem_object *obj = reg->obj;
  1928. struct drm_device *dev = obj->dev;
  1929. drm_i915_private_t *dev_priv = dev->dev_private;
  1930. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1931. int regnum = obj_priv->fence_reg;
  1932. int tile_width;
  1933. uint32_t fence_reg, val;
  1934. uint32_t pitch_val;
  1935. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1936. (obj_priv->gtt_offset & (obj->size - 1))) {
  1937. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1938. __func__, obj_priv->gtt_offset, obj->size);
  1939. return;
  1940. }
  1941. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1942. HAS_128_BYTE_Y_TILING(dev))
  1943. tile_width = 128;
  1944. else
  1945. tile_width = 512;
  1946. /* Note: pitch better be a power of two tile widths */
  1947. pitch_val = obj_priv->stride / tile_width;
  1948. pitch_val = ffs(pitch_val) - 1;
  1949. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1950. HAS_128_BYTE_Y_TILING(dev))
  1951. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1952. else
  1953. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1954. val = obj_priv->gtt_offset;
  1955. if (obj_priv->tiling_mode == I915_TILING_Y)
  1956. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1957. val |= I915_FENCE_SIZE_BITS(obj->size);
  1958. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1959. val |= I830_FENCE_REG_VALID;
  1960. if (regnum < 8)
  1961. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1962. else
  1963. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1964. I915_WRITE(fence_reg, val);
  1965. }
  1966. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1967. {
  1968. struct drm_gem_object *obj = reg->obj;
  1969. struct drm_device *dev = obj->dev;
  1970. drm_i915_private_t *dev_priv = dev->dev_private;
  1971. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1972. int regnum = obj_priv->fence_reg;
  1973. uint32_t val;
  1974. uint32_t pitch_val;
  1975. uint32_t fence_size_bits;
  1976. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1977. (obj_priv->gtt_offset & (obj->size - 1))) {
  1978. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1979. __func__, obj_priv->gtt_offset);
  1980. return;
  1981. }
  1982. pitch_val = obj_priv->stride / 128;
  1983. pitch_val = ffs(pitch_val) - 1;
  1984. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1985. val = obj_priv->gtt_offset;
  1986. if (obj_priv->tiling_mode == I915_TILING_Y)
  1987. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1988. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1989. WARN_ON(fence_size_bits & ~0x00000f00);
  1990. val |= fence_size_bits;
  1991. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1992. val |= I830_FENCE_REG_VALID;
  1993. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1994. }
  1995. static int i915_find_fence_reg(struct drm_device *dev,
  1996. bool interruptible)
  1997. {
  1998. struct drm_i915_fence_reg *reg = NULL;
  1999. struct drm_i915_gem_object *obj_priv = NULL;
  2000. struct drm_i915_private *dev_priv = dev->dev_private;
  2001. struct drm_gem_object *obj = NULL;
  2002. int i, avail, ret;
  2003. /* First try to find a free reg */
  2004. avail = 0;
  2005. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2006. reg = &dev_priv->fence_regs[i];
  2007. if (!reg->obj)
  2008. return i;
  2009. obj_priv = to_intel_bo(reg->obj);
  2010. if (!obj_priv->pin_count)
  2011. avail++;
  2012. }
  2013. if (avail == 0)
  2014. return -ENOSPC;
  2015. /* None available, try to steal one or wait for a user to finish */
  2016. i = I915_FENCE_REG_NONE;
  2017. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2018. lru_list) {
  2019. obj = reg->obj;
  2020. obj_priv = to_intel_bo(obj);
  2021. if (obj_priv->pin_count)
  2022. continue;
  2023. /* found one! */
  2024. i = obj_priv->fence_reg;
  2025. break;
  2026. }
  2027. BUG_ON(i == I915_FENCE_REG_NONE);
  2028. /* We only have a reference on obj from the active list. put_fence_reg
  2029. * might drop that one, causing a use-after-free in it. So hold a
  2030. * private reference to obj like the other callers of put_fence_reg
  2031. * (set_tiling ioctl) do. */
  2032. drm_gem_object_reference(obj);
  2033. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2034. drm_gem_object_unreference(obj);
  2035. if (ret != 0)
  2036. return ret;
  2037. return i;
  2038. }
  2039. /**
  2040. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2041. * @obj: object to map through a fence reg
  2042. *
  2043. * When mapping objects through the GTT, userspace wants to be able to write
  2044. * to them without having to worry about swizzling if the object is tiled.
  2045. *
  2046. * This function walks the fence regs looking for a free one for @obj,
  2047. * stealing one if it can't find any.
  2048. *
  2049. * It then sets up the reg based on the object's properties: address, pitch
  2050. * and tiling format.
  2051. */
  2052. int
  2053. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2054. bool interruptible)
  2055. {
  2056. struct drm_device *dev = obj->dev;
  2057. struct drm_i915_private *dev_priv = dev->dev_private;
  2058. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2059. struct drm_i915_fence_reg *reg = NULL;
  2060. int ret;
  2061. /* Just update our place in the LRU if our fence is getting used. */
  2062. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2063. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2064. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2065. return 0;
  2066. }
  2067. switch (obj_priv->tiling_mode) {
  2068. case I915_TILING_NONE:
  2069. WARN(1, "allocating a fence for non-tiled object?\n");
  2070. break;
  2071. case I915_TILING_X:
  2072. if (!obj_priv->stride)
  2073. return -EINVAL;
  2074. WARN((obj_priv->stride & (512 - 1)),
  2075. "object 0x%08x is X tiled but has non-512B pitch\n",
  2076. obj_priv->gtt_offset);
  2077. break;
  2078. case I915_TILING_Y:
  2079. if (!obj_priv->stride)
  2080. return -EINVAL;
  2081. WARN((obj_priv->stride & (128 - 1)),
  2082. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2083. obj_priv->gtt_offset);
  2084. break;
  2085. }
  2086. ret = i915_find_fence_reg(dev, interruptible);
  2087. if (ret < 0)
  2088. return ret;
  2089. obj_priv->fence_reg = ret;
  2090. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2091. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2092. reg->obj = obj;
  2093. switch (INTEL_INFO(dev)->gen) {
  2094. case 6:
  2095. sandybridge_write_fence_reg(reg);
  2096. break;
  2097. case 5:
  2098. case 4:
  2099. i965_write_fence_reg(reg);
  2100. break;
  2101. case 3:
  2102. i915_write_fence_reg(reg);
  2103. break;
  2104. case 2:
  2105. i830_write_fence_reg(reg);
  2106. break;
  2107. }
  2108. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2109. obj_priv->tiling_mode);
  2110. return 0;
  2111. }
  2112. /**
  2113. * i915_gem_clear_fence_reg - clear out fence register info
  2114. * @obj: object to clear
  2115. *
  2116. * Zeroes out the fence register itself and clears out the associated
  2117. * data structures in dev_priv and obj_priv.
  2118. */
  2119. static void
  2120. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2121. {
  2122. struct drm_device *dev = obj->dev;
  2123. drm_i915_private_t *dev_priv = dev->dev_private;
  2124. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2125. struct drm_i915_fence_reg *reg =
  2126. &dev_priv->fence_regs[obj_priv->fence_reg];
  2127. uint32_t fence_reg;
  2128. switch (INTEL_INFO(dev)->gen) {
  2129. case 6:
  2130. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2131. (obj_priv->fence_reg * 8), 0);
  2132. break;
  2133. case 5:
  2134. case 4:
  2135. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2136. break;
  2137. case 3:
  2138. if (obj_priv->fence_reg >= 8)
  2139. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2140. else
  2141. case 2:
  2142. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2143. I915_WRITE(fence_reg, 0);
  2144. break;
  2145. }
  2146. reg->obj = NULL;
  2147. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2148. list_del_init(&reg->lru_list);
  2149. }
  2150. /**
  2151. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2152. * to the buffer to finish, and then resets the fence register.
  2153. * @obj: tiled object holding a fence register.
  2154. * @bool: whether the wait upon the fence is interruptible
  2155. *
  2156. * Zeroes out the fence register itself and clears out the associated
  2157. * data structures in dev_priv and obj_priv.
  2158. */
  2159. int
  2160. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2161. bool interruptible)
  2162. {
  2163. struct drm_device *dev = obj->dev;
  2164. struct drm_i915_private *dev_priv = dev->dev_private;
  2165. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2166. struct drm_i915_fence_reg *reg;
  2167. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2168. return 0;
  2169. /* If we've changed tiling, GTT-mappings of the object
  2170. * need to re-fault to ensure that the correct fence register
  2171. * setup is in place.
  2172. */
  2173. i915_gem_release_mmap(obj);
  2174. /* On the i915, GPU access to tiled buffers is via a fence,
  2175. * therefore we must wait for any outstanding access to complete
  2176. * before clearing the fence.
  2177. */
  2178. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2179. if (reg->gpu) {
  2180. int ret;
  2181. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2182. if (ret)
  2183. return ret;
  2184. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2185. if (ret)
  2186. return ret;
  2187. reg->gpu = false;
  2188. }
  2189. i915_gem_object_flush_gtt_write_domain(obj);
  2190. i915_gem_clear_fence_reg(obj);
  2191. return 0;
  2192. }
  2193. /**
  2194. * Finds free space in the GTT aperture and binds the object there.
  2195. */
  2196. static int
  2197. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2198. {
  2199. struct drm_device *dev = obj->dev;
  2200. drm_i915_private_t *dev_priv = dev->dev_private;
  2201. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2202. struct drm_mm_node *free_space;
  2203. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2204. int ret;
  2205. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2206. DRM_ERROR("Attempting to bind a purgeable object\n");
  2207. return -EINVAL;
  2208. }
  2209. if (alignment == 0)
  2210. alignment = i915_gem_get_gtt_alignment(obj);
  2211. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2212. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2213. return -EINVAL;
  2214. }
  2215. /* If the object is bigger than the entire aperture, reject it early
  2216. * before evicting everything in a vain attempt to find space.
  2217. */
  2218. if (obj->size > dev->gtt_total) {
  2219. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2220. return -E2BIG;
  2221. }
  2222. search_free:
  2223. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2224. obj->size, alignment, 0);
  2225. if (free_space != NULL) {
  2226. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2227. alignment);
  2228. if (obj_priv->gtt_space != NULL)
  2229. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2230. }
  2231. if (obj_priv->gtt_space == NULL) {
  2232. /* If the gtt is empty and we're still having trouble
  2233. * fitting our object in, we're out of memory.
  2234. */
  2235. #if WATCH_LRU
  2236. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2237. #endif
  2238. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2239. if (ret)
  2240. return ret;
  2241. goto search_free;
  2242. }
  2243. #if WATCH_BUF
  2244. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2245. obj->size, obj_priv->gtt_offset);
  2246. #endif
  2247. ret = i915_gem_object_get_pages(obj, gfpmask);
  2248. if (ret) {
  2249. drm_mm_put_block(obj_priv->gtt_space);
  2250. obj_priv->gtt_space = NULL;
  2251. if (ret == -ENOMEM) {
  2252. /* first try to clear up some space from the GTT */
  2253. ret = i915_gem_evict_something(dev, obj->size,
  2254. alignment);
  2255. if (ret) {
  2256. /* now try to shrink everyone else */
  2257. if (gfpmask) {
  2258. gfpmask = 0;
  2259. goto search_free;
  2260. }
  2261. return ret;
  2262. }
  2263. goto search_free;
  2264. }
  2265. return ret;
  2266. }
  2267. /* Create an AGP memory structure pointing at our pages, and bind it
  2268. * into the GTT.
  2269. */
  2270. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2271. obj_priv->pages,
  2272. obj->size >> PAGE_SHIFT,
  2273. obj_priv->gtt_offset,
  2274. obj_priv->agp_type);
  2275. if (obj_priv->agp_mem == NULL) {
  2276. i915_gem_object_put_pages(obj);
  2277. drm_mm_put_block(obj_priv->gtt_space);
  2278. obj_priv->gtt_space = NULL;
  2279. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2280. if (ret)
  2281. return ret;
  2282. goto search_free;
  2283. }
  2284. atomic_inc(&dev->gtt_count);
  2285. atomic_add(obj->size, &dev->gtt_memory);
  2286. /* keep track of bounds object by adding it to the inactive list */
  2287. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2288. /* Assert that the object is not currently in any GPU domain. As it
  2289. * wasn't in the GTT, there shouldn't be any way it could have been in
  2290. * a GPU cache
  2291. */
  2292. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2293. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2294. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2295. return 0;
  2296. }
  2297. void
  2298. i915_gem_clflush_object(struct drm_gem_object *obj)
  2299. {
  2300. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2301. /* If we don't have a page list set up, then we're not pinned
  2302. * to GPU, and we can ignore the cache flush because it'll happen
  2303. * again at bind time.
  2304. */
  2305. if (obj_priv->pages == NULL)
  2306. return;
  2307. trace_i915_gem_object_clflush(obj);
  2308. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2309. }
  2310. /** Flushes any GPU write domain for the object if it's dirty. */
  2311. static int
  2312. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2313. bool pipelined)
  2314. {
  2315. struct drm_device *dev = obj->dev;
  2316. uint32_t old_write_domain;
  2317. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2318. return 0;
  2319. /* Queue the GPU write cache flushing we need. */
  2320. old_write_domain = obj->write_domain;
  2321. i915_gem_flush_ring(dev, NULL,
  2322. to_intel_bo(obj)->ring,
  2323. 0, obj->write_domain);
  2324. BUG_ON(obj->write_domain);
  2325. trace_i915_gem_object_change_domain(obj,
  2326. obj->read_domains,
  2327. old_write_domain);
  2328. if (pipelined)
  2329. return 0;
  2330. return i915_gem_object_wait_rendering(obj, true);
  2331. }
  2332. /** Flushes the GTT write domain for the object if it's dirty. */
  2333. static void
  2334. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2335. {
  2336. uint32_t old_write_domain;
  2337. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2338. return;
  2339. /* No actual flushing is required for the GTT write domain. Writes
  2340. * to it immediately go to main memory as far as we know, so there's
  2341. * no chipset flush. It also doesn't land in render cache.
  2342. */
  2343. old_write_domain = obj->write_domain;
  2344. obj->write_domain = 0;
  2345. trace_i915_gem_object_change_domain(obj,
  2346. obj->read_domains,
  2347. old_write_domain);
  2348. }
  2349. /** Flushes the CPU write domain for the object if it's dirty. */
  2350. static void
  2351. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2352. {
  2353. struct drm_device *dev = obj->dev;
  2354. uint32_t old_write_domain;
  2355. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2356. return;
  2357. i915_gem_clflush_object(obj);
  2358. drm_agp_chipset_flush(dev);
  2359. old_write_domain = obj->write_domain;
  2360. obj->write_domain = 0;
  2361. trace_i915_gem_object_change_domain(obj,
  2362. obj->read_domains,
  2363. old_write_domain);
  2364. }
  2365. /**
  2366. * Moves a single object to the GTT read, and possibly write domain.
  2367. *
  2368. * This function returns when the move is complete, including waiting on
  2369. * flushes to occur.
  2370. */
  2371. int
  2372. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2373. {
  2374. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2375. uint32_t old_write_domain, old_read_domains;
  2376. int ret;
  2377. /* Not valid to be called on unbound objects. */
  2378. if (obj_priv->gtt_space == NULL)
  2379. return -EINVAL;
  2380. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2381. if (ret != 0)
  2382. return ret;
  2383. i915_gem_object_flush_cpu_write_domain(obj);
  2384. if (write) {
  2385. ret = i915_gem_object_wait_rendering(obj, true);
  2386. if (ret)
  2387. return ret;
  2388. }
  2389. old_write_domain = obj->write_domain;
  2390. old_read_domains = obj->read_domains;
  2391. /* It should now be out of any other write domains, and we can update
  2392. * the domain values for our changes.
  2393. */
  2394. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2395. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2396. if (write) {
  2397. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2398. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2399. obj_priv->dirty = 1;
  2400. }
  2401. trace_i915_gem_object_change_domain(obj,
  2402. old_read_domains,
  2403. old_write_domain);
  2404. return 0;
  2405. }
  2406. /*
  2407. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2408. * wait, as in modesetting process we're not supposed to be interrupted.
  2409. */
  2410. int
  2411. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2412. bool pipelined)
  2413. {
  2414. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2415. uint32_t old_read_domains;
  2416. int ret;
  2417. /* Not valid to be called on unbound objects. */
  2418. if (obj_priv->gtt_space == NULL)
  2419. return -EINVAL;
  2420. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2421. if (ret)
  2422. return ret;
  2423. /* Currently, we are always called from an non-interruptible context. */
  2424. if (!pipelined) {
  2425. ret = i915_gem_object_wait_rendering(obj, false);
  2426. if (ret)
  2427. return ret;
  2428. }
  2429. i915_gem_object_flush_cpu_write_domain(obj);
  2430. old_read_domains = obj->read_domains;
  2431. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2432. trace_i915_gem_object_change_domain(obj,
  2433. old_read_domains,
  2434. obj->write_domain);
  2435. return 0;
  2436. }
  2437. /**
  2438. * Moves a single object to the CPU read, and possibly write domain.
  2439. *
  2440. * This function returns when the move is complete, including waiting on
  2441. * flushes to occur.
  2442. */
  2443. static int
  2444. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2445. {
  2446. uint32_t old_write_domain, old_read_domains;
  2447. int ret;
  2448. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2449. if (ret != 0)
  2450. return ret;
  2451. i915_gem_object_flush_gtt_write_domain(obj);
  2452. /* If we have a partially-valid cache of the object in the CPU,
  2453. * finish invalidating it and free the per-page flags.
  2454. */
  2455. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2456. if (write) {
  2457. ret = i915_gem_object_wait_rendering(obj, true);
  2458. if (ret)
  2459. return ret;
  2460. }
  2461. old_write_domain = obj->write_domain;
  2462. old_read_domains = obj->read_domains;
  2463. /* Flush the CPU cache if it's still invalid. */
  2464. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2465. i915_gem_clflush_object(obj);
  2466. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2467. }
  2468. /* It should now be out of any other write domains, and we can update
  2469. * the domain values for our changes.
  2470. */
  2471. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2472. /* If we're writing through the CPU, then the GPU read domains will
  2473. * need to be invalidated at next use.
  2474. */
  2475. if (write) {
  2476. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2477. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2478. }
  2479. trace_i915_gem_object_change_domain(obj,
  2480. old_read_domains,
  2481. old_write_domain);
  2482. return 0;
  2483. }
  2484. /*
  2485. * Set the next domain for the specified object. This
  2486. * may not actually perform the necessary flushing/invaliding though,
  2487. * as that may want to be batched with other set_domain operations
  2488. *
  2489. * This is (we hope) the only really tricky part of gem. The goal
  2490. * is fairly simple -- track which caches hold bits of the object
  2491. * and make sure they remain coherent. A few concrete examples may
  2492. * help to explain how it works. For shorthand, we use the notation
  2493. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2494. * a pair of read and write domain masks.
  2495. *
  2496. * Case 1: the batch buffer
  2497. *
  2498. * 1. Allocated
  2499. * 2. Written by CPU
  2500. * 3. Mapped to GTT
  2501. * 4. Read by GPU
  2502. * 5. Unmapped from GTT
  2503. * 6. Freed
  2504. *
  2505. * Let's take these a step at a time
  2506. *
  2507. * 1. Allocated
  2508. * Pages allocated from the kernel may still have
  2509. * cache contents, so we set them to (CPU, CPU) always.
  2510. * 2. Written by CPU (using pwrite)
  2511. * The pwrite function calls set_domain (CPU, CPU) and
  2512. * this function does nothing (as nothing changes)
  2513. * 3. Mapped by GTT
  2514. * This function asserts that the object is not
  2515. * currently in any GPU-based read or write domains
  2516. * 4. Read by GPU
  2517. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2518. * As write_domain is zero, this function adds in the
  2519. * current read domains (CPU+COMMAND, 0).
  2520. * flush_domains is set to CPU.
  2521. * invalidate_domains is set to COMMAND
  2522. * clflush is run to get data out of the CPU caches
  2523. * then i915_dev_set_domain calls i915_gem_flush to
  2524. * emit an MI_FLUSH and drm_agp_chipset_flush
  2525. * 5. Unmapped from GTT
  2526. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2527. * flush_domains and invalidate_domains end up both zero
  2528. * so no flushing/invalidating happens
  2529. * 6. Freed
  2530. * yay, done
  2531. *
  2532. * Case 2: The shared render buffer
  2533. *
  2534. * 1. Allocated
  2535. * 2. Mapped to GTT
  2536. * 3. Read/written by GPU
  2537. * 4. set_domain to (CPU,CPU)
  2538. * 5. Read/written by CPU
  2539. * 6. Read/written by GPU
  2540. *
  2541. * 1. Allocated
  2542. * Same as last example, (CPU, CPU)
  2543. * 2. Mapped to GTT
  2544. * Nothing changes (assertions find that it is not in the GPU)
  2545. * 3. Read/written by GPU
  2546. * execbuffer calls set_domain (RENDER, RENDER)
  2547. * flush_domains gets CPU
  2548. * invalidate_domains gets GPU
  2549. * clflush (obj)
  2550. * MI_FLUSH and drm_agp_chipset_flush
  2551. * 4. set_domain (CPU, CPU)
  2552. * flush_domains gets GPU
  2553. * invalidate_domains gets CPU
  2554. * wait_rendering (obj) to make sure all drawing is complete.
  2555. * This will include an MI_FLUSH to get the data from GPU
  2556. * to memory
  2557. * clflush (obj) to invalidate the CPU cache
  2558. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2559. * 5. Read/written by CPU
  2560. * cache lines are loaded and dirtied
  2561. * 6. Read written by GPU
  2562. * Same as last GPU access
  2563. *
  2564. * Case 3: The constant buffer
  2565. *
  2566. * 1. Allocated
  2567. * 2. Written by CPU
  2568. * 3. Read by GPU
  2569. * 4. Updated (written) by CPU again
  2570. * 5. Read by GPU
  2571. *
  2572. * 1. Allocated
  2573. * (CPU, CPU)
  2574. * 2. Written by CPU
  2575. * (CPU, CPU)
  2576. * 3. Read by GPU
  2577. * (CPU+RENDER, 0)
  2578. * flush_domains = CPU
  2579. * invalidate_domains = RENDER
  2580. * clflush (obj)
  2581. * MI_FLUSH
  2582. * drm_agp_chipset_flush
  2583. * 4. Updated (written) by CPU again
  2584. * (CPU, CPU)
  2585. * flush_domains = 0 (no previous write domain)
  2586. * invalidate_domains = 0 (no new read domains)
  2587. * 5. Read by GPU
  2588. * (CPU+RENDER, 0)
  2589. * flush_domains = CPU
  2590. * invalidate_domains = RENDER
  2591. * clflush (obj)
  2592. * MI_FLUSH
  2593. * drm_agp_chipset_flush
  2594. */
  2595. static void
  2596. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2597. {
  2598. struct drm_device *dev = obj->dev;
  2599. struct drm_i915_private *dev_priv = dev->dev_private;
  2600. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2601. uint32_t invalidate_domains = 0;
  2602. uint32_t flush_domains = 0;
  2603. uint32_t old_read_domains;
  2604. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2605. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2606. intel_mark_busy(dev, obj);
  2607. #if WATCH_BUF
  2608. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2609. __func__, obj,
  2610. obj->read_domains, obj->pending_read_domains,
  2611. obj->write_domain, obj->pending_write_domain);
  2612. #endif
  2613. /*
  2614. * If the object isn't moving to a new write domain,
  2615. * let the object stay in multiple read domains
  2616. */
  2617. if (obj->pending_write_domain == 0)
  2618. obj->pending_read_domains |= obj->read_domains;
  2619. else
  2620. obj_priv->dirty = 1;
  2621. /*
  2622. * Flush the current write domain if
  2623. * the new read domains don't match. Invalidate
  2624. * any read domains which differ from the old
  2625. * write domain
  2626. */
  2627. if (obj->write_domain &&
  2628. obj->write_domain != obj->pending_read_domains) {
  2629. flush_domains |= obj->write_domain;
  2630. invalidate_domains |=
  2631. obj->pending_read_domains & ~obj->write_domain;
  2632. }
  2633. /*
  2634. * Invalidate any read caches which may have
  2635. * stale data. That is, any new read domains.
  2636. */
  2637. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2638. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2639. #if WATCH_BUF
  2640. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2641. __func__, flush_domains, invalidate_domains);
  2642. #endif
  2643. i915_gem_clflush_object(obj);
  2644. }
  2645. old_read_domains = obj->read_domains;
  2646. /* The actual obj->write_domain will be updated with
  2647. * pending_write_domain after we emit the accumulated flush for all
  2648. * of our domain changes in execbuffers (which clears objects'
  2649. * write_domains). So if we have a current write domain that we
  2650. * aren't changing, set pending_write_domain to that.
  2651. */
  2652. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2653. obj->pending_write_domain = obj->write_domain;
  2654. obj->read_domains = obj->pending_read_domains;
  2655. dev->invalidate_domains |= invalidate_domains;
  2656. dev->flush_domains |= flush_domains;
  2657. if (obj_priv->ring)
  2658. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2659. #if WATCH_BUF
  2660. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2661. __func__,
  2662. obj->read_domains, obj->write_domain,
  2663. dev->invalidate_domains, dev->flush_domains);
  2664. #endif
  2665. trace_i915_gem_object_change_domain(obj,
  2666. old_read_domains,
  2667. obj->write_domain);
  2668. }
  2669. /**
  2670. * Moves the object from a partially CPU read to a full one.
  2671. *
  2672. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2673. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2674. */
  2675. static void
  2676. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2677. {
  2678. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2679. if (!obj_priv->page_cpu_valid)
  2680. return;
  2681. /* If we're partially in the CPU read domain, finish moving it in.
  2682. */
  2683. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2684. int i;
  2685. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2686. if (obj_priv->page_cpu_valid[i])
  2687. continue;
  2688. drm_clflush_pages(obj_priv->pages + i, 1);
  2689. }
  2690. }
  2691. /* Free the page_cpu_valid mappings which are now stale, whether
  2692. * or not we've got I915_GEM_DOMAIN_CPU.
  2693. */
  2694. kfree(obj_priv->page_cpu_valid);
  2695. obj_priv->page_cpu_valid = NULL;
  2696. }
  2697. /**
  2698. * Set the CPU read domain on a range of the object.
  2699. *
  2700. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2701. * not entirely valid. The page_cpu_valid member of the object flags which
  2702. * pages have been flushed, and will be respected by
  2703. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2704. * of the whole object.
  2705. *
  2706. * This function returns when the move is complete, including waiting on
  2707. * flushes to occur.
  2708. */
  2709. static int
  2710. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2711. uint64_t offset, uint64_t size)
  2712. {
  2713. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2714. uint32_t old_read_domains;
  2715. int i, ret;
  2716. if (offset == 0 && size == obj->size)
  2717. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2718. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2719. if (ret != 0)
  2720. return ret;
  2721. i915_gem_object_flush_gtt_write_domain(obj);
  2722. /* If we're already fully in the CPU read domain, we're done. */
  2723. if (obj_priv->page_cpu_valid == NULL &&
  2724. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2725. return 0;
  2726. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2727. * newly adding I915_GEM_DOMAIN_CPU
  2728. */
  2729. if (obj_priv->page_cpu_valid == NULL) {
  2730. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2731. GFP_KERNEL);
  2732. if (obj_priv->page_cpu_valid == NULL)
  2733. return -ENOMEM;
  2734. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2735. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2736. /* Flush the cache on any pages that are still invalid from the CPU's
  2737. * perspective.
  2738. */
  2739. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2740. i++) {
  2741. if (obj_priv->page_cpu_valid[i])
  2742. continue;
  2743. drm_clflush_pages(obj_priv->pages + i, 1);
  2744. obj_priv->page_cpu_valid[i] = 1;
  2745. }
  2746. /* It should now be out of any other write domains, and we can update
  2747. * the domain values for our changes.
  2748. */
  2749. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2750. old_read_domains = obj->read_domains;
  2751. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2752. trace_i915_gem_object_change_domain(obj,
  2753. old_read_domains,
  2754. obj->write_domain);
  2755. return 0;
  2756. }
  2757. /**
  2758. * Pin an object to the GTT and evaluate the relocations landing in it.
  2759. */
  2760. static int
  2761. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2762. struct drm_file *file_priv,
  2763. struct drm_i915_gem_exec_object2 *entry,
  2764. struct drm_i915_gem_relocation_entry *relocs)
  2765. {
  2766. struct drm_device *dev = obj->dev;
  2767. drm_i915_private_t *dev_priv = dev->dev_private;
  2768. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2769. int i, ret;
  2770. void __iomem *reloc_page;
  2771. bool need_fence;
  2772. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2773. obj_priv->tiling_mode != I915_TILING_NONE;
  2774. /* Check fence reg constraints and rebind if necessary */
  2775. if (need_fence &&
  2776. !i915_gem_object_fence_offset_ok(obj,
  2777. obj_priv->tiling_mode)) {
  2778. ret = i915_gem_object_unbind(obj);
  2779. if (ret)
  2780. return ret;
  2781. }
  2782. /* Choose the GTT offset for our buffer and put it there. */
  2783. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2784. if (ret)
  2785. return ret;
  2786. /*
  2787. * Pre-965 chips need a fence register set up in order to
  2788. * properly handle blits to/from tiled surfaces.
  2789. */
  2790. if (need_fence) {
  2791. ret = i915_gem_object_get_fence_reg(obj, true);
  2792. if (ret != 0) {
  2793. i915_gem_object_unpin(obj);
  2794. return ret;
  2795. }
  2796. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2797. }
  2798. entry->offset = obj_priv->gtt_offset;
  2799. /* Apply the relocations, using the GTT aperture to avoid cache
  2800. * flushing requirements.
  2801. */
  2802. for (i = 0; i < entry->relocation_count; i++) {
  2803. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2804. struct drm_gem_object *target_obj;
  2805. struct drm_i915_gem_object *target_obj_priv;
  2806. uint32_t reloc_val, reloc_offset;
  2807. uint32_t __iomem *reloc_entry;
  2808. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2809. reloc->target_handle);
  2810. if (target_obj == NULL) {
  2811. i915_gem_object_unpin(obj);
  2812. return -ENOENT;
  2813. }
  2814. target_obj_priv = to_intel_bo(target_obj);
  2815. #if WATCH_RELOC
  2816. DRM_INFO("%s: obj %p offset %08x target %d "
  2817. "read %08x write %08x gtt %08x "
  2818. "presumed %08x delta %08x\n",
  2819. __func__,
  2820. obj,
  2821. (int) reloc->offset,
  2822. (int) reloc->target_handle,
  2823. (int) reloc->read_domains,
  2824. (int) reloc->write_domain,
  2825. (int) target_obj_priv->gtt_offset,
  2826. (int) reloc->presumed_offset,
  2827. reloc->delta);
  2828. #endif
  2829. /* The target buffer should have appeared before us in the
  2830. * exec_object list, so it should have a GTT space bound by now.
  2831. */
  2832. if (target_obj_priv->gtt_space == NULL) {
  2833. DRM_ERROR("No GTT space found for object %d\n",
  2834. reloc->target_handle);
  2835. drm_gem_object_unreference(target_obj);
  2836. i915_gem_object_unpin(obj);
  2837. return -EINVAL;
  2838. }
  2839. /* Validate that the target is in a valid r/w GPU domain */
  2840. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2841. DRM_ERROR("reloc with multiple write domains: "
  2842. "obj %p target %d offset %d "
  2843. "read %08x write %08x",
  2844. obj, reloc->target_handle,
  2845. (int) reloc->offset,
  2846. reloc->read_domains,
  2847. reloc->write_domain);
  2848. return -EINVAL;
  2849. }
  2850. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2851. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2852. DRM_ERROR("reloc with read/write CPU domains: "
  2853. "obj %p target %d offset %d "
  2854. "read %08x write %08x",
  2855. obj, reloc->target_handle,
  2856. (int) reloc->offset,
  2857. reloc->read_domains,
  2858. reloc->write_domain);
  2859. drm_gem_object_unreference(target_obj);
  2860. i915_gem_object_unpin(obj);
  2861. return -EINVAL;
  2862. }
  2863. if (reloc->write_domain && target_obj->pending_write_domain &&
  2864. reloc->write_domain != target_obj->pending_write_domain) {
  2865. DRM_ERROR("Write domain conflict: "
  2866. "obj %p target %d offset %d "
  2867. "new %08x old %08x\n",
  2868. obj, reloc->target_handle,
  2869. (int) reloc->offset,
  2870. reloc->write_domain,
  2871. target_obj->pending_write_domain);
  2872. drm_gem_object_unreference(target_obj);
  2873. i915_gem_object_unpin(obj);
  2874. return -EINVAL;
  2875. }
  2876. target_obj->pending_read_domains |= reloc->read_domains;
  2877. target_obj->pending_write_domain |= reloc->write_domain;
  2878. /* If the relocation already has the right value in it, no
  2879. * more work needs to be done.
  2880. */
  2881. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2882. drm_gem_object_unreference(target_obj);
  2883. continue;
  2884. }
  2885. /* Check that the relocation address is valid... */
  2886. if (reloc->offset > obj->size - 4) {
  2887. DRM_ERROR("Relocation beyond object bounds: "
  2888. "obj %p target %d offset %d size %d.\n",
  2889. obj, reloc->target_handle,
  2890. (int) reloc->offset, (int) obj->size);
  2891. drm_gem_object_unreference(target_obj);
  2892. i915_gem_object_unpin(obj);
  2893. return -EINVAL;
  2894. }
  2895. if (reloc->offset & 3) {
  2896. DRM_ERROR("Relocation not 4-byte aligned: "
  2897. "obj %p target %d offset %d.\n",
  2898. obj, reloc->target_handle,
  2899. (int) reloc->offset);
  2900. drm_gem_object_unreference(target_obj);
  2901. i915_gem_object_unpin(obj);
  2902. return -EINVAL;
  2903. }
  2904. /* and points to somewhere within the target object. */
  2905. if (reloc->delta >= target_obj->size) {
  2906. DRM_ERROR("Relocation beyond target object bounds: "
  2907. "obj %p target %d delta %d size %d.\n",
  2908. obj, reloc->target_handle,
  2909. (int) reloc->delta, (int) target_obj->size);
  2910. drm_gem_object_unreference(target_obj);
  2911. i915_gem_object_unpin(obj);
  2912. return -EINVAL;
  2913. }
  2914. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2915. if (ret != 0) {
  2916. drm_gem_object_unreference(target_obj);
  2917. i915_gem_object_unpin(obj);
  2918. return -EINVAL;
  2919. }
  2920. /* Map the page containing the relocation we're going to
  2921. * perform.
  2922. */
  2923. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2924. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2925. (reloc_offset &
  2926. ~(PAGE_SIZE - 1)),
  2927. KM_USER0);
  2928. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2929. (reloc_offset & (PAGE_SIZE - 1)));
  2930. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2931. #if WATCH_BUF
  2932. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2933. obj, (unsigned int) reloc->offset,
  2934. readl(reloc_entry), reloc_val);
  2935. #endif
  2936. writel(reloc_val, reloc_entry);
  2937. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2938. /* The updated presumed offset for this entry will be
  2939. * copied back out to the user.
  2940. */
  2941. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2942. drm_gem_object_unreference(target_obj);
  2943. }
  2944. #if WATCH_BUF
  2945. if (0)
  2946. i915_gem_dump_object(obj, 128, __func__, ~0);
  2947. #endif
  2948. return 0;
  2949. }
  2950. /* Throttle our rendering by waiting until the ring has completed our requests
  2951. * emitted over 20 msec ago.
  2952. *
  2953. * Note that if we were to use the current jiffies each time around the loop,
  2954. * we wouldn't escape the function with any frames outstanding if the time to
  2955. * render a frame was over 20ms.
  2956. *
  2957. * This should get us reasonable parallelism between CPU and GPU but also
  2958. * relatively low latency when blocking on a particular request to finish.
  2959. */
  2960. static int
  2961. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2962. {
  2963. struct drm_i915_private *dev_priv = dev->dev_private;
  2964. struct drm_i915_file_private *file_priv = file->driver_priv;
  2965. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2966. struct drm_i915_gem_request *request;
  2967. struct intel_ring_buffer *ring = NULL;
  2968. u32 seqno = 0;
  2969. int ret;
  2970. spin_lock(&file_priv->mm.lock);
  2971. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2972. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2973. break;
  2974. ring = request->ring;
  2975. seqno = request->seqno;
  2976. }
  2977. spin_unlock(&file_priv->mm.lock);
  2978. if (seqno == 0)
  2979. return 0;
  2980. ret = 0;
  2981. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2982. /* And wait for the seqno passing without holding any locks and
  2983. * causing extra latency for others. This is safe as the irq
  2984. * generation is designed to be run atomically and so is
  2985. * lockless.
  2986. */
  2987. ring->user_irq_get(dev, ring);
  2988. ret = wait_event_interruptible(ring->irq_queue,
  2989. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  2990. || atomic_read(&dev_priv->mm.wedged));
  2991. ring->user_irq_put(dev, ring);
  2992. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2993. ret = -EIO;
  2994. }
  2995. if (ret == 0)
  2996. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2997. return ret;
  2998. }
  2999. static int
  3000. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  3001. uint32_t buffer_count,
  3002. struct drm_i915_gem_relocation_entry **relocs)
  3003. {
  3004. uint32_t reloc_count = 0, reloc_index = 0, i;
  3005. int ret;
  3006. *relocs = NULL;
  3007. for (i = 0; i < buffer_count; i++) {
  3008. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  3009. return -EINVAL;
  3010. reloc_count += exec_list[i].relocation_count;
  3011. }
  3012. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  3013. if (*relocs == NULL) {
  3014. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  3015. return -ENOMEM;
  3016. }
  3017. for (i = 0; i < buffer_count; i++) {
  3018. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3019. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3020. ret = copy_from_user(&(*relocs)[reloc_index],
  3021. user_relocs,
  3022. exec_list[i].relocation_count *
  3023. sizeof(**relocs));
  3024. if (ret != 0) {
  3025. drm_free_large(*relocs);
  3026. *relocs = NULL;
  3027. return -EFAULT;
  3028. }
  3029. reloc_index += exec_list[i].relocation_count;
  3030. }
  3031. return 0;
  3032. }
  3033. static int
  3034. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3035. uint32_t buffer_count,
  3036. struct drm_i915_gem_relocation_entry *relocs)
  3037. {
  3038. uint32_t reloc_count = 0, i;
  3039. int ret = 0;
  3040. if (relocs == NULL)
  3041. return 0;
  3042. for (i = 0; i < buffer_count; i++) {
  3043. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3044. int unwritten;
  3045. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3046. unwritten = copy_to_user(user_relocs,
  3047. &relocs[reloc_count],
  3048. exec_list[i].relocation_count *
  3049. sizeof(*relocs));
  3050. if (unwritten) {
  3051. ret = -EFAULT;
  3052. goto err;
  3053. }
  3054. reloc_count += exec_list[i].relocation_count;
  3055. }
  3056. err:
  3057. drm_free_large(relocs);
  3058. return ret;
  3059. }
  3060. static int
  3061. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3062. uint64_t exec_offset)
  3063. {
  3064. uint32_t exec_start, exec_len;
  3065. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3066. exec_len = (uint32_t) exec->batch_len;
  3067. if ((exec_start | exec_len) & 0x7)
  3068. return -EINVAL;
  3069. if (!exec_start)
  3070. return -EINVAL;
  3071. return 0;
  3072. }
  3073. static int
  3074. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3075. struct drm_gem_object **object_list,
  3076. int count)
  3077. {
  3078. drm_i915_private_t *dev_priv = dev->dev_private;
  3079. struct drm_i915_gem_object *obj_priv;
  3080. DEFINE_WAIT(wait);
  3081. int i, ret = 0;
  3082. for (;;) {
  3083. prepare_to_wait(&dev_priv->pending_flip_queue,
  3084. &wait, TASK_INTERRUPTIBLE);
  3085. for (i = 0; i < count; i++) {
  3086. obj_priv = to_intel_bo(object_list[i]);
  3087. if (atomic_read(&obj_priv->pending_flip) > 0)
  3088. break;
  3089. }
  3090. if (i == count)
  3091. break;
  3092. if (!signal_pending(current)) {
  3093. mutex_unlock(&dev->struct_mutex);
  3094. schedule();
  3095. mutex_lock(&dev->struct_mutex);
  3096. continue;
  3097. }
  3098. ret = -ERESTARTSYS;
  3099. break;
  3100. }
  3101. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3102. return ret;
  3103. }
  3104. static int
  3105. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3106. struct drm_file *file_priv,
  3107. struct drm_i915_gem_execbuffer2 *args,
  3108. struct drm_i915_gem_exec_object2 *exec_list)
  3109. {
  3110. drm_i915_private_t *dev_priv = dev->dev_private;
  3111. struct drm_gem_object **object_list = NULL;
  3112. struct drm_gem_object *batch_obj;
  3113. struct drm_i915_gem_object *obj_priv;
  3114. struct drm_clip_rect *cliprects = NULL;
  3115. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3116. struct drm_i915_gem_request *request = NULL;
  3117. int ret, ret2, i, pinned = 0;
  3118. uint64_t exec_offset;
  3119. uint32_t reloc_index;
  3120. int pin_tries, flips;
  3121. struct intel_ring_buffer *ring = NULL;
  3122. ret = i915_gem_check_is_wedged(dev);
  3123. if (ret)
  3124. return ret;
  3125. #if WATCH_EXEC
  3126. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3127. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3128. #endif
  3129. if (args->flags & I915_EXEC_BSD) {
  3130. if (!HAS_BSD(dev)) {
  3131. DRM_ERROR("execbuf with wrong flag\n");
  3132. return -EINVAL;
  3133. }
  3134. ring = &dev_priv->bsd_ring;
  3135. } else {
  3136. ring = &dev_priv->render_ring;
  3137. }
  3138. if (args->buffer_count < 1) {
  3139. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3140. return -EINVAL;
  3141. }
  3142. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3143. if (object_list == NULL) {
  3144. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3145. args->buffer_count);
  3146. ret = -ENOMEM;
  3147. goto pre_mutex_err;
  3148. }
  3149. if (args->num_cliprects != 0) {
  3150. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3151. GFP_KERNEL);
  3152. if (cliprects == NULL) {
  3153. ret = -ENOMEM;
  3154. goto pre_mutex_err;
  3155. }
  3156. ret = copy_from_user(cliprects,
  3157. (struct drm_clip_rect __user *)
  3158. (uintptr_t) args->cliprects_ptr,
  3159. sizeof(*cliprects) * args->num_cliprects);
  3160. if (ret != 0) {
  3161. DRM_ERROR("copy %d cliprects failed: %d\n",
  3162. args->num_cliprects, ret);
  3163. ret = -EFAULT;
  3164. goto pre_mutex_err;
  3165. }
  3166. }
  3167. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3168. if (request == NULL) {
  3169. ret = -ENOMEM;
  3170. goto pre_mutex_err;
  3171. }
  3172. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3173. &relocs);
  3174. if (ret != 0)
  3175. goto pre_mutex_err;
  3176. ret = i915_mutex_lock_interruptible(dev);
  3177. if (ret)
  3178. goto pre_mutex_err;
  3179. i915_verify_inactive(dev, __FILE__, __LINE__);
  3180. if (dev_priv->mm.suspended) {
  3181. mutex_unlock(&dev->struct_mutex);
  3182. ret = -EBUSY;
  3183. goto pre_mutex_err;
  3184. }
  3185. /* Look up object handles */
  3186. flips = 0;
  3187. for (i = 0; i < args->buffer_count; i++) {
  3188. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3189. exec_list[i].handle);
  3190. if (object_list[i] == NULL) {
  3191. DRM_ERROR("Invalid object handle %d at index %d\n",
  3192. exec_list[i].handle, i);
  3193. /* prevent error path from reading uninitialized data */
  3194. args->buffer_count = i + 1;
  3195. ret = -ENOENT;
  3196. goto err;
  3197. }
  3198. obj_priv = to_intel_bo(object_list[i]);
  3199. if (obj_priv->in_execbuffer) {
  3200. DRM_ERROR("Object %p appears more than once in object list\n",
  3201. object_list[i]);
  3202. /* prevent error path from reading uninitialized data */
  3203. args->buffer_count = i + 1;
  3204. ret = -EINVAL;
  3205. goto err;
  3206. }
  3207. obj_priv->in_execbuffer = true;
  3208. flips += atomic_read(&obj_priv->pending_flip);
  3209. }
  3210. if (flips > 0) {
  3211. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3212. args->buffer_count);
  3213. if (ret)
  3214. goto err;
  3215. }
  3216. /* Pin and relocate */
  3217. for (pin_tries = 0; ; pin_tries++) {
  3218. ret = 0;
  3219. reloc_index = 0;
  3220. for (i = 0; i < args->buffer_count; i++) {
  3221. object_list[i]->pending_read_domains = 0;
  3222. object_list[i]->pending_write_domain = 0;
  3223. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3224. file_priv,
  3225. &exec_list[i],
  3226. &relocs[reloc_index]);
  3227. if (ret)
  3228. break;
  3229. pinned = i + 1;
  3230. reloc_index += exec_list[i].relocation_count;
  3231. }
  3232. /* success */
  3233. if (ret == 0)
  3234. break;
  3235. /* error other than GTT full, or we've already tried again */
  3236. if (ret != -ENOSPC || pin_tries >= 1) {
  3237. if (ret != -ERESTARTSYS) {
  3238. unsigned long long total_size = 0;
  3239. int num_fences = 0;
  3240. for (i = 0; i < args->buffer_count; i++) {
  3241. obj_priv = to_intel_bo(object_list[i]);
  3242. total_size += object_list[i]->size;
  3243. num_fences +=
  3244. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3245. obj_priv->tiling_mode != I915_TILING_NONE;
  3246. }
  3247. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3248. pinned+1, args->buffer_count,
  3249. total_size, num_fences,
  3250. ret);
  3251. DRM_ERROR("%d objects [%d pinned], "
  3252. "%d object bytes [%d pinned], "
  3253. "%d/%d gtt bytes\n",
  3254. atomic_read(&dev->object_count),
  3255. atomic_read(&dev->pin_count),
  3256. atomic_read(&dev->object_memory),
  3257. atomic_read(&dev->pin_memory),
  3258. atomic_read(&dev->gtt_memory),
  3259. dev->gtt_total);
  3260. }
  3261. goto err;
  3262. }
  3263. /* unpin all of our buffers */
  3264. for (i = 0; i < pinned; i++)
  3265. i915_gem_object_unpin(object_list[i]);
  3266. pinned = 0;
  3267. /* evict everyone we can from the aperture */
  3268. ret = i915_gem_evict_everything(dev);
  3269. if (ret && ret != -ENOSPC)
  3270. goto err;
  3271. }
  3272. /* Set the pending read domains for the batch buffer to COMMAND */
  3273. batch_obj = object_list[args->buffer_count-1];
  3274. if (batch_obj->pending_write_domain) {
  3275. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3276. ret = -EINVAL;
  3277. goto err;
  3278. }
  3279. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3280. /* Sanity check the batch buffer, prior to moving objects */
  3281. exec_offset = exec_list[args->buffer_count - 1].offset;
  3282. ret = i915_gem_check_execbuffer (args, exec_offset);
  3283. if (ret != 0) {
  3284. DRM_ERROR("execbuf with invalid offset/length\n");
  3285. goto err;
  3286. }
  3287. i915_verify_inactive(dev, __FILE__, __LINE__);
  3288. /* Zero the global flush/invalidate flags. These
  3289. * will be modified as new domains are computed
  3290. * for each object
  3291. */
  3292. dev->invalidate_domains = 0;
  3293. dev->flush_domains = 0;
  3294. dev_priv->mm.flush_rings = 0;
  3295. for (i = 0; i < args->buffer_count; i++) {
  3296. struct drm_gem_object *obj = object_list[i];
  3297. /* Compute new gpu domains and update invalidate/flush */
  3298. i915_gem_object_set_to_gpu_domain(obj);
  3299. }
  3300. i915_verify_inactive(dev, __FILE__, __LINE__);
  3301. if (dev->invalidate_domains | dev->flush_domains) {
  3302. #if WATCH_EXEC
  3303. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3304. __func__,
  3305. dev->invalidate_domains,
  3306. dev->flush_domains);
  3307. #endif
  3308. i915_gem_flush(dev, file_priv,
  3309. dev->invalidate_domains,
  3310. dev->flush_domains,
  3311. dev_priv->mm.flush_rings);
  3312. }
  3313. for (i = 0; i < args->buffer_count; i++) {
  3314. struct drm_gem_object *obj = object_list[i];
  3315. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3316. uint32_t old_write_domain = obj->write_domain;
  3317. obj->write_domain = obj->pending_write_domain;
  3318. if (obj->write_domain)
  3319. list_move_tail(&obj_priv->gpu_write_list,
  3320. &dev_priv->mm.gpu_write_list);
  3321. else
  3322. list_del_init(&obj_priv->gpu_write_list);
  3323. trace_i915_gem_object_change_domain(obj,
  3324. obj->read_domains,
  3325. old_write_domain);
  3326. }
  3327. i915_verify_inactive(dev, __FILE__, __LINE__);
  3328. #if WATCH_COHERENCY
  3329. for (i = 0; i < args->buffer_count; i++) {
  3330. i915_gem_object_check_coherency(object_list[i],
  3331. exec_list[i].handle);
  3332. }
  3333. #endif
  3334. #if WATCH_EXEC
  3335. i915_gem_dump_object(batch_obj,
  3336. args->batch_len,
  3337. __func__,
  3338. ~0);
  3339. #endif
  3340. /* Exec the batchbuffer */
  3341. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3342. cliprects, exec_offset);
  3343. if (ret) {
  3344. DRM_ERROR("dispatch failed %d\n", ret);
  3345. goto err;
  3346. }
  3347. /*
  3348. * Ensure that the commands in the batch buffer are
  3349. * finished before the interrupt fires
  3350. */
  3351. i915_retire_commands(dev, ring);
  3352. i915_verify_inactive(dev, __FILE__, __LINE__);
  3353. for (i = 0; i < args->buffer_count; i++) {
  3354. struct drm_gem_object *obj = object_list[i];
  3355. obj_priv = to_intel_bo(obj);
  3356. i915_gem_object_move_to_active(obj, ring);
  3357. #if WATCH_LRU
  3358. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3359. #endif
  3360. }
  3361. i915_add_request(dev, file_priv, request, ring);
  3362. request = NULL;
  3363. #if WATCH_LRU
  3364. i915_dump_lru(dev, __func__);
  3365. #endif
  3366. i915_verify_inactive(dev, __FILE__, __LINE__);
  3367. err:
  3368. for (i = 0; i < pinned; i++)
  3369. i915_gem_object_unpin(object_list[i]);
  3370. for (i = 0; i < args->buffer_count; i++) {
  3371. if (object_list[i]) {
  3372. obj_priv = to_intel_bo(object_list[i]);
  3373. obj_priv->in_execbuffer = false;
  3374. }
  3375. drm_gem_object_unreference(object_list[i]);
  3376. }
  3377. mutex_unlock(&dev->struct_mutex);
  3378. pre_mutex_err:
  3379. /* Copy the updated relocations out regardless of current error
  3380. * state. Failure to update the relocs would mean that the next
  3381. * time userland calls execbuf, it would do so with presumed offset
  3382. * state that didn't match the actual object state.
  3383. */
  3384. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3385. relocs);
  3386. if (ret2 != 0) {
  3387. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3388. if (ret == 0)
  3389. ret = ret2;
  3390. }
  3391. drm_free_large(object_list);
  3392. kfree(cliprects);
  3393. kfree(request);
  3394. return ret;
  3395. }
  3396. /*
  3397. * Legacy execbuffer just creates an exec2 list from the original exec object
  3398. * list array and passes it to the real function.
  3399. */
  3400. int
  3401. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3402. struct drm_file *file_priv)
  3403. {
  3404. struct drm_i915_gem_execbuffer *args = data;
  3405. struct drm_i915_gem_execbuffer2 exec2;
  3406. struct drm_i915_gem_exec_object *exec_list = NULL;
  3407. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3408. int ret, i;
  3409. #if WATCH_EXEC
  3410. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3411. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3412. #endif
  3413. if (args->buffer_count < 1) {
  3414. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3415. return -EINVAL;
  3416. }
  3417. /* Copy in the exec list from userland */
  3418. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3419. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3420. if (exec_list == NULL || exec2_list == NULL) {
  3421. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3422. args->buffer_count);
  3423. drm_free_large(exec_list);
  3424. drm_free_large(exec2_list);
  3425. return -ENOMEM;
  3426. }
  3427. ret = copy_from_user(exec_list,
  3428. (struct drm_i915_relocation_entry __user *)
  3429. (uintptr_t) args->buffers_ptr,
  3430. sizeof(*exec_list) * args->buffer_count);
  3431. if (ret != 0) {
  3432. DRM_ERROR("copy %d exec entries failed %d\n",
  3433. args->buffer_count, ret);
  3434. drm_free_large(exec_list);
  3435. drm_free_large(exec2_list);
  3436. return -EFAULT;
  3437. }
  3438. for (i = 0; i < args->buffer_count; i++) {
  3439. exec2_list[i].handle = exec_list[i].handle;
  3440. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3441. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3442. exec2_list[i].alignment = exec_list[i].alignment;
  3443. exec2_list[i].offset = exec_list[i].offset;
  3444. if (INTEL_INFO(dev)->gen < 4)
  3445. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3446. else
  3447. exec2_list[i].flags = 0;
  3448. }
  3449. exec2.buffers_ptr = args->buffers_ptr;
  3450. exec2.buffer_count = args->buffer_count;
  3451. exec2.batch_start_offset = args->batch_start_offset;
  3452. exec2.batch_len = args->batch_len;
  3453. exec2.DR1 = args->DR1;
  3454. exec2.DR4 = args->DR4;
  3455. exec2.num_cliprects = args->num_cliprects;
  3456. exec2.cliprects_ptr = args->cliprects_ptr;
  3457. exec2.flags = I915_EXEC_RENDER;
  3458. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3459. if (!ret) {
  3460. /* Copy the new buffer offsets back to the user's exec list. */
  3461. for (i = 0; i < args->buffer_count; i++)
  3462. exec_list[i].offset = exec2_list[i].offset;
  3463. /* ... and back out to userspace */
  3464. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3465. (uintptr_t) args->buffers_ptr,
  3466. exec_list,
  3467. sizeof(*exec_list) * args->buffer_count);
  3468. if (ret) {
  3469. ret = -EFAULT;
  3470. DRM_ERROR("failed to copy %d exec entries "
  3471. "back to user (%d)\n",
  3472. args->buffer_count, ret);
  3473. }
  3474. }
  3475. drm_free_large(exec_list);
  3476. drm_free_large(exec2_list);
  3477. return ret;
  3478. }
  3479. int
  3480. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3481. struct drm_file *file_priv)
  3482. {
  3483. struct drm_i915_gem_execbuffer2 *args = data;
  3484. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3485. int ret;
  3486. #if WATCH_EXEC
  3487. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3488. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3489. #endif
  3490. if (args->buffer_count < 1) {
  3491. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3492. return -EINVAL;
  3493. }
  3494. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3495. if (exec2_list == NULL) {
  3496. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3497. args->buffer_count);
  3498. return -ENOMEM;
  3499. }
  3500. ret = copy_from_user(exec2_list,
  3501. (struct drm_i915_relocation_entry __user *)
  3502. (uintptr_t) args->buffers_ptr,
  3503. sizeof(*exec2_list) * args->buffer_count);
  3504. if (ret != 0) {
  3505. DRM_ERROR("copy %d exec entries failed %d\n",
  3506. args->buffer_count, ret);
  3507. drm_free_large(exec2_list);
  3508. return -EFAULT;
  3509. }
  3510. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3511. if (!ret) {
  3512. /* Copy the new buffer offsets back to the user's exec list. */
  3513. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3514. (uintptr_t) args->buffers_ptr,
  3515. exec2_list,
  3516. sizeof(*exec2_list) * args->buffer_count);
  3517. if (ret) {
  3518. ret = -EFAULT;
  3519. DRM_ERROR("failed to copy %d exec entries "
  3520. "back to user (%d)\n",
  3521. args->buffer_count, ret);
  3522. }
  3523. }
  3524. drm_free_large(exec2_list);
  3525. return ret;
  3526. }
  3527. int
  3528. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3529. {
  3530. struct drm_device *dev = obj->dev;
  3531. struct drm_i915_private *dev_priv = dev->dev_private;
  3532. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3533. int ret;
  3534. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3535. i915_verify_inactive(dev, __FILE__, __LINE__);
  3536. if (obj_priv->gtt_space != NULL) {
  3537. if (alignment == 0)
  3538. alignment = i915_gem_get_gtt_alignment(obj);
  3539. if (obj_priv->gtt_offset & (alignment - 1)) {
  3540. WARN(obj_priv->pin_count,
  3541. "bo is already pinned with incorrect alignment:"
  3542. " offset=%x, req.alignment=%x\n",
  3543. obj_priv->gtt_offset, alignment);
  3544. ret = i915_gem_object_unbind(obj);
  3545. if (ret)
  3546. return ret;
  3547. }
  3548. }
  3549. if (obj_priv->gtt_space == NULL) {
  3550. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3551. if (ret)
  3552. return ret;
  3553. }
  3554. obj_priv->pin_count++;
  3555. /* If the object is not active and not pending a flush,
  3556. * remove it from the inactive list
  3557. */
  3558. if (obj_priv->pin_count == 1) {
  3559. atomic_inc(&dev->pin_count);
  3560. atomic_add(obj->size, &dev->pin_memory);
  3561. if (!obj_priv->active)
  3562. list_move_tail(&obj_priv->list,
  3563. &dev_priv->mm.pinned_list);
  3564. }
  3565. i915_verify_inactive(dev, __FILE__, __LINE__);
  3566. return 0;
  3567. }
  3568. void
  3569. i915_gem_object_unpin(struct drm_gem_object *obj)
  3570. {
  3571. struct drm_device *dev = obj->dev;
  3572. drm_i915_private_t *dev_priv = dev->dev_private;
  3573. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3574. i915_verify_inactive(dev, __FILE__, __LINE__);
  3575. obj_priv->pin_count--;
  3576. BUG_ON(obj_priv->pin_count < 0);
  3577. BUG_ON(obj_priv->gtt_space == NULL);
  3578. /* If the object is no longer pinned, and is
  3579. * neither active nor being flushed, then stick it on
  3580. * the inactive list
  3581. */
  3582. if (obj_priv->pin_count == 0) {
  3583. if (!obj_priv->active)
  3584. list_move_tail(&obj_priv->list,
  3585. &dev_priv->mm.inactive_list);
  3586. atomic_dec(&dev->pin_count);
  3587. atomic_sub(obj->size, &dev->pin_memory);
  3588. }
  3589. i915_verify_inactive(dev, __FILE__, __LINE__);
  3590. }
  3591. int
  3592. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3593. struct drm_file *file_priv)
  3594. {
  3595. struct drm_i915_gem_pin *args = data;
  3596. struct drm_gem_object *obj;
  3597. struct drm_i915_gem_object *obj_priv;
  3598. int ret;
  3599. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3600. if (obj == NULL) {
  3601. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3602. args->handle);
  3603. return -ENOENT;
  3604. }
  3605. obj_priv = to_intel_bo(obj);
  3606. ret = i915_mutex_lock_interruptible(dev);
  3607. if (ret) {
  3608. drm_gem_object_unreference_unlocked(obj);
  3609. return ret;
  3610. }
  3611. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3612. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3613. drm_gem_object_unreference(obj);
  3614. mutex_unlock(&dev->struct_mutex);
  3615. return -EINVAL;
  3616. }
  3617. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3618. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3619. args->handle);
  3620. drm_gem_object_unreference(obj);
  3621. mutex_unlock(&dev->struct_mutex);
  3622. return -EINVAL;
  3623. }
  3624. obj_priv->user_pin_count++;
  3625. obj_priv->pin_filp = file_priv;
  3626. if (obj_priv->user_pin_count == 1) {
  3627. ret = i915_gem_object_pin(obj, args->alignment);
  3628. if (ret != 0) {
  3629. drm_gem_object_unreference(obj);
  3630. mutex_unlock(&dev->struct_mutex);
  3631. return ret;
  3632. }
  3633. }
  3634. /* XXX - flush the CPU caches for pinned objects
  3635. * as the X server doesn't manage domains yet
  3636. */
  3637. i915_gem_object_flush_cpu_write_domain(obj);
  3638. args->offset = obj_priv->gtt_offset;
  3639. drm_gem_object_unreference(obj);
  3640. mutex_unlock(&dev->struct_mutex);
  3641. return 0;
  3642. }
  3643. int
  3644. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3645. struct drm_file *file_priv)
  3646. {
  3647. struct drm_i915_gem_pin *args = data;
  3648. struct drm_gem_object *obj;
  3649. struct drm_i915_gem_object *obj_priv;
  3650. int ret;
  3651. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3652. if (obj == NULL) {
  3653. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3654. args->handle);
  3655. return -ENOENT;
  3656. }
  3657. obj_priv = to_intel_bo(obj);
  3658. ret = i915_mutex_lock_interruptible(dev);
  3659. if (ret) {
  3660. drm_gem_object_unreference_unlocked(obj);
  3661. return ret;
  3662. }
  3663. if (obj_priv->pin_filp != file_priv) {
  3664. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3665. args->handle);
  3666. drm_gem_object_unreference(obj);
  3667. mutex_unlock(&dev->struct_mutex);
  3668. return -EINVAL;
  3669. }
  3670. obj_priv->user_pin_count--;
  3671. if (obj_priv->user_pin_count == 0) {
  3672. obj_priv->pin_filp = NULL;
  3673. i915_gem_object_unpin(obj);
  3674. }
  3675. drm_gem_object_unreference(obj);
  3676. mutex_unlock(&dev->struct_mutex);
  3677. return 0;
  3678. }
  3679. int
  3680. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3681. struct drm_file *file_priv)
  3682. {
  3683. struct drm_i915_gem_busy *args = data;
  3684. struct drm_gem_object *obj;
  3685. struct drm_i915_gem_object *obj_priv;
  3686. int ret;
  3687. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3688. if (obj == NULL) {
  3689. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3690. args->handle);
  3691. return -ENOENT;
  3692. }
  3693. ret = i915_mutex_lock_interruptible(dev);
  3694. if (ret) {
  3695. drm_gem_object_unreference_unlocked(obj);
  3696. return ret;
  3697. }
  3698. /* Count all active objects as busy, even if they are currently not used
  3699. * by the gpu. Users of this interface expect objects to eventually
  3700. * become non-busy without any further actions, therefore emit any
  3701. * necessary flushes here.
  3702. */
  3703. obj_priv = to_intel_bo(obj);
  3704. args->busy = obj_priv->active;
  3705. if (args->busy) {
  3706. /* Unconditionally flush objects, even when the gpu still uses this
  3707. * object. Userspace calling this function indicates that it wants to
  3708. * use this buffer rather sooner than later, so issuing the required
  3709. * flush earlier is beneficial.
  3710. */
  3711. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3712. i915_gem_flush_ring(dev, file_priv,
  3713. obj_priv->ring,
  3714. 0, obj->write_domain);
  3715. /* Update the active list for the hardware's current position.
  3716. * Otherwise this only updates on a delayed timer or when irqs
  3717. * are actually unmasked, and our working set ends up being
  3718. * larger than required.
  3719. */
  3720. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3721. args->busy = obj_priv->active;
  3722. }
  3723. drm_gem_object_unreference(obj);
  3724. mutex_unlock(&dev->struct_mutex);
  3725. return 0;
  3726. }
  3727. int
  3728. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3729. struct drm_file *file_priv)
  3730. {
  3731. return i915_gem_ring_throttle(dev, file_priv);
  3732. }
  3733. int
  3734. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3735. struct drm_file *file_priv)
  3736. {
  3737. struct drm_i915_gem_madvise *args = data;
  3738. struct drm_gem_object *obj;
  3739. struct drm_i915_gem_object *obj_priv;
  3740. int ret;
  3741. switch (args->madv) {
  3742. case I915_MADV_DONTNEED:
  3743. case I915_MADV_WILLNEED:
  3744. break;
  3745. default:
  3746. return -EINVAL;
  3747. }
  3748. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3749. if (obj == NULL) {
  3750. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3751. args->handle);
  3752. return -ENOENT;
  3753. }
  3754. obj_priv = to_intel_bo(obj);
  3755. ret = i915_mutex_lock_interruptible(dev);
  3756. if (ret) {
  3757. drm_gem_object_unreference_unlocked(obj);
  3758. return ret;
  3759. }
  3760. if (obj_priv->pin_count) {
  3761. drm_gem_object_unreference(obj);
  3762. mutex_unlock(&dev->struct_mutex);
  3763. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3764. return -EINVAL;
  3765. }
  3766. if (obj_priv->madv != __I915_MADV_PURGED)
  3767. obj_priv->madv = args->madv;
  3768. /* if the object is no longer bound, discard its backing storage */
  3769. if (i915_gem_object_is_purgeable(obj_priv) &&
  3770. obj_priv->gtt_space == NULL)
  3771. i915_gem_object_truncate(obj);
  3772. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3773. drm_gem_object_unreference(obj);
  3774. mutex_unlock(&dev->struct_mutex);
  3775. return 0;
  3776. }
  3777. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3778. size_t size)
  3779. {
  3780. struct drm_i915_gem_object *obj;
  3781. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3782. if (obj == NULL)
  3783. return NULL;
  3784. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3785. kfree(obj);
  3786. return NULL;
  3787. }
  3788. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3789. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3790. obj->agp_type = AGP_USER_MEMORY;
  3791. obj->base.driver_private = NULL;
  3792. obj->fence_reg = I915_FENCE_REG_NONE;
  3793. INIT_LIST_HEAD(&obj->list);
  3794. INIT_LIST_HEAD(&obj->gpu_write_list);
  3795. obj->madv = I915_MADV_WILLNEED;
  3796. trace_i915_gem_object_create(&obj->base);
  3797. return &obj->base;
  3798. }
  3799. int i915_gem_init_object(struct drm_gem_object *obj)
  3800. {
  3801. BUG();
  3802. return 0;
  3803. }
  3804. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3805. {
  3806. struct drm_device *dev = obj->dev;
  3807. drm_i915_private_t *dev_priv = dev->dev_private;
  3808. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3809. int ret;
  3810. ret = i915_gem_object_unbind(obj);
  3811. if (ret == -ERESTARTSYS) {
  3812. list_move(&obj_priv->list,
  3813. &dev_priv->mm.deferred_free_list);
  3814. return;
  3815. }
  3816. if (obj_priv->mmap_offset)
  3817. i915_gem_free_mmap_offset(obj);
  3818. drm_gem_object_release(obj);
  3819. kfree(obj_priv->page_cpu_valid);
  3820. kfree(obj_priv->bit_17);
  3821. kfree(obj_priv);
  3822. }
  3823. void i915_gem_free_object(struct drm_gem_object *obj)
  3824. {
  3825. struct drm_device *dev = obj->dev;
  3826. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3827. trace_i915_gem_object_destroy(obj);
  3828. while (obj_priv->pin_count > 0)
  3829. i915_gem_object_unpin(obj);
  3830. if (obj_priv->phys_obj)
  3831. i915_gem_detach_phys_object(dev, obj);
  3832. i915_gem_free_object_tail(obj);
  3833. }
  3834. int
  3835. i915_gem_idle(struct drm_device *dev)
  3836. {
  3837. drm_i915_private_t *dev_priv = dev->dev_private;
  3838. int ret;
  3839. mutex_lock(&dev->struct_mutex);
  3840. if (dev_priv->mm.suspended ||
  3841. (dev_priv->render_ring.gem_object == NULL) ||
  3842. (HAS_BSD(dev) &&
  3843. dev_priv->bsd_ring.gem_object == NULL)) {
  3844. mutex_unlock(&dev->struct_mutex);
  3845. return 0;
  3846. }
  3847. ret = i915_gpu_idle(dev);
  3848. if (ret) {
  3849. mutex_unlock(&dev->struct_mutex);
  3850. return ret;
  3851. }
  3852. /* Under UMS, be paranoid and evict. */
  3853. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3854. ret = i915_gem_evict_inactive(dev);
  3855. if (ret) {
  3856. mutex_unlock(&dev->struct_mutex);
  3857. return ret;
  3858. }
  3859. }
  3860. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3861. * We need to replace this with a semaphore, or something.
  3862. * And not confound mm.suspended!
  3863. */
  3864. dev_priv->mm.suspended = 1;
  3865. del_timer_sync(&dev_priv->hangcheck_timer);
  3866. i915_kernel_lost_context(dev);
  3867. i915_gem_cleanup_ringbuffer(dev);
  3868. mutex_unlock(&dev->struct_mutex);
  3869. /* Cancel the retire work handler, which should be idle now. */
  3870. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3871. return 0;
  3872. }
  3873. /*
  3874. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3875. * over cache flushing.
  3876. */
  3877. static int
  3878. i915_gem_init_pipe_control(struct drm_device *dev)
  3879. {
  3880. drm_i915_private_t *dev_priv = dev->dev_private;
  3881. struct drm_gem_object *obj;
  3882. struct drm_i915_gem_object *obj_priv;
  3883. int ret;
  3884. obj = i915_gem_alloc_object(dev, 4096);
  3885. if (obj == NULL) {
  3886. DRM_ERROR("Failed to allocate seqno page\n");
  3887. ret = -ENOMEM;
  3888. goto err;
  3889. }
  3890. obj_priv = to_intel_bo(obj);
  3891. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3892. ret = i915_gem_object_pin(obj, 4096);
  3893. if (ret)
  3894. goto err_unref;
  3895. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3896. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3897. if (dev_priv->seqno_page == NULL)
  3898. goto err_unpin;
  3899. dev_priv->seqno_obj = obj;
  3900. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3901. return 0;
  3902. err_unpin:
  3903. i915_gem_object_unpin(obj);
  3904. err_unref:
  3905. drm_gem_object_unreference(obj);
  3906. err:
  3907. return ret;
  3908. }
  3909. static void
  3910. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3911. {
  3912. drm_i915_private_t *dev_priv = dev->dev_private;
  3913. struct drm_gem_object *obj;
  3914. struct drm_i915_gem_object *obj_priv;
  3915. obj = dev_priv->seqno_obj;
  3916. obj_priv = to_intel_bo(obj);
  3917. kunmap(obj_priv->pages[0]);
  3918. i915_gem_object_unpin(obj);
  3919. drm_gem_object_unreference(obj);
  3920. dev_priv->seqno_obj = NULL;
  3921. dev_priv->seqno_page = NULL;
  3922. }
  3923. int
  3924. i915_gem_init_ringbuffer(struct drm_device *dev)
  3925. {
  3926. drm_i915_private_t *dev_priv = dev->dev_private;
  3927. int ret;
  3928. if (HAS_PIPE_CONTROL(dev)) {
  3929. ret = i915_gem_init_pipe_control(dev);
  3930. if (ret)
  3931. return ret;
  3932. }
  3933. ret = intel_init_render_ring_buffer(dev);
  3934. if (ret)
  3935. goto cleanup_pipe_control;
  3936. if (HAS_BSD(dev)) {
  3937. ret = intel_init_bsd_ring_buffer(dev);
  3938. if (ret)
  3939. goto cleanup_render_ring;
  3940. }
  3941. dev_priv->next_seqno = 1;
  3942. return 0;
  3943. cleanup_render_ring:
  3944. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3945. cleanup_pipe_control:
  3946. if (HAS_PIPE_CONTROL(dev))
  3947. i915_gem_cleanup_pipe_control(dev);
  3948. return ret;
  3949. }
  3950. void
  3951. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3952. {
  3953. drm_i915_private_t *dev_priv = dev->dev_private;
  3954. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3955. if (HAS_BSD(dev))
  3956. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3957. if (HAS_PIPE_CONTROL(dev))
  3958. i915_gem_cleanup_pipe_control(dev);
  3959. }
  3960. int
  3961. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3962. struct drm_file *file_priv)
  3963. {
  3964. drm_i915_private_t *dev_priv = dev->dev_private;
  3965. int ret;
  3966. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3967. return 0;
  3968. if (atomic_read(&dev_priv->mm.wedged)) {
  3969. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3970. atomic_set(&dev_priv->mm.wedged, 0);
  3971. }
  3972. mutex_lock(&dev->struct_mutex);
  3973. dev_priv->mm.suspended = 0;
  3974. ret = i915_gem_init_ringbuffer(dev);
  3975. if (ret != 0) {
  3976. mutex_unlock(&dev->struct_mutex);
  3977. return ret;
  3978. }
  3979. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3980. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3981. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3982. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3983. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3984. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3985. mutex_unlock(&dev->struct_mutex);
  3986. ret = drm_irq_install(dev);
  3987. if (ret)
  3988. goto cleanup_ringbuffer;
  3989. return 0;
  3990. cleanup_ringbuffer:
  3991. mutex_lock(&dev->struct_mutex);
  3992. i915_gem_cleanup_ringbuffer(dev);
  3993. dev_priv->mm.suspended = 1;
  3994. mutex_unlock(&dev->struct_mutex);
  3995. return ret;
  3996. }
  3997. int
  3998. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3999. struct drm_file *file_priv)
  4000. {
  4001. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4002. return 0;
  4003. drm_irq_uninstall(dev);
  4004. return i915_gem_idle(dev);
  4005. }
  4006. void
  4007. i915_gem_lastclose(struct drm_device *dev)
  4008. {
  4009. int ret;
  4010. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4011. return;
  4012. ret = i915_gem_idle(dev);
  4013. if (ret)
  4014. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4015. }
  4016. void
  4017. i915_gem_load(struct drm_device *dev)
  4018. {
  4019. int i;
  4020. drm_i915_private_t *dev_priv = dev->dev_private;
  4021. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4024. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4025. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4026. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4027. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  4028. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  4029. if (HAS_BSD(dev)) {
  4030. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  4031. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  4032. }
  4033. for (i = 0; i < 16; i++)
  4034. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4035. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4036. i915_gem_retire_work_handler);
  4037. init_completion(&dev_priv->error_completion);
  4038. spin_lock(&shrink_list_lock);
  4039. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4040. spin_unlock(&shrink_list_lock);
  4041. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4042. if (IS_GEN3(dev)) {
  4043. u32 tmp = I915_READ(MI_ARB_STATE);
  4044. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4045. /* arb state is a masked write, so set bit + bit in mask */
  4046. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4047. I915_WRITE(MI_ARB_STATE, tmp);
  4048. }
  4049. }
  4050. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4051. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4052. dev_priv->fence_reg_start = 3;
  4053. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4054. dev_priv->num_fence_regs = 16;
  4055. else
  4056. dev_priv->num_fence_regs = 8;
  4057. /* Initialize fence registers to zero */
  4058. switch (INTEL_INFO(dev)->gen) {
  4059. case 6:
  4060. for (i = 0; i < 16; i++)
  4061. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4062. break;
  4063. case 5:
  4064. case 4:
  4065. for (i = 0; i < 16; i++)
  4066. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4067. break;
  4068. case 3:
  4069. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4070. for (i = 0; i < 8; i++)
  4071. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4072. case 2:
  4073. for (i = 0; i < 8; i++)
  4074. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4075. break;
  4076. }
  4077. i915_gem_detect_bit_6_swizzle(dev);
  4078. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4079. }
  4080. /*
  4081. * Create a physically contiguous memory object for this object
  4082. * e.g. for cursor + overlay regs
  4083. */
  4084. static int i915_gem_init_phys_object(struct drm_device *dev,
  4085. int id, int size, int align)
  4086. {
  4087. drm_i915_private_t *dev_priv = dev->dev_private;
  4088. struct drm_i915_gem_phys_object *phys_obj;
  4089. int ret;
  4090. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4091. return 0;
  4092. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4093. if (!phys_obj)
  4094. return -ENOMEM;
  4095. phys_obj->id = id;
  4096. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4097. if (!phys_obj->handle) {
  4098. ret = -ENOMEM;
  4099. goto kfree_obj;
  4100. }
  4101. #ifdef CONFIG_X86
  4102. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4103. #endif
  4104. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4105. return 0;
  4106. kfree_obj:
  4107. kfree(phys_obj);
  4108. return ret;
  4109. }
  4110. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4111. {
  4112. drm_i915_private_t *dev_priv = dev->dev_private;
  4113. struct drm_i915_gem_phys_object *phys_obj;
  4114. if (!dev_priv->mm.phys_objs[id - 1])
  4115. return;
  4116. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4117. if (phys_obj->cur_obj) {
  4118. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4119. }
  4120. #ifdef CONFIG_X86
  4121. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4122. #endif
  4123. drm_pci_free(dev, phys_obj->handle);
  4124. kfree(phys_obj);
  4125. dev_priv->mm.phys_objs[id - 1] = NULL;
  4126. }
  4127. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4128. {
  4129. int i;
  4130. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4131. i915_gem_free_phys_object(dev, i);
  4132. }
  4133. void i915_gem_detach_phys_object(struct drm_device *dev,
  4134. struct drm_gem_object *obj)
  4135. {
  4136. struct drm_i915_gem_object *obj_priv;
  4137. int i;
  4138. int ret;
  4139. int page_count;
  4140. obj_priv = to_intel_bo(obj);
  4141. if (!obj_priv->phys_obj)
  4142. return;
  4143. ret = i915_gem_object_get_pages(obj, 0);
  4144. if (ret)
  4145. goto out;
  4146. page_count = obj->size / PAGE_SIZE;
  4147. for (i = 0; i < page_count; i++) {
  4148. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4149. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4150. memcpy(dst, src, PAGE_SIZE);
  4151. kunmap_atomic(dst, KM_USER0);
  4152. }
  4153. drm_clflush_pages(obj_priv->pages, page_count);
  4154. drm_agp_chipset_flush(dev);
  4155. i915_gem_object_put_pages(obj);
  4156. out:
  4157. obj_priv->phys_obj->cur_obj = NULL;
  4158. obj_priv->phys_obj = NULL;
  4159. }
  4160. int
  4161. i915_gem_attach_phys_object(struct drm_device *dev,
  4162. struct drm_gem_object *obj,
  4163. int id,
  4164. int align)
  4165. {
  4166. drm_i915_private_t *dev_priv = dev->dev_private;
  4167. struct drm_i915_gem_object *obj_priv;
  4168. int ret = 0;
  4169. int page_count;
  4170. int i;
  4171. if (id > I915_MAX_PHYS_OBJECT)
  4172. return -EINVAL;
  4173. obj_priv = to_intel_bo(obj);
  4174. if (obj_priv->phys_obj) {
  4175. if (obj_priv->phys_obj->id == id)
  4176. return 0;
  4177. i915_gem_detach_phys_object(dev, obj);
  4178. }
  4179. /* create a new object */
  4180. if (!dev_priv->mm.phys_objs[id - 1]) {
  4181. ret = i915_gem_init_phys_object(dev, id,
  4182. obj->size, align);
  4183. if (ret) {
  4184. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4185. goto out;
  4186. }
  4187. }
  4188. /* bind to the object */
  4189. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4190. obj_priv->phys_obj->cur_obj = obj;
  4191. ret = i915_gem_object_get_pages(obj, 0);
  4192. if (ret) {
  4193. DRM_ERROR("failed to get page list\n");
  4194. goto out;
  4195. }
  4196. page_count = obj->size / PAGE_SIZE;
  4197. for (i = 0; i < page_count; i++) {
  4198. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4199. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4200. memcpy(dst, src, PAGE_SIZE);
  4201. kunmap_atomic(src, KM_USER0);
  4202. }
  4203. i915_gem_object_put_pages(obj);
  4204. return 0;
  4205. out:
  4206. return ret;
  4207. }
  4208. static int
  4209. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4210. struct drm_i915_gem_pwrite *args,
  4211. struct drm_file *file_priv)
  4212. {
  4213. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4214. void *obj_addr;
  4215. int ret;
  4216. char __user *user_data;
  4217. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4218. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4219. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4220. ret = copy_from_user(obj_addr, user_data, args->size);
  4221. if (ret)
  4222. return -EFAULT;
  4223. drm_agp_chipset_flush(dev);
  4224. return 0;
  4225. }
  4226. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4227. {
  4228. struct drm_i915_file_private *file_priv = file->driver_priv;
  4229. /* Clean up our request list when the client is going away, so that
  4230. * later retire_requests won't dereference our soon-to-be-gone
  4231. * file_priv.
  4232. */
  4233. spin_lock(&file_priv->mm.lock);
  4234. while (!list_empty(&file_priv->mm.request_list)) {
  4235. struct drm_i915_gem_request *request;
  4236. request = list_first_entry(&file_priv->mm.request_list,
  4237. struct drm_i915_gem_request,
  4238. client_list);
  4239. list_del(&request->client_list);
  4240. request->file_priv = NULL;
  4241. }
  4242. spin_unlock(&file_priv->mm.lock);
  4243. }
  4244. static int
  4245. i915_gpu_is_active(struct drm_device *dev)
  4246. {
  4247. drm_i915_private_t *dev_priv = dev->dev_private;
  4248. int lists_empty;
  4249. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4250. list_empty(&dev_priv->render_ring.active_list);
  4251. if (HAS_BSD(dev))
  4252. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4253. return !lists_empty;
  4254. }
  4255. static int
  4256. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4257. {
  4258. drm_i915_private_t *dev_priv, *next_dev;
  4259. struct drm_i915_gem_object *obj_priv, *next_obj;
  4260. int cnt = 0;
  4261. int would_deadlock = 1;
  4262. /* "fast-path" to count number of available objects */
  4263. if (nr_to_scan == 0) {
  4264. spin_lock(&shrink_list_lock);
  4265. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4266. struct drm_device *dev = dev_priv->dev;
  4267. if (mutex_trylock(&dev->struct_mutex)) {
  4268. list_for_each_entry(obj_priv,
  4269. &dev_priv->mm.inactive_list,
  4270. list)
  4271. cnt++;
  4272. mutex_unlock(&dev->struct_mutex);
  4273. }
  4274. }
  4275. spin_unlock(&shrink_list_lock);
  4276. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4277. }
  4278. spin_lock(&shrink_list_lock);
  4279. rescan:
  4280. /* first scan for clean buffers */
  4281. list_for_each_entry_safe(dev_priv, next_dev,
  4282. &shrink_list, mm.shrink_list) {
  4283. struct drm_device *dev = dev_priv->dev;
  4284. if (! mutex_trylock(&dev->struct_mutex))
  4285. continue;
  4286. spin_unlock(&shrink_list_lock);
  4287. i915_gem_retire_requests(dev);
  4288. list_for_each_entry_safe(obj_priv, next_obj,
  4289. &dev_priv->mm.inactive_list,
  4290. list) {
  4291. if (i915_gem_object_is_purgeable(obj_priv)) {
  4292. i915_gem_object_unbind(&obj_priv->base);
  4293. if (--nr_to_scan <= 0)
  4294. break;
  4295. }
  4296. }
  4297. spin_lock(&shrink_list_lock);
  4298. mutex_unlock(&dev->struct_mutex);
  4299. would_deadlock = 0;
  4300. if (nr_to_scan <= 0)
  4301. break;
  4302. }
  4303. /* second pass, evict/count anything still on the inactive list */
  4304. list_for_each_entry_safe(dev_priv, next_dev,
  4305. &shrink_list, mm.shrink_list) {
  4306. struct drm_device *dev = dev_priv->dev;
  4307. if (! mutex_trylock(&dev->struct_mutex))
  4308. continue;
  4309. spin_unlock(&shrink_list_lock);
  4310. list_for_each_entry_safe(obj_priv, next_obj,
  4311. &dev_priv->mm.inactive_list,
  4312. list) {
  4313. if (nr_to_scan > 0) {
  4314. i915_gem_object_unbind(&obj_priv->base);
  4315. nr_to_scan--;
  4316. } else
  4317. cnt++;
  4318. }
  4319. spin_lock(&shrink_list_lock);
  4320. mutex_unlock(&dev->struct_mutex);
  4321. would_deadlock = 0;
  4322. }
  4323. if (nr_to_scan) {
  4324. int active = 0;
  4325. /*
  4326. * We are desperate for pages, so as a last resort, wait
  4327. * for the GPU to finish and discard whatever we can.
  4328. * This has a dramatic impact to reduce the number of
  4329. * OOM-killer events whilst running the GPU aggressively.
  4330. */
  4331. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4332. struct drm_device *dev = dev_priv->dev;
  4333. if (!mutex_trylock(&dev->struct_mutex))
  4334. continue;
  4335. spin_unlock(&shrink_list_lock);
  4336. if (i915_gpu_is_active(dev)) {
  4337. i915_gpu_idle(dev);
  4338. active++;
  4339. }
  4340. spin_lock(&shrink_list_lock);
  4341. mutex_unlock(&dev->struct_mutex);
  4342. }
  4343. if (active)
  4344. goto rescan;
  4345. }
  4346. spin_unlock(&shrink_list_lock);
  4347. if (would_deadlock)
  4348. return -1;
  4349. else if (cnt > 0)
  4350. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4351. else
  4352. return 0;
  4353. }
  4354. static struct shrinker shrinker = {
  4355. .shrink = i915_gem_shrink,
  4356. .seeks = DEFAULT_SEEKS,
  4357. };
  4358. __init void
  4359. i915_gem_shrinker_init(void)
  4360. {
  4361. register_shrinker(&shrinker);
  4362. }
  4363. __exit void
  4364. i915_gem_shrinker_exit(void)
  4365. {
  4366. unregister_shrinker(&shrinker);
  4367. }