pxa2xx_spi.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/errno.h>
  29. #include <linux/delay.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  40. MODULE_LICENSE("GPL");
  41. #define MAX_BUSES 3
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  45. #define DEFINE_SSP_REG(reg, off) \
  46. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  47. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  48. DEFINE_SSP_REG(SSCR0, 0x00)
  49. DEFINE_SSP_REG(SSCR1, 0x04)
  50. DEFINE_SSP_REG(SSSR, 0x08)
  51. DEFINE_SSP_REG(SSITR, 0x0c)
  52. DEFINE_SSP_REG(SSDR, 0x10)
  53. DEFINE_SSP_REG(SSTO, 0x28)
  54. DEFINE_SSP_REG(SSPSP, 0x2c)
  55. #define START_STATE ((void*)0)
  56. #define RUNNING_STATE ((void*)1)
  57. #define DONE_STATE ((void*)2)
  58. #define ERROR_STATE ((void*)-1)
  59. #define QUEUE_RUNNING 0
  60. #define QUEUE_STOPPED 1
  61. struct driver_data {
  62. /* Driver model hookup */
  63. struct platform_device *pdev;
  64. /* SPI framework hookup */
  65. enum pxa_ssp_type ssp_type;
  66. struct spi_master *master;
  67. /* PXA hookup */
  68. struct pxa2xx_spi_master *master_info;
  69. /* DMA setup stuff */
  70. int rx_channel;
  71. int tx_channel;
  72. u32 *null_dma_buf;
  73. /* SSP register addresses */
  74. void *ioaddr;
  75. u32 ssdr_physical;
  76. /* SSP masks*/
  77. u32 dma_cr1;
  78. u32 int_cr1;
  79. u32 clear_sr;
  80. u32 mask_sr;
  81. /* Driver message queue */
  82. struct workqueue_struct *workqueue;
  83. struct work_struct pump_messages;
  84. spinlock_t lock;
  85. struct list_head queue;
  86. int busy;
  87. int run;
  88. /* Message Transfer pump */
  89. struct tasklet_struct pump_transfers;
  90. /* Current message transfer state info */
  91. struct spi_message* cur_msg;
  92. struct spi_transfer* cur_transfer;
  93. struct chip_data *cur_chip;
  94. size_t len;
  95. void *tx;
  96. void *tx_end;
  97. void *rx;
  98. void *rx_end;
  99. int dma_mapped;
  100. dma_addr_t rx_dma;
  101. dma_addr_t tx_dma;
  102. size_t rx_map_len;
  103. size_t tx_map_len;
  104. int cs_change;
  105. void (*write)(struct driver_data *drv_data);
  106. void (*read)(struct driver_data *drv_data);
  107. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  108. void (*cs_control)(u32 command);
  109. };
  110. struct chip_data {
  111. u32 cr0;
  112. u32 cr1;
  113. u32 to;
  114. u32 psp;
  115. u32 timeout;
  116. u8 n_bytes;
  117. u32 dma_width;
  118. u32 dma_burst_size;
  119. u32 threshold;
  120. u32 dma_threshold;
  121. u8 enable_dma;
  122. void (*write)(struct driver_data *drv_data);
  123. void (*read)(struct driver_data *drv_data);
  124. void (*cs_control)(u32 command);
  125. };
  126. static void pump_messages(void *data);
  127. static int flush(struct driver_data *drv_data)
  128. {
  129. unsigned long limit = loops_per_jiffy << 1;
  130. void *reg = drv_data->ioaddr;
  131. do {
  132. while (read_SSSR(reg) & SSSR_RNE) {
  133. read_SSDR(reg);
  134. }
  135. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  136. write_SSSR(SSSR_ROR, reg);
  137. return limit;
  138. }
  139. static void restore_state(struct driver_data *drv_data)
  140. {
  141. void *reg = drv_data->ioaddr;
  142. /* Clear status and disable clock */
  143. write_SSSR(drv_data->clear_sr, reg);
  144. write_SSCR0(drv_data->cur_chip->cr0 & ~SSCR0_SSE, reg);
  145. /* Load the registers */
  146. write_SSCR1(drv_data->cur_chip->cr1, reg);
  147. write_SSCR0(drv_data->cur_chip->cr0, reg);
  148. if (drv_data->ssp_type != PXA25x_SSP) {
  149. write_SSTO(0, reg);
  150. write_SSPSP(drv_data->cur_chip->psp, reg);
  151. }
  152. }
  153. static void null_cs_control(u32 command)
  154. {
  155. }
  156. static void null_writer(struct driver_data *drv_data)
  157. {
  158. void *reg = drv_data->ioaddr;
  159. u8 n_bytes = drv_data->cur_chip->n_bytes;
  160. while ((read_SSSR(reg) & SSSR_TNF)
  161. && (drv_data->tx < drv_data->tx_end)) {
  162. write_SSDR(0, reg);
  163. drv_data->tx += n_bytes;
  164. }
  165. }
  166. static void null_reader(struct driver_data *drv_data)
  167. {
  168. void *reg = drv_data->ioaddr;
  169. u8 n_bytes = drv_data->cur_chip->n_bytes;
  170. while ((read_SSSR(reg) & SSSR_RNE)
  171. && (drv_data->rx < drv_data->rx_end)) {
  172. read_SSDR(reg);
  173. drv_data->rx += n_bytes;
  174. }
  175. }
  176. static void u8_writer(struct driver_data *drv_data)
  177. {
  178. void *reg = drv_data->ioaddr;
  179. while ((read_SSSR(reg) & SSSR_TNF)
  180. && (drv_data->tx < drv_data->tx_end)) {
  181. write_SSDR(*(u8 *)(drv_data->tx), reg);
  182. ++drv_data->tx;
  183. }
  184. }
  185. static void u8_reader(struct driver_data *drv_data)
  186. {
  187. void *reg = drv_data->ioaddr;
  188. while ((read_SSSR(reg) & SSSR_RNE)
  189. && (drv_data->rx < drv_data->rx_end)) {
  190. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  191. ++drv_data->rx;
  192. }
  193. }
  194. static void u16_writer(struct driver_data *drv_data)
  195. {
  196. void *reg = drv_data->ioaddr;
  197. while ((read_SSSR(reg) & SSSR_TNF)
  198. && (drv_data->tx < drv_data->tx_end)) {
  199. write_SSDR(*(u16 *)(drv_data->tx), reg);
  200. drv_data->tx += 2;
  201. }
  202. }
  203. static void u16_reader(struct driver_data *drv_data)
  204. {
  205. void *reg = drv_data->ioaddr;
  206. while ((read_SSSR(reg) & SSSR_RNE)
  207. && (drv_data->rx < drv_data->rx_end)) {
  208. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  209. drv_data->rx += 2;
  210. }
  211. }
  212. static void u32_writer(struct driver_data *drv_data)
  213. {
  214. void *reg = drv_data->ioaddr;
  215. while ((read_SSSR(reg) & SSSR_TNF)
  216. && (drv_data->tx < drv_data->tx_end)) {
  217. write_SSDR(*(u16 *)(drv_data->tx), reg);
  218. drv_data->tx += 4;
  219. }
  220. }
  221. static void u32_reader(struct driver_data *drv_data)
  222. {
  223. void *reg = drv_data->ioaddr;
  224. while ((read_SSSR(reg) & SSSR_RNE)
  225. && (drv_data->rx < drv_data->rx_end)) {
  226. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  227. drv_data->rx += 4;
  228. }
  229. }
  230. static void *next_transfer(struct driver_data *drv_data)
  231. {
  232. struct spi_message *msg = drv_data->cur_msg;
  233. struct spi_transfer *trans = drv_data->cur_transfer;
  234. /* Move to next transfer */
  235. if (trans->transfer_list.next != &msg->transfers) {
  236. drv_data->cur_transfer =
  237. list_entry(trans->transfer_list.next,
  238. struct spi_transfer,
  239. transfer_list);
  240. return RUNNING_STATE;
  241. } else
  242. return DONE_STATE;
  243. }
  244. static int map_dma_buffers(struct driver_data *drv_data)
  245. {
  246. struct spi_message *msg = drv_data->cur_msg;
  247. struct device *dev = &msg->spi->dev;
  248. if (!drv_data->cur_chip->enable_dma)
  249. return 0;
  250. if (msg->is_dma_mapped)
  251. return drv_data->rx_dma && drv_data->tx_dma;
  252. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  253. return 0;
  254. /* Modify setup if rx buffer is null */
  255. if (drv_data->rx == NULL) {
  256. *drv_data->null_dma_buf = 0;
  257. drv_data->rx = drv_data->null_dma_buf;
  258. drv_data->rx_map_len = 4;
  259. } else
  260. drv_data->rx_map_len = drv_data->len;
  261. /* Modify setup if tx buffer is null */
  262. if (drv_data->tx == NULL) {
  263. *drv_data->null_dma_buf = 0;
  264. drv_data->tx = drv_data->null_dma_buf;
  265. drv_data->tx_map_len = 4;
  266. } else
  267. drv_data->tx_map_len = drv_data->len;
  268. /* Stream map the rx buffer */
  269. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  270. drv_data->rx_map_len,
  271. DMA_FROM_DEVICE);
  272. if (dma_mapping_error(drv_data->rx_dma))
  273. return 0;
  274. /* Stream map the tx buffer */
  275. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  276. drv_data->tx_map_len,
  277. DMA_TO_DEVICE);
  278. if (dma_mapping_error(drv_data->tx_dma)) {
  279. dma_unmap_single(dev, drv_data->rx_dma,
  280. drv_data->rx_map_len, DMA_FROM_DEVICE);
  281. return 0;
  282. }
  283. return 1;
  284. }
  285. static void unmap_dma_buffers(struct driver_data *drv_data)
  286. {
  287. struct device *dev;
  288. if (!drv_data->dma_mapped)
  289. return;
  290. if (!drv_data->cur_msg->is_dma_mapped) {
  291. dev = &drv_data->cur_msg->spi->dev;
  292. dma_unmap_single(dev, drv_data->rx_dma,
  293. drv_data->rx_map_len, DMA_FROM_DEVICE);
  294. dma_unmap_single(dev, drv_data->tx_dma,
  295. drv_data->tx_map_len, DMA_TO_DEVICE);
  296. }
  297. drv_data->dma_mapped = 0;
  298. }
  299. /* caller already set message->status; dma and pio irqs are blocked */
  300. static void giveback(struct spi_message *message, struct driver_data *drv_data)
  301. {
  302. struct spi_transfer* last_transfer;
  303. last_transfer = list_entry(message->transfers.prev,
  304. struct spi_transfer,
  305. transfer_list);
  306. if (!last_transfer->cs_change)
  307. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  308. message->state = NULL;
  309. if (message->complete)
  310. message->complete(message->context);
  311. drv_data->cur_msg = NULL;
  312. drv_data->cur_transfer = NULL;
  313. drv_data->cur_chip = NULL;
  314. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  315. }
  316. static int wait_ssp_rx_stall(void *ioaddr)
  317. {
  318. unsigned long limit = loops_per_jiffy << 1;
  319. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  320. cpu_relax();
  321. return limit;
  322. }
  323. static int wait_dma_channel_stop(int channel)
  324. {
  325. unsigned long limit = loops_per_jiffy << 1;
  326. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  327. cpu_relax();
  328. return limit;
  329. }
  330. static void dma_handler(int channel, void *data, struct pt_regs *regs)
  331. {
  332. struct driver_data *drv_data = data;
  333. struct spi_message *msg = drv_data->cur_msg;
  334. void *reg = drv_data->ioaddr;
  335. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  336. u32 trailing_sssr = 0;
  337. if (irq_status & DCSR_BUSERR) {
  338. /* Disable interrupts, clear status and reset DMA */
  339. if (drv_data->ssp_type != PXA25x_SSP)
  340. write_SSTO(0, reg);
  341. write_SSSR(drv_data->clear_sr, reg);
  342. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  343. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  344. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  345. if (flush(drv_data) == 0)
  346. dev_err(&drv_data->pdev->dev,
  347. "dma_handler: flush fail\n");
  348. unmap_dma_buffers(drv_data);
  349. if (channel == drv_data->tx_channel)
  350. dev_err(&drv_data->pdev->dev,
  351. "dma_handler: bad bus address on "
  352. "tx channel %d, source %x target = %x\n",
  353. channel, DSADR(channel), DTADR(channel));
  354. else
  355. dev_err(&drv_data->pdev->dev,
  356. "dma_handler: bad bus address on "
  357. "rx channel %d, source %x target = %x\n",
  358. channel, DSADR(channel), DTADR(channel));
  359. msg->state = ERROR_STATE;
  360. tasklet_schedule(&drv_data->pump_transfers);
  361. }
  362. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  363. if ((drv_data->ssp_type == PXA25x_SSP)
  364. && (channel == drv_data->tx_channel)
  365. && (irq_status & DCSR_ENDINTR)) {
  366. /* Wait for rx to stall */
  367. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  368. dev_err(&drv_data->pdev->dev,
  369. "dma_handler: ssp rx stall failed\n");
  370. /* Clear and disable interrupts on SSP and DMA channels*/
  371. write_SSSR(drv_data->clear_sr, reg);
  372. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  373. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  374. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  375. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  376. dev_err(&drv_data->pdev->dev,
  377. "dma_handler: dma rx channel stop failed\n");
  378. unmap_dma_buffers(drv_data);
  379. /* Read trailing bytes */
  380. /* Calculate number of trailing bytes, read them */
  381. trailing_sssr = read_SSSR(reg);
  382. if ((trailing_sssr & 0xf008) != 0xf000) {
  383. drv_data->rx = drv_data->rx_end -
  384. (((trailing_sssr >> 12) & 0x0f) + 1);
  385. drv_data->read(drv_data);
  386. }
  387. msg->actual_length += drv_data->len;
  388. /* Release chip select if requested, transfer delays are
  389. * handled in pump_transfers */
  390. if (drv_data->cs_change)
  391. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  392. /* Move to next transfer */
  393. msg->state = next_transfer(drv_data);
  394. /* Schedule transfer tasklet */
  395. tasklet_schedule(&drv_data->pump_transfers);
  396. }
  397. }
  398. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  399. {
  400. u32 irq_status;
  401. u32 trailing_sssr = 0;
  402. struct spi_message *msg = drv_data->cur_msg;
  403. void *reg = drv_data->ioaddr;
  404. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  405. if (irq_status & SSSR_ROR) {
  406. /* Clear and disable interrupts on SSP and DMA channels*/
  407. if (drv_data->ssp_type != PXA25x_SSP)
  408. write_SSTO(0, reg);
  409. write_SSSR(drv_data->clear_sr, reg);
  410. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  411. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  412. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  413. unmap_dma_buffers(drv_data);
  414. if (flush(drv_data) == 0)
  415. dev_err(&drv_data->pdev->dev,
  416. "dma_transfer: flush fail\n");
  417. dev_warn(&drv_data->pdev->dev, "dma_transfer: fifo overun\n");
  418. drv_data->cur_msg->state = ERROR_STATE;
  419. tasklet_schedule(&drv_data->pump_transfers);
  420. return IRQ_HANDLED;
  421. }
  422. /* Check for false positive timeout */
  423. if ((irq_status & SSSR_TINT) && DCSR(drv_data->tx_channel) & DCSR_RUN) {
  424. write_SSSR(SSSR_TINT, reg);
  425. return IRQ_HANDLED;
  426. }
  427. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  428. /* Clear and disable interrupts on SSP and DMA channels*/
  429. if (drv_data->ssp_type != PXA25x_SSP)
  430. write_SSTO(0, reg);
  431. write_SSSR(drv_data->clear_sr, reg);
  432. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  433. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  434. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  435. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  436. dev_err(&drv_data->pdev->dev,
  437. "dma_transfer: dma rx channel stop failed\n");
  438. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  439. dev_err(&drv_data->pdev->dev,
  440. "dma_transfer: ssp rx stall failed\n");
  441. unmap_dma_buffers(drv_data);
  442. /* Calculate number of trailing bytes, read them */
  443. trailing_sssr = read_SSSR(reg);
  444. if ((trailing_sssr & 0xf008) != 0xf000) {
  445. drv_data->rx = drv_data->rx_end -
  446. (((trailing_sssr >> 12) & 0x0f) + 1);
  447. drv_data->read(drv_data);
  448. }
  449. msg->actual_length += drv_data->len;
  450. /* Release chip select if requested, transfer delays are
  451. * handled in pump_transfers */
  452. if (drv_data->cs_change)
  453. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  454. /* Move to next transfer */
  455. msg->state = next_transfer(drv_data);
  456. /* Schedule transfer tasklet */
  457. tasklet_schedule(&drv_data->pump_transfers);
  458. return IRQ_HANDLED;
  459. }
  460. /* Opps problem detected */
  461. return IRQ_NONE;
  462. }
  463. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  464. {
  465. u32 irq_status;
  466. struct spi_message *msg = drv_data->cur_msg;
  467. void *reg = drv_data->ioaddr;
  468. irqreturn_t handled = IRQ_NONE;
  469. unsigned long limit = loops_per_jiffy << 1;
  470. while ((irq_status = (read_SSSR(reg) & drv_data->mask_sr))) {
  471. if (irq_status & SSSR_ROR) {
  472. /* Clear and disable interrupts */
  473. if (drv_data->ssp_type != PXA25x_SSP)
  474. write_SSTO(0, reg);
  475. write_SSSR(drv_data->clear_sr, reg);
  476. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  477. if (flush(drv_data) == 0)
  478. dev_err(&drv_data->pdev->dev,
  479. "interrupt_transfer: flush fail\n");
  480. dev_warn(&drv_data->pdev->dev,
  481. "interrupt_transfer: fifo overun\n");
  482. msg->state = ERROR_STATE;
  483. tasklet_schedule(&drv_data->pump_transfers);
  484. return IRQ_HANDLED;
  485. }
  486. /* Look for false positive timeout */
  487. if ((irq_status & SSSR_TINT)
  488. && (drv_data->rx < drv_data->rx_end))
  489. write_SSSR(SSSR_TINT, reg);
  490. /* Pump data */
  491. drv_data->read(drv_data);
  492. drv_data->write(drv_data);
  493. if (drv_data->tx == drv_data->tx_end) {
  494. /* Disable tx interrupt */
  495. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  496. /* PXA25x_SSP has no timeout, read trailing bytes */
  497. if (drv_data->ssp_type == PXA25x_SSP) {
  498. while ((read_SSSR(reg) & SSSR_BSY) && limit--)
  499. drv_data->read(drv_data);
  500. if (limit == 0)
  501. dev_err(&drv_data->pdev->dev,
  502. "interrupt_transfer: "
  503. "trailing byte read failed\n");
  504. }
  505. }
  506. if ((irq_status & SSSR_TINT)
  507. || (drv_data->rx == drv_data->rx_end)) {
  508. /* Clear timeout */
  509. if (drv_data->ssp_type != PXA25x_SSP)
  510. write_SSTO(0, reg);
  511. write_SSSR(drv_data->clear_sr, reg);
  512. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  513. /* Update total byte transfered */
  514. msg->actual_length += drv_data->len;
  515. /* Release chip select if requested, transfer delays are
  516. * handled in pump_transfers */
  517. if (drv_data->cs_change)
  518. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  519. /* Move to next transfer */
  520. msg->state = next_transfer(drv_data);
  521. /* Schedule transfer tasklet */
  522. tasklet_schedule(&drv_data->pump_transfers);
  523. return IRQ_HANDLED;
  524. }
  525. /* We did something */
  526. handled = IRQ_HANDLED;
  527. }
  528. return handled;
  529. }
  530. static irqreturn_t ssp_int(int irq, void *dev_id, struct pt_regs *regs)
  531. {
  532. struct driver_data *drv_data = (struct driver_data *)dev_id;
  533. if (!drv_data->cur_msg) {
  534. dev_err(&drv_data->pdev->dev, "bad message state "
  535. "in interrupt handler\n");
  536. /* Never fail */
  537. return IRQ_HANDLED;
  538. }
  539. return drv_data->transfer_handler(drv_data);
  540. }
  541. static void pump_transfers(unsigned long data)
  542. {
  543. struct driver_data *drv_data = (struct driver_data *)data;
  544. struct spi_message *message = NULL;
  545. struct spi_transfer *transfer = NULL;
  546. struct spi_transfer *previous = NULL;
  547. struct chip_data *chip = NULL;
  548. void *reg = drv_data->ioaddr;
  549. /* Get current state information */
  550. message = drv_data->cur_msg;
  551. transfer = drv_data->cur_transfer;
  552. chip = drv_data->cur_chip;
  553. /* Handle for abort */
  554. if (message->state == ERROR_STATE) {
  555. message->status = -EIO;
  556. giveback(message, drv_data);
  557. return;
  558. }
  559. /* Handle end of message */
  560. if (message->state == DONE_STATE) {
  561. message->status = 0;
  562. giveback(message, drv_data);
  563. return;
  564. }
  565. /* Delay if requested at end of transfer*/
  566. if (message->state == RUNNING_STATE) {
  567. previous = list_entry(transfer->transfer_list.prev,
  568. struct spi_transfer,
  569. transfer_list);
  570. if (previous->delay_usecs)
  571. udelay(previous->delay_usecs);
  572. }
  573. /* Setup the transfer state based on the type of transfer */
  574. if (flush(drv_data) == 0) {
  575. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  576. message->status = -EIO;
  577. giveback(message, drv_data);
  578. return;
  579. }
  580. drv_data->cs_control = chip->cs_control;
  581. drv_data->tx = (void *)transfer->tx_buf;
  582. drv_data->tx_end = drv_data->tx + transfer->len;
  583. drv_data->rx = transfer->rx_buf;
  584. drv_data->rx_end = drv_data->rx + transfer->len;
  585. drv_data->rx_dma = transfer->rx_dma;
  586. drv_data->tx_dma = transfer->tx_dma;
  587. drv_data->len = transfer->len;
  588. drv_data->write = drv_data->tx ? chip->write : null_writer;
  589. drv_data->read = drv_data->rx ? chip->read : null_reader;
  590. drv_data->cs_change = transfer->cs_change;
  591. message->state = RUNNING_STATE;
  592. /* Try to map dma buffer and do a dma transfer if successful */
  593. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  594. /* Ensure we have the correct interrupt handler */
  595. drv_data->transfer_handler = dma_transfer;
  596. /* Setup rx DMA Channel */
  597. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  598. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  599. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  600. if (drv_data->rx == drv_data->null_dma_buf)
  601. /* No target address increment */
  602. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  603. | chip->dma_width
  604. | chip->dma_burst_size
  605. | drv_data->len;
  606. else
  607. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  608. | DCMD_FLOWSRC
  609. | chip->dma_width
  610. | chip->dma_burst_size
  611. | drv_data->len;
  612. /* Setup tx DMA Channel */
  613. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  614. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  615. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  616. if (drv_data->tx == drv_data->null_dma_buf)
  617. /* No source address increment */
  618. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  619. | chip->dma_width
  620. | chip->dma_burst_size
  621. | drv_data->len;
  622. else
  623. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  624. | DCMD_FLOWTRG
  625. | chip->dma_width
  626. | chip->dma_burst_size
  627. | drv_data->len;
  628. /* Enable dma end irqs on SSP to detect end of transfer */
  629. if (drv_data->ssp_type == PXA25x_SSP)
  630. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  631. /* Fix me, need to handle cs polarity */
  632. drv_data->cs_control(PXA2XX_CS_ASSERT);
  633. /* Go baby, go */
  634. write_SSSR(drv_data->clear_sr, reg);
  635. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  636. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  637. if (drv_data->ssp_type != PXA25x_SSP)
  638. write_SSTO(chip->timeout, reg);
  639. write_SSCR1(chip->cr1
  640. | chip->dma_threshold
  641. | drv_data->dma_cr1,
  642. reg);
  643. } else {
  644. /* Ensure we have the correct interrupt handler */
  645. drv_data->transfer_handler = interrupt_transfer;
  646. /* Fix me, need to handle cs polarity */
  647. drv_data->cs_control(PXA2XX_CS_ASSERT);
  648. /* Go baby, go */
  649. write_SSSR(drv_data->clear_sr, reg);
  650. if (drv_data->ssp_type != PXA25x_SSP)
  651. write_SSTO(chip->timeout, reg);
  652. write_SSCR1(chip->cr1
  653. | chip->threshold
  654. | drv_data->int_cr1,
  655. reg);
  656. }
  657. }
  658. static void pump_messages(void *data)
  659. {
  660. struct driver_data *drv_data = data;
  661. unsigned long flags;
  662. /* Lock queue and check for queue work */
  663. spin_lock_irqsave(&drv_data->lock, flags);
  664. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  665. drv_data->busy = 0;
  666. spin_unlock_irqrestore(&drv_data->lock, flags);
  667. return;
  668. }
  669. /* Make sure we are not already running a message */
  670. if (drv_data->cur_msg) {
  671. spin_unlock_irqrestore(&drv_data->lock, flags);
  672. return;
  673. }
  674. /* Extract head of queue */
  675. drv_data->cur_msg = list_entry(drv_data->queue.next,
  676. struct spi_message, queue);
  677. list_del_init(&drv_data->cur_msg->queue);
  678. drv_data->busy = 1;
  679. spin_unlock_irqrestore(&drv_data->lock, flags);
  680. /* Initial message state*/
  681. drv_data->cur_msg->state = START_STATE;
  682. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  683. struct spi_transfer,
  684. transfer_list);
  685. /* Setup the SSP using the per chip configuration */
  686. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  687. restore_state(drv_data);
  688. /* Mark as busy and launch transfers */
  689. tasklet_schedule(&drv_data->pump_transfers);
  690. }
  691. static int transfer(struct spi_device *spi, struct spi_message *msg)
  692. {
  693. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  694. unsigned long flags;
  695. spin_lock_irqsave(&drv_data->lock, flags);
  696. if (drv_data->run == QUEUE_STOPPED) {
  697. spin_unlock_irqrestore(&drv_data->lock, flags);
  698. return -ESHUTDOWN;
  699. }
  700. msg->actual_length = 0;
  701. msg->status = -EINPROGRESS;
  702. msg->state = START_STATE;
  703. list_add_tail(&msg->queue, &drv_data->queue);
  704. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  705. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  706. spin_unlock_irqrestore(&drv_data->lock, flags);
  707. return 0;
  708. }
  709. static int setup(struct spi_device *spi)
  710. {
  711. struct pxa2xx_spi_chip *chip_info = NULL;
  712. struct chip_data *chip;
  713. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  714. unsigned int clk_div;
  715. if (!spi->bits_per_word)
  716. spi->bits_per_word = 8;
  717. if (drv_data->ssp_type != PXA25x_SSP
  718. && (spi->bits_per_word < 4 || spi->bits_per_word > 32))
  719. return -EINVAL;
  720. else if (spi->bits_per_word < 4 || spi->bits_per_word > 16)
  721. return -EINVAL;
  722. /* Only alloc (or use chip_info) on first setup */
  723. chip = spi_get_ctldata(spi);
  724. if (chip == NULL) {
  725. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  726. if (!chip)
  727. return -ENOMEM;
  728. chip->cs_control = null_cs_control;
  729. chip->enable_dma = 0;
  730. chip->timeout = 5;
  731. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  732. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  733. DCMD_BURST8 : 0;
  734. chip_info = spi->controller_data;
  735. }
  736. /* chip_info isn't always needed */
  737. if (chip_info) {
  738. if (chip_info->cs_control)
  739. chip->cs_control = chip_info->cs_control;
  740. chip->timeout = (chip_info->timeout_microsecs * 10000) / 2712;
  741. chip->threshold = SSCR1_RxTresh(chip_info->rx_threshold)
  742. | SSCR1_TxTresh(chip_info->tx_threshold);
  743. chip->enable_dma = chip_info->dma_burst_size != 0
  744. && drv_data->master_info->enable_dma;
  745. chip->dma_threshold = 0;
  746. if (chip->enable_dma) {
  747. if (chip_info->dma_burst_size <= 8) {
  748. chip->dma_threshold = SSCR1_RxTresh(8)
  749. | SSCR1_TxTresh(8);
  750. chip->dma_burst_size = DCMD_BURST8;
  751. } else if (chip_info->dma_burst_size <= 16) {
  752. chip->dma_threshold = SSCR1_RxTresh(16)
  753. | SSCR1_TxTresh(16);
  754. chip->dma_burst_size = DCMD_BURST16;
  755. } else {
  756. chip->dma_threshold = SSCR1_RxTresh(32)
  757. | SSCR1_TxTresh(32);
  758. chip->dma_burst_size = DCMD_BURST32;
  759. }
  760. }
  761. if (chip_info->enable_loopback)
  762. chip->cr1 = SSCR1_LBM;
  763. }
  764. if (drv_data->ioaddr == SSP1_VIRT)
  765. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  766. else if (drv_data->ioaddr == SSP2_VIRT)
  767. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  768. else if (drv_data->ioaddr == SSP3_VIRT)
  769. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  770. else
  771. return -ENODEV;
  772. chip->cr0 = clk_div
  773. | SSCR0_Motorola
  774. | SSCR0_DataSize(spi->bits_per_word & 0x0f)
  775. | SSCR0_SSE
  776. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  777. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4)
  778. | (((spi->mode & SPI_CPOL) != 0) << 3);
  779. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  780. if (drv_data->ssp_type != PXA25x_SSP)
  781. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  782. spi->bits_per_word,
  783. (CLOCK_SPEED_HZ)
  784. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  785. spi->mode & 0x3);
  786. else
  787. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  788. spi->bits_per_word,
  789. (CLOCK_SPEED_HZ/2)
  790. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  791. spi->mode & 0x3);
  792. if (spi->bits_per_word <= 8) {
  793. chip->n_bytes = 1;
  794. chip->dma_width = DCMD_WIDTH1;
  795. chip->read = u8_reader;
  796. chip->write = u8_writer;
  797. } else if (spi->bits_per_word <= 16) {
  798. chip->n_bytes = 2;
  799. chip->dma_width = DCMD_WIDTH2;
  800. chip->read = u16_reader;
  801. chip->write = u16_writer;
  802. } else if (spi->bits_per_word <= 32) {
  803. chip->cr0 |= SSCR0_EDSS;
  804. chip->n_bytes = 4;
  805. chip->dma_width = DCMD_WIDTH4;
  806. chip->read = u32_reader;
  807. chip->write = u32_writer;
  808. } else {
  809. dev_err(&spi->dev, "invalid wordsize\n");
  810. kfree(chip);
  811. return -ENODEV;
  812. }
  813. spi_set_ctldata(spi, chip);
  814. return 0;
  815. }
  816. static void cleanup(const struct spi_device *spi)
  817. {
  818. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  819. kfree(chip);
  820. }
  821. static int init_queue(struct driver_data *drv_data)
  822. {
  823. INIT_LIST_HEAD(&drv_data->queue);
  824. spin_lock_init(&drv_data->lock);
  825. drv_data->run = QUEUE_STOPPED;
  826. drv_data->busy = 0;
  827. tasklet_init(&drv_data->pump_transfers,
  828. pump_transfers, (unsigned long)drv_data);
  829. INIT_WORK(&drv_data->pump_messages, pump_messages, drv_data);
  830. drv_data->workqueue = create_singlethread_workqueue(
  831. drv_data->master->cdev.dev->bus_id);
  832. if (drv_data->workqueue == NULL)
  833. return -EBUSY;
  834. return 0;
  835. }
  836. static int start_queue(struct driver_data *drv_data)
  837. {
  838. unsigned long flags;
  839. spin_lock_irqsave(&drv_data->lock, flags);
  840. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  841. spin_unlock_irqrestore(&drv_data->lock, flags);
  842. return -EBUSY;
  843. }
  844. drv_data->run = QUEUE_RUNNING;
  845. drv_data->cur_msg = NULL;
  846. drv_data->cur_transfer = NULL;
  847. drv_data->cur_chip = NULL;
  848. spin_unlock_irqrestore(&drv_data->lock, flags);
  849. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  850. return 0;
  851. }
  852. static int stop_queue(struct driver_data *drv_data)
  853. {
  854. unsigned long flags;
  855. unsigned limit = 500;
  856. int status = 0;
  857. spin_lock_irqsave(&drv_data->lock, flags);
  858. /* This is a bit lame, but is optimized for the common execution path.
  859. * A wait_queue on the drv_data->busy could be used, but then the common
  860. * execution path (pump_messages) would be required to call wake_up or
  861. * friends on every SPI message. Do this instead */
  862. drv_data->run = QUEUE_STOPPED;
  863. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  864. spin_unlock_irqrestore(&drv_data->lock, flags);
  865. msleep(10);
  866. spin_lock_irqsave(&drv_data->lock, flags);
  867. }
  868. if (!list_empty(&drv_data->queue) || drv_data->busy)
  869. status = -EBUSY;
  870. spin_unlock_irqrestore(&drv_data->lock, flags);
  871. return status;
  872. }
  873. static int destroy_queue(struct driver_data *drv_data)
  874. {
  875. int status;
  876. status = stop_queue(drv_data);
  877. if (status != 0)
  878. return status;
  879. destroy_workqueue(drv_data->workqueue);
  880. return 0;
  881. }
  882. static int pxa2xx_spi_probe(struct platform_device *pdev)
  883. {
  884. struct device *dev = &pdev->dev;
  885. struct pxa2xx_spi_master *platform_info;
  886. struct spi_master *master;
  887. struct driver_data *drv_data = 0;
  888. struct resource *memory_resource;
  889. int irq;
  890. int status = 0;
  891. platform_info = dev->platform_data;
  892. if (platform_info->ssp_type == SSP_UNDEFINED) {
  893. dev_err(&pdev->dev, "undefined SSP\n");
  894. return -ENODEV;
  895. }
  896. /* Allocate master with space for drv_data and null dma buffer */
  897. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  898. if (!master) {
  899. dev_err(&pdev->dev, "can not alloc spi_master\n");
  900. return -ENOMEM;
  901. }
  902. drv_data = spi_master_get_devdata(master);
  903. drv_data->master = master;
  904. drv_data->master_info = platform_info;
  905. drv_data->pdev = pdev;
  906. master->bus_num = pdev->id;
  907. master->num_chipselect = platform_info->num_chipselect;
  908. master->cleanup = cleanup;
  909. master->setup = setup;
  910. master->transfer = transfer;
  911. drv_data->ssp_type = platform_info->ssp_type;
  912. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  913. sizeof(struct driver_data)), 8);
  914. /* Setup register addresses */
  915. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  916. if (!memory_resource) {
  917. dev_err(&pdev->dev, "memory resources not defined\n");
  918. status = -ENODEV;
  919. goto out_error_master_alloc;
  920. }
  921. drv_data->ioaddr = (void *)io_p2v(memory_resource->start);
  922. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  923. if (platform_info->ssp_type == PXA25x_SSP) {
  924. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  925. drv_data->dma_cr1 = 0;
  926. drv_data->clear_sr = SSSR_ROR;
  927. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  928. } else {
  929. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  930. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  931. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  932. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  933. }
  934. /* Attach to IRQ */
  935. irq = platform_get_irq(pdev, 0);
  936. if (irq < 0) {
  937. dev_err(&pdev->dev, "irq resource not defined\n");
  938. status = -ENODEV;
  939. goto out_error_master_alloc;
  940. }
  941. status = request_irq(irq, ssp_int, SA_INTERRUPT, dev->bus_id, drv_data);
  942. if (status < 0) {
  943. dev_err(&pdev->dev, "can not get IRQ\n");
  944. goto out_error_master_alloc;
  945. }
  946. /* Setup DMA if requested */
  947. drv_data->tx_channel = -1;
  948. drv_data->rx_channel = -1;
  949. if (platform_info->enable_dma) {
  950. /* Get two DMA channels (rx and tx) */
  951. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  952. DMA_PRIO_HIGH,
  953. dma_handler,
  954. drv_data);
  955. if (drv_data->rx_channel < 0) {
  956. dev_err(dev, "problem (%d) requesting rx channel\n",
  957. drv_data->rx_channel);
  958. status = -ENODEV;
  959. goto out_error_irq_alloc;
  960. }
  961. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  962. DMA_PRIO_MEDIUM,
  963. dma_handler,
  964. drv_data);
  965. if (drv_data->tx_channel < 0) {
  966. dev_err(dev, "problem (%d) requesting tx channel\n",
  967. drv_data->tx_channel);
  968. status = -ENODEV;
  969. goto out_error_dma_alloc;
  970. }
  971. if (drv_data->ioaddr == SSP1_VIRT) {
  972. DRCMRRXSSDR = DRCMR_MAPVLD
  973. | drv_data->rx_channel;
  974. DRCMRTXSSDR = DRCMR_MAPVLD
  975. | drv_data->tx_channel;
  976. } else if (drv_data->ioaddr == SSP2_VIRT) {
  977. DRCMRRXSS2DR = DRCMR_MAPVLD
  978. | drv_data->rx_channel;
  979. DRCMRTXSS2DR = DRCMR_MAPVLD
  980. | drv_data->tx_channel;
  981. } else if (drv_data->ioaddr == SSP3_VIRT) {
  982. DRCMRRXSS3DR = DRCMR_MAPVLD
  983. | drv_data->rx_channel;
  984. DRCMRTXSS3DR = DRCMR_MAPVLD
  985. | drv_data->tx_channel;
  986. } else {
  987. dev_err(dev, "bad SSP type\n");
  988. goto out_error_dma_alloc;
  989. }
  990. }
  991. /* Enable SOC clock */
  992. pxa_set_cken(platform_info->clock_enable, 1);
  993. /* Load default SSP configuration */
  994. write_SSCR0(0, drv_data->ioaddr);
  995. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  996. write_SSCR0(SSCR0_SerClkDiv(2)
  997. | SSCR0_Motorola
  998. | SSCR0_DataSize(8),
  999. drv_data->ioaddr);
  1000. if (drv_data->ssp_type != PXA25x_SSP)
  1001. write_SSTO(0, drv_data->ioaddr);
  1002. write_SSPSP(0, drv_data->ioaddr);
  1003. /* Initial and start queue */
  1004. status = init_queue(drv_data);
  1005. if (status != 0) {
  1006. dev_err(&pdev->dev, "problem initializing queue\n");
  1007. goto out_error_clock_enabled;
  1008. }
  1009. status = start_queue(drv_data);
  1010. if (status != 0) {
  1011. dev_err(&pdev->dev, "problem starting queue\n");
  1012. goto out_error_clock_enabled;
  1013. }
  1014. /* Register with the SPI framework */
  1015. platform_set_drvdata(pdev, drv_data);
  1016. status = spi_register_master(master);
  1017. if (status != 0) {
  1018. dev_err(&pdev->dev, "problem registering spi master\n");
  1019. goto out_error_queue_alloc;
  1020. }
  1021. return status;
  1022. out_error_queue_alloc:
  1023. destroy_queue(drv_data);
  1024. out_error_clock_enabled:
  1025. pxa_set_cken(platform_info->clock_enable, 0);
  1026. out_error_dma_alloc:
  1027. if (drv_data->tx_channel != -1)
  1028. pxa_free_dma(drv_data->tx_channel);
  1029. if (drv_data->rx_channel != -1)
  1030. pxa_free_dma(drv_data->rx_channel);
  1031. out_error_irq_alloc:
  1032. free_irq(irq, drv_data);
  1033. out_error_master_alloc:
  1034. spi_master_put(master);
  1035. return status;
  1036. }
  1037. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1038. {
  1039. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1040. int irq;
  1041. int status = 0;
  1042. if (!drv_data)
  1043. return 0;
  1044. /* Remove the queue */
  1045. status = destroy_queue(drv_data);
  1046. if (status != 0)
  1047. return status;
  1048. /* Disable the SSP at the peripheral and SOC level */
  1049. write_SSCR0(0, drv_data->ioaddr);
  1050. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1051. /* Release DMA */
  1052. if (drv_data->master_info->enable_dma) {
  1053. if (drv_data->ioaddr == SSP1_VIRT) {
  1054. DRCMRRXSSDR = 0;
  1055. DRCMRTXSSDR = 0;
  1056. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1057. DRCMRRXSS2DR = 0;
  1058. DRCMRTXSS2DR = 0;
  1059. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1060. DRCMRRXSS3DR = 0;
  1061. DRCMRTXSS3DR = 0;
  1062. }
  1063. pxa_free_dma(drv_data->tx_channel);
  1064. pxa_free_dma(drv_data->rx_channel);
  1065. }
  1066. /* Release IRQ */
  1067. irq = platform_get_irq(pdev, 0);
  1068. if (irq >= 0)
  1069. free_irq(irq, drv_data);
  1070. /* Disconnect from the SPI framework */
  1071. spi_unregister_master(drv_data->master);
  1072. /* Prevent double remove */
  1073. platform_set_drvdata(pdev, NULL);
  1074. return 0;
  1075. }
  1076. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1077. {
  1078. int status = 0;
  1079. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1080. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1081. }
  1082. #ifdef CONFIG_PM
  1083. static int suspend_devices(struct device *dev, void *pm_message)
  1084. {
  1085. pm_message_t *state = pm_message;
  1086. if (dev->power.power_state.event != state->event) {
  1087. dev_warn(dev, "pm state does not match request\n");
  1088. return -1;
  1089. }
  1090. return 0;
  1091. }
  1092. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1093. {
  1094. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1095. int status = 0;
  1096. /* Check all childern for current power state */
  1097. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1098. dev_warn(&pdev->dev, "suspend aborted\n");
  1099. return -1;
  1100. }
  1101. status = stop_queue(drv_data);
  1102. if (status != 0)
  1103. return status;
  1104. write_SSCR0(0, drv_data->ioaddr);
  1105. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1106. return 0;
  1107. }
  1108. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1109. {
  1110. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1111. int status = 0;
  1112. /* Enable the SSP clock */
  1113. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1114. /* Start the queue running */
  1115. status = start_queue(drv_data);
  1116. if (status != 0) {
  1117. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1118. return status;
  1119. }
  1120. return 0;
  1121. }
  1122. #else
  1123. #define pxa2xx_spi_suspend NULL
  1124. #define pxa2xx_spi_resume NULL
  1125. #endif /* CONFIG_PM */
  1126. static struct platform_driver driver = {
  1127. .driver = {
  1128. .name = "pxa2xx-spi",
  1129. .bus = &platform_bus_type,
  1130. .owner = THIS_MODULE,
  1131. },
  1132. .probe = pxa2xx_spi_probe,
  1133. .remove = __devexit_p(pxa2xx_spi_remove),
  1134. .shutdown = pxa2xx_spi_shutdown,
  1135. .suspend = pxa2xx_spi_suspend,
  1136. .resume = pxa2xx_spi_resume,
  1137. };
  1138. static int __init pxa2xx_spi_init(void)
  1139. {
  1140. platform_driver_register(&driver);
  1141. return 0;
  1142. }
  1143. module_init(pxa2xx_spi_init);
  1144. static void __exit pxa2xx_spi_exit(void)
  1145. {
  1146. platform_driver_unregister(&driver);
  1147. }
  1148. module_exit(pxa2xx_spi_exit);