hugetlbpage.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. /*
  2. * IA-64 Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2002-2004 Rohit Seth <rohit.seth@intel.com>
  5. * Copyright (C) 2003-2004 Ken Chen <kenneth.w.chen@intel.com>
  6. *
  7. * Sep, 2003: add numa support
  8. * Feb, 2004: dynamic hugetlb page size via boot parameter
  9. */
  10. #include <linux/config.h>
  11. #include <linux/init.h>
  12. #include <linux/fs.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/slab.h>
  18. #include <linux/sysctl.h>
  19. #include <asm/mman.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. unsigned int hpage_shift=HPAGE_SHIFT_DEFAULT;
  24. static pte_t *
  25. huge_pte_alloc (struct mm_struct *mm, unsigned long addr)
  26. {
  27. unsigned long taddr = htlbpage_to_page(addr);
  28. pgd_t *pgd;
  29. pud_t *pud;
  30. pmd_t *pmd;
  31. pte_t *pte = NULL;
  32. pgd = pgd_offset(mm, taddr);
  33. pud = pud_alloc(mm, pgd, taddr);
  34. if (pud) {
  35. pmd = pmd_alloc(mm, pud, taddr);
  36. if (pmd)
  37. pte = pte_alloc_map(mm, pmd, taddr);
  38. }
  39. return pte;
  40. }
  41. static pte_t *
  42. huge_pte_offset (struct mm_struct *mm, unsigned long addr)
  43. {
  44. unsigned long taddr = htlbpage_to_page(addr);
  45. pgd_t *pgd;
  46. pud_t *pud;
  47. pmd_t *pmd;
  48. pte_t *pte = NULL;
  49. pgd = pgd_offset(mm, taddr);
  50. if (pgd_present(*pgd)) {
  51. pud = pud_offset(pgd, taddr);
  52. if (pud_present(*pud)) {
  53. pmd = pmd_offset(pud, taddr);
  54. if (pmd_present(*pmd))
  55. pte = pte_offset_map(pmd, taddr);
  56. }
  57. }
  58. return pte;
  59. }
  60. #define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; }
  61. static void
  62. set_huge_pte (struct mm_struct *mm, struct vm_area_struct *vma,
  63. struct page *page, pte_t * page_table, int write_access)
  64. {
  65. pte_t entry;
  66. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  67. if (write_access) {
  68. entry =
  69. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  70. } else
  71. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  72. entry = pte_mkyoung(entry);
  73. mk_pte_huge(entry);
  74. set_pte(page_table, entry);
  75. return;
  76. }
  77. /*
  78. * This function checks for proper alignment of input addr and len parameters.
  79. */
  80. int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
  81. {
  82. if (len & ~HPAGE_MASK)
  83. return -EINVAL;
  84. if (addr & ~HPAGE_MASK)
  85. return -EINVAL;
  86. if (REGION_NUMBER(addr) != REGION_HPAGE)
  87. return -EINVAL;
  88. return 0;
  89. }
  90. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  91. struct vm_area_struct *vma)
  92. {
  93. pte_t *src_pte, *dst_pte, entry;
  94. struct page *ptepage;
  95. unsigned long addr = vma->vm_start;
  96. unsigned long end = vma->vm_end;
  97. while (addr < end) {
  98. dst_pte = huge_pte_alloc(dst, addr);
  99. if (!dst_pte)
  100. goto nomem;
  101. src_pte = huge_pte_offset(src, addr);
  102. entry = *src_pte;
  103. ptepage = pte_page(entry);
  104. get_page(ptepage);
  105. set_pte(dst_pte, entry);
  106. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  107. addr += HPAGE_SIZE;
  108. }
  109. return 0;
  110. nomem:
  111. return -ENOMEM;
  112. }
  113. int
  114. follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  115. struct page **pages, struct vm_area_struct **vmas,
  116. unsigned long *st, int *length, int i)
  117. {
  118. pte_t *ptep, pte;
  119. unsigned long start = *st;
  120. unsigned long pstart;
  121. int len = *length;
  122. struct page *page;
  123. do {
  124. pstart = start & HPAGE_MASK;
  125. ptep = huge_pte_offset(mm, start);
  126. pte = *ptep;
  127. back1:
  128. page = pte_page(pte);
  129. if (pages) {
  130. page += ((start & ~HPAGE_MASK) >> PAGE_SHIFT);
  131. get_page(page);
  132. pages[i] = page;
  133. }
  134. if (vmas)
  135. vmas[i] = vma;
  136. i++;
  137. len--;
  138. start += PAGE_SIZE;
  139. if (((start & HPAGE_MASK) == pstart) && len &&
  140. (start < vma->vm_end))
  141. goto back1;
  142. } while (len && start < vma->vm_end);
  143. *length = len;
  144. *st = start;
  145. return i;
  146. }
  147. struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int write)
  148. {
  149. struct page *page;
  150. pte_t *ptep;
  151. if (REGION_NUMBER(addr) != REGION_HPAGE)
  152. return ERR_PTR(-EINVAL);
  153. ptep = huge_pte_offset(mm, addr);
  154. if (!ptep || pte_none(*ptep))
  155. return NULL;
  156. page = pte_page(*ptep);
  157. page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT);
  158. return page;
  159. }
  160. int pmd_huge(pmd_t pmd)
  161. {
  162. return 0;
  163. }
  164. struct page *
  165. follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write)
  166. {
  167. return NULL;
  168. }
  169. /*
  170. * Do nothing, until we've worked out what to do! To allow build, we
  171. * must remove reference to clear_page_range since it no longer exists.
  172. */
  173. void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
  174. unsigned long start, unsigned long end)
  175. {
  176. }
  177. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  178. {
  179. struct mm_struct *mm = vma->vm_mm;
  180. unsigned long address;
  181. pte_t *pte;
  182. struct page *page;
  183. BUG_ON(start & (HPAGE_SIZE - 1));
  184. BUG_ON(end & (HPAGE_SIZE - 1));
  185. for (address = start; address < end; address += HPAGE_SIZE) {
  186. pte = huge_pte_offset(mm, address);
  187. if (pte_none(*pte))
  188. continue;
  189. page = pte_page(*pte);
  190. put_page(page);
  191. pte_clear(mm, address, pte);
  192. }
  193. add_mm_counter(mm, rss, - ((end - start) >> PAGE_SHIFT));
  194. flush_tlb_range(vma, start, end);
  195. }
  196. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  197. {
  198. struct mm_struct *mm = current->mm;
  199. unsigned long addr;
  200. int ret = 0;
  201. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  202. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  203. spin_lock(&mm->page_table_lock);
  204. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  205. unsigned long idx;
  206. pte_t *pte = huge_pte_alloc(mm, addr);
  207. struct page *page;
  208. if (!pte) {
  209. ret = -ENOMEM;
  210. goto out;
  211. }
  212. if (!pte_none(*pte))
  213. continue;
  214. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  215. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  216. page = find_get_page(mapping, idx);
  217. if (!page) {
  218. /* charge the fs quota first */
  219. if (hugetlb_get_quota(mapping)) {
  220. ret = -ENOMEM;
  221. goto out;
  222. }
  223. page = alloc_huge_page();
  224. if (!page) {
  225. hugetlb_put_quota(mapping);
  226. ret = -ENOMEM;
  227. goto out;
  228. }
  229. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  230. if (! ret) {
  231. unlock_page(page);
  232. } else {
  233. hugetlb_put_quota(mapping);
  234. page_cache_release(page);
  235. goto out;
  236. }
  237. }
  238. set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
  239. }
  240. out:
  241. spin_unlock(&mm->page_table_lock);
  242. return ret;
  243. }
  244. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
  245. unsigned long pgoff, unsigned long flags)
  246. {
  247. struct vm_area_struct *vmm;
  248. if (len > RGN_MAP_LIMIT)
  249. return -ENOMEM;
  250. if (len & ~HPAGE_MASK)
  251. return -EINVAL;
  252. /* This code assumes that REGION_HPAGE != 0. */
  253. if ((REGION_NUMBER(addr) != REGION_HPAGE) || (addr & (HPAGE_SIZE - 1)))
  254. addr = HPAGE_REGION_BASE;
  255. else
  256. addr = ALIGN(addr, HPAGE_SIZE);
  257. for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
  258. /* At this point: (!vmm || addr < vmm->vm_end). */
  259. if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT)
  260. return -ENOMEM;
  261. if (!vmm || (addr + len) <= vmm->vm_start)
  262. return addr;
  263. addr = ALIGN(vmm->vm_end, HPAGE_SIZE);
  264. }
  265. }
  266. static int __init hugetlb_setup_sz(char *str)
  267. {
  268. u64 tr_pages;
  269. unsigned long long size;
  270. if (ia64_pal_vm_page_size(&tr_pages, NULL) != 0)
  271. /*
  272. * shouldn't happen, but just in case.
  273. */
  274. tr_pages = 0x15557000UL;
  275. size = memparse(str, &str);
  276. if (*str || (size & (size-1)) || !(tr_pages & size) ||
  277. size <= PAGE_SIZE ||
  278. size >= (1UL << PAGE_SHIFT << MAX_ORDER)) {
  279. printk(KERN_WARNING "Invalid huge page size specified\n");
  280. return 1;
  281. }
  282. hpage_shift = __ffs(size);
  283. /*
  284. * boot cpu already executed ia64_mmu_init, and has HPAGE_SHIFT_DEFAULT
  285. * override here with new page shift.
  286. */
  287. ia64_set_rr(HPAGE_REGION_BASE, hpage_shift << 2);
  288. return 1;
  289. }
  290. __setup("hugepagesz=", hugetlb_setup_sz);