aio.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/migrate.h>
  39. #include <linux/ramfs.h>
  40. #include <linux/percpu-refcount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head;
  51. unsigned tail;
  52. unsigned magic;
  53. unsigned compat_features;
  54. unsigned incompat_features;
  55. unsigned header_length; /* size of aio_ring */
  56. struct io_event io_events[0];
  57. }; /* 128 bytes + ring size */
  58. #define AIO_RING_PAGES 8
  59. struct kioctx_table {
  60. struct rcu_head rcu;
  61. unsigned nr;
  62. struct kioctx *table[];
  63. };
  64. struct kioctx_cpu {
  65. unsigned reqs_available;
  66. };
  67. struct kioctx {
  68. struct percpu_ref users;
  69. atomic_t dead;
  70. unsigned long user_id;
  71. struct __percpu kioctx_cpu *cpu;
  72. /*
  73. * For percpu reqs_available, number of slots we move to/from global
  74. * counter at a time:
  75. */
  76. unsigned req_batch;
  77. /*
  78. * This is what userspace passed to io_setup(), it's not used for
  79. * anything but counting against the global max_reqs quota.
  80. *
  81. * The real limit is nr_events - 1, which will be larger (see
  82. * aio_setup_ring())
  83. */
  84. unsigned max_reqs;
  85. /* Size of ringbuffer, in units of struct io_event */
  86. unsigned nr_events;
  87. unsigned long mmap_base;
  88. unsigned long mmap_size;
  89. struct page **ring_pages;
  90. long nr_pages;
  91. struct rcu_head rcu_head;
  92. struct work_struct free_work;
  93. struct {
  94. /*
  95. * This counts the number of available slots in the ringbuffer,
  96. * so we avoid overflowing it: it's decremented (if positive)
  97. * when allocating a kiocb and incremented when the resulting
  98. * io_event is pulled off the ringbuffer.
  99. *
  100. * We batch accesses to it with a percpu version.
  101. */
  102. atomic_t reqs_available;
  103. } ____cacheline_aligned_in_smp;
  104. struct {
  105. spinlock_t ctx_lock;
  106. struct list_head active_reqs; /* used for cancellation */
  107. } ____cacheline_aligned_in_smp;
  108. struct {
  109. struct mutex ring_lock;
  110. wait_queue_head_t wait;
  111. } ____cacheline_aligned_in_smp;
  112. struct {
  113. unsigned tail;
  114. spinlock_t completion_lock;
  115. } ____cacheline_aligned_in_smp;
  116. struct page *internal_pages[AIO_RING_PAGES];
  117. struct file *aio_ring_file;
  118. unsigned id;
  119. };
  120. /*------ sysctl variables----*/
  121. static DEFINE_SPINLOCK(aio_nr_lock);
  122. unsigned long aio_nr; /* current system wide number of aio requests */
  123. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  124. /*----end sysctl variables---*/
  125. static struct kmem_cache *kiocb_cachep;
  126. static struct kmem_cache *kioctx_cachep;
  127. /* aio_setup
  128. * Creates the slab caches used by the aio routines, panic on
  129. * failure as this is done early during the boot sequence.
  130. */
  131. static int __init aio_setup(void)
  132. {
  133. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  134. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  135. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  136. return 0;
  137. }
  138. __initcall(aio_setup);
  139. static void put_aio_ring_file(struct kioctx *ctx)
  140. {
  141. struct file *aio_ring_file = ctx->aio_ring_file;
  142. if (aio_ring_file) {
  143. truncate_setsize(aio_ring_file->f_inode, 0);
  144. /* Prevent further access to the kioctx from migratepages */
  145. spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
  146. aio_ring_file->f_inode->i_mapping->private_data = NULL;
  147. ctx->aio_ring_file = NULL;
  148. spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
  149. fput(aio_ring_file);
  150. }
  151. }
  152. static void aio_free_ring(struct kioctx *ctx)
  153. {
  154. int i;
  155. for (i = 0; i < ctx->nr_pages; i++) {
  156. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  157. page_count(ctx->ring_pages[i]));
  158. put_page(ctx->ring_pages[i]);
  159. }
  160. put_aio_ring_file(ctx);
  161. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
  162. kfree(ctx->ring_pages);
  163. }
  164. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  165. {
  166. vma->vm_ops = &generic_file_vm_ops;
  167. return 0;
  168. }
  169. static const struct file_operations aio_ring_fops = {
  170. .mmap = aio_ring_mmap,
  171. };
  172. static int aio_set_page_dirty(struct page *page)
  173. {
  174. return 0;
  175. }
  176. #if IS_ENABLED(CONFIG_MIGRATION)
  177. static int aio_migratepage(struct address_space *mapping, struct page *new,
  178. struct page *old, enum migrate_mode mode)
  179. {
  180. struct kioctx *ctx;
  181. unsigned long flags;
  182. int rc;
  183. /* Writeback must be complete */
  184. BUG_ON(PageWriteback(old));
  185. put_page(old);
  186. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  187. if (rc != MIGRATEPAGE_SUCCESS) {
  188. get_page(old);
  189. return rc;
  190. }
  191. get_page(new);
  192. /* We can potentially race against kioctx teardown here. Use the
  193. * address_space's private data lock to protect the mapping's
  194. * private_data.
  195. */
  196. spin_lock(&mapping->private_lock);
  197. ctx = mapping->private_data;
  198. if (ctx) {
  199. pgoff_t idx;
  200. spin_lock_irqsave(&ctx->completion_lock, flags);
  201. migrate_page_copy(new, old);
  202. idx = old->index;
  203. if (idx < (pgoff_t)ctx->nr_pages)
  204. ctx->ring_pages[idx] = new;
  205. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  206. } else
  207. rc = -EBUSY;
  208. spin_unlock(&mapping->private_lock);
  209. return rc;
  210. }
  211. #endif
  212. static const struct address_space_operations aio_ctx_aops = {
  213. .set_page_dirty = aio_set_page_dirty,
  214. #if IS_ENABLED(CONFIG_MIGRATION)
  215. .migratepage = aio_migratepage,
  216. #endif
  217. };
  218. static int aio_setup_ring(struct kioctx *ctx)
  219. {
  220. struct aio_ring *ring;
  221. unsigned nr_events = ctx->max_reqs;
  222. struct mm_struct *mm = current->mm;
  223. unsigned long size, populate;
  224. int nr_pages;
  225. int i;
  226. struct file *file;
  227. /* Compensate for the ring buffer's head/tail overlap entry */
  228. nr_events += 2; /* 1 is required, 2 for good luck */
  229. size = sizeof(struct aio_ring);
  230. size += sizeof(struct io_event) * nr_events;
  231. nr_pages = PFN_UP(size);
  232. if (nr_pages < 0)
  233. return -EINVAL;
  234. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  235. if (IS_ERR(file)) {
  236. ctx->aio_ring_file = NULL;
  237. return -EAGAIN;
  238. }
  239. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  240. file->f_inode->i_mapping->private_data = ctx;
  241. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  242. for (i = 0; i < nr_pages; i++) {
  243. struct page *page;
  244. page = find_or_create_page(file->f_inode->i_mapping,
  245. i, GFP_HIGHUSER | __GFP_ZERO);
  246. if (!page)
  247. break;
  248. pr_debug("pid(%d) page[%d]->count=%d\n",
  249. current->pid, i, page_count(page));
  250. SetPageUptodate(page);
  251. SetPageDirty(page);
  252. unlock_page(page);
  253. }
  254. ctx->aio_ring_file = file;
  255. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  256. / sizeof(struct io_event);
  257. ctx->ring_pages = ctx->internal_pages;
  258. if (nr_pages > AIO_RING_PAGES) {
  259. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  260. GFP_KERNEL);
  261. if (!ctx->ring_pages)
  262. return -ENOMEM;
  263. }
  264. ctx->mmap_size = nr_pages * PAGE_SIZE;
  265. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  266. down_write(&mm->mmap_sem);
  267. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  268. PROT_READ | PROT_WRITE,
  269. MAP_SHARED | MAP_POPULATE, 0, &populate);
  270. if (IS_ERR((void *)ctx->mmap_base)) {
  271. up_write(&mm->mmap_sem);
  272. ctx->mmap_size = 0;
  273. aio_free_ring(ctx);
  274. return -EAGAIN;
  275. }
  276. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  277. /* We must do this while still holding mmap_sem for write, as we
  278. * need to be protected against userspace attempting to mremap()
  279. * or munmap() the ring buffer.
  280. */
  281. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  282. 1, 0, ctx->ring_pages, NULL);
  283. /* Dropping the reference here is safe as the page cache will hold
  284. * onto the pages for us. It is also required so that page migration
  285. * can unmap the pages and get the right reference count.
  286. */
  287. for (i = 0; i < ctx->nr_pages; i++)
  288. put_page(ctx->ring_pages[i]);
  289. up_write(&mm->mmap_sem);
  290. if (unlikely(ctx->nr_pages != nr_pages)) {
  291. aio_free_ring(ctx);
  292. return -EAGAIN;
  293. }
  294. ctx->user_id = ctx->mmap_base;
  295. ctx->nr_events = nr_events; /* trusted copy */
  296. ring = kmap_atomic(ctx->ring_pages[0]);
  297. ring->nr = nr_events; /* user copy */
  298. ring->id = ~0U;
  299. ring->head = ring->tail = 0;
  300. ring->magic = AIO_RING_MAGIC;
  301. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  302. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  303. ring->header_length = sizeof(struct aio_ring);
  304. kunmap_atomic(ring);
  305. flush_dcache_page(ctx->ring_pages[0]);
  306. return 0;
  307. }
  308. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  309. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  310. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  311. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  312. {
  313. struct kioctx *ctx = req->ki_ctx;
  314. unsigned long flags;
  315. spin_lock_irqsave(&ctx->ctx_lock, flags);
  316. if (!req->ki_list.next)
  317. list_add(&req->ki_list, &ctx->active_reqs);
  318. req->ki_cancel = cancel;
  319. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  320. }
  321. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  322. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
  323. {
  324. kiocb_cancel_fn *old, *cancel;
  325. /*
  326. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  327. * actually has a cancel function, hence the cmpxchg()
  328. */
  329. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  330. do {
  331. if (!cancel || cancel == KIOCB_CANCELLED)
  332. return -EINVAL;
  333. old = cancel;
  334. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  335. } while (cancel != old);
  336. return cancel(kiocb);
  337. }
  338. static void free_ioctx_rcu(struct rcu_head *head)
  339. {
  340. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  341. free_percpu(ctx->cpu);
  342. kmem_cache_free(kioctx_cachep, ctx);
  343. }
  344. /*
  345. * When this function runs, the kioctx has been removed from the "hash table"
  346. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  347. * now it's safe to cancel any that need to be.
  348. */
  349. static void free_ioctx(struct work_struct *work)
  350. {
  351. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  352. struct aio_ring *ring;
  353. struct kiocb *req;
  354. unsigned cpu, avail;
  355. DEFINE_WAIT(wait);
  356. spin_lock_irq(&ctx->ctx_lock);
  357. while (!list_empty(&ctx->active_reqs)) {
  358. req = list_first_entry(&ctx->active_reqs,
  359. struct kiocb, ki_list);
  360. list_del_init(&req->ki_list);
  361. kiocb_cancel(ctx, req);
  362. }
  363. spin_unlock_irq(&ctx->ctx_lock);
  364. for_each_possible_cpu(cpu) {
  365. struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
  366. atomic_add(kcpu->reqs_available, &ctx->reqs_available);
  367. kcpu->reqs_available = 0;
  368. }
  369. while (1) {
  370. prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
  371. ring = kmap_atomic(ctx->ring_pages[0]);
  372. avail = (ring->head <= ring->tail)
  373. ? ring->tail - ring->head
  374. : ctx->nr_events - ring->head + ring->tail;
  375. atomic_add(avail, &ctx->reqs_available);
  376. ring->head = ring->tail;
  377. kunmap_atomic(ring);
  378. if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
  379. break;
  380. schedule();
  381. }
  382. finish_wait(&ctx->wait, &wait);
  383. WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
  384. aio_free_ring(ctx);
  385. pr_debug("freeing %p\n", ctx);
  386. /*
  387. * Here the call_rcu() is between the wait_event() for reqs_active to
  388. * hit 0, and freeing the ioctx.
  389. *
  390. * aio_complete() decrements reqs_active, but it has to touch the ioctx
  391. * after to issue a wakeup so we use rcu.
  392. */
  393. call_rcu(&ctx->rcu_head, free_ioctx_rcu);
  394. }
  395. static void free_ioctx_ref(struct percpu_ref *ref)
  396. {
  397. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  398. INIT_WORK(&ctx->free_work, free_ioctx);
  399. schedule_work(&ctx->free_work);
  400. }
  401. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  402. {
  403. unsigned i, new_nr;
  404. struct kioctx_table *table, *old;
  405. struct aio_ring *ring;
  406. spin_lock(&mm->ioctx_lock);
  407. rcu_read_lock();
  408. table = rcu_dereference(mm->ioctx_table);
  409. while (1) {
  410. if (table)
  411. for (i = 0; i < table->nr; i++)
  412. if (!table->table[i]) {
  413. ctx->id = i;
  414. table->table[i] = ctx;
  415. rcu_read_unlock();
  416. spin_unlock(&mm->ioctx_lock);
  417. ring = kmap_atomic(ctx->ring_pages[0]);
  418. ring->id = ctx->id;
  419. kunmap_atomic(ring);
  420. return 0;
  421. }
  422. new_nr = (table ? table->nr : 1) * 4;
  423. rcu_read_unlock();
  424. spin_unlock(&mm->ioctx_lock);
  425. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  426. new_nr, GFP_KERNEL);
  427. if (!table)
  428. return -ENOMEM;
  429. table->nr = new_nr;
  430. spin_lock(&mm->ioctx_lock);
  431. rcu_read_lock();
  432. old = rcu_dereference(mm->ioctx_table);
  433. if (!old) {
  434. rcu_assign_pointer(mm->ioctx_table, table);
  435. } else if (table->nr > old->nr) {
  436. memcpy(table->table, old->table,
  437. old->nr * sizeof(struct kioctx *));
  438. rcu_assign_pointer(mm->ioctx_table, table);
  439. kfree_rcu(old, rcu);
  440. } else {
  441. kfree(table);
  442. table = old;
  443. }
  444. }
  445. }
  446. /* ioctx_alloc
  447. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  448. */
  449. static struct kioctx *ioctx_alloc(unsigned nr_events)
  450. {
  451. struct mm_struct *mm = current->mm;
  452. struct kioctx *ctx;
  453. int err = -ENOMEM;
  454. /*
  455. * We keep track of the number of available ringbuffer slots, to prevent
  456. * overflow (reqs_available), and we also use percpu counters for this.
  457. *
  458. * So since up to half the slots might be on other cpu's percpu counters
  459. * and unavailable, double nr_events so userspace sees what they
  460. * expected: additionally, we move req_batch slots to/from percpu
  461. * counters at a time, so make sure that isn't 0:
  462. */
  463. nr_events = max(nr_events, num_possible_cpus() * 4);
  464. nr_events *= 2;
  465. /* Prevent overflows */
  466. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  467. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  468. pr_debug("ENOMEM: nr_events too high\n");
  469. return ERR_PTR(-EINVAL);
  470. }
  471. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  472. return ERR_PTR(-EAGAIN);
  473. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  474. if (!ctx)
  475. return ERR_PTR(-ENOMEM);
  476. ctx->max_reqs = nr_events;
  477. if (percpu_ref_init(&ctx->users, free_ioctx_ref))
  478. goto out_freectx;
  479. spin_lock_init(&ctx->ctx_lock);
  480. spin_lock_init(&ctx->completion_lock);
  481. mutex_init(&ctx->ring_lock);
  482. init_waitqueue_head(&ctx->wait);
  483. INIT_LIST_HEAD(&ctx->active_reqs);
  484. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  485. if (!ctx->cpu)
  486. goto out_freeref;
  487. if (aio_setup_ring(ctx) < 0)
  488. goto out_freepcpu;
  489. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  490. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  491. if (ctx->req_batch < 1)
  492. ctx->req_batch = 1;
  493. /* limit the number of system wide aios */
  494. spin_lock(&aio_nr_lock);
  495. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  496. aio_nr + nr_events < aio_nr) {
  497. spin_unlock(&aio_nr_lock);
  498. goto out_cleanup;
  499. }
  500. aio_nr += ctx->max_reqs;
  501. spin_unlock(&aio_nr_lock);
  502. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  503. err = ioctx_add_table(ctx, mm);
  504. if (err)
  505. goto out_cleanup_put;
  506. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  507. ctx, ctx->user_id, mm, ctx->nr_events);
  508. return ctx;
  509. out_cleanup_put:
  510. percpu_ref_put(&ctx->users);
  511. out_cleanup:
  512. err = -EAGAIN;
  513. aio_free_ring(ctx);
  514. out_freepcpu:
  515. free_percpu(ctx->cpu);
  516. out_freeref:
  517. free_percpu(ctx->users.pcpu_count);
  518. out_freectx:
  519. put_aio_ring_file(ctx);
  520. kmem_cache_free(kioctx_cachep, ctx);
  521. pr_debug("error allocating ioctx %d\n", err);
  522. return ERR_PTR(err);
  523. }
  524. /* kill_ioctx
  525. * Cancels all outstanding aio requests on an aio context. Used
  526. * when the processes owning a context have all exited to encourage
  527. * the rapid destruction of the kioctx.
  528. */
  529. static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
  530. {
  531. if (!atomic_xchg(&ctx->dead, 1)) {
  532. struct kioctx_table *table;
  533. spin_lock(&mm->ioctx_lock);
  534. rcu_read_lock();
  535. table = rcu_dereference(mm->ioctx_table);
  536. WARN_ON(ctx != table->table[ctx->id]);
  537. table->table[ctx->id] = NULL;
  538. rcu_read_unlock();
  539. spin_unlock(&mm->ioctx_lock);
  540. /* percpu_ref_kill() will do the necessary call_rcu() */
  541. wake_up_all(&ctx->wait);
  542. /*
  543. * It'd be more correct to do this in free_ioctx(), after all
  544. * the outstanding kiocbs have finished - but by then io_destroy
  545. * has already returned, so io_setup() could potentially return
  546. * -EAGAIN with no ioctxs actually in use (as far as userspace
  547. * could tell).
  548. */
  549. spin_lock(&aio_nr_lock);
  550. BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
  551. aio_nr -= ctx->max_reqs;
  552. spin_unlock(&aio_nr_lock);
  553. if (ctx->mmap_size)
  554. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  555. percpu_ref_kill(&ctx->users);
  556. }
  557. }
  558. /* wait_on_sync_kiocb:
  559. * Waits on the given sync kiocb to complete.
  560. */
  561. ssize_t wait_on_sync_kiocb(struct kiocb *req)
  562. {
  563. while (!req->ki_ctx) {
  564. set_current_state(TASK_UNINTERRUPTIBLE);
  565. if (req->ki_ctx)
  566. break;
  567. io_schedule();
  568. }
  569. __set_current_state(TASK_RUNNING);
  570. return req->ki_user_data;
  571. }
  572. EXPORT_SYMBOL(wait_on_sync_kiocb);
  573. /*
  574. * exit_aio: called when the last user of mm goes away. At this point, there is
  575. * no way for any new requests to be submited or any of the io_* syscalls to be
  576. * called on the context.
  577. *
  578. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  579. * them.
  580. */
  581. void exit_aio(struct mm_struct *mm)
  582. {
  583. struct kioctx_table *table;
  584. struct kioctx *ctx;
  585. unsigned i = 0;
  586. while (1) {
  587. rcu_read_lock();
  588. table = rcu_dereference(mm->ioctx_table);
  589. do {
  590. if (!table || i >= table->nr) {
  591. rcu_read_unlock();
  592. rcu_assign_pointer(mm->ioctx_table, NULL);
  593. if (table)
  594. kfree(table);
  595. return;
  596. }
  597. ctx = table->table[i++];
  598. } while (!ctx);
  599. rcu_read_unlock();
  600. /*
  601. * We don't need to bother with munmap() here -
  602. * exit_mmap(mm) is coming and it'll unmap everything.
  603. * Since aio_free_ring() uses non-zero ->mmap_size
  604. * as indicator that it needs to unmap the area,
  605. * just set it to 0; aio_free_ring() is the only
  606. * place that uses ->mmap_size, so it's safe.
  607. */
  608. ctx->mmap_size = 0;
  609. kill_ioctx(mm, ctx);
  610. }
  611. }
  612. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  613. {
  614. struct kioctx_cpu *kcpu;
  615. preempt_disable();
  616. kcpu = this_cpu_ptr(ctx->cpu);
  617. kcpu->reqs_available += nr;
  618. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  619. kcpu->reqs_available -= ctx->req_batch;
  620. atomic_add(ctx->req_batch, &ctx->reqs_available);
  621. }
  622. preempt_enable();
  623. }
  624. static bool get_reqs_available(struct kioctx *ctx)
  625. {
  626. struct kioctx_cpu *kcpu;
  627. bool ret = false;
  628. preempt_disable();
  629. kcpu = this_cpu_ptr(ctx->cpu);
  630. if (!kcpu->reqs_available) {
  631. int old, avail = atomic_read(&ctx->reqs_available);
  632. do {
  633. if (avail < ctx->req_batch)
  634. goto out;
  635. old = avail;
  636. avail = atomic_cmpxchg(&ctx->reqs_available,
  637. avail, avail - ctx->req_batch);
  638. } while (avail != old);
  639. kcpu->reqs_available += ctx->req_batch;
  640. }
  641. ret = true;
  642. kcpu->reqs_available--;
  643. out:
  644. preempt_enable();
  645. return ret;
  646. }
  647. /* aio_get_req
  648. * Allocate a slot for an aio request.
  649. * Returns NULL if no requests are free.
  650. */
  651. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  652. {
  653. struct kiocb *req;
  654. if (!get_reqs_available(ctx))
  655. return NULL;
  656. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  657. if (unlikely(!req))
  658. goto out_put;
  659. req->ki_ctx = ctx;
  660. return req;
  661. out_put:
  662. put_reqs_available(ctx, 1);
  663. return NULL;
  664. }
  665. static void kiocb_free(struct kiocb *req)
  666. {
  667. if (req->ki_filp)
  668. fput(req->ki_filp);
  669. if (req->ki_eventfd != NULL)
  670. eventfd_ctx_put(req->ki_eventfd);
  671. kmem_cache_free(kiocb_cachep, req);
  672. }
  673. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  674. {
  675. struct aio_ring __user *ring = (void __user *)ctx_id;
  676. struct mm_struct *mm = current->mm;
  677. struct kioctx *ctx, *ret = NULL;
  678. struct kioctx_table *table;
  679. unsigned id;
  680. if (get_user(id, &ring->id))
  681. return NULL;
  682. rcu_read_lock();
  683. table = rcu_dereference(mm->ioctx_table);
  684. if (!table || id >= table->nr)
  685. goto out;
  686. ctx = table->table[id];
  687. if (ctx && ctx->user_id == ctx_id) {
  688. percpu_ref_get(&ctx->users);
  689. ret = ctx;
  690. }
  691. out:
  692. rcu_read_unlock();
  693. return ret;
  694. }
  695. /* aio_complete
  696. * Called when the io request on the given iocb is complete.
  697. */
  698. void aio_complete(struct kiocb *iocb, long res, long res2)
  699. {
  700. struct kioctx *ctx = iocb->ki_ctx;
  701. struct aio_ring *ring;
  702. struct io_event *ev_page, *event;
  703. unsigned long flags;
  704. unsigned tail, pos;
  705. /*
  706. * Special case handling for sync iocbs:
  707. * - events go directly into the iocb for fast handling
  708. * - the sync task with the iocb in its stack holds the single iocb
  709. * ref, no other paths have a way to get another ref
  710. * - the sync task helpfully left a reference to itself in the iocb
  711. */
  712. if (is_sync_kiocb(iocb)) {
  713. iocb->ki_user_data = res;
  714. smp_wmb();
  715. iocb->ki_ctx = ERR_PTR(-EXDEV);
  716. wake_up_process(iocb->ki_obj.tsk);
  717. return;
  718. }
  719. /*
  720. * Take rcu_read_lock() in case the kioctx is being destroyed, as we
  721. * need to issue a wakeup after incrementing reqs_available.
  722. */
  723. rcu_read_lock();
  724. if (iocb->ki_list.next) {
  725. unsigned long flags;
  726. spin_lock_irqsave(&ctx->ctx_lock, flags);
  727. list_del(&iocb->ki_list);
  728. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  729. }
  730. /*
  731. * Add a completion event to the ring buffer. Must be done holding
  732. * ctx->completion_lock to prevent other code from messing with the tail
  733. * pointer since we might be called from irq context.
  734. */
  735. spin_lock_irqsave(&ctx->completion_lock, flags);
  736. tail = ctx->tail;
  737. pos = tail + AIO_EVENTS_OFFSET;
  738. if (++tail >= ctx->nr_events)
  739. tail = 0;
  740. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  741. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  742. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  743. event->data = iocb->ki_user_data;
  744. event->res = res;
  745. event->res2 = res2;
  746. kunmap_atomic(ev_page);
  747. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  748. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  749. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  750. res, res2);
  751. /* after flagging the request as done, we
  752. * must never even look at it again
  753. */
  754. smp_wmb(); /* make event visible before updating tail */
  755. ctx->tail = tail;
  756. ring = kmap_atomic(ctx->ring_pages[0]);
  757. ring->tail = tail;
  758. kunmap_atomic(ring);
  759. flush_dcache_page(ctx->ring_pages[0]);
  760. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  761. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  762. /*
  763. * Check if the user asked us to deliver the result through an
  764. * eventfd. The eventfd_signal() function is safe to be called
  765. * from IRQ context.
  766. */
  767. if (iocb->ki_eventfd != NULL)
  768. eventfd_signal(iocb->ki_eventfd, 1);
  769. /* everything turned out well, dispose of the aiocb. */
  770. kiocb_free(iocb);
  771. /*
  772. * We have to order our ring_info tail store above and test
  773. * of the wait list below outside the wait lock. This is
  774. * like in wake_up_bit() where clearing a bit has to be
  775. * ordered with the unlocked test.
  776. */
  777. smp_mb();
  778. if (waitqueue_active(&ctx->wait))
  779. wake_up(&ctx->wait);
  780. rcu_read_unlock();
  781. }
  782. EXPORT_SYMBOL(aio_complete);
  783. /* aio_read_events
  784. * Pull an event off of the ioctx's event ring. Returns the number of
  785. * events fetched
  786. */
  787. static long aio_read_events_ring(struct kioctx *ctx,
  788. struct io_event __user *event, long nr)
  789. {
  790. struct aio_ring *ring;
  791. unsigned head, tail, pos;
  792. long ret = 0;
  793. int copy_ret;
  794. mutex_lock(&ctx->ring_lock);
  795. ring = kmap_atomic(ctx->ring_pages[0]);
  796. head = ring->head;
  797. tail = ring->tail;
  798. kunmap_atomic(ring);
  799. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  800. if (head == tail)
  801. goto out;
  802. while (ret < nr) {
  803. long avail;
  804. struct io_event *ev;
  805. struct page *page;
  806. avail = (head <= tail ? tail : ctx->nr_events) - head;
  807. if (head == tail)
  808. break;
  809. avail = min(avail, nr - ret);
  810. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  811. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  812. pos = head + AIO_EVENTS_OFFSET;
  813. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  814. pos %= AIO_EVENTS_PER_PAGE;
  815. ev = kmap(page);
  816. copy_ret = copy_to_user(event + ret, ev + pos,
  817. sizeof(*ev) * avail);
  818. kunmap(page);
  819. if (unlikely(copy_ret)) {
  820. ret = -EFAULT;
  821. goto out;
  822. }
  823. ret += avail;
  824. head += avail;
  825. head %= ctx->nr_events;
  826. }
  827. ring = kmap_atomic(ctx->ring_pages[0]);
  828. ring->head = head;
  829. kunmap_atomic(ring);
  830. flush_dcache_page(ctx->ring_pages[0]);
  831. pr_debug("%li h%u t%u\n", ret, head, tail);
  832. put_reqs_available(ctx, ret);
  833. out:
  834. mutex_unlock(&ctx->ring_lock);
  835. return ret;
  836. }
  837. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  838. struct io_event __user *event, long *i)
  839. {
  840. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  841. if (ret > 0)
  842. *i += ret;
  843. if (unlikely(atomic_read(&ctx->dead)))
  844. ret = -EINVAL;
  845. if (!*i)
  846. *i = ret;
  847. return ret < 0 || *i >= min_nr;
  848. }
  849. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  850. struct io_event __user *event,
  851. struct timespec __user *timeout)
  852. {
  853. ktime_t until = { .tv64 = KTIME_MAX };
  854. long ret = 0;
  855. if (timeout) {
  856. struct timespec ts;
  857. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  858. return -EFAULT;
  859. until = timespec_to_ktime(ts);
  860. }
  861. /*
  862. * Note that aio_read_events() is being called as the conditional - i.e.
  863. * we're calling it after prepare_to_wait() has set task state to
  864. * TASK_INTERRUPTIBLE.
  865. *
  866. * But aio_read_events() can block, and if it blocks it's going to flip
  867. * the task state back to TASK_RUNNING.
  868. *
  869. * This should be ok, provided it doesn't flip the state back to
  870. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  871. * will only happen if the mutex_lock() call blocks, and we then find
  872. * the ringbuffer empty. So in practice we should be ok, but it's
  873. * something to be aware of when touching this code.
  874. */
  875. wait_event_interruptible_hrtimeout(ctx->wait,
  876. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  877. if (!ret && signal_pending(current))
  878. ret = -EINTR;
  879. return ret;
  880. }
  881. /* sys_io_setup:
  882. * Create an aio_context capable of receiving at least nr_events.
  883. * ctxp must not point to an aio_context that already exists, and
  884. * must be initialized to 0 prior to the call. On successful
  885. * creation of the aio_context, *ctxp is filled in with the resulting
  886. * handle. May fail with -EINVAL if *ctxp is not initialized,
  887. * if the specified nr_events exceeds internal limits. May fail
  888. * with -EAGAIN if the specified nr_events exceeds the user's limit
  889. * of available events. May fail with -ENOMEM if insufficient kernel
  890. * resources are available. May fail with -EFAULT if an invalid
  891. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  892. * implemented.
  893. */
  894. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  895. {
  896. struct kioctx *ioctx = NULL;
  897. unsigned long ctx;
  898. long ret;
  899. ret = get_user(ctx, ctxp);
  900. if (unlikely(ret))
  901. goto out;
  902. ret = -EINVAL;
  903. if (unlikely(ctx || nr_events == 0)) {
  904. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  905. ctx, nr_events);
  906. goto out;
  907. }
  908. ioctx = ioctx_alloc(nr_events);
  909. ret = PTR_ERR(ioctx);
  910. if (!IS_ERR(ioctx)) {
  911. ret = put_user(ioctx->user_id, ctxp);
  912. if (ret)
  913. kill_ioctx(current->mm, ioctx);
  914. percpu_ref_put(&ioctx->users);
  915. }
  916. out:
  917. return ret;
  918. }
  919. /* sys_io_destroy:
  920. * Destroy the aio_context specified. May cancel any outstanding
  921. * AIOs and block on completion. Will fail with -ENOSYS if not
  922. * implemented. May fail with -EINVAL if the context pointed to
  923. * is invalid.
  924. */
  925. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  926. {
  927. struct kioctx *ioctx = lookup_ioctx(ctx);
  928. if (likely(NULL != ioctx)) {
  929. kill_ioctx(current->mm, ioctx);
  930. percpu_ref_put(&ioctx->users);
  931. return 0;
  932. }
  933. pr_debug("EINVAL: io_destroy: invalid context id\n");
  934. return -EINVAL;
  935. }
  936. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  937. unsigned long, loff_t);
  938. static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
  939. int rw, char __user *buf,
  940. unsigned long *nr_segs,
  941. struct iovec **iovec,
  942. bool compat)
  943. {
  944. ssize_t ret;
  945. *nr_segs = kiocb->ki_nbytes;
  946. #ifdef CONFIG_COMPAT
  947. if (compat)
  948. ret = compat_rw_copy_check_uvector(rw,
  949. (struct compat_iovec __user *)buf,
  950. *nr_segs, 1, *iovec, iovec);
  951. else
  952. #endif
  953. ret = rw_copy_check_uvector(rw,
  954. (struct iovec __user *)buf,
  955. *nr_segs, 1, *iovec, iovec);
  956. if (ret < 0)
  957. return ret;
  958. /* ki_nbytes now reflect bytes instead of segs */
  959. kiocb->ki_nbytes = ret;
  960. return 0;
  961. }
  962. static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
  963. int rw, char __user *buf,
  964. unsigned long *nr_segs,
  965. struct iovec *iovec)
  966. {
  967. if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
  968. return -EFAULT;
  969. iovec->iov_base = buf;
  970. iovec->iov_len = kiocb->ki_nbytes;
  971. *nr_segs = 1;
  972. return 0;
  973. }
  974. /*
  975. * aio_setup_iocb:
  976. * Performs the initial checks and aio retry method
  977. * setup for the kiocb at the time of io submission.
  978. */
  979. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  980. char __user *buf, bool compat)
  981. {
  982. struct file *file = req->ki_filp;
  983. ssize_t ret;
  984. unsigned long nr_segs;
  985. int rw;
  986. fmode_t mode;
  987. aio_rw_op *rw_op;
  988. struct iovec inline_vec, *iovec = &inline_vec;
  989. switch (opcode) {
  990. case IOCB_CMD_PREAD:
  991. case IOCB_CMD_PREADV:
  992. mode = FMODE_READ;
  993. rw = READ;
  994. rw_op = file->f_op->aio_read;
  995. goto rw_common;
  996. case IOCB_CMD_PWRITE:
  997. case IOCB_CMD_PWRITEV:
  998. mode = FMODE_WRITE;
  999. rw = WRITE;
  1000. rw_op = file->f_op->aio_write;
  1001. goto rw_common;
  1002. rw_common:
  1003. if (unlikely(!(file->f_mode & mode)))
  1004. return -EBADF;
  1005. if (!rw_op)
  1006. return -EINVAL;
  1007. ret = (opcode == IOCB_CMD_PREADV ||
  1008. opcode == IOCB_CMD_PWRITEV)
  1009. ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
  1010. &iovec, compat)
  1011. : aio_setup_single_vector(req, rw, buf, &nr_segs,
  1012. iovec);
  1013. if (ret)
  1014. return ret;
  1015. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  1016. if (ret < 0) {
  1017. if (iovec != &inline_vec)
  1018. kfree(iovec);
  1019. return ret;
  1020. }
  1021. req->ki_nbytes = ret;
  1022. /* XXX: move/kill - rw_verify_area()? */
  1023. /* This matches the pread()/pwrite() logic */
  1024. if (req->ki_pos < 0) {
  1025. ret = -EINVAL;
  1026. break;
  1027. }
  1028. if (rw == WRITE)
  1029. file_start_write(file);
  1030. ret = rw_op(req, iovec, nr_segs, req->ki_pos);
  1031. if (rw == WRITE)
  1032. file_end_write(file);
  1033. break;
  1034. case IOCB_CMD_FDSYNC:
  1035. if (!file->f_op->aio_fsync)
  1036. return -EINVAL;
  1037. ret = file->f_op->aio_fsync(req, 1);
  1038. break;
  1039. case IOCB_CMD_FSYNC:
  1040. if (!file->f_op->aio_fsync)
  1041. return -EINVAL;
  1042. ret = file->f_op->aio_fsync(req, 0);
  1043. break;
  1044. default:
  1045. pr_debug("EINVAL: no operation provided\n");
  1046. return -EINVAL;
  1047. }
  1048. if (iovec != &inline_vec)
  1049. kfree(iovec);
  1050. if (ret != -EIOCBQUEUED) {
  1051. /*
  1052. * There's no easy way to restart the syscall since other AIO's
  1053. * may be already running. Just fail this IO with EINTR.
  1054. */
  1055. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1056. ret == -ERESTARTNOHAND ||
  1057. ret == -ERESTART_RESTARTBLOCK))
  1058. ret = -EINTR;
  1059. aio_complete(req, ret, 0);
  1060. }
  1061. return 0;
  1062. }
  1063. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1064. struct iocb *iocb, bool compat)
  1065. {
  1066. struct kiocb *req;
  1067. ssize_t ret;
  1068. /* enforce forwards compatibility on users */
  1069. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1070. pr_debug("EINVAL: reserve field set\n");
  1071. return -EINVAL;
  1072. }
  1073. /* prevent overflows */
  1074. if (unlikely(
  1075. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1076. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1077. ((ssize_t)iocb->aio_nbytes < 0)
  1078. )) {
  1079. pr_debug("EINVAL: io_submit: overflow check\n");
  1080. return -EINVAL;
  1081. }
  1082. req = aio_get_req(ctx);
  1083. if (unlikely(!req))
  1084. return -EAGAIN;
  1085. req->ki_filp = fget(iocb->aio_fildes);
  1086. if (unlikely(!req->ki_filp)) {
  1087. ret = -EBADF;
  1088. goto out_put_req;
  1089. }
  1090. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1091. /*
  1092. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1093. * instance of the file* now. The file descriptor must be
  1094. * an eventfd() fd, and will be signaled for each completed
  1095. * event using the eventfd_signal() function.
  1096. */
  1097. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1098. if (IS_ERR(req->ki_eventfd)) {
  1099. ret = PTR_ERR(req->ki_eventfd);
  1100. req->ki_eventfd = NULL;
  1101. goto out_put_req;
  1102. }
  1103. }
  1104. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1105. if (unlikely(ret)) {
  1106. pr_debug("EFAULT: aio_key\n");
  1107. goto out_put_req;
  1108. }
  1109. req->ki_obj.user = user_iocb;
  1110. req->ki_user_data = iocb->aio_data;
  1111. req->ki_pos = iocb->aio_offset;
  1112. req->ki_nbytes = iocb->aio_nbytes;
  1113. ret = aio_run_iocb(req, iocb->aio_lio_opcode,
  1114. (char __user *)(unsigned long)iocb->aio_buf,
  1115. compat);
  1116. if (ret)
  1117. goto out_put_req;
  1118. return 0;
  1119. out_put_req:
  1120. put_reqs_available(ctx, 1);
  1121. kiocb_free(req);
  1122. return ret;
  1123. }
  1124. long do_io_submit(aio_context_t ctx_id, long nr,
  1125. struct iocb __user *__user *iocbpp, bool compat)
  1126. {
  1127. struct kioctx *ctx;
  1128. long ret = 0;
  1129. int i = 0;
  1130. struct blk_plug plug;
  1131. if (unlikely(nr < 0))
  1132. return -EINVAL;
  1133. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1134. nr = LONG_MAX/sizeof(*iocbpp);
  1135. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1136. return -EFAULT;
  1137. ctx = lookup_ioctx(ctx_id);
  1138. if (unlikely(!ctx)) {
  1139. pr_debug("EINVAL: invalid context id\n");
  1140. return -EINVAL;
  1141. }
  1142. blk_start_plug(&plug);
  1143. /*
  1144. * AKPM: should this return a partial result if some of the IOs were
  1145. * successfully submitted?
  1146. */
  1147. for (i=0; i<nr; i++) {
  1148. struct iocb __user *user_iocb;
  1149. struct iocb tmp;
  1150. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1151. ret = -EFAULT;
  1152. break;
  1153. }
  1154. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1155. ret = -EFAULT;
  1156. break;
  1157. }
  1158. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1159. if (ret)
  1160. break;
  1161. }
  1162. blk_finish_plug(&plug);
  1163. percpu_ref_put(&ctx->users);
  1164. return i ? i : ret;
  1165. }
  1166. /* sys_io_submit:
  1167. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1168. * the number of iocbs queued. May return -EINVAL if the aio_context
  1169. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1170. * *iocbpp[0] is not properly initialized, if the operation specified
  1171. * is invalid for the file descriptor in the iocb. May fail with
  1172. * -EFAULT if any of the data structures point to invalid data. May
  1173. * fail with -EBADF if the file descriptor specified in the first
  1174. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1175. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1176. * fail with -ENOSYS if not implemented.
  1177. */
  1178. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1179. struct iocb __user * __user *, iocbpp)
  1180. {
  1181. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1182. }
  1183. /* lookup_kiocb
  1184. * Finds a given iocb for cancellation.
  1185. */
  1186. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1187. u32 key)
  1188. {
  1189. struct list_head *pos;
  1190. assert_spin_locked(&ctx->ctx_lock);
  1191. if (key != KIOCB_KEY)
  1192. return NULL;
  1193. /* TODO: use a hash or array, this sucks. */
  1194. list_for_each(pos, &ctx->active_reqs) {
  1195. struct kiocb *kiocb = list_kiocb(pos);
  1196. if (kiocb->ki_obj.user == iocb)
  1197. return kiocb;
  1198. }
  1199. return NULL;
  1200. }
  1201. /* sys_io_cancel:
  1202. * Attempts to cancel an iocb previously passed to io_submit. If
  1203. * the operation is successfully cancelled, the resulting event is
  1204. * copied into the memory pointed to by result without being placed
  1205. * into the completion queue and 0 is returned. May fail with
  1206. * -EFAULT if any of the data structures pointed to are invalid.
  1207. * May fail with -EINVAL if aio_context specified by ctx_id is
  1208. * invalid. May fail with -EAGAIN if the iocb specified was not
  1209. * cancelled. Will fail with -ENOSYS if not implemented.
  1210. */
  1211. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1212. struct io_event __user *, result)
  1213. {
  1214. struct kioctx *ctx;
  1215. struct kiocb *kiocb;
  1216. u32 key;
  1217. int ret;
  1218. ret = get_user(key, &iocb->aio_key);
  1219. if (unlikely(ret))
  1220. return -EFAULT;
  1221. ctx = lookup_ioctx(ctx_id);
  1222. if (unlikely(!ctx))
  1223. return -EINVAL;
  1224. spin_lock_irq(&ctx->ctx_lock);
  1225. kiocb = lookup_kiocb(ctx, iocb, key);
  1226. if (kiocb)
  1227. ret = kiocb_cancel(ctx, kiocb);
  1228. else
  1229. ret = -EINVAL;
  1230. spin_unlock_irq(&ctx->ctx_lock);
  1231. if (!ret) {
  1232. /*
  1233. * The result argument is no longer used - the io_event is
  1234. * always delivered via the ring buffer. -EINPROGRESS indicates
  1235. * cancellation is progress:
  1236. */
  1237. ret = -EINPROGRESS;
  1238. }
  1239. percpu_ref_put(&ctx->users);
  1240. return ret;
  1241. }
  1242. /* io_getevents:
  1243. * Attempts to read at least min_nr events and up to nr events from
  1244. * the completion queue for the aio_context specified by ctx_id. If
  1245. * it succeeds, the number of read events is returned. May fail with
  1246. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1247. * out of range, if timeout is out of range. May fail with -EFAULT
  1248. * if any of the memory specified is invalid. May return 0 or
  1249. * < min_nr if the timeout specified by timeout has elapsed
  1250. * before sufficient events are available, where timeout == NULL
  1251. * specifies an infinite timeout. Note that the timeout pointed to by
  1252. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1253. */
  1254. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1255. long, min_nr,
  1256. long, nr,
  1257. struct io_event __user *, events,
  1258. struct timespec __user *, timeout)
  1259. {
  1260. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1261. long ret = -EINVAL;
  1262. if (likely(ioctx)) {
  1263. if (likely(min_nr <= nr && min_nr >= 0))
  1264. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1265. percpu_ref_put(&ioctx->users);
  1266. }
  1267. return ret;
  1268. }