page_alloc.c 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/oom.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/stop_machine.h>
  40. #include <linux/sort.h>
  41. #include <linux/pfn.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/fault-inject.h>
  44. #include <linux/page-isolation.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include "internal.h"
  48. /*
  49. * Array of node states.
  50. */
  51. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  52. [N_POSSIBLE] = NODE_MASK_ALL,
  53. [N_ONLINE] = { { [0] = 1UL } },
  54. #ifndef CONFIG_NUMA
  55. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  56. #ifdef CONFIG_HIGHMEM
  57. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  58. #endif
  59. [N_CPU] = { { [0] = 1UL } },
  60. #endif /* NUMA */
  61. };
  62. EXPORT_SYMBOL(node_states);
  63. unsigned long totalram_pages __read_mostly;
  64. unsigned long totalreserve_pages __read_mostly;
  65. long nr_swap_pages;
  66. int percpu_pagelist_fraction;
  67. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  68. int pageblock_order __read_mostly;
  69. #endif
  70. static void __free_pages_ok(struct page *page, unsigned int order);
  71. /*
  72. * results with 256, 32 in the lowmem_reserve sysctl:
  73. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  74. * 1G machine -> (16M dma, 784M normal, 224M high)
  75. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  76. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  77. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  78. *
  79. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  80. * don't need any ZONE_NORMAL reservation
  81. */
  82. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  83. #ifdef CONFIG_ZONE_DMA
  84. 256,
  85. #endif
  86. #ifdef CONFIG_ZONE_DMA32
  87. 256,
  88. #endif
  89. #ifdef CONFIG_HIGHMEM
  90. 32,
  91. #endif
  92. 32,
  93. };
  94. EXPORT_SYMBOL(totalram_pages);
  95. static char * const zone_names[MAX_NR_ZONES] = {
  96. #ifdef CONFIG_ZONE_DMA
  97. "DMA",
  98. #endif
  99. #ifdef CONFIG_ZONE_DMA32
  100. "DMA32",
  101. #endif
  102. "Normal",
  103. #ifdef CONFIG_HIGHMEM
  104. "HighMem",
  105. #endif
  106. "Movable",
  107. };
  108. int min_free_kbytes = 1024;
  109. unsigned long __meminitdata nr_kernel_pages;
  110. unsigned long __meminitdata nr_all_pages;
  111. static unsigned long __meminitdata dma_reserve;
  112. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  113. /*
  114. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  115. * ranges of memory (RAM) that may be registered with add_active_range().
  116. * Ranges passed to add_active_range() will be merged if possible
  117. * so the number of times add_active_range() can be called is
  118. * related to the number of nodes and the number of holes
  119. */
  120. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  121. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  122. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  123. #else
  124. #if MAX_NUMNODES >= 32
  125. /* If there can be many nodes, allow up to 50 holes per node */
  126. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  127. #else
  128. /* By default, allow up to 256 distinct regions */
  129. #define MAX_ACTIVE_REGIONS 256
  130. #endif
  131. #endif
  132. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  133. static int __meminitdata nr_nodemap_entries;
  134. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  135. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  136. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  137. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  138. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  139. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  140. unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. set_pageblock_flags_group(page, (unsigned long)migratetype,
  155. PB_migrate, PB_migrate_end);
  156. }
  157. #ifdef CONFIG_DEBUG_VM
  158. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  159. {
  160. int ret = 0;
  161. unsigned seq;
  162. unsigned long pfn = page_to_pfn(page);
  163. do {
  164. seq = zone_span_seqbegin(zone);
  165. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  166. ret = 1;
  167. else if (pfn < zone->zone_start_pfn)
  168. ret = 1;
  169. } while (zone_span_seqretry(zone, seq));
  170. return ret;
  171. }
  172. static int page_is_consistent(struct zone *zone, struct page *page)
  173. {
  174. if (!pfn_valid_within(page_to_pfn(page)))
  175. return 0;
  176. if (zone != page_zone(page))
  177. return 0;
  178. return 1;
  179. }
  180. /*
  181. * Temporary debugging check for pages not lying within a given zone.
  182. */
  183. static int bad_range(struct zone *zone, struct page *page)
  184. {
  185. if (page_outside_zone_boundaries(zone, page))
  186. return 1;
  187. if (!page_is_consistent(zone, page))
  188. return 1;
  189. return 0;
  190. }
  191. #else
  192. static inline int bad_range(struct zone *zone, struct page *page)
  193. {
  194. return 0;
  195. }
  196. #endif
  197. static void bad_page(struct page *page)
  198. {
  199. printk(KERN_EMERG "Bad page state in process '%s'\n"
  200. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  201. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  202. KERN_EMERG "Backtrace:\n",
  203. current->comm, page, (int)(2*sizeof(unsigned long)),
  204. (unsigned long)page->flags, page->mapping,
  205. page_mapcount(page), page_count(page));
  206. dump_stack();
  207. page->flags &= ~(1 << PG_lru |
  208. 1 << PG_private |
  209. 1 << PG_locked |
  210. 1 << PG_active |
  211. 1 << PG_dirty |
  212. 1 << PG_reclaim |
  213. 1 << PG_slab |
  214. 1 << PG_swapcache |
  215. 1 << PG_writeback |
  216. 1 << PG_buddy );
  217. set_page_count(page, 0);
  218. reset_page_mapcount(page);
  219. page->mapping = NULL;
  220. add_taint(TAINT_BAD_PAGE);
  221. }
  222. /*
  223. * Higher-order pages are called "compound pages". They are structured thusly:
  224. *
  225. * The first PAGE_SIZE page is called the "head page".
  226. *
  227. * The remaining PAGE_SIZE pages are called "tail pages".
  228. *
  229. * All pages have PG_compound set. All pages have their ->private pointing at
  230. * the head page (even the head page has this).
  231. *
  232. * The first tail page's ->lru.next holds the address of the compound page's
  233. * put_page() function. Its ->lru.prev holds the order of allocation.
  234. * This usage means that zero-order pages may not be compound.
  235. */
  236. static void free_compound_page(struct page *page)
  237. {
  238. __free_pages_ok(page, compound_order(page));
  239. }
  240. static void prep_compound_page(struct page *page, unsigned long order)
  241. {
  242. int i;
  243. int nr_pages = 1 << order;
  244. set_compound_page_dtor(page, free_compound_page);
  245. set_compound_order(page, order);
  246. __SetPageHead(page);
  247. for (i = 1; i < nr_pages; i++) {
  248. struct page *p = page + i;
  249. __SetPageTail(p);
  250. p->first_page = page;
  251. }
  252. }
  253. static void destroy_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. if (unlikely(compound_order(page) != order))
  258. bad_page(page);
  259. if (unlikely(!PageHead(page)))
  260. bad_page(page);
  261. __ClearPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. if (unlikely(!PageTail(p) |
  265. (p->first_page != page)))
  266. bad_page(page);
  267. __ClearPageTail(p);
  268. }
  269. }
  270. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  271. {
  272. int i;
  273. /*
  274. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  275. * and __GFP_HIGHMEM from hard or soft interrupt context.
  276. */
  277. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  278. for (i = 0; i < (1 << order); i++)
  279. clear_highpage(page + i);
  280. }
  281. static inline void set_page_order(struct page *page, int order)
  282. {
  283. set_page_private(page, order);
  284. __SetPageBuddy(page);
  285. }
  286. static inline void rmv_page_order(struct page *page)
  287. {
  288. __ClearPageBuddy(page);
  289. set_page_private(page, 0);
  290. }
  291. /*
  292. * Locate the struct page for both the matching buddy in our
  293. * pair (buddy1) and the combined O(n+1) page they form (page).
  294. *
  295. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  296. * the following equation:
  297. * B2 = B1 ^ (1 << O)
  298. * For example, if the starting buddy (buddy2) is #8 its order
  299. * 1 buddy is #10:
  300. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  301. *
  302. * 2) Any buddy B will have an order O+1 parent P which
  303. * satisfies the following equation:
  304. * P = B & ~(1 << O)
  305. *
  306. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  307. */
  308. static inline struct page *
  309. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  310. {
  311. unsigned long buddy_idx = page_idx ^ (1 << order);
  312. return page + (buddy_idx - page_idx);
  313. }
  314. static inline unsigned long
  315. __find_combined_index(unsigned long page_idx, unsigned int order)
  316. {
  317. return (page_idx & ~(1 << order));
  318. }
  319. /*
  320. * This function checks whether a page is free && is the buddy
  321. * we can do coalesce a page and its buddy if
  322. * (a) the buddy is not in a hole &&
  323. * (b) the buddy is in the buddy system &&
  324. * (c) a page and its buddy have the same order &&
  325. * (d) a page and its buddy are in the same zone.
  326. *
  327. * For recording whether a page is in the buddy system, we use PG_buddy.
  328. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  329. *
  330. * For recording page's order, we use page_private(page).
  331. */
  332. static inline int page_is_buddy(struct page *page, struct page *buddy,
  333. int order)
  334. {
  335. if (!pfn_valid_within(page_to_pfn(buddy)))
  336. return 0;
  337. if (page_zone_id(page) != page_zone_id(buddy))
  338. return 0;
  339. if (PageBuddy(buddy) && page_order(buddy) == order) {
  340. BUG_ON(page_count(buddy) != 0);
  341. return 1;
  342. }
  343. return 0;
  344. }
  345. /*
  346. * Freeing function for a buddy system allocator.
  347. *
  348. * The concept of a buddy system is to maintain direct-mapped table
  349. * (containing bit values) for memory blocks of various "orders".
  350. * The bottom level table contains the map for the smallest allocatable
  351. * units of memory (here, pages), and each level above it describes
  352. * pairs of units from the levels below, hence, "buddies".
  353. * At a high level, all that happens here is marking the table entry
  354. * at the bottom level available, and propagating the changes upward
  355. * as necessary, plus some accounting needed to play nicely with other
  356. * parts of the VM system.
  357. * At each level, we keep a list of pages, which are heads of continuous
  358. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  359. * order is recorded in page_private(page) field.
  360. * So when we are allocating or freeing one, we can derive the state of the
  361. * other. That is, if we allocate a small block, and both were
  362. * free, the remainder of the region must be split into blocks.
  363. * If a block is freed, and its buddy is also free, then this
  364. * triggers coalescing into a block of larger size.
  365. *
  366. * -- wli
  367. */
  368. static inline void __free_one_page(struct page *page,
  369. struct zone *zone, unsigned int order)
  370. {
  371. unsigned long page_idx;
  372. int order_size = 1 << order;
  373. int migratetype = get_pageblock_migratetype(page);
  374. if (unlikely(PageCompound(page)))
  375. destroy_compound_page(page, order);
  376. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  377. VM_BUG_ON(page_idx & (order_size - 1));
  378. VM_BUG_ON(bad_range(zone, page));
  379. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  380. while (order < MAX_ORDER-1) {
  381. unsigned long combined_idx;
  382. struct page *buddy;
  383. buddy = __page_find_buddy(page, page_idx, order);
  384. if (!page_is_buddy(page, buddy, order))
  385. break; /* Move the buddy up one level. */
  386. list_del(&buddy->lru);
  387. zone->free_area[order].nr_free--;
  388. rmv_page_order(buddy);
  389. combined_idx = __find_combined_index(page_idx, order);
  390. page = page + (combined_idx - page_idx);
  391. page_idx = combined_idx;
  392. order++;
  393. }
  394. set_page_order(page, order);
  395. list_add(&page->lru,
  396. &zone->free_area[order].free_list[migratetype]);
  397. zone->free_area[order].nr_free++;
  398. }
  399. static inline int free_pages_check(struct page *page)
  400. {
  401. if (unlikely(page_mapcount(page) |
  402. (page->mapping != NULL) |
  403. (page_count(page) != 0) |
  404. (page->flags & (
  405. 1 << PG_lru |
  406. 1 << PG_private |
  407. 1 << PG_locked |
  408. 1 << PG_active |
  409. 1 << PG_slab |
  410. 1 << PG_swapcache |
  411. 1 << PG_writeback |
  412. 1 << PG_reserved |
  413. 1 << PG_buddy ))))
  414. bad_page(page);
  415. if (PageDirty(page))
  416. __ClearPageDirty(page);
  417. /*
  418. * For now, we report if PG_reserved was found set, but do not
  419. * clear it, and do not free the page. But we shall soon need
  420. * to do more, for when the ZERO_PAGE count wraps negative.
  421. */
  422. return PageReserved(page);
  423. }
  424. /*
  425. * Frees a list of pages.
  426. * Assumes all pages on list are in same zone, and of same order.
  427. * count is the number of pages to free.
  428. *
  429. * If the zone was previously in an "all pages pinned" state then look to
  430. * see if this freeing clears that state.
  431. *
  432. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  433. * pinned" detection logic.
  434. */
  435. static void free_pages_bulk(struct zone *zone, int count,
  436. struct list_head *list, int order)
  437. {
  438. spin_lock(&zone->lock);
  439. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  440. zone->pages_scanned = 0;
  441. while (count--) {
  442. struct page *page;
  443. VM_BUG_ON(list_empty(list));
  444. page = list_entry(list->prev, struct page, lru);
  445. /* have to delete it as __free_one_page list manipulates */
  446. list_del(&page->lru);
  447. __free_one_page(page, zone, order);
  448. }
  449. spin_unlock(&zone->lock);
  450. }
  451. static void free_one_page(struct zone *zone, struct page *page, int order)
  452. {
  453. spin_lock(&zone->lock);
  454. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  455. zone->pages_scanned = 0;
  456. __free_one_page(page, zone, order);
  457. spin_unlock(&zone->lock);
  458. }
  459. static void __free_pages_ok(struct page *page, unsigned int order)
  460. {
  461. unsigned long flags;
  462. int i;
  463. int reserved = 0;
  464. for (i = 0 ; i < (1 << order) ; ++i)
  465. reserved += free_pages_check(page + i);
  466. if (reserved)
  467. return;
  468. if (!PageHighMem(page))
  469. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  470. arch_free_page(page, order);
  471. kernel_map_pages(page, 1 << order, 0);
  472. local_irq_save(flags);
  473. __count_vm_events(PGFREE, 1 << order);
  474. free_one_page(page_zone(page), page, order);
  475. local_irq_restore(flags);
  476. }
  477. /*
  478. * permit the bootmem allocator to evade page validation on high-order frees
  479. */
  480. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  481. {
  482. if (order == 0) {
  483. __ClearPageReserved(page);
  484. set_page_count(page, 0);
  485. set_page_refcounted(page);
  486. __free_page(page);
  487. } else {
  488. int loop;
  489. prefetchw(page);
  490. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  491. struct page *p = &page[loop];
  492. if (loop + 1 < BITS_PER_LONG)
  493. prefetchw(p + 1);
  494. __ClearPageReserved(p);
  495. set_page_count(p, 0);
  496. }
  497. set_page_refcounted(page);
  498. __free_pages(page, order);
  499. }
  500. }
  501. /*
  502. * The order of subdivision here is critical for the IO subsystem.
  503. * Please do not alter this order without good reasons and regression
  504. * testing. Specifically, as large blocks of memory are subdivided,
  505. * the order in which smaller blocks are delivered depends on the order
  506. * they're subdivided in this function. This is the primary factor
  507. * influencing the order in which pages are delivered to the IO
  508. * subsystem according to empirical testing, and this is also justified
  509. * by considering the behavior of a buddy system containing a single
  510. * large block of memory acted on by a series of small allocations.
  511. * This behavior is a critical factor in sglist merging's success.
  512. *
  513. * -- wli
  514. */
  515. static inline void expand(struct zone *zone, struct page *page,
  516. int low, int high, struct free_area *area,
  517. int migratetype)
  518. {
  519. unsigned long size = 1 << high;
  520. while (high > low) {
  521. area--;
  522. high--;
  523. size >>= 1;
  524. VM_BUG_ON(bad_range(zone, &page[size]));
  525. list_add(&page[size].lru, &area->free_list[migratetype]);
  526. area->nr_free++;
  527. set_page_order(&page[size], high);
  528. }
  529. }
  530. /*
  531. * This page is about to be returned from the page allocator
  532. */
  533. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  534. {
  535. if (unlikely(page_mapcount(page) |
  536. (page->mapping != NULL) |
  537. (page_count(page) != 0) |
  538. (page->flags & (
  539. 1 << PG_lru |
  540. 1 << PG_private |
  541. 1 << PG_locked |
  542. 1 << PG_active |
  543. 1 << PG_dirty |
  544. 1 << PG_slab |
  545. 1 << PG_swapcache |
  546. 1 << PG_writeback |
  547. 1 << PG_reserved |
  548. 1 << PG_buddy ))))
  549. bad_page(page);
  550. /*
  551. * For now, we report if PG_reserved was found set, but do not
  552. * clear it, and do not allocate the page: as a safety net.
  553. */
  554. if (PageReserved(page))
  555. return 1;
  556. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  557. 1 << PG_referenced | 1 << PG_arch_1 |
  558. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  559. set_page_private(page, 0);
  560. set_page_refcounted(page);
  561. arch_alloc_page(page, order);
  562. kernel_map_pages(page, 1 << order, 1);
  563. if (gfp_flags & __GFP_ZERO)
  564. prep_zero_page(page, order, gfp_flags);
  565. if (order && (gfp_flags & __GFP_COMP))
  566. prep_compound_page(page, order);
  567. return 0;
  568. }
  569. /*
  570. * Go through the free lists for the given migratetype and remove
  571. * the smallest available page from the freelists
  572. */
  573. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  574. int migratetype)
  575. {
  576. unsigned int current_order;
  577. struct free_area * area;
  578. struct page *page;
  579. /* Find a page of the appropriate size in the preferred list */
  580. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  581. area = &(zone->free_area[current_order]);
  582. if (list_empty(&area->free_list[migratetype]))
  583. continue;
  584. page = list_entry(area->free_list[migratetype].next,
  585. struct page, lru);
  586. list_del(&page->lru);
  587. rmv_page_order(page);
  588. area->nr_free--;
  589. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  590. expand(zone, page, order, current_order, area, migratetype);
  591. return page;
  592. }
  593. return NULL;
  594. }
  595. /*
  596. * This array describes the order lists are fallen back to when
  597. * the free lists for the desirable migrate type are depleted
  598. */
  599. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  600. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  601. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  602. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  603. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  604. };
  605. /*
  606. * Move the free pages in a range to the free lists of the requested type.
  607. * Note that start_page and end_pages are not aligned on a pageblock
  608. * boundary. If alignment is required, use move_freepages_block()
  609. */
  610. int move_freepages(struct zone *zone,
  611. struct page *start_page, struct page *end_page,
  612. int migratetype)
  613. {
  614. struct page *page;
  615. unsigned long order;
  616. int pages_moved = 0;
  617. #ifndef CONFIG_HOLES_IN_ZONE
  618. /*
  619. * page_zone is not safe to call in this context when
  620. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  621. * anyway as we check zone boundaries in move_freepages_block().
  622. * Remove at a later date when no bug reports exist related to
  623. * grouping pages by mobility
  624. */
  625. BUG_ON(page_zone(start_page) != page_zone(end_page));
  626. #endif
  627. for (page = start_page; page <= end_page;) {
  628. if (!pfn_valid_within(page_to_pfn(page))) {
  629. page++;
  630. continue;
  631. }
  632. if (!PageBuddy(page)) {
  633. page++;
  634. continue;
  635. }
  636. order = page_order(page);
  637. list_del(&page->lru);
  638. list_add(&page->lru,
  639. &zone->free_area[order].free_list[migratetype]);
  640. page += 1 << order;
  641. pages_moved += 1 << order;
  642. }
  643. return pages_moved;
  644. }
  645. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  646. {
  647. unsigned long start_pfn, end_pfn;
  648. struct page *start_page, *end_page;
  649. start_pfn = page_to_pfn(page);
  650. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  651. start_page = pfn_to_page(start_pfn);
  652. end_page = start_page + pageblock_nr_pages - 1;
  653. end_pfn = start_pfn + pageblock_nr_pages - 1;
  654. /* Do not cross zone boundaries */
  655. if (start_pfn < zone->zone_start_pfn)
  656. start_page = page;
  657. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  658. return 0;
  659. return move_freepages(zone, start_page, end_page, migratetype);
  660. }
  661. /* Remove an element from the buddy allocator from the fallback list */
  662. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  663. int start_migratetype)
  664. {
  665. struct free_area * area;
  666. int current_order;
  667. struct page *page;
  668. int migratetype, i;
  669. /* Find the largest possible block of pages in the other list */
  670. for (current_order = MAX_ORDER-1; current_order >= order;
  671. --current_order) {
  672. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  673. migratetype = fallbacks[start_migratetype][i];
  674. /* MIGRATE_RESERVE handled later if necessary */
  675. if (migratetype == MIGRATE_RESERVE)
  676. continue;
  677. area = &(zone->free_area[current_order]);
  678. if (list_empty(&area->free_list[migratetype]))
  679. continue;
  680. page = list_entry(area->free_list[migratetype].next,
  681. struct page, lru);
  682. area->nr_free--;
  683. /*
  684. * If breaking a large block of pages, move all free
  685. * pages to the preferred allocation list. If falling
  686. * back for a reclaimable kernel allocation, be more
  687. * agressive about taking ownership of free pages
  688. */
  689. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  690. start_migratetype == MIGRATE_RECLAIMABLE) {
  691. unsigned long pages;
  692. pages = move_freepages_block(zone, page,
  693. start_migratetype);
  694. /* Claim the whole block if over half of it is free */
  695. if (pages >= (1 << (pageblock_order-1)))
  696. set_pageblock_migratetype(page,
  697. start_migratetype);
  698. migratetype = start_migratetype;
  699. }
  700. /* Remove the page from the freelists */
  701. list_del(&page->lru);
  702. rmv_page_order(page);
  703. __mod_zone_page_state(zone, NR_FREE_PAGES,
  704. -(1UL << order));
  705. if (current_order == pageblock_order)
  706. set_pageblock_migratetype(page,
  707. start_migratetype);
  708. expand(zone, page, order, current_order, area, migratetype);
  709. return page;
  710. }
  711. }
  712. /* Use MIGRATE_RESERVE rather than fail an allocation */
  713. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  714. }
  715. /*
  716. * Do the hard work of removing an element from the buddy allocator.
  717. * Call me with the zone->lock already held.
  718. */
  719. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  720. int migratetype)
  721. {
  722. struct page *page;
  723. page = __rmqueue_smallest(zone, order, migratetype);
  724. if (unlikely(!page))
  725. page = __rmqueue_fallback(zone, order, migratetype);
  726. return page;
  727. }
  728. /*
  729. * Obtain a specified number of elements from the buddy allocator, all under
  730. * a single hold of the lock, for efficiency. Add them to the supplied list.
  731. * Returns the number of new pages which were placed at *list.
  732. */
  733. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  734. unsigned long count, struct list_head *list,
  735. int migratetype)
  736. {
  737. int i;
  738. spin_lock(&zone->lock);
  739. for (i = 0; i < count; ++i) {
  740. struct page *page = __rmqueue(zone, order, migratetype);
  741. if (unlikely(page == NULL))
  742. break;
  743. list_add(&page->lru, list);
  744. set_page_private(page, migratetype);
  745. }
  746. spin_unlock(&zone->lock);
  747. return i;
  748. }
  749. #ifdef CONFIG_NUMA
  750. /*
  751. * Called from the vmstat counter updater to drain pagesets of this
  752. * currently executing processor on remote nodes after they have
  753. * expired.
  754. *
  755. * Note that this function must be called with the thread pinned to
  756. * a single processor.
  757. */
  758. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  759. {
  760. unsigned long flags;
  761. int to_drain;
  762. local_irq_save(flags);
  763. if (pcp->count >= pcp->batch)
  764. to_drain = pcp->batch;
  765. else
  766. to_drain = pcp->count;
  767. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  768. pcp->count -= to_drain;
  769. local_irq_restore(flags);
  770. }
  771. #endif
  772. static void __drain_pages(unsigned int cpu)
  773. {
  774. unsigned long flags;
  775. struct zone *zone;
  776. int i;
  777. for_each_zone(zone) {
  778. struct per_cpu_pageset *pset;
  779. if (!populated_zone(zone))
  780. continue;
  781. pset = zone_pcp(zone, cpu);
  782. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  783. struct per_cpu_pages *pcp;
  784. pcp = &pset->pcp[i];
  785. local_irq_save(flags);
  786. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  787. pcp->count = 0;
  788. local_irq_restore(flags);
  789. }
  790. }
  791. }
  792. #ifdef CONFIG_HIBERNATION
  793. void mark_free_pages(struct zone *zone)
  794. {
  795. unsigned long pfn, max_zone_pfn;
  796. unsigned long flags;
  797. int order, t;
  798. struct list_head *curr;
  799. if (!zone->spanned_pages)
  800. return;
  801. spin_lock_irqsave(&zone->lock, flags);
  802. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  803. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  804. if (pfn_valid(pfn)) {
  805. struct page *page = pfn_to_page(pfn);
  806. if (!swsusp_page_is_forbidden(page))
  807. swsusp_unset_page_free(page);
  808. }
  809. for_each_migratetype_order(order, t) {
  810. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  811. unsigned long i;
  812. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  813. for (i = 0; i < (1UL << order); i++)
  814. swsusp_set_page_free(pfn_to_page(pfn + i));
  815. }
  816. }
  817. spin_unlock_irqrestore(&zone->lock, flags);
  818. }
  819. #endif /* CONFIG_PM */
  820. /*
  821. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  822. */
  823. void drain_local_pages(void)
  824. {
  825. unsigned long flags;
  826. local_irq_save(flags);
  827. __drain_pages(smp_processor_id());
  828. local_irq_restore(flags);
  829. }
  830. void smp_drain_local_pages(void *arg)
  831. {
  832. drain_local_pages();
  833. }
  834. /*
  835. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  836. */
  837. void drain_all_local_pages(void)
  838. {
  839. unsigned long flags;
  840. local_irq_save(flags);
  841. __drain_pages(smp_processor_id());
  842. local_irq_restore(flags);
  843. smp_call_function(smp_drain_local_pages, NULL, 0, 1);
  844. }
  845. /*
  846. * Free a 0-order page
  847. */
  848. static void fastcall free_hot_cold_page(struct page *page, int cold)
  849. {
  850. struct zone *zone = page_zone(page);
  851. struct per_cpu_pages *pcp;
  852. unsigned long flags;
  853. if (PageAnon(page))
  854. page->mapping = NULL;
  855. if (free_pages_check(page))
  856. return;
  857. if (!PageHighMem(page))
  858. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  859. arch_free_page(page, 0);
  860. kernel_map_pages(page, 1, 0);
  861. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  862. local_irq_save(flags);
  863. __count_vm_event(PGFREE);
  864. list_add(&page->lru, &pcp->list);
  865. set_page_private(page, get_pageblock_migratetype(page));
  866. pcp->count++;
  867. if (pcp->count >= pcp->high) {
  868. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  869. pcp->count -= pcp->batch;
  870. }
  871. local_irq_restore(flags);
  872. put_cpu();
  873. }
  874. void fastcall free_hot_page(struct page *page)
  875. {
  876. free_hot_cold_page(page, 0);
  877. }
  878. void fastcall free_cold_page(struct page *page)
  879. {
  880. free_hot_cold_page(page, 1);
  881. }
  882. /*
  883. * split_page takes a non-compound higher-order page, and splits it into
  884. * n (1<<order) sub-pages: page[0..n]
  885. * Each sub-page must be freed individually.
  886. *
  887. * Note: this is probably too low level an operation for use in drivers.
  888. * Please consult with lkml before using this in your driver.
  889. */
  890. void split_page(struct page *page, unsigned int order)
  891. {
  892. int i;
  893. VM_BUG_ON(PageCompound(page));
  894. VM_BUG_ON(!page_count(page));
  895. for (i = 1; i < (1 << order); i++)
  896. set_page_refcounted(page + i);
  897. }
  898. /*
  899. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  900. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  901. * or two.
  902. */
  903. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  904. struct zone *zone, int order, gfp_t gfp_flags)
  905. {
  906. unsigned long flags;
  907. struct page *page;
  908. int cold = !!(gfp_flags & __GFP_COLD);
  909. int cpu;
  910. int migratetype = allocflags_to_migratetype(gfp_flags);
  911. again:
  912. cpu = get_cpu();
  913. if (likely(order == 0)) {
  914. struct per_cpu_pages *pcp;
  915. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  916. local_irq_save(flags);
  917. if (!pcp->count) {
  918. pcp->count = rmqueue_bulk(zone, 0,
  919. pcp->batch, &pcp->list, migratetype);
  920. if (unlikely(!pcp->count))
  921. goto failed;
  922. }
  923. /* Find a page of the appropriate migrate type */
  924. list_for_each_entry(page, &pcp->list, lru)
  925. if (page_private(page) == migratetype)
  926. break;
  927. /* Allocate more to the pcp list if necessary */
  928. if (unlikely(&page->lru == &pcp->list)) {
  929. pcp->count += rmqueue_bulk(zone, 0,
  930. pcp->batch, &pcp->list, migratetype);
  931. page = list_entry(pcp->list.next, struct page, lru);
  932. }
  933. list_del(&page->lru);
  934. pcp->count--;
  935. } else {
  936. spin_lock_irqsave(&zone->lock, flags);
  937. page = __rmqueue(zone, order, migratetype);
  938. spin_unlock(&zone->lock);
  939. if (!page)
  940. goto failed;
  941. }
  942. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  943. zone_statistics(zonelist, zone);
  944. local_irq_restore(flags);
  945. put_cpu();
  946. VM_BUG_ON(bad_range(zone, page));
  947. if (prep_new_page(page, order, gfp_flags))
  948. goto again;
  949. return page;
  950. failed:
  951. local_irq_restore(flags);
  952. put_cpu();
  953. return NULL;
  954. }
  955. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  956. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  957. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  958. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  959. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  960. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  961. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  962. #ifdef CONFIG_FAIL_PAGE_ALLOC
  963. static struct fail_page_alloc_attr {
  964. struct fault_attr attr;
  965. u32 ignore_gfp_highmem;
  966. u32 ignore_gfp_wait;
  967. u32 min_order;
  968. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  969. struct dentry *ignore_gfp_highmem_file;
  970. struct dentry *ignore_gfp_wait_file;
  971. struct dentry *min_order_file;
  972. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  973. } fail_page_alloc = {
  974. .attr = FAULT_ATTR_INITIALIZER,
  975. .ignore_gfp_wait = 1,
  976. .ignore_gfp_highmem = 1,
  977. .min_order = 1,
  978. };
  979. static int __init setup_fail_page_alloc(char *str)
  980. {
  981. return setup_fault_attr(&fail_page_alloc.attr, str);
  982. }
  983. __setup("fail_page_alloc=", setup_fail_page_alloc);
  984. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  985. {
  986. if (order < fail_page_alloc.min_order)
  987. return 0;
  988. if (gfp_mask & __GFP_NOFAIL)
  989. return 0;
  990. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  991. return 0;
  992. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  993. return 0;
  994. return should_fail(&fail_page_alloc.attr, 1 << order);
  995. }
  996. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  997. static int __init fail_page_alloc_debugfs(void)
  998. {
  999. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1000. struct dentry *dir;
  1001. int err;
  1002. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1003. "fail_page_alloc");
  1004. if (err)
  1005. return err;
  1006. dir = fail_page_alloc.attr.dentries.dir;
  1007. fail_page_alloc.ignore_gfp_wait_file =
  1008. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1009. &fail_page_alloc.ignore_gfp_wait);
  1010. fail_page_alloc.ignore_gfp_highmem_file =
  1011. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1012. &fail_page_alloc.ignore_gfp_highmem);
  1013. fail_page_alloc.min_order_file =
  1014. debugfs_create_u32("min-order", mode, dir,
  1015. &fail_page_alloc.min_order);
  1016. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1017. !fail_page_alloc.ignore_gfp_highmem_file ||
  1018. !fail_page_alloc.min_order_file) {
  1019. err = -ENOMEM;
  1020. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1021. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1022. debugfs_remove(fail_page_alloc.min_order_file);
  1023. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1024. }
  1025. return err;
  1026. }
  1027. late_initcall(fail_page_alloc_debugfs);
  1028. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1029. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1030. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1031. {
  1032. return 0;
  1033. }
  1034. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1035. /*
  1036. * Return 1 if free pages are above 'mark'. This takes into account the order
  1037. * of the allocation.
  1038. */
  1039. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1040. int classzone_idx, int alloc_flags)
  1041. {
  1042. /* free_pages my go negative - that's OK */
  1043. long min = mark;
  1044. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1045. int o;
  1046. if (alloc_flags & ALLOC_HIGH)
  1047. min -= min / 2;
  1048. if (alloc_flags & ALLOC_HARDER)
  1049. min -= min / 4;
  1050. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1051. return 0;
  1052. for (o = 0; o < order; o++) {
  1053. /* At the next order, this order's pages become unavailable */
  1054. free_pages -= z->free_area[o].nr_free << o;
  1055. /* Require fewer higher order pages to be free */
  1056. min >>= 1;
  1057. if (free_pages <= min)
  1058. return 0;
  1059. }
  1060. return 1;
  1061. }
  1062. #ifdef CONFIG_NUMA
  1063. /*
  1064. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1065. * skip over zones that are not allowed by the cpuset, or that have
  1066. * been recently (in last second) found to be nearly full. See further
  1067. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1068. * that have to skip over a lot of full or unallowed zones.
  1069. *
  1070. * If the zonelist cache is present in the passed in zonelist, then
  1071. * returns a pointer to the allowed node mask (either the current
  1072. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1073. *
  1074. * If the zonelist cache is not available for this zonelist, does
  1075. * nothing and returns NULL.
  1076. *
  1077. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1078. * a second since last zap'd) then we zap it out (clear its bits.)
  1079. *
  1080. * We hold off even calling zlc_setup, until after we've checked the
  1081. * first zone in the zonelist, on the theory that most allocations will
  1082. * be satisfied from that first zone, so best to examine that zone as
  1083. * quickly as we can.
  1084. */
  1085. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1086. {
  1087. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1088. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1089. zlc = zonelist->zlcache_ptr;
  1090. if (!zlc)
  1091. return NULL;
  1092. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  1093. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1094. zlc->last_full_zap = jiffies;
  1095. }
  1096. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1097. &cpuset_current_mems_allowed :
  1098. &node_states[N_HIGH_MEMORY];
  1099. return allowednodes;
  1100. }
  1101. /*
  1102. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1103. * if it is worth looking at further for free memory:
  1104. * 1) Check that the zone isn't thought to be full (doesn't have its
  1105. * bit set in the zonelist_cache fullzones BITMAP).
  1106. * 2) Check that the zones node (obtained from the zonelist_cache
  1107. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1108. * Return true (non-zero) if zone is worth looking at further, or
  1109. * else return false (zero) if it is not.
  1110. *
  1111. * This check -ignores- the distinction between various watermarks,
  1112. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1113. * found to be full for any variation of these watermarks, it will
  1114. * be considered full for up to one second by all requests, unless
  1115. * we are so low on memory on all allowed nodes that we are forced
  1116. * into the second scan of the zonelist.
  1117. *
  1118. * In the second scan we ignore this zonelist cache and exactly
  1119. * apply the watermarks to all zones, even it is slower to do so.
  1120. * We are low on memory in the second scan, and should leave no stone
  1121. * unturned looking for a free page.
  1122. */
  1123. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1124. nodemask_t *allowednodes)
  1125. {
  1126. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1127. int i; /* index of *z in zonelist zones */
  1128. int n; /* node that zone *z is on */
  1129. zlc = zonelist->zlcache_ptr;
  1130. if (!zlc)
  1131. return 1;
  1132. i = z - zonelist->zones;
  1133. n = zlc->z_to_n[i];
  1134. /* This zone is worth trying if it is allowed but not full */
  1135. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1136. }
  1137. /*
  1138. * Given 'z' scanning a zonelist, set the corresponding bit in
  1139. * zlc->fullzones, so that subsequent attempts to allocate a page
  1140. * from that zone don't waste time re-examining it.
  1141. */
  1142. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1143. {
  1144. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1145. int i; /* index of *z in zonelist zones */
  1146. zlc = zonelist->zlcache_ptr;
  1147. if (!zlc)
  1148. return;
  1149. i = z - zonelist->zones;
  1150. set_bit(i, zlc->fullzones);
  1151. }
  1152. #else /* CONFIG_NUMA */
  1153. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1154. {
  1155. return NULL;
  1156. }
  1157. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1158. nodemask_t *allowednodes)
  1159. {
  1160. return 1;
  1161. }
  1162. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1163. {
  1164. }
  1165. #endif /* CONFIG_NUMA */
  1166. /*
  1167. * get_page_from_freelist goes through the zonelist trying to allocate
  1168. * a page.
  1169. */
  1170. static struct page *
  1171. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1172. struct zonelist *zonelist, int alloc_flags)
  1173. {
  1174. struct zone **z;
  1175. struct page *page = NULL;
  1176. int classzone_idx = zone_idx(zonelist->zones[0]);
  1177. struct zone *zone;
  1178. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1179. int zlc_active = 0; /* set if using zonelist_cache */
  1180. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1181. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1182. zonelist_scan:
  1183. /*
  1184. * Scan zonelist, looking for a zone with enough free.
  1185. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1186. */
  1187. z = zonelist->zones;
  1188. do {
  1189. /*
  1190. * In NUMA, this could be a policy zonelist which contains
  1191. * zones that may not be allowed by the current gfp_mask.
  1192. * Check the zone is allowed by the current flags
  1193. */
  1194. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1195. if (highest_zoneidx == -1)
  1196. highest_zoneidx = gfp_zone(gfp_mask);
  1197. if (zone_idx(*z) > highest_zoneidx)
  1198. continue;
  1199. }
  1200. if (NUMA_BUILD && zlc_active &&
  1201. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1202. continue;
  1203. zone = *z;
  1204. if ((alloc_flags & ALLOC_CPUSET) &&
  1205. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1206. goto try_next_zone;
  1207. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1208. unsigned long mark;
  1209. if (alloc_flags & ALLOC_WMARK_MIN)
  1210. mark = zone->pages_min;
  1211. else if (alloc_flags & ALLOC_WMARK_LOW)
  1212. mark = zone->pages_low;
  1213. else
  1214. mark = zone->pages_high;
  1215. if (!zone_watermark_ok(zone, order, mark,
  1216. classzone_idx, alloc_flags)) {
  1217. if (!zone_reclaim_mode ||
  1218. !zone_reclaim(zone, gfp_mask, order))
  1219. goto this_zone_full;
  1220. }
  1221. }
  1222. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1223. if (page)
  1224. break;
  1225. this_zone_full:
  1226. if (NUMA_BUILD)
  1227. zlc_mark_zone_full(zonelist, z);
  1228. try_next_zone:
  1229. if (NUMA_BUILD && !did_zlc_setup) {
  1230. /* we do zlc_setup after the first zone is tried */
  1231. allowednodes = zlc_setup(zonelist, alloc_flags);
  1232. zlc_active = 1;
  1233. did_zlc_setup = 1;
  1234. }
  1235. } while (*(++z) != NULL);
  1236. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1237. /* Disable zlc cache for second zonelist scan */
  1238. zlc_active = 0;
  1239. goto zonelist_scan;
  1240. }
  1241. return page;
  1242. }
  1243. /*
  1244. * This is the 'heart' of the zoned buddy allocator.
  1245. */
  1246. struct page * fastcall
  1247. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1248. struct zonelist *zonelist)
  1249. {
  1250. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1251. struct zone **z;
  1252. struct page *page;
  1253. struct reclaim_state reclaim_state;
  1254. struct task_struct *p = current;
  1255. int do_retry;
  1256. int alloc_flags;
  1257. int did_some_progress;
  1258. might_sleep_if(wait);
  1259. if (should_fail_alloc_page(gfp_mask, order))
  1260. return NULL;
  1261. restart:
  1262. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1263. if (unlikely(*z == NULL)) {
  1264. /*
  1265. * Happens if we have an empty zonelist as a result of
  1266. * GFP_THISNODE being used on a memoryless node
  1267. */
  1268. return NULL;
  1269. }
  1270. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1271. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1272. if (page)
  1273. goto got_pg;
  1274. /*
  1275. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1276. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1277. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1278. * using a larger set of nodes after it has established that the
  1279. * allowed per node queues are empty and that nodes are
  1280. * over allocated.
  1281. */
  1282. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1283. goto nopage;
  1284. for (z = zonelist->zones; *z; z++)
  1285. wakeup_kswapd(*z, order);
  1286. /*
  1287. * OK, we're below the kswapd watermark and have kicked background
  1288. * reclaim. Now things get more complex, so set up alloc_flags according
  1289. * to how we want to proceed.
  1290. *
  1291. * The caller may dip into page reserves a bit more if the caller
  1292. * cannot run direct reclaim, or if the caller has realtime scheduling
  1293. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1294. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1295. */
  1296. alloc_flags = ALLOC_WMARK_MIN;
  1297. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1298. alloc_flags |= ALLOC_HARDER;
  1299. if (gfp_mask & __GFP_HIGH)
  1300. alloc_flags |= ALLOC_HIGH;
  1301. if (wait)
  1302. alloc_flags |= ALLOC_CPUSET;
  1303. /*
  1304. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1305. * coming from realtime tasks go deeper into reserves.
  1306. *
  1307. * This is the last chance, in general, before the goto nopage.
  1308. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1309. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1310. */
  1311. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1312. if (page)
  1313. goto got_pg;
  1314. /* This allocation should allow future memory freeing. */
  1315. rebalance:
  1316. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1317. && !in_interrupt()) {
  1318. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1319. nofail_alloc:
  1320. /* go through the zonelist yet again, ignoring mins */
  1321. page = get_page_from_freelist(gfp_mask, order,
  1322. zonelist, ALLOC_NO_WATERMARKS);
  1323. if (page)
  1324. goto got_pg;
  1325. if (gfp_mask & __GFP_NOFAIL) {
  1326. congestion_wait(WRITE, HZ/50);
  1327. goto nofail_alloc;
  1328. }
  1329. }
  1330. goto nopage;
  1331. }
  1332. /* Atomic allocations - we can't balance anything */
  1333. if (!wait)
  1334. goto nopage;
  1335. cond_resched();
  1336. /* We now go into synchronous reclaim */
  1337. cpuset_memory_pressure_bump();
  1338. p->flags |= PF_MEMALLOC;
  1339. reclaim_state.reclaimed_slab = 0;
  1340. p->reclaim_state = &reclaim_state;
  1341. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1342. p->reclaim_state = NULL;
  1343. p->flags &= ~PF_MEMALLOC;
  1344. cond_resched();
  1345. if (order != 0)
  1346. drain_all_local_pages();
  1347. if (likely(did_some_progress)) {
  1348. page = get_page_from_freelist(gfp_mask, order,
  1349. zonelist, alloc_flags);
  1350. if (page)
  1351. goto got_pg;
  1352. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1353. if (!try_set_zone_oom(zonelist)) {
  1354. schedule_timeout_uninterruptible(1);
  1355. goto restart;
  1356. }
  1357. /*
  1358. * Go through the zonelist yet one more time, keep
  1359. * very high watermark here, this is only to catch
  1360. * a parallel oom killing, we must fail if we're still
  1361. * under heavy pressure.
  1362. */
  1363. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1364. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1365. if (page) {
  1366. clear_zonelist_oom(zonelist);
  1367. goto got_pg;
  1368. }
  1369. /* The OOM killer will not help higher order allocs so fail */
  1370. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1371. clear_zonelist_oom(zonelist);
  1372. goto nopage;
  1373. }
  1374. out_of_memory(zonelist, gfp_mask, order);
  1375. clear_zonelist_oom(zonelist);
  1376. goto restart;
  1377. }
  1378. /*
  1379. * Don't let big-order allocations loop unless the caller explicitly
  1380. * requests that. Wait for some write requests to complete then retry.
  1381. *
  1382. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1383. * <= 3, but that may not be true in other implementations.
  1384. */
  1385. do_retry = 0;
  1386. if (!(gfp_mask & __GFP_NORETRY)) {
  1387. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1388. (gfp_mask & __GFP_REPEAT))
  1389. do_retry = 1;
  1390. if (gfp_mask & __GFP_NOFAIL)
  1391. do_retry = 1;
  1392. }
  1393. if (do_retry) {
  1394. congestion_wait(WRITE, HZ/50);
  1395. goto rebalance;
  1396. }
  1397. nopage:
  1398. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1399. printk(KERN_WARNING "%s: page allocation failure."
  1400. " order:%d, mode:0x%x\n",
  1401. p->comm, order, gfp_mask);
  1402. dump_stack();
  1403. show_mem();
  1404. }
  1405. got_pg:
  1406. return page;
  1407. }
  1408. EXPORT_SYMBOL(__alloc_pages);
  1409. /*
  1410. * Common helper functions.
  1411. */
  1412. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1413. {
  1414. struct page * page;
  1415. page = alloc_pages(gfp_mask, order);
  1416. if (!page)
  1417. return 0;
  1418. return (unsigned long) page_address(page);
  1419. }
  1420. EXPORT_SYMBOL(__get_free_pages);
  1421. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1422. {
  1423. struct page * page;
  1424. /*
  1425. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1426. * a highmem page
  1427. */
  1428. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1429. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1430. if (page)
  1431. return (unsigned long) page_address(page);
  1432. return 0;
  1433. }
  1434. EXPORT_SYMBOL(get_zeroed_page);
  1435. void __pagevec_free(struct pagevec *pvec)
  1436. {
  1437. int i = pagevec_count(pvec);
  1438. while (--i >= 0)
  1439. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1440. }
  1441. fastcall void __free_pages(struct page *page, unsigned int order)
  1442. {
  1443. if (put_page_testzero(page)) {
  1444. if (order == 0)
  1445. free_hot_page(page);
  1446. else
  1447. __free_pages_ok(page, order);
  1448. }
  1449. }
  1450. EXPORT_SYMBOL(__free_pages);
  1451. fastcall void free_pages(unsigned long addr, unsigned int order)
  1452. {
  1453. if (addr != 0) {
  1454. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1455. __free_pages(virt_to_page((void *)addr), order);
  1456. }
  1457. }
  1458. EXPORT_SYMBOL(free_pages);
  1459. static unsigned int nr_free_zone_pages(int offset)
  1460. {
  1461. /* Just pick one node, since fallback list is circular */
  1462. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1463. unsigned int sum = 0;
  1464. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1465. struct zone **zonep = zonelist->zones;
  1466. struct zone *zone;
  1467. for (zone = *zonep++; zone; zone = *zonep++) {
  1468. unsigned long size = zone->present_pages;
  1469. unsigned long high = zone->pages_high;
  1470. if (size > high)
  1471. sum += size - high;
  1472. }
  1473. return sum;
  1474. }
  1475. /*
  1476. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1477. */
  1478. unsigned int nr_free_buffer_pages(void)
  1479. {
  1480. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1481. }
  1482. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1483. /*
  1484. * Amount of free RAM allocatable within all zones
  1485. */
  1486. unsigned int nr_free_pagecache_pages(void)
  1487. {
  1488. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1489. }
  1490. static inline void show_node(struct zone *zone)
  1491. {
  1492. if (NUMA_BUILD)
  1493. printk("Node %d ", zone_to_nid(zone));
  1494. }
  1495. void si_meminfo(struct sysinfo *val)
  1496. {
  1497. val->totalram = totalram_pages;
  1498. val->sharedram = 0;
  1499. val->freeram = global_page_state(NR_FREE_PAGES);
  1500. val->bufferram = nr_blockdev_pages();
  1501. val->totalhigh = totalhigh_pages;
  1502. val->freehigh = nr_free_highpages();
  1503. val->mem_unit = PAGE_SIZE;
  1504. }
  1505. EXPORT_SYMBOL(si_meminfo);
  1506. #ifdef CONFIG_NUMA
  1507. void si_meminfo_node(struct sysinfo *val, int nid)
  1508. {
  1509. pg_data_t *pgdat = NODE_DATA(nid);
  1510. val->totalram = pgdat->node_present_pages;
  1511. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1512. #ifdef CONFIG_HIGHMEM
  1513. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1514. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1515. NR_FREE_PAGES);
  1516. #else
  1517. val->totalhigh = 0;
  1518. val->freehigh = 0;
  1519. #endif
  1520. val->mem_unit = PAGE_SIZE;
  1521. }
  1522. #endif
  1523. #define K(x) ((x) << (PAGE_SHIFT-10))
  1524. /*
  1525. * Show free area list (used inside shift_scroll-lock stuff)
  1526. * We also calculate the percentage fragmentation. We do this by counting the
  1527. * memory on each free list with the exception of the first item on the list.
  1528. */
  1529. void show_free_areas(void)
  1530. {
  1531. int cpu;
  1532. struct zone *zone;
  1533. for_each_zone(zone) {
  1534. if (!populated_zone(zone))
  1535. continue;
  1536. show_node(zone);
  1537. printk("%s per-cpu:\n", zone->name);
  1538. for_each_online_cpu(cpu) {
  1539. struct per_cpu_pageset *pageset;
  1540. pageset = zone_pcp(zone, cpu);
  1541. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1542. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1543. cpu, pageset->pcp[0].high,
  1544. pageset->pcp[0].batch, pageset->pcp[0].count,
  1545. pageset->pcp[1].high, pageset->pcp[1].batch,
  1546. pageset->pcp[1].count);
  1547. }
  1548. }
  1549. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1550. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1551. global_page_state(NR_ACTIVE),
  1552. global_page_state(NR_INACTIVE),
  1553. global_page_state(NR_FILE_DIRTY),
  1554. global_page_state(NR_WRITEBACK),
  1555. global_page_state(NR_UNSTABLE_NFS),
  1556. global_page_state(NR_FREE_PAGES),
  1557. global_page_state(NR_SLAB_RECLAIMABLE) +
  1558. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1559. global_page_state(NR_FILE_MAPPED),
  1560. global_page_state(NR_PAGETABLE),
  1561. global_page_state(NR_BOUNCE));
  1562. for_each_zone(zone) {
  1563. int i;
  1564. if (!populated_zone(zone))
  1565. continue;
  1566. show_node(zone);
  1567. printk("%s"
  1568. " free:%lukB"
  1569. " min:%lukB"
  1570. " low:%lukB"
  1571. " high:%lukB"
  1572. " active:%lukB"
  1573. " inactive:%lukB"
  1574. " present:%lukB"
  1575. " pages_scanned:%lu"
  1576. " all_unreclaimable? %s"
  1577. "\n",
  1578. zone->name,
  1579. K(zone_page_state(zone, NR_FREE_PAGES)),
  1580. K(zone->pages_min),
  1581. K(zone->pages_low),
  1582. K(zone->pages_high),
  1583. K(zone_page_state(zone, NR_ACTIVE)),
  1584. K(zone_page_state(zone, NR_INACTIVE)),
  1585. K(zone->present_pages),
  1586. zone->pages_scanned,
  1587. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1588. );
  1589. printk("lowmem_reserve[]:");
  1590. for (i = 0; i < MAX_NR_ZONES; i++)
  1591. printk(" %lu", zone->lowmem_reserve[i]);
  1592. printk("\n");
  1593. }
  1594. for_each_zone(zone) {
  1595. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1596. if (!populated_zone(zone))
  1597. continue;
  1598. show_node(zone);
  1599. printk("%s: ", zone->name);
  1600. spin_lock_irqsave(&zone->lock, flags);
  1601. for (order = 0; order < MAX_ORDER; order++) {
  1602. nr[order] = zone->free_area[order].nr_free;
  1603. total += nr[order] << order;
  1604. }
  1605. spin_unlock_irqrestore(&zone->lock, flags);
  1606. for (order = 0; order < MAX_ORDER; order++)
  1607. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1608. printk("= %lukB\n", K(total));
  1609. }
  1610. show_swap_cache_info();
  1611. }
  1612. /*
  1613. * Builds allocation fallback zone lists.
  1614. *
  1615. * Add all populated zones of a node to the zonelist.
  1616. */
  1617. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1618. int nr_zones, enum zone_type zone_type)
  1619. {
  1620. struct zone *zone;
  1621. BUG_ON(zone_type >= MAX_NR_ZONES);
  1622. zone_type++;
  1623. do {
  1624. zone_type--;
  1625. zone = pgdat->node_zones + zone_type;
  1626. if (populated_zone(zone)) {
  1627. zonelist->zones[nr_zones++] = zone;
  1628. check_highest_zone(zone_type);
  1629. }
  1630. } while (zone_type);
  1631. return nr_zones;
  1632. }
  1633. /*
  1634. * zonelist_order:
  1635. * 0 = automatic detection of better ordering.
  1636. * 1 = order by ([node] distance, -zonetype)
  1637. * 2 = order by (-zonetype, [node] distance)
  1638. *
  1639. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1640. * the same zonelist. So only NUMA can configure this param.
  1641. */
  1642. #define ZONELIST_ORDER_DEFAULT 0
  1643. #define ZONELIST_ORDER_NODE 1
  1644. #define ZONELIST_ORDER_ZONE 2
  1645. /* zonelist order in the kernel.
  1646. * set_zonelist_order() will set this to NODE or ZONE.
  1647. */
  1648. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1649. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1650. #ifdef CONFIG_NUMA
  1651. /* The value user specified ....changed by config */
  1652. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1653. /* string for sysctl */
  1654. #define NUMA_ZONELIST_ORDER_LEN 16
  1655. char numa_zonelist_order[16] = "default";
  1656. /*
  1657. * interface for configure zonelist ordering.
  1658. * command line option "numa_zonelist_order"
  1659. * = "[dD]efault - default, automatic configuration.
  1660. * = "[nN]ode - order by node locality, then by zone within node
  1661. * = "[zZ]one - order by zone, then by locality within zone
  1662. */
  1663. static int __parse_numa_zonelist_order(char *s)
  1664. {
  1665. if (*s == 'd' || *s == 'D') {
  1666. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1667. } else if (*s == 'n' || *s == 'N') {
  1668. user_zonelist_order = ZONELIST_ORDER_NODE;
  1669. } else if (*s == 'z' || *s == 'Z') {
  1670. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1671. } else {
  1672. printk(KERN_WARNING
  1673. "Ignoring invalid numa_zonelist_order value: "
  1674. "%s\n", s);
  1675. return -EINVAL;
  1676. }
  1677. return 0;
  1678. }
  1679. static __init int setup_numa_zonelist_order(char *s)
  1680. {
  1681. if (s)
  1682. return __parse_numa_zonelist_order(s);
  1683. return 0;
  1684. }
  1685. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1686. /*
  1687. * sysctl handler for numa_zonelist_order
  1688. */
  1689. int numa_zonelist_order_handler(ctl_table *table, int write,
  1690. struct file *file, void __user *buffer, size_t *length,
  1691. loff_t *ppos)
  1692. {
  1693. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1694. int ret;
  1695. if (write)
  1696. strncpy(saved_string, (char*)table->data,
  1697. NUMA_ZONELIST_ORDER_LEN);
  1698. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1699. if (ret)
  1700. return ret;
  1701. if (write) {
  1702. int oldval = user_zonelist_order;
  1703. if (__parse_numa_zonelist_order((char*)table->data)) {
  1704. /*
  1705. * bogus value. restore saved string
  1706. */
  1707. strncpy((char*)table->data, saved_string,
  1708. NUMA_ZONELIST_ORDER_LEN);
  1709. user_zonelist_order = oldval;
  1710. } else if (oldval != user_zonelist_order)
  1711. build_all_zonelists();
  1712. }
  1713. return 0;
  1714. }
  1715. #define MAX_NODE_LOAD (num_online_nodes())
  1716. static int node_load[MAX_NUMNODES];
  1717. /**
  1718. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1719. * @node: node whose fallback list we're appending
  1720. * @used_node_mask: nodemask_t of already used nodes
  1721. *
  1722. * We use a number of factors to determine which is the next node that should
  1723. * appear on a given node's fallback list. The node should not have appeared
  1724. * already in @node's fallback list, and it should be the next closest node
  1725. * according to the distance array (which contains arbitrary distance values
  1726. * from each node to each node in the system), and should also prefer nodes
  1727. * with no CPUs, since presumably they'll have very little allocation pressure
  1728. * on them otherwise.
  1729. * It returns -1 if no node is found.
  1730. */
  1731. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1732. {
  1733. int n, val;
  1734. int min_val = INT_MAX;
  1735. int best_node = -1;
  1736. /* Use the local node if we haven't already */
  1737. if (!node_isset(node, *used_node_mask)) {
  1738. node_set(node, *used_node_mask);
  1739. return node;
  1740. }
  1741. for_each_node_state(n, N_HIGH_MEMORY) {
  1742. cpumask_t tmp;
  1743. /* Don't want a node to appear more than once */
  1744. if (node_isset(n, *used_node_mask))
  1745. continue;
  1746. /* Use the distance array to find the distance */
  1747. val = node_distance(node, n);
  1748. /* Penalize nodes under us ("prefer the next node") */
  1749. val += (n < node);
  1750. /* Give preference to headless and unused nodes */
  1751. tmp = node_to_cpumask(n);
  1752. if (!cpus_empty(tmp))
  1753. val += PENALTY_FOR_NODE_WITH_CPUS;
  1754. /* Slight preference for less loaded node */
  1755. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1756. val += node_load[n];
  1757. if (val < min_val) {
  1758. min_val = val;
  1759. best_node = n;
  1760. }
  1761. }
  1762. if (best_node >= 0)
  1763. node_set(best_node, *used_node_mask);
  1764. return best_node;
  1765. }
  1766. /*
  1767. * Build zonelists ordered by node and zones within node.
  1768. * This results in maximum locality--normal zone overflows into local
  1769. * DMA zone, if any--but risks exhausting DMA zone.
  1770. */
  1771. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1772. {
  1773. enum zone_type i;
  1774. int j;
  1775. struct zonelist *zonelist;
  1776. for (i = 0; i < MAX_NR_ZONES; i++) {
  1777. zonelist = pgdat->node_zonelists + i;
  1778. for (j = 0; zonelist->zones[j] != NULL; j++)
  1779. ;
  1780. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1781. zonelist->zones[j] = NULL;
  1782. }
  1783. }
  1784. /*
  1785. * Build gfp_thisnode zonelists
  1786. */
  1787. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1788. {
  1789. enum zone_type i;
  1790. int j;
  1791. struct zonelist *zonelist;
  1792. for (i = 0; i < MAX_NR_ZONES; i++) {
  1793. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1794. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1795. zonelist->zones[j] = NULL;
  1796. }
  1797. }
  1798. /*
  1799. * Build zonelists ordered by zone and nodes within zones.
  1800. * This results in conserving DMA zone[s] until all Normal memory is
  1801. * exhausted, but results in overflowing to remote node while memory
  1802. * may still exist in local DMA zone.
  1803. */
  1804. static int node_order[MAX_NUMNODES];
  1805. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1806. {
  1807. enum zone_type i;
  1808. int pos, j, node;
  1809. int zone_type; /* needs to be signed */
  1810. struct zone *z;
  1811. struct zonelist *zonelist;
  1812. for (i = 0; i < MAX_NR_ZONES; i++) {
  1813. zonelist = pgdat->node_zonelists + i;
  1814. pos = 0;
  1815. for (zone_type = i; zone_type >= 0; zone_type--) {
  1816. for (j = 0; j < nr_nodes; j++) {
  1817. node = node_order[j];
  1818. z = &NODE_DATA(node)->node_zones[zone_type];
  1819. if (populated_zone(z)) {
  1820. zonelist->zones[pos++] = z;
  1821. check_highest_zone(zone_type);
  1822. }
  1823. }
  1824. }
  1825. zonelist->zones[pos] = NULL;
  1826. }
  1827. }
  1828. static int default_zonelist_order(void)
  1829. {
  1830. int nid, zone_type;
  1831. unsigned long low_kmem_size,total_size;
  1832. struct zone *z;
  1833. int average_size;
  1834. /*
  1835. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1836. * If they are really small and used heavily, the system can fall
  1837. * into OOM very easily.
  1838. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1839. */
  1840. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1841. low_kmem_size = 0;
  1842. total_size = 0;
  1843. for_each_online_node(nid) {
  1844. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1845. z = &NODE_DATA(nid)->node_zones[zone_type];
  1846. if (populated_zone(z)) {
  1847. if (zone_type < ZONE_NORMAL)
  1848. low_kmem_size += z->present_pages;
  1849. total_size += z->present_pages;
  1850. }
  1851. }
  1852. }
  1853. if (!low_kmem_size || /* there are no DMA area. */
  1854. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1855. return ZONELIST_ORDER_NODE;
  1856. /*
  1857. * look into each node's config.
  1858. * If there is a node whose DMA/DMA32 memory is very big area on
  1859. * local memory, NODE_ORDER may be suitable.
  1860. */
  1861. average_size = total_size /
  1862. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1863. for_each_online_node(nid) {
  1864. low_kmem_size = 0;
  1865. total_size = 0;
  1866. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1867. z = &NODE_DATA(nid)->node_zones[zone_type];
  1868. if (populated_zone(z)) {
  1869. if (zone_type < ZONE_NORMAL)
  1870. low_kmem_size += z->present_pages;
  1871. total_size += z->present_pages;
  1872. }
  1873. }
  1874. if (low_kmem_size &&
  1875. total_size > average_size && /* ignore small node */
  1876. low_kmem_size > total_size * 70/100)
  1877. return ZONELIST_ORDER_NODE;
  1878. }
  1879. return ZONELIST_ORDER_ZONE;
  1880. }
  1881. static void set_zonelist_order(void)
  1882. {
  1883. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1884. current_zonelist_order = default_zonelist_order();
  1885. else
  1886. current_zonelist_order = user_zonelist_order;
  1887. }
  1888. static void build_zonelists(pg_data_t *pgdat)
  1889. {
  1890. int j, node, load;
  1891. enum zone_type i;
  1892. nodemask_t used_mask;
  1893. int local_node, prev_node;
  1894. struct zonelist *zonelist;
  1895. int order = current_zonelist_order;
  1896. /* initialize zonelists */
  1897. for (i = 0; i < MAX_ZONELISTS; i++) {
  1898. zonelist = pgdat->node_zonelists + i;
  1899. zonelist->zones[0] = NULL;
  1900. }
  1901. /* NUMA-aware ordering of nodes */
  1902. local_node = pgdat->node_id;
  1903. load = num_online_nodes();
  1904. prev_node = local_node;
  1905. nodes_clear(used_mask);
  1906. memset(node_load, 0, sizeof(node_load));
  1907. memset(node_order, 0, sizeof(node_order));
  1908. j = 0;
  1909. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1910. int distance = node_distance(local_node, node);
  1911. /*
  1912. * If another node is sufficiently far away then it is better
  1913. * to reclaim pages in a zone before going off node.
  1914. */
  1915. if (distance > RECLAIM_DISTANCE)
  1916. zone_reclaim_mode = 1;
  1917. /*
  1918. * We don't want to pressure a particular node.
  1919. * So adding penalty to the first node in same
  1920. * distance group to make it round-robin.
  1921. */
  1922. if (distance != node_distance(local_node, prev_node))
  1923. node_load[node] = load;
  1924. prev_node = node;
  1925. load--;
  1926. if (order == ZONELIST_ORDER_NODE)
  1927. build_zonelists_in_node_order(pgdat, node);
  1928. else
  1929. node_order[j++] = node; /* remember order */
  1930. }
  1931. if (order == ZONELIST_ORDER_ZONE) {
  1932. /* calculate node order -- i.e., DMA last! */
  1933. build_zonelists_in_zone_order(pgdat, j);
  1934. }
  1935. build_thisnode_zonelists(pgdat);
  1936. }
  1937. /* Construct the zonelist performance cache - see further mmzone.h */
  1938. static void build_zonelist_cache(pg_data_t *pgdat)
  1939. {
  1940. int i;
  1941. for (i = 0; i < MAX_NR_ZONES; i++) {
  1942. struct zonelist *zonelist;
  1943. struct zonelist_cache *zlc;
  1944. struct zone **z;
  1945. zonelist = pgdat->node_zonelists + i;
  1946. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1947. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1948. for (z = zonelist->zones; *z; z++)
  1949. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1950. }
  1951. }
  1952. #else /* CONFIG_NUMA */
  1953. static void set_zonelist_order(void)
  1954. {
  1955. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1956. }
  1957. static void build_zonelists(pg_data_t *pgdat)
  1958. {
  1959. int node, local_node;
  1960. enum zone_type i,j;
  1961. local_node = pgdat->node_id;
  1962. for (i = 0; i < MAX_NR_ZONES; i++) {
  1963. struct zonelist *zonelist;
  1964. zonelist = pgdat->node_zonelists + i;
  1965. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1966. /*
  1967. * Now we build the zonelist so that it contains the zones
  1968. * of all the other nodes.
  1969. * We don't want to pressure a particular node, so when
  1970. * building the zones for node N, we make sure that the
  1971. * zones coming right after the local ones are those from
  1972. * node N+1 (modulo N)
  1973. */
  1974. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1975. if (!node_online(node))
  1976. continue;
  1977. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1978. }
  1979. for (node = 0; node < local_node; node++) {
  1980. if (!node_online(node))
  1981. continue;
  1982. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1983. }
  1984. zonelist->zones[j] = NULL;
  1985. }
  1986. }
  1987. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1988. static void build_zonelist_cache(pg_data_t *pgdat)
  1989. {
  1990. int i;
  1991. for (i = 0; i < MAX_NR_ZONES; i++)
  1992. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1993. }
  1994. #endif /* CONFIG_NUMA */
  1995. /* return values int ....just for stop_machine_run() */
  1996. static int __build_all_zonelists(void *dummy)
  1997. {
  1998. int nid;
  1999. for_each_online_node(nid) {
  2000. pg_data_t *pgdat = NODE_DATA(nid);
  2001. build_zonelists(pgdat);
  2002. build_zonelist_cache(pgdat);
  2003. }
  2004. return 0;
  2005. }
  2006. void build_all_zonelists(void)
  2007. {
  2008. set_zonelist_order();
  2009. if (system_state == SYSTEM_BOOTING) {
  2010. __build_all_zonelists(NULL);
  2011. cpuset_init_current_mems_allowed();
  2012. } else {
  2013. /* we have to stop all cpus to guarantee there is no user
  2014. of zonelist */
  2015. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2016. /* cpuset refresh routine should be here */
  2017. }
  2018. vm_total_pages = nr_free_pagecache_pages();
  2019. /*
  2020. * Disable grouping by mobility if the number of pages in the
  2021. * system is too low to allow the mechanism to work. It would be
  2022. * more accurate, but expensive to check per-zone. This check is
  2023. * made on memory-hotadd so a system can start with mobility
  2024. * disabled and enable it later
  2025. */
  2026. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2027. page_group_by_mobility_disabled = 1;
  2028. else
  2029. page_group_by_mobility_disabled = 0;
  2030. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2031. "Total pages: %ld\n",
  2032. num_online_nodes(),
  2033. zonelist_order_name[current_zonelist_order],
  2034. page_group_by_mobility_disabled ? "off" : "on",
  2035. vm_total_pages);
  2036. #ifdef CONFIG_NUMA
  2037. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2038. #endif
  2039. }
  2040. /*
  2041. * Helper functions to size the waitqueue hash table.
  2042. * Essentially these want to choose hash table sizes sufficiently
  2043. * large so that collisions trying to wait on pages are rare.
  2044. * But in fact, the number of active page waitqueues on typical
  2045. * systems is ridiculously low, less than 200. So this is even
  2046. * conservative, even though it seems large.
  2047. *
  2048. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2049. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2050. */
  2051. #define PAGES_PER_WAITQUEUE 256
  2052. #ifndef CONFIG_MEMORY_HOTPLUG
  2053. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2054. {
  2055. unsigned long size = 1;
  2056. pages /= PAGES_PER_WAITQUEUE;
  2057. while (size < pages)
  2058. size <<= 1;
  2059. /*
  2060. * Once we have dozens or even hundreds of threads sleeping
  2061. * on IO we've got bigger problems than wait queue collision.
  2062. * Limit the size of the wait table to a reasonable size.
  2063. */
  2064. size = min(size, 4096UL);
  2065. return max(size, 4UL);
  2066. }
  2067. #else
  2068. /*
  2069. * A zone's size might be changed by hot-add, so it is not possible to determine
  2070. * a suitable size for its wait_table. So we use the maximum size now.
  2071. *
  2072. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2073. *
  2074. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2075. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2076. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2077. *
  2078. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2079. * or more by the traditional way. (See above). It equals:
  2080. *
  2081. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2082. * ia64(16K page size) : = ( 8G + 4M)byte.
  2083. * powerpc (64K page size) : = (32G +16M)byte.
  2084. */
  2085. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2086. {
  2087. return 4096UL;
  2088. }
  2089. #endif
  2090. /*
  2091. * This is an integer logarithm so that shifts can be used later
  2092. * to extract the more random high bits from the multiplicative
  2093. * hash function before the remainder is taken.
  2094. */
  2095. static inline unsigned long wait_table_bits(unsigned long size)
  2096. {
  2097. return ffz(~size);
  2098. }
  2099. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2100. /*
  2101. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2102. * of blocks reserved is based on zone->pages_min. The memory within the
  2103. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2104. * higher will lead to a bigger reserve which will get freed as contiguous
  2105. * blocks as reclaim kicks in
  2106. */
  2107. static void setup_zone_migrate_reserve(struct zone *zone)
  2108. {
  2109. unsigned long start_pfn, pfn, end_pfn;
  2110. struct page *page;
  2111. unsigned long reserve, block_migratetype;
  2112. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2113. start_pfn = zone->zone_start_pfn;
  2114. end_pfn = start_pfn + zone->spanned_pages;
  2115. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2116. pageblock_order;
  2117. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2118. if (!pfn_valid(pfn))
  2119. continue;
  2120. page = pfn_to_page(pfn);
  2121. /* Blocks with reserved pages will never free, skip them. */
  2122. if (PageReserved(page))
  2123. continue;
  2124. block_migratetype = get_pageblock_migratetype(page);
  2125. /* If this block is reserved, account for it */
  2126. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2127. reserve--;
  2128. continue;
  2129. }
  2130. /* Suitable for reserving if this block is movable */
  2131. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2132. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2133. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2134. reserve--;
  2135. continue;
  2136. }
  2137. /*
  2138. * If the reserve is met and this is a previous reserved block,
  2139. * take it back
  2140. */
  2141. if (block_migratetype == MIGRATE_RESERVE) {
  2142. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2143. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2144. }
  2145. }
  2146. }
  2147. /*
  2148. * Initially all pages are reserved - free ones are freed
  2149. * up by free_all_bootmem() once the early boot process is
  2150. * done. Non-atomic initialization, single-pass.
  2151. */
  2152. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2153. unsigned long start_pfn, enum memmap_context context)
  2154. {
  2155. struct page *page;
  2156. unsigned long end_pfn = start_pfn + size;
  2157. unsigned long pfn;
  2158. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2159. /*
  2160. * There can be holes in boot-time mem_map[]s
  2161. * handed to this function. They do not
  2162. * exist on hotplugged memory.
  2163. */
  2164. if (context == MEMMAP_EARLY) {
  2165. if (!early_pfn_valid(pfn))
  2166. continue;
  2167. if (!early_pfn_in_nid(pfn, nid))
  2168. continue;
  2169. }
  2170. page = pfn_to_page(pfn);
  2171. set_page_links(page, zone, nid, pfn);
  2172. init_page_count(page);
  2173. reset_page_mapcount(page);
  2174. SetPageReserved(page);
  2175. /*
  2176. * Mark the block movable so that blocks are reserved for
  2177. * movable at startup. This will force kernel allocations
  2178. * to reserve their blocks rather than leaking throughout
  2179. * the address space during boot when many long-lived
  2180. * kernel allocations are made. Later some blocks near
  2181. * the start are marked MIGRATE_RESERVE by
  2182. * setup_zone_migrate_reserve()
  2183. */
  2184. if ((pfn & (pageblock_nr_pages-1)))
  2185. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2186. INIT_LIST_HEAD(&page->lru);
  2187. #ifdef WANT_PAGE_VIRTUAL
  2188. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2189. if (!is_highmem_idx(zone))
  2190. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2191. #endif
  2192. }
  2193. }
  2194. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  2195. struct zone *zone, unsigned long size)
  2196. {
  2197. int order, t;
  2198. for_each_migratetype_order(order, t) {
  2199. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2200. zone->free_area[order].nr_free = 0;
  2201. }
  2202. }
  2203. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2204. #define memmap_init(size, nid, zone, start_pfn) \
  2205. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2206. #endif
  2207. static int __devinit zone_batchsize(struct zone *zone)
  2208. {
  2209. int batch;
  2210. /*
  2211. * The per-cpu-pages pools are set to around 1000th of the
  2212. * size of the zone. But no more than 1/2 of a meg.
  2213. *
  2214. * OK, so we don't know how big the cache is. So guess.
  2215. */
  2216. batch = zone->present_pages / 1024;
  2217. if (batch * PAGE_SIZE > 512 * 1024)
  2218. batch = (512 * 1024) / PAGE_SIZE;
  2219. batch /= 4; /* We effectively *= 4 below */
  2220. if (batch < 1)
  2221. batch = 1;
  2222. /*
  2223. * Clamp the batch to a 2^n - 1 value. Having a power
  2224. * of 2 value was found to be more likely to have
  2225. * suboptimal cache aliasing properties in some cases.
  2226. *
  2227. * For example if 2 tasks are alternately allocating
  2228. * batches of pages, one task can end up with a lot
  2229. * of pages of one half of the possible page colors
  2230. * and the other with pages of the other colors.
  2231. */
  2232. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2233. return batch;
  2234. }
  2235. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2236. {
  2237. struct per_cpu_pages *pcp;
  2238. memset(p, 0, sizeof(*p));
  2239. pcp = &p->pcp[0]; /* hot */
  2240. pcp->count = 0;
  2241. pcp->high = 6 * batch;
  2242. pcp->batch = max(1UL, 1 * batch);
  2243. INIT_LIST_HEAD(&pcp->list);
  2244. pcp = &p->pcp[1]; /* cold*/
  2245. pcp->count = 0;
  2246. pcp->high = 2 * batch;
  2247. pcp->batch = max(1UL, batch/2);
  2248. INIT_LIST_HEAD(&pcp->list);
  2249. }
  2250. /*
  2251. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2252. * to the value high for the pageset p.
  2253. */
  2254. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2255. unsigned long high)
  2256. {
  2257. struct per_cpu_pages *pcp;
  2258. pcp = &p->pcp[0]; /* hot list */
  2259. pcp->high = high;
  2260. pcp->batch = max(1UL, high/4);
  2261. if ((high/4) > (PAGE_SHIFT * 8))
  2262. pcp->batch = PAGE_SHIFT * 8;
  2263. }
  2264. #ifdef CONFIG_NUMA
  2265. /*
  2266. * Boot pageset table. One per cpu which is going to be used for all
  2267. * zones and all nodes. The parameters will be set in such a way
  2268. * that an item put on a list will immediately be handed over to
  2269. * the buddy list. This is safe since pageset manipulation is done
  2270. * with interrupts disabled.
  2271. *
  2272. * Some NUMA counter updates may also be caught by the boot pagesets.
  2273. *
  2274. * The boot_pagesets must be kept even after bootup is complete for
  2275. * unused processors and/or zones. They do play a role for bootstrapping
  2276. * hotplugged processors.
  2277. *
  2278. * zoneinfo_show() and maybe other functions do
  2279. * not check if the processor is online before following the pageset pointer.
  2280. * Other parts of the kernel may not check if the zone is available.
  2281. */
  2282. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2283. /*
  2284. * Dynamically allocate memory for the
  2285. * per cpu pageset array in struct zone.
  2286. */
  2287. static int __cpuinit process_zones(int cpu)
  2288. {
  2289. struct zone *zone, *dzone;
  2290. int node = cpu_to_node(cpu);
  2291. node_set_state(node, N_CPU); /* this node has a cpu */
  2292. for_each_zone(zone) {
  2293. if (!populated_zone(zone))
  2294. continue;
  2295. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2296. GFP_KERNEL, node);
  2297. if (!zone_pcp(zone, cpu))
  2298. goto bad;
  2299. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2300. if (percpu_pagelist_fraction)
  2301. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2302. (zone->present_pages / percpu_pagelist_fraction));
  2303. }
  2304. return 0;
  2305. bad:
  2306. for_each_zone(dzone) {
  2307. if (!populated_zone(dzone))
  2308. continue;
  2309. if (dzone == zone)
  2310. break;
  2311. kfree(zone_pcp(dzone, cpu));
  2312. zone_pcp(dzone, cpu) = NULL;
  2313. }
  2314. return -ENOMEM;
  2315. }
  2316. static inline void free_zone_pagesets(int cpu)
  2317. {
  2318. struct zone *zone;
  2319. for_each_zone(zone) {
  2320. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2321. /* Free per_cpu_pageset if it is slab allocated */
  2322. if (pset != &boot_pageset[cpu])
  2323. kfree(pset);
  2324. zone_pcp(zone, cpu) = NULL;
  2325. }
  2326. }
  2327. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2328. unsigned long action,
  2329. void *hcpu)
  2330. {
  2331. int cpu = (long)hcpu;
  2332. int ret = NOTIFY_OK;
  2333. switch (action) {
  2334. case CPU_UP_PREPARE:
  2335. case CPU_UP_PREPARE_FROZEN:
  2336. if (process_zones(cpu))
  2337. ret = NOTIFY_BAD;
  2338. break;
  2339. case CPU_UP_CANCELED:
  2340. case CPU_UP_CANCELED_FROZEN:
  2341. case CPU_DEAD:
  2342. case CPU_DEAD_FROZEN:
  2343. free_zone_pagesets(cpu);
  2344. break;
  2345. default:
  2346. break;
  2347. }
  2348. return ret;
  2349. }
  2350. static struct notifier_block __cpuinitdata pageset_notifier =
  2351. { &pageset_cpuup_callback, NULL, 0 };
  2352. void __init setup_per_cpu_pageset(void)
  2353. {
  2354. int err;
  2355. /* Initialize per_cpu_pageset for cpu 0.
  2356. * A cpuup callback will do this for every cpu
  2357. * as it comes online
  2358. */
  2359. err = process_zones(smp_processor_id());
  2360. BUG_ON(err);
  2361. register_cpu_notifier(&pageset_notifier);
  2362. }
  2363. #endif
  2364. static noinline __init_refok
  2365. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2366. {
  2367. int i;
  2368. struct pglist_data *pgdat = zone->zone_pgdat;
  2369. size_t alloc_size;
  2370. /*
  2371. * The per-page waitqueue mechanism uses hashed waitqueues
  2372. * per zone.
  2373. */
  2374. zone->wait_table_hash_nr_entries =
  2375. wait_table_hash_nr_entries(zone_size_pages);
  2376. zone->wait_table_bits =
  2377. wait_table_bits(zone->wait_table_hash_nr_entries);
  2378. alloc_size = zone->wait_table_hash_nr_entries
  2379. * sizeof(wait_queue_head_t);
  2380. if (system_state == SYSTEM_BOOTING) {
  2381. zone->wait_table = (wait_queue_head_t *)
  2382. alloc_bootmem_node(pgdat, alloc_size);
  2383. } else {
  2384. /*
  2385. * This case means that a zone whose size was 0 gets new memory
  2386. * via memory hot-add.
  2387. * But it may be the case that a new node was hot-added. In
  2388. * this case vmalloc() will not be able to use this new node's
  2389. * memory - this wait_table must be initialized to use this new
  2390. * node itself as well.
  2391. * To use this new node's memory, further consideration will be
  2392. * necessary.
  2393. */
  2394. zone->wait_table = vmalloc(alloc_size);
  2395. }
  2396. if (!zone->wait_table)
  2397. return -ENOMEM;
  2398. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2399. init_waitqueue_head(zone->wait_table + i);
  2400. return 0;
  2401. }
  2402. static __meminit void zone_pcp_init(struct zone *zone)
  2403. {
  2404. int cpu;
  2405. unsigned long batch = zone_batchsize(zone);
  2406. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2407. #ifdef CONFIG_NUMA
  2408. /* Early boot. Slab allocator not functional yet */
  2409. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2410. setup_pageset(&boot_pageset[cpu],0);
  2411. #else
  2412. setup_pageset(zone_pcp(zone,cpu), batch);
  2413. #endif
  2414. }
  2415. if (zone->present_pages)
  2416. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2417. zone->name, zone->present_pages, batch);
  2418. }
  2419. __meminit int init_currently_empty_zone(struct zone *zone,
  2420. unsigned long zone_start_pfn,
  2421. unsigned long size,
  2422. enum memmap_context context)
  2423. {
  2424. struct pglist_data *pgdat = zone->zone_pgdat;
  2425. int ret;
  2426. ret = zone_wait_table_init(zone, size);
  2427. if (ret)
  2428. return ret;
  2429. pgdat->nr_zones = zone_idx(zone) + 1;
  2430. zone->zone_start_pfn = zone_start_pfn;
  2431. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2432. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2433. return 0;
  2434. }
  2435. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2436. /*
  2437. * Basic iterator support. Return the first range of PFNs for a node
  2438. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2439. */
  2440. static int __meminit first_active_region_index_in_nid(int nid)
  2441. {
  2442. int i;
  2443. for (i = 0; i < nr_nodemap_entries; i++)
  2444. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2445. return i;
  2446. return -1;
  2447. }
  2448. /*
  2449. * Basic iterator support. Return the next active range of PFNs for a node
  2450. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2451. */
  2452. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2453. {
  2454. for (index = index + 1; index < nr_nodemap_entries; index++)
  2455. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2456. return index;
  2457. return -1;
  2458. }
  2459. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2460. /*
  2461. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2462. * Architectures may implement their own version but if add_active_range()
  2463. * was used and there are no special requirements, this is a convenient
  2464. * alternative
  2465. */
  2466. int __meminit early_pfn_to_nid(unsigned long pfn)
  2467. {
  2468. int i;
  2469. for (i = 0; i < nr_nodemap_entries; i++) {
  2470. unsigned long start_pfn = early_node_map[i].start_pfn;
  2471. unsigned long end_pfn = early_node_map[i].end_pfn;
  2472. if (start_pfn <= pfn && pfn < end_pfn)
  2473. return early_node_map[i].nid;
  2474. }
  2475. return 0;
  2476. }
  2477. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2478. /* Basic iterator support to walk early_node_map[] */
  2479. #define for_each_active_range_index_in_nid(i, nid) \
  2480. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2481. i = next_active_region_index_in_nid(i, nid))
  2482. /**
  2483. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2484. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2485. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2486. *
  2487. * If an architecture guarantees that all ranges registered with
  2488. * add_active_ranges() contain no holes and may be freed, this
  2489. * this function may be used instead of calling free_bootmem() manually.
  2490. */
  2491. void __init free_bootmem_with_active_regions(int nid,
  2492. unsigned long max_low_pfn)
  2493. {
  2494. int i;
  2495. for_each_active_range_index_in_nid(i, nid) {
  2496. unsigned long size_pages = 0;
  2497. unsigned long end_pfn = early_node_map[i].end_pfn;
  2498. if (early_node_map[i].start_pfn >= max_low_pfn)
  2499. continue;
  2500. if (end_pfn > max_low_pfn)
  2501. end_pfn = max_low_pfn;
  2502. size_pages = end_pfn - early_node_map[i].start_pfn;
  2503. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2504. PFN_PHYS(early_node_map[i].start_pfn),
  2505. size_pages << PAGE_SHIFT);
  2506. }
  2507. }
  2508. /**
  2509. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2510. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2511. *
  2512. * If an architecture guarantees that all ranges registered with
  2513. * add_active_ranges() contain no holes and may be freed, this
  2514. * function may be used instead of calling memory_present() manually.
  2515. */
  2516. void __init sparse_memory_present_with_active_regions(int nid)
  2517. {
  2518. int i;
  2519. for_each_active_range_index_in_nid(i, nid)
  2520. memory_present(early_node_map[i].nid,
  2521. early_node_map[i].start_pfn,
  2522. early_node_map[i].end_pfn);
  2523. }
  2524. /**
  2525. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2526. * @nid: The nid of the node to push the boundary for
  2527. * @start_pfn: The start pfn of the node
  2528. * @end_pfn: The end pfn of the node
  2529. *
  2530. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2531. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2532. * be hotplugged even though no physical memory exists. This function allows
  2533. * an arch to push out the node boundaries so mem_map is allocated that can
  2534. * be used later.
  2535. */
  2536. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2537. void __init push_node_boundaries(unsigned int nid,
  2538. unsigned long start_pfn, unsigned long end_pfn)
  2539. {
  2540. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2541. nid, start_pfn, end_pfn);
  2542. /* Initialise the boundary for this node if necessary */
  2543. if (node_boundary_end_pfn[nid] == 0)
  2544. node_boundary_start_pfn[nid] = -1UL;
  2545. /* Update the boundaries */
  2546. if (node_boundary_start_pfn[nid] > start_pfn)
  2547. node_boundary_start_pfn[nid] = start_pfn;
  2548. if (node_boundary_end_pfn[nid] < end_pfn)
  2549. node_boundary_end_pfn[nid] = end_pfn;
  2550. }
  2551. /* If necessary, push the node boundary out for reserve hotadd */
  2552. static void __meminit account_node_boundary(unsigned int nid,
  2553. unsigned long *start_pfn, unsigned long *end_pfn)
  2554. {
  2555. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2556. nid, *start_pfn, *end_pfn);
  2557. /* Return if boundary information has not been provided */
  2558. if (node_boundary_end_pfn[nid] == 0)
  2559. return;
  2560. /* Check the boundaries and update if necessary */
  2561. if (node_boundary_start_pfn[nid] < *start_pfn)
  2562. *start_pfn = node_boundary_start_pfn[nid];
  2563. if (node_boundary_end_pfn[nid] > *end_pfn)
  2564. *end_pfn = node_boundary_end_pfn[nid];
  2565. }
  2566. #else
  2567. void __init push_node_boundaries(unsigned int nid,
  2568. unsigned long start_pfn, unsigned long end_pfn) {}
  2569. static void __meminit account_node_boundary(unsigned int nid,
  2570. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2571. #endif
  2572. /**
  2573. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2574. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2575. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2576. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2577. *
  2578. * It returns the start and end page frame of a node based on information
  2579. * provided by an arch calling add_active_range(). If called for a node
  2580. * with no available memory, a warning is printed and the start and end
  2581. * PFNs will be 0.
  2582. */
  2583. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2584. unsigned long *start_pfn, unsigned long *end_pfn)
  2585. {
  2586. int i;
  2587. *start_pfn = -1UL;
  2588. *end_pfn = 0;
  2589. for_each_active_range_index_in_nid(i, nid) {
  2590. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2591. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2592. }
  2593. if (*start_pfn == -1UL)
  2594. *start_pfn = 0;
  2595. /* Push the node boundaries out if requested */
  2596. account_node_boundary(nid, start_pfn, end_pfn);
  2597. }
  2598. /*
  2599. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2600. * assumption is made that zones within a node are ordered in monotonic
  2601. * increasing memory addresses so that the "highest" populated zone is used
  2602. */
  2603. void __init find_usable_zone_for_movable(void)
  2604. {
  2605. int zone_index;
  2606. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2607. if (zone_index == ZONE_MOVABLE)
  2608. continue;
  2609. if (arch_zone_highest_possible_pfn[zone_index] >
  2610. arch_zone_lowest_possible_pfn[zone_index])
  2611. break;
  2612. }
  2613. VM_BUG_ON(zone_index == -1);
  2614. movable_zone = zone_index;
  2615. }
  2616. /*
  2617. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2618. * because it is sized independant of architecture. Unlike the other zones,
  2619. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2620. * in each node depending on the size of each node and how evenly kernelcore
  2621. * is distributed. This helper function adjusts the zone ranges
  2622. * provided by the architecture for a given node by using the end of the
  2623. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2624. * zones within a node are in order of monotonic increases memory addresses
  2625. */
  2626. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2627. unsigned long zone_type,
  2628. unsigned long node_start_pfn,
  2629. unsigned long node_end_pfn,
  2630. unsigned long *zone_start_pfn,
  2631. unsigned long *zone_end_pfn)
  2632. {
  2633. /* Only adjust if ZONE_MOVABLE is on this node */
  2634. if (zone_movable_pfn[nid]) {
  2635. /* Size ZONE_MOVABLE */
  2636. if (zone_type == ZONE_MOVABLE) {
  2637. *zone_start_pfn = zone_movable_pfn[nid];
  2638. *zone_end_pfn = min(node_end_pfn,
  2639. arch_zone_highest_possible_pfn[movable_zone]);
  2640. /* Adjust for ZONE_MOVABLE starting within this range */
  2641. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2642. *zone_end_pfn > zone_movable_pfn[nid]) {
  2643. *zone_end_pfn = zone_movable_pfn[nid];
  2644. /* Check if this whole range is within ZONE_MOVABLE */
  2645. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2646. *zone_start_pfn = *zone_end_pfn;
  2647. }
  2648. }
  2649. /*
  2650. * Return the number of pages a zone spans in a node, including holes
  2651. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2652. */
  2653. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2654. unsigned long zone_type,
  2655. unsigned long *ignored)
  2656. {
  2657. unsigned long node_start_pfn, node_end_pfn;
  2658. unsigned long zone_start_pfn, zone_end_pfn;
  2659. /* Get the start and end of the node and zone */
  2660. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2661. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2662. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2663. adjust_zone_range_for_zone_movable(nid, zone_type,
  2664. node_start_pfn, node_end_pfn,
  2665. &zone_start_pfn, &zone_end_pfn);
  2666. /* Check that this node has pages within the zone's required range */
  2667. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2668. return 0;
  2669. /* Move the zone boundaries inside the node if necessary */
  2670. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2671. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2672. /* Return the spanned pages */
  2673. return zone_end_pfn - zone_start_pfn;
  2674. }
  2675. /*
  2676. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2677. * then all holes in the requested range will be accounted for.
  2678. */
  2679. unsigned long __meminit __absent_pages_in_range(int nid,
  2680. unsigned long range_start_pfn,
  2681. unsigned long range_end_pfn)
  2682. {
  2683. int i = 0;
  2684. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2685. unsigned long start_pfn;
  2686. /* Find the end_pfn of the first active range of pfns in the node */
  2687. i = first_active_region_index_in_nid(nid);
  2688. if (i == -1)
  2689. return 0;
  2690. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2691. /* Account for ranges before physical memory on this node */
  2692. if (early_node_map[i].start_pfn > range_start_pfn)
  2693. hole_pages = prev_end_pfn - range_start_pfn;
  2694. /* Find all holes for the zone within the node */
  2695. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2696. /* No need to continue if prev_end_pfn is outside the zone */
  2697. if (prev_end_pfn >= range_end_pfn)
  2698. break;
  2699. /* Make sure the end of the zone is not within the hole */
  2700. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2701. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2702. /* Update the hole size cound and move on */
  2703. if (start_pfn > range_start_pfn) {
  2704. BUG_ON(prev_end_pfn > start_pfn);
  2705. hole_pages += start_pfn - prev_end_pfn;
  2706. }
  2707. prev_end_pfn = early_node_map[i].end_pfn;
  2708. }
  2709. /* Account for ranges past physical memory on this node */
  2710. if (range_end_pfn > prev_end_pfn)
  2711. hole_pages += range_end_pfn -
  2712. max(range_start_pfn, prev_end_pfn);
  2713. return hole_pages;
  2714. }
  2715. /**
  2716. * absent_pages_in_range - Return number of page frames in holes within a range
  2717. * @start_pfn: The start PFN to start searching for holes
  2718. * @end_pfn: The end PFN to stop searching for holes
  2719. *
  2720. * It returns the number of pages frames in memory holes within a range.
  2721. */
  2722. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2723. unsigned long end_pfn)
  2724. {
  2725. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2726. }
  2727. /* Return the number of page frames in holes in a zone on a node */
  2728. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2729. unsigned long zone_type,
  2730. unsigned long *ignored)
  2731. {
  2732. unsigned long node_start_pfn, node_end_pfn;
  2733. unsigned long zone_start_pfn, zone_end_pfn;
  2734. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2735. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2736. node_start_pfn);
  2737. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2738. node_end_pfn);
  2739. adjust_zone_range_for_zone_movable(nid, zone_type,
  2740. node_start_pfn, node_end_pfn,
  2741. &zone_start_pfn, &zone_end_pfn);
  2742. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2743. }
  2744. #else
  2745. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2746. unsigned long zone_type,
  2747. unsigned long *zones_size)
  2748. {
  2749. return zones_size[zone_type];
  2750. }
  2751. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2752. unsigned long zone_type,
  2753. unsigned long *zholes_size)
  2754. {
  2755. if (!zholes_size)
  2756. return 0;
  2757. return zholes_size[zone_type];
  2758. }
  2759. #endif
  2760. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2761. unsigned long *zones_size, unsigned long *zholes_size)
  2762. {
  2763. unsigned long realtotalpages, totalpages = 0;
  2764. enum zone_type i;
  2765. for (i = 0; i < MAX_NR_ZONES; i++)
  2766. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2767. zones_size);
  2768. pgdat->node_spanned_pages = totalpages;
  2769. realtotalpages = totalpages;
  2770. for (i = 0; i < MAX_NR_ZONES; i++)
  2771. realtotalpages -=
  2772. zone_absent_pages_in_node(pgdat->node_id, i,
  2773. zholes_size);
  2774. pgdat->node_present_pages = realtotalpages;
  2775. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2776. realtotalpages);
  2777. }
  2778. #ifndef CONFIG_SPARSEMEM
  2779. /*
  2780. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2781. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2782. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2783. * round what is now in bits to nearest long in bits, then return it in
  2784. * bytes.
  2785. */
  2786. static unsigned long __init usemap_size(unsigned long zonesize)
  2787. {
  2788. unsigned long usemapsize;
  2789. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2790. usemapsize = usemapsize >> pageblock_order;
  2791. usemapsize *= NR_PAGEBLOCK_BITS;
  2792. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2793. return usemapsize / 8;
  2794. }
  2795. static void __init setup_usemap(struct pglist_data *pgdat,
  2796. struct zone *zone, unsigned long zonesize)
  2797. {
  2798. unsigned long usemapsize = usemap_size(zonesize);
  2799. zone->pageblock_flags = NULL;
  2800. if (usemapsize) {
  2801. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2802. memset(zone->pageblock_flags, 0, usemapsize);
  2803. }
  2804. }
  2805. #else
  2806. static void inline setup_usemap(struct pglist_data *pgdat,
  2807. struct zone *zone, unsigned long zonesize) {}
  2808. #endif /* CONFIG_SPARSEMEM */
  2809. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2810. /* Return a sensible default order for the pageblock size. */
  2811. static inline int pageblock_default_order(void)
  2812. {
  2813. if (HPAGE_SHIFT > PAGE_SHIFT)
  2814. return HUGETLB_PAGE_ORDER;
  2815. return MAX_ORDER-1;
  2816. }
  2817. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2818. static inline void __init set_pageblock_order(unsigned int order)
  2819. {
  2820. /* Check that pageblock_nr_pages has not already been setup */
  2821. if (pageblock_order)
  2822. return;
  2823. /*
  2824. * Assume the largest contiguous order of interest is a huge page.
  2825. * This value may be variable depending on boot parameters on IA64
  2826. */
  2827. pageblock_order = order;
  2828. }
  2829. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2830. /*
  2831. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2832. * and pageblock_default_order() are unused as pageblock_order is set
  2833. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2834. * pageblock_order based on the kernel config
  2835. */
  2836. static inline int pageblock_default_order(unsigned int order)
  2837. {
  2838. return MAX_ORDER-1;
  2839. }
  2840. #define set_pageblock_order(x) do {} while (0)
  2841. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2842. /*
  2843. * Set up the zone data structures:
  2844. * - mark all pages reserved
  2845. * - mark all memory queues empty
  2846. * - clear the memory bitmaps
  2847. */
  2848. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2849. unsigned long *zones_size, unsigned long *zholes_size)
  2850. {
  2851. enum zone_type j;
  2852. int nid = pgdat->node_id;
  2853. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2854. int ret;
  2855. pgdat_resize_init(pgdat);
  2856. pgdat->nr_zones = 0;
  2857. init_waitqueue_head(&pgdat->kswapd_wait);
  2858. pgdat->kswapd_max_order = 0;
  2859. for (j = 0; j < MAX_NR_ZONES; j++) {
  2860. struct zone *zone = pgdat->node_zones + j;
  2861. unsigned long size, realsize, memmap_pages;
  2862. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2863. realsize = size - zone_absent_pages_in_node(nid, j,
  2864. zholes_size);
  2865. /*
  2866. * Adjust realsize so that it accounts for how much memory
  2867. * is used by this zone for memmap. This affects the watermark
  2868. * and per-cpu initialisations
  2869. */
  2870. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2871. if (realsize >= memmap_pages) {
  2872. realsize -= memmap_pages;
  2873. printk(KERN_DEBUG
  2874. " %s zone: %lu pages used for memmap\n",
  2875. zone_names[j], memmap_pages);
  2876. } else
  2877. printk(KERN_WARNING
  2878. " %s zone: %lu pages exceeds realsize %lu\n",
  2879. zone_names[j], memmap_pages, realsize);
  2880. /* Account for reserved pages */
  2881. if (j == 0 && realsize > dma_reserve) {
  2882. realsize -= dma_reserve;
  2883. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2884. zone_names[0], dma_reserve);
  2885. }
  2886. if (!is_highmem_idx(j))
  2887. nr_kernel_pages += realsize;
  2888. nr_all_pages += realsize;
  2889. zone->spanned_pages = size;
  2890. zone->present_pages = realsize;
  2891. #ifdef CONFIG_NUMA
  2892. zone->node = nid;
  2893. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2894. / 100;
  2895. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2896. #endif
  2897. zone->name = zone_names[j];
  2898. spin_lock_init(&zone->lock);
  2899. spin_lock_init(&zone->lru_lock);
  2900. zone_seqlock_init(zone);
  2901. zone->zone_pgdat = pgdat;
  2902. zone->prev_priority = DEF_PRIORITY;
  2903. zone_pcp_init(zone);
  2904. INIT_LIST_HEAD(&zone->active_list);
  2905. INIT_LIST_HEAD(&zone->inactive_list);
  2906. zone->nr_scan_active = 0;
  2907. zone->nr_scan_inactive = 0;
  2908. zap_zone_vm_stats(zone);
  2909. zone->flags = 0;
  2910. if (!size)
  2911. continue;
  2912. set_pageblock_order(pageblock_default_order());
  2913. setup_usemap(pgdat, zone, size);
  2914. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2915. size, MEMMAP_EARLY);
  2916. BUG_ON(ret);
  2917. zone_start_pfn += size;
  2918. }
  2919. }
  2920. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2921. {
  2922. /* Skip empty nodes */
  2923. if (!pgdat->node_spanned_pages)
  2924. return;
  2925. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2926. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2927. if (!pgdat->node_mem_map) {
  2928. unsigned long size, start, end;
  2929. struct page *map;
  2930. /*
  2931. * The zone's endpoints aren't required to be MAX_ORDER
  2932. * aligned but the node_mem_map endpoints must be in order
  2933. * for the buddy allocator to function correctly.
  2934. */
  2935. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2936. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2937. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2938. size = (end - start) * sizeof(struct page);
  2939. map = alloc_remap(pgdat->node_id, size);
  2940. if (!map)
  2941. map = alloc_bootmem_node(pgdat, size);
  2942. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2943. }
  2944. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2945. /*
  2946. * With no DISCONTIG, the global mem_map is just set as node 0's
  2947. */
  2948. if (pgdat == NODE_DATA(0)) {
  2949. mem_map = NODE_DATA(0)->node_mem_map;
  2950. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2951. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2952. mem_map -= pgdat->node_start_pfn;
  2953. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2954. }
  2955. #endif
  2956. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2957. }
  2958. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2959. unsigned long *zones_size, unsigned long node_start_pfn,
  2960. unsigned long *zholes_size)
  2961. {
  2962. pgdat->node_id = nid;
  2963. pgdat->node_start_pfn = node_start_pfn;
  2964. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2965. alloc_node_mem_map(pgdat);
  2966. free_area_init_core(pgdat, zones_size, zholes_size);
  2967. }
  2968. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2969. #if MAX_NUMNODES > 1
  2970. /*
  2971. * Figure out the number of possible node ids.
  2972. */
  2973. static void __init setup_nr_node_ids(void)
  2974. {
  2975. unsigned int node;
  2976. unsigned int highest = 0;
  2977. for_each_node_mask(node, node_possible_map)
  2978. highest = node;
  2979. nr_node_ids = highest + 1;
  2980. }
  2981. #else
  2982. static inline void setup_nr_node_ids(void)
  2983. {
  2984. }
  2985. #endif
  2986. /**
  2987. * add_active_range - Register a range of PFNs backed by physical memory
  2988. * @nid: The node ID the range resides on
  2989. * @start_pfn: The start PFN of the available physical memory
  2990. * @end_pfn: The end PFN of the available physical memory
  2991. *
  2992. * These ranges are stored in an early_node_map[] and later used by
  2993. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2994. * range spans a memory hole, it is up to the architecture to ensure
  2995. * the memory is not freed by the bootmem allocator. If possible
  2996. * the range being registered will be merged with existing ranges.
  2997. */
  2998. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2999. unsigned long end_pfn)
  3000. {
  3001. int i;
  3002. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3003. "%d entries of %d used\n",
  3004. nid, start_pfn, end_pfn,
  3005. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3006. /* Merge with existing active regions if possible */
  3007. for (i = 0; i < nr_nodemap_entries; i++) {
  3008. if (early_node_map[i].nid != nid)
  3009. continue;
  3010. /* Skip if an existing region covers this new one */
  3011. if (start_pfn >= early_node_map[i].start_pfn &&
  3012. end_pfn <= early_node_map[i].end_pfn)
  3013. return;
  3014. /* Merge forward if suitable */
  3015. if (start_pfn <= early_node_map[i].end_pfn &&
  3016. end_pfn > early_node_map[i].end_pfn) {
  3017. early_node_map[i].end_pfn = end_pfn;
  3018. return;
  3019. }
  3020. /* Merge backward if suitable */
  3021. if (start_pfn < early_node_map[i].end_pfn &&
  3022. end_pfn >= early_node_map[i].start_pfn) {
  3023. early_node_map[i].start_pfn = start_pfn;
  3024. return;
  3025. }
  3026. }
  3027. /* Check that early_node_map is large enough */
  3028. if (i >= MAX_ACTIVE_REGIONS) {
  3029. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3030. MAX_ACTIVE_REGIONS);
  3031. return;
  3032. }
  3033. early_node_map[i].nid = nid;
  3034. early_node_map[i].start_pfn = start_pfn;
  3035. early_node_map[i].end_pfn = end_pfn;
  3036. nr_nodemap_entries = i + 1;
  3037. }
  3038. /**
  3039. * shrink_active_range - Shrink an existing registered range of PFNs
  3040. * @nid: The node id the range is on that should be shrunk
  3041. * @old_end_pfn: The old end PFN of the range
  3042. * @new_end_pfn: The new PFN of the range
  3043. *
  3044. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3045. * The map is kept at the end physical page range that has already been
  3046. * registered with add_active_range(). This function allows an arch to shrink
  3047. * an existing registered range.
  3048. */
  3049. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3050. unsigned long new_end_pfn)
  3051. {
  3052. int i;
  3053. /* Find the old active region end and shrink */
  3054. for_each_active_range_index_in_nid(i, nid)
  3055. if (early_node_map[i].end_pfn == old_end_pfn) {
  3056. early_node_map[i].end_pfn = new_end_pfn;
  3057. break;
  3058. }
  3059. }
  3060. /**
  3061. * remove_all_active_ranges - Remove all currently registered regions
  3062. *
  3063. * During discovery, it may be found that a table like SRAT is invalid
  3064. * and an alternative discovery method must be used. This function removes
  3065. * all currently registered regions.
  3066. */
  3067. void __init remove_all_active_ranges(void)
  3068. {
  3069. memset(early_node_map, 0, sizeof(early_node_map));
  3070. nr_nodemap_entries = 0;
  3071. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3072. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3073. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3074. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3075. }
  3076. /* Compare two active node_active_regions */
  3077. static int __init cmp_node_active_region(const void *a, const void *b)
  3078. {
  3079. struct node_active_region *arange = (struct node_active_region *)a;
  3080. struct node_active_region *brange = (struct node_active_region *)b;
  3081. /* Done this way to avoid overflows */
  3082. if (arange->start_pfn > brange->start_pfn)
  3083. return 1;
  3084. if (arange->start_pfn < brange->start_pfn)
  3085. return -1;
  3086. return 0;
  3087. }
  3088. /* sort the node_map by start_pfn */
  3089. static void __init sort_node_map(void)
  3090. {
  3091. sort(early_node_map, (size_t)nr_nodemap_entries,
  3092. sizeof(struct node_active_region),
  3093. cmp_node_active_region, NULL);
  3094. }
  3095. /* Find the lowest pfn for a node */
  3096. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3097. {
  3098. int i;
  3099. unsigned long min_pfn = ULONG_MAX;
  3100. /* Assuming a sorted map, the first range found has the starting pfn */
  3101. for_each_active_range_index_in_nid(i, nid)
  3102. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3103. if (min_pfn == ULONG_MAX) {
  3104. printk(KERN_WARNING
  3105. "Could not find start_pfn for node %lu\n", nid);
  3106. return 0;
  3107. }
  3108. return min_pfn;
  3109. }
  3110. /**
  3111. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3112. *
  3113. * It returns the minimum PFN based on information provided via
  3114. * add_active_range().
  3115. */
  3116. unsigned long __init find_min_pfn_with_active_regions(void)
  3117. {
  3118. return find_min_pfn_for_node(MAX_NUMNODES);
  3119. }
  3120. /**
  3121. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3122. *
  3123. * It returns the maximum PFN based on information provided via
  3124. * add_active_range().
  3125. */
  3126. unsigned long __init find_max_pfn_with_active_regions(void)
  3127. {
  3128. int i;
  3129. unsigned long max_pfn = 0;
  3130. for (i = 0; i < nr_nodemap_entries; i++)
  3131. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3132. return max_pfn;
  3133. }
  3134. /*
  3135. * early_calculate_totalpages()
  3136. * Sum pages in active regions for movable zone.
  3137. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3138. */
  3139. static unsigned long __init early_calculate_totalpages(void)
  3140. {
  3141. int i;
  3142. unsigned long totalpages = 0;
  3143. for (i = 0; i < nr_nodemap_entries; i++) {
  3144. unsigned long pages = early_node_map[i].end_pfn -
  3145. early_node_map[i].start_pfn;
  3146. totalpages += pages;
  3147. if (pages)
  3148. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3149. }
  3150. return totalpages;
  3151. }
  3152. /*
  3153. * Find the PFN the Movable zone begins in each node. Kernel memory
  3154. * is spread evenly between nodes as long as the nodes have enough
  3155. * memory. When they don't, some nodes will have more kernelcore than
  3156. * others
  3157. */
  3158. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3159. {
  3160. int i, nid;
  3161. unsigned long usable_startpfn;
  3162. unsigned long kernelcore_node, kernelcore_remaining;
  3163. unsigned long totalpages = early_calculate_totalpages();
  3164. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3165. /*
  3166. * If movablecore was specified, calculate what size of
  3167. * kernelcore that corresponds so that memory usable for
  3168. * any allocation type is evenly spread. If both kernelcore
  3169. * and movablecore are specified, then the value of kernelcore
  3170. * will be used for required_kernelcore if it's greater than
  3171. * what movablecore would have allowed.
  3172. */
  3173. if (required_movablecore) {
  3174. unsigned long corepages;
  3175. /*
  3176. * Round-up so that ZONE_MOVABLE is at least as large as what
  3177. * was requested by the user
  3178. */
  3179. required_movablecore =
  3180. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3181. corepages = totalpages - required_movablecore;
  3182. required_kernelcore = max(required_kernelcore, corepages);
  3183. }
  3184. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3185. if (!required_kernelcore)
  3186. return;
  3187. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3188. find_usable_zone_for_movable();
  3189. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3190. restart:
  3191. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3192. kernelcore_node = required_kernelcore / usable_nodes;
  3193. for_each_node_state(nid, N_HIGH_MEMORY) {
  3194. /*
  3195. * Recalculate kernelcore_node if the division per node
  3196. * now exceeds what is necessary to satisfy the requested
  3197. * amount of memory for the kernel
  3198. */
  3199. if (required_kernelcore < kernelcore_node)
  3200. kernelcore_node = required_kernelcore / usable_nodes;
  3201. /*
  3202. * As the map is walked, we track how much memory is usable
  3203. * by the kernel using kernelcore_remaining. When it is
  3204. * 0, the rest of the node is usable by ZONE_MOVABLE
  3205. */
  3206. kernelcore_remaining = kernelcore_node;
  3207. /* Go through each range of PFNs within this node */
  3208. for_each_active_range_index_in_nid(i, nid) {
  3209. unsigned long start_pfn, end_pfn;
  3210. unsigned long size_pages;
  3211. start_pfn = max(early_node_map[i].start_pfn,
  3212. zone_movable_pfn[nid]);
  3213. end_pfn = early_node_map[i].end_pfn;
  3214. if (start_pfn >= end_pfn)
  3215. continue;
  3216. /* Account for what is only usable for kernelcore */
  3217. if (start_pfn < usable_startpfn) {
  3218. unsigned long kernel_pages;
  3219. kernel_pages = min(end_pfn, usable_startpfn)
  3220. - start_pfn;
  3221. kernelcore_remaining -= min(kernel_pages,
  3222. kernelcore_remaining);
  3223. required_kernelcore -= min(kernel_pages,
  3224. required_kernelcore);
  3225. /* Continue if range is now fully accounted */
  3226. if (end_pfn <= usable_startpfn) {
  3227. /*
  3228. * Push zone_movable_pfn to the end so
  3229. * that if we have to rebalance
  3230. * kernelcore across nodes, we will
  3231. * not double account here
  3232. */
  3233. zone_movable_pfn[nid] = end_pfn;
  3234. continue;
  3235. }
  3236. start_pfn = usable_startpfn;
  3237. }
  3238. /*
  3239. * The usable PFN range for ZONE_MOVABLE is from
  3240. * start_pfn->end_pfn. Calculate size_pages as the
  3241. * number of pages used as kernelcore
  3242. */
  3243. size_pages = end_pfn - start_pfn;
  3244. if (size_pages > kernelcore_remaining)
  3245. size_pages = kernelcore_remaining;
  3246. zone_movable_pfn[nid] = start_pfn + size_pages;
  3247. /*
  3248. * Some kernelcore has been met, update counts and
  3249. * break if the kernelcore for this node has been
  3250. * satisified
  3251. */
  3252. required_kernelcore -= min(required_kernelcore,
  3253. size_pages);
  3254. kernelcore_remaining -= size_pages;
  3255. if (!kernelcore_remaining)
  3256. break;
  3257. }
  3258. }
  3259. /*
  3260. * If there is still required_kernelcore, we do another pass with one
  3261. * less node in the count. This will push zone_movable_pfn[nid] further
  3262. * along on the nodes that still have memory until kernelcore is
  3263. * satisified
  3264. */
  3265. usable_nodes--;
  3266. if (usable_nodes && required_kernelcore > usable_nodes)
  3267. goto restart;
  3268. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3269. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3270. zone_movable_pfn[nid] =
  3271. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3272. }
  3273. /* Any regular memory on that node ? */
  3274. static void check_for_regular_memory(pg_data_t *pgdat)
  3275. {
  3276. #ifdef CONFIG_HIGHMEM
  3277. enum zone_type zone_type;
  3278. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3279. struct zone *zone = &pgdat->node_zones[zone_type];
  3280. if (zone->present_pages)
  3281. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3282. }
  3283. #endif
  3284. }
  3285. /**
  3286. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3287. * @max_zone_pfn: an array of max PFNs for each zone
  3288. *
  3289. * This will call free_area_init_node() for each active node in the system.
  3290. * Using the page ranges provided by add_active_range(), the size of each
  3291. * zone in each node and their holes is calculated. If the maximum PFN
  3292. * between two adjacent zones match, it is assumed that the zone is empty.
  3293. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3294. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3295. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3296. * at arch_max_dma_pfn.
  3297. */
  3298. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3299. {
  3300. unsigned long nid;
  3301. enum zone_type i;
  3302. /* Sort early_node_map as initialisation assumes it is sorted */
  3303. sort_node_map();
  3304. /* Record where the zone boundaries are */
  3305. memset(arch_zone_lowest_possible_pfn, 0,
  3306. sizeof(arch_zone_lowest_possible_pfn));
  3307. memset(arch_zone_highest_possible_pfn, 0,
  3308. sizeof(arch_zone_highest_possible_pfn));
  3309. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3310. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3311. for (i = 1; i < MAX_NR_ZONES; i++) {
  3312. if (i == ZONE_MOVABLE)
  3313. continue;
  3314. arch_zone_lowest_possible_pfn[i] =
  3315. arch_zone_highest_possible_pfn[i-1];
  3316. arch_zone_highest_possible_pfn[i] =
  3317. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3318. }
  3319. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3320. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3321. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3322. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3323. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3324. /* Print out the zone ranges */
  3325. printk("Zone PFN ranges:\n");
  3326. for (i = 0; i < MAX_NR_ZONES; i++) {
  3327. if (i == ZONE_MOVABLE)
  3328. continue;
  3329. printk(" %-8s %8lu -> %8lu\n",
  3330. zone_names[i],
  3331. arch_zone_lowest_possible_pfn[i],
  3332. arch_zone_highest_possible_pfn[i]);
  3333. }
  3334. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3335. printk("Movable zone start PFN for each node\n");
  3336. for (i = 0; i < MAX_NUMNODES; i++) {
  3337. if (zone_movable_pfn[i])
  3338. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3339. }
  3340. /* Print out the early_node_map[] */
  3341. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3342. for (i = 0; i < nr_nodemap_entries; i++)
  3343. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3344. early_node_map[i].start_pfn,
  3345. early_node_map[i].end_pfn);
  3346. /* Initialise every node */
  3347. setup_nr_node_ids();
  3348. for_each_online_node(nid) {
  3349. pg_data_t *pgdat = NODE_DATA(nid);
  3350. free_area_init_node(nid, pgdat, NULL,
  3351. find_min_pfn_for_node(nid), NULL);
  3352. /* Any memory on that node */
  3353. if (pgdat->node_present_pages)
  3354. node_set_state(nid, N_HIGH_MEMORY);
  3355. check_for_regular_memory(pgdat);
  3356. }
  3357. }
  3358. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3359. {
  3360. unsigned long long coremem;
  3361. if (!p)
  3362. return -EINVAL;
  3363. coremem = memparse(p, &p);
  3364. *core = coremem >> PAGE_SHIFT;
  3365. /* Paranoid check that UL is enough for the coremem value */
  3366. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3367. return 0;
  3368. }
  3369. /*
  3370. * kernelcore=size sets the amount of memory for use for allocations that
  3371. * cannot be reclaimed or migrated.
  3372. */
  3373. static int __init cmdline_parse_kernelcore(char *p)
  3374. {
  3375. return cmdline_parse_core(p, &required_kernelcore);
  3376. }
  3377. /*
  3378. * movablecore=size sets the amount of memory for use for allocations that
  3379. * can be reclaimed or migrated.
  3380. */
  3381. static int __init cmdline_parse_movablecore(char *p)
  3382. {
  3383. return cmdline_parse_core(p, &required_movablecore);
  3384. }
  3385. early_param("kernelcore", cmdline_parse_kernelcore);
  3386. early_param("movablecore", cmdline_parse_movablecore);
  3387. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3388. /**
  3389. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3390. * @new_dma_reserve: The number of pages to mark reserved
  3391. *
  3392. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3393. * In the DMA zone, a significant percentage may be consumed by kernel image
  3394. * and other unfreeable allocations which can skew the watermarks badly. This
  3395. * function may optionally be used to account for unfreeable pages in the
  3396. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3397. * smaller per-cpu batchsize.
  3398. */
  3399. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3400. {
  3401. dma_reserve = new_dma_reserve;
  3402. }
  3403. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3404. static bootmem_data_t contig_bootmem_data;
  3405. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3406. EXPORT_SYMBOL(contig_page_data);
  3407. #endif
  3408. void __init free_area_init(unsigned long *zones_size)
  3409. {
  3410. free_area_init_node(0, NODE_DATA(0), zones_size,
  3411. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3412. }
  3413. static int page_alloc_cpu_notify(struct notifier_block *self,
  3414. unsigned long action, void *hcpu)
  3415. {
  3416. int cpu = (unsigned long)hcpu;
  3417. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3418. local_irq_disable();
  3419. __drain_pages(cpu);
  3420. vm_events_fold_cpu(cpu);
  3421. local_irq_enable();
  3422. refresh_cpu_vm_stats(cpu);
  3423. }
  3424. return NOTIFY_OK;
  3425. }
  3426. void __init page_alloc_init(void)
  3427. {
  3428. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3429. }
  3430. /*
  3431. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3432. * or min_free_kbytes changes.
  3433. */
  3434. static void calculate_totalreserve_pages(void)
  3435. {
  3436. struct pglist_data *pgdat;
  3437. unsigned long reserve_pages = 0;
  3438. enum zone_type i, j;
  3439. for_each_online_pgdat(pgdat) {
  3440. for (i = 0; i < MAX_NR_ZONES; i++) {
  3441. struct zone *zone = pgdat->node_zones + i;
  3442. unsigned long max = 0;
  3443. /* Find valid and maximum lowmem_reserve in the zone */
  3444. for (j = i; j < MAX_NR_ZONES; j++) {
  3445. if (zone->lowmem_reserve[j] > max)
  3446. max = zone->lowmem_reserve[j];
  3447. }
  3448. /* we treat pages_high as reserved pages. */
  3449. max += zone->pages_high;
  3450. if (max > zone->present_pages)
  3451. max = zone->present_pages;
  3452. reserve_pages += max;
  3453. }
  3454. }
  3455. totalreserve_pages = reserve_pages;
  3456. }
  3457. /*
  3458. * setup_per_zone_lowmem_reserve - called whenever
  3459. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3460. * has a correct pages reserved value, so an adequate number of
  3461. * pages are left in the zone after a successful __alloc_pages().
  3462. */
  3463. static void setup_per_zone_lowmem_reserve(void)
  3464. {
  3465. struct pglist_data *pgdat;
  3466. enum zone_type j, idx;
  3467. for_each_online_pgdat(pgdat) {
  3468. for (j = 0; j < MAX_NR_ZONES; j++) {
  3469. struct zone *zone = pgdat->node_zones + j;
  3470. unsigned long present_pages = zone->present_pages;
  3471. zone->lowmem_reserve[j] = 0;
  3472. idx = j;
  3473. while (idx) {
  3474. struct zone *lower_zone;
  3475. idx--;
  3476. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3477. sysctl_lowmem_reserve_ratio[idx] = 1;
  3478. lower_zone = pgdat->node_zones + idx;
  3479. lower_zone->lowmem_reserve[j] = present_pages /
  3480. sysctl_lowmem_reserve_ratio[idx];
  3481. present_pages += lower_zone->present_pages;
  3482. }
  3483. }
  3484. }
  3485. /* update totalreserve_pages */
  3486. calculate_totalreserve_pages();
  3487. }
  3488. /**
  3489. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3490. *
  3491. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3492. * with respect to min_free_kbytes.
  3493. */
  3494. void setup_per_zone_pages_min(void)
  3495. {
  3496. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3497. unsigned long lowmem_pages = 0;
  3498. struct zone *zone;
  3499. unsigned long flags;
  3500. /* Calculate total number of !ZONE_HIGHMEM pages */
  3501. for_each_zone(zone) {
  3502. if (!is_highmem(zone))
  3503. lowmem_pages += zone->present_pages;
  3504. }
  3505. for_each_zone(zone) {
  3506. u64 tmp;
  3507. spin_lock_irqsave(&zone->lru_lock, flags);
  3508. tmp = (u64)pages_min * zone->present_pages;
  3509. do_div(tmp, lowmem_pages);
  3510. if (is_highmem(zone)) {
  3511. /*
  3512. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3513. * need highmem pages, so cap pages_min to a small
  3514. * value here.
  3515. *
  3516. * The (pages_high-pages_low) and (pages_low-pages_min)
  3517. * deltas controls asynch page reclaim, and so should
  3518. * not be capped for highmem.
  3519. */
  3520. int min_pages;
  3521. min_pages = zone->present_pages / 1024;
  3522. if (min_pages < SWAP_CLUSTER_MAX)
  3523. min_pages = SWAP_CLUSTER_MAX;
  3524. if (min_pages > 128)
  3525. min_pages = 128;
  3526. zone->pages_min = min_pages;
  3527. } else {
  3528. /*
  3529. * If it's a lowmem zone, reserve a number of pages
  3530. * proportionate to the zone's size.
  3531. */
  3532. zone->pages_min = tmp;
  3533. }
  3534. zone->pages_low = zone->pages_min + (tmp >> 2);
  3535. zone->pages_high = zone->pages_min + (tmp >> 1);
  3536. setup_zone_migrate_reserve(zone);
  3537. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3538. }
  3539. /* update totalreserve_pages */
  3540. calculate_totalreserve_pages();
  3541. }
  3542. /*
  3543. * Initialise min_free_kbytes.
  3544. *
  3545. * For small machines we want it small (128k min). For large machines
  3546. * we want it large (64MB max). But it is not linear, because network
  3547. * bandwidth does not increase linearly with machine size. We use
  3548. *
  3549. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3550. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3551. *
  3552. * which yields
  3553. *
  3554. * 16MB: 512k
  3555. * 32MB: 724k
  3556. * 64MB: 1024k
  3557. * 128MB: 1448k
  3558. * 256MB: 2048k
  3559. * 512MB: 2896k
  3560. * 1024MB: 4096k
  3561. * 2048MB: 5792k
  3562. * 4096MB: 8192k
  3563. * 8192MB: 11584k
  3564. * 16384MB: 16384k
  3565. */
  3566. static int __init init_per_zone_pages_min(void)
  3567. {
  3568. unsigned long lowmem_kbytes;
  3569. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3570. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3571. if (min_free_kbytes < 128)
  3572. min_free_kbytes = 128;
  3573. if (min_free_kbytes > 65536)
  3574. min_free_kbytes = 65536;
  3575. setup_per_zone_pages_min();
  3576. setup_per_zone_lowmem_reserve();
  3577. return 0;
  3578. }
  3579. module_init(init_per_zone_pages_min)
  3580. /*
  3581. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3582. * that we can call two helper functions whenever min_free_kbytes
  3583. * changes.
  3584. */
  3585. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3586. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3587. {
  3588. proc_dointvec(table, write, file, buffer, length, ppos);
  3589. if (write)
  3590. setup_per_zone_pages_min();
  3591. return 0;
  3592. }
  3593. #ifdef CONFIG_NUMA
  3594. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3595. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3596. {
  3597. struct zone *zone;
  3598. int rc;
  3599. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3600. if (rc)
  3601. return rc;
  3602. for_each_zone(zone)
  3603. zone->min_unmapped_pages = (zone->present_pages *
  3604. sysctl_min_unmapped_ratio) / 100;
  3605. return 0;
  3606. }
  3607. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3608. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3609. {
  3610. struct zone *zone;
  3611. int rc;
  3612. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3613. if (rc)
  3614. return rc;
  3615. for_each_zone(zone)
  3616. zone->min_slab_pages = (zone->present_pages *
  3617. sysctl_min_slab_ratio) / 100;
  3618. return 0;
  3619. }
  3620. #endif
  3621. /*
  3622. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3623. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3624. * whenever sysctl_lowmem_reserve_ratio changes.
  3625. *
  3626. * The reserve ratio obviously has absolutely no relation with the
  3627. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3628. * if in function of the boot time zone sizes.
  3629. */
  3630. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3631. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3632. {
  3633. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3634. setup_per_zone_lowmem_reserve();
  3635. return 0;
  3636. }
  3637. /*
  3638. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3639. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3640. * can have before it gets flushed back to buddy allocator.
  3641. */
  3642. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3643. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3644. {
  3645. struct zone *zone;
  3646. unsigned int cpu;
  3647. int ret;
  3648. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3649. if (!write || (ret == -EINVAL))
  3650. return ret;
  3651. for_each_zone(zone) {
  3652. for_each_online_cpu(cpu) {
  3653. unsigned long high;
  3654. high = zone->present_pages / percpu_pagelist_fraction;
  3655. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3656. }
  3657. }
  3658. return 0;
  3659. }
  3660. int hashdist = HASHDIST_DEFAULT;
  3661. #ifdef CONFIG_NUMA
  3662. static int __init set_hashdist(char *str)
  3663. {
  3664. if (!str)
  3665. return 0;
  3666. hashdist = simple_strtoul(str, &str, 0);
  3667. return 1;
  3668. }
  3669. __setup("hashdist=", set_hashdist);
  3670. #endif
  3671. /*
  3672. * allocate a large system hash table from bootmem
  3673. * - it is assumed that the hash table must contain an exact power-of-2
  3674. * quantity of entries
  3675. * - limit is the number of hash buckets, not the total allocation size
  3676. */
  3677. void *__init alloc_large_system_hash(const char *tablename,
  3678. unsigned long bucketsize,
  3679. unsigned long numentries,
  3680. int scale,
  3681. int flags,
  3682. unsigned int *_hash_shift,
  3683. unsigned int *_hash_mask,
  3684. unsigned long limit)
  3685. {
  3686. unsigned long long max = limit;
  3687. unsigned long log2qty, size;
  3688. void *table = NULL;
  3689. /* allow the kernel cmdline to have a say */
  3690. if (!numentries) {
  3691. /* round applicable memory size up to nearest megabyte */
  3692. numentries = nr_kernel_pages;
  3693. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3694. numentries >>= 20 - PAGE_SHIFT;
  3695. numentries <<= 20 - PAGE_SHIFT;
  3696. /* limit to 1 bucket per 2^scale bytes of low memory */
  3697. if (scale > PAGE_SHIFT)
  3698. numentries >>= (scale - PAGE_SHIFT);
  3699. else
  3700. numentries <<= (PAGE_SHIFT - scale);
  3701. /* Make sure we've got at least a 0-order allocation.. */
  3702. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3703. numentries = PAGE_SIZE / bucketsize;
  3704. }
  3705. numentries = roundup_pow_of_two(numentries);
  3706. /* limit allocation size to 1/16 total memory by default */
  3707. if (max == 0) {
  3708. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3709. do_div(max, bucketsize);
  3710. }
  3711. if (numentries > max)
  3712. numentries = max;
  3713. log2qty = ilog2(numentries);
  3714. do {
  3715. size = bucketsize << log2qty;
  3716. if (flags & HASH_EARLY)
  3717. table = alloc_bootmem(size);
  3718. else if (hashdist)
  3719. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3720. else {
  3721. unsigned long order;
  3722. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3723. ;
  3724. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3725. /*
  3726. * If bucketsize is not a power-of-two, we may free
  3727. * some pages at the end of hash table.
  3728. */
  3729. if (table) {
  3730. unsigned long alloc_end = (unsigned long)table +
  3731. (PAGE_SIZE << order);
  3732. unsigned long used = (unsigned long)table +
  3733. PAGE_ALIGN(size);
  3734. split_page(virt_to_page(table), order);
  3735. while (used < alloc_end) {
  3736. free_page(used);
  3737. used += PAGE_SIZE;
  3738. }
  3739. }
  3740. }
  3741. } while (!table && size > PAGE_SIZE && --log2qty);
  3742. if (!table)
  3743. panic("Failed to allocate %s hash table\n", tablename);
  3744. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3745. tablename,
  3746. (1U << log2qty),
  3747. ilog2(size) - PAGE_SHIFT,
  3748. size);
  3749. if (_hash_shift)
  3750. *_hash_shift = log2qty;
  3751. if (_hash_mask)
  3752. *_hash_mask = (1 << log2qty) - 1;
  3753. return table;
  3754. }
  3755. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3756. struct page *pfn_to_page(unsigned long pfn)
  3757. {
  3758. return __pfn_to_page(pfn);
  3759. }
  3760. unsigned long page_to_pfn(struct page *page)
  3761. {
  3762. return __page_to_pfn(page);
  3763. }
  3764. EXPORT_SYMBOL(pfn_to_page);
  3765. EXPORT_SYMBOL(page_to_pfn);
  3766. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3767. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3768. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3769. unsigned long pfn)
  3770. {
  3771. #ifdef CONFIG_SPARSEMEM
  3772. return __pfn_to_section(pfn)->pageblock_flags;
  3773. #else
  3774. return zone->pageblock_flags;
  3775. #endif /* CONFIG_SPARSEMEM */
  3776. }
  3777. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3778. {
  3779. #ifdef CONFIG_SPARSEMEM
  3780. pfn &= (PAGES_PER_SECTION-1);
  3781. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3782. #else
  3783. pfn = pfn - zone->zone_start_pfn;
  3784. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3785. #endif /* CONFIG_SPARSEMEM */
  3786. }
  3787. /**
  3788. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3789. * @page: The page within the block of interest
  3790. * @start_bitidx: The first bit of interest to retrieve
  3791. * @end_bitidx: The last bit of interest
  3792. * returns pageblock_bits flags
  3793. */
  3794. unsigned long get_pageblock_flags_group(struct page *page,
  3795. int start_bitidx, int end_bitidx)
  3796. {
  3797. struct zone *zone;
  3798. unsigned long *bitmap;
  3799. unsigned long pfn, bitidx;
  3800. unsigned long flags = 0;
  3801. unsigned long value = 1;
  3802. zone = page_zone(page);
  3803. pfn = page_to_pfn(page);
  3804. bitmap = get_pageblock_bitmap(zone, pfn);
  3805. bitidx = pfn_to_bitidx(zone, pfn);
  3806. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3807. if (test_bit(bitidx + start_bitidx, bitmap))
  3808. flags |= value;
  3809. return flags;
  3810. }
  3811. /**
  3812. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3813. * @page: The page within the block of interest
  3814. * @start_bitidx: The first bit of interest
  3815. * @end_bitidx: The last bit of interest
  3816. * @flags: The flags to set
  3817. */
  3818. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3819. int start_bitidx, int end_bitidx)
  3820. {
  3821. struct zone *zone;
  3822. unsigned long *bitmap;
  3823. unsigned long pfn, bitidx;
  3824. unsigned long value = 1;
  3825. zone = page_zone(page);
  3826. pfn = page_to_pfn(page);
  3827. bitmap = get_pageblock_bitmap(zone, pfn);
  3828. bitidx = pfn_to_bitidx(zone, pfn);
  3829. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3830. if (flags & value)
  3831. __set_bit(bitidx + start_bitidx, bitmap);
  3832. else
  3833. __clear_bit(bitidx + start_bitidx, bitmap);
  3834. }
  3835. /*
  3836. * This is designed as sub function...plz see page_isolation.c also.
  3837. * set/clear page block's type to be ISOLATE.
  3838. * page allocater never alloc memory from ISOLATE block.
  3839. */
  3840. int set_migratetype_isolate(struct page *page)
  3841. {
  3842. struct zone *zone;
  3843. unsigned long flags;
  3844. int ret = -EBUSY;
  3845. zone = page_zone(page);
  3846. spin_lock_irqsave(&zone->lock, flags);
  3847. /*
  3848. * In future, more migrate types will be able to be isolation target.
  3849. */
  3850. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3851. goto out;
  3852. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3853. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3854. ret = 0;
  3855. out:
  3856. spin_unlock_irqrestore(&zone->lock, flags);
  3857. if (!ret)
  3858. drain_all_local_pages();
  3859. return ret;
  3860. }
  3861. void unset_migratetype_isolate(struct page *page)
  3862. {
  3863. struct zone *zone;
  3864. unsigned long flags;
  3865. zone = page_zone(page);
  3866. spin_lock_irqsave(&zone->lock, flags);
  3867. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3868. goto out;
  3869. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3870. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3871. out:
  3872. spin_unlock_irqrestore(&zone->lock, flags);
  3873. }
  3874. #ifdef CONFIG_MEMORY_HOTREMOVE
  3875. /*
  3876. * All pages in the range must be isolated before calling this.
  3877. */
  3878. void
  3879. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3880. {
  3881. struct page *page;
  3882. struct zone *zone;
  3883. int order, i;
  3884. unsigned long pfn;
  3885. unsigned long flags;
  3886. /* find the first valid pfn */
  3887. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3888. if (pfn_valid(pfn))
  3889. break;
  3890. if (pfn == end_pfn)
  3891. return;
  3892. zone = page_zone(pfn_to_page(pfn));
  3893. spin_lock_irqsave(&zone->lock, flags);
  3894. pfn = start_pfn;
  3895. while (pfn < end_pfn) {
  3896. if (!pfn_valid(pfn)) {
  3897. pfn++;
  3898. continue;
  3899. }
  3900. page = pfn_to_page(pfn);
  3901. BUG_ON(page_count(page));
  3902. BUG_ON(!PageBuddy(page));
  3903. order = page_order(page);
  3904. #ifdef CONFIG_DEBUG_VM
  3905. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3906. pfn, 1 << order, end_pfn);
  3907. #endif
  3908. list_del(&page->lru);
  3909. rmv_page_order(page);
  3910. zone->free_area[order].nr_free--;
  3911. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3912. - (1UL << order));
  3913. for (i = 0; i < (1 << order); i++)
  3914. SetPageReserved((page+i));
  3915. pfn += (1 << order);
  3916. }
  3917. spin_unlock_irqrestore(&zone->lock, flags);
  3918. }
  3919. #endif