sched.c 207 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. ktime_t rt_period;
  152. u64 rt_runtime;
  153. spinlock_t rt_runtime_lock;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  184. }
  185. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  186. {
  187. ktime_t now;
  188. if (rt_b->rt_runtime == RUNTIME_INF)
  189. return;
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. return;
  192. spin_lock(&rt_b->rt_runtime_lock);
  193. for (;;) {
  194. if (hrtimer_active(&rt_b->rt_period_timer))
  195. break;
  196. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  197. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  198. hrtimer_start(&rt_b->rt_period_timer,
  199. rt_b->rt_period_timer.expires,
  200. HRTIMER_MODE_ABS);
  201. }
  202. spin_unlock(&rt_b->rt_runtime_lock);
  203. }
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  206. {
  207. hrtimer_cancel(&rt_b->rt_period_timer);
  208. }
  209. #endif
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. };
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* Default task group's sched entity on each cpu */
  236. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  237. /* Default task group's cfs_rq on each cpu */
  238. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  242. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  243. #endif
  244. /* task_group_lock serializes add/remove of task groups and also changes to
  245. * a task group's cpu shares.
  246. */
  247. static DEFINE_SPINLOCK(task_group_lock);
  248. /* doms_cur_mutex serializes access to doms_cur[] array */
  249. static DEFINE_MUTEX(doms_cur_mutex);
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. #ifdef CONFIG_USER_SCHED
  252. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  253. #else
  254. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  255. #endif
  256. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  257. #endif
  258. /* Default task group.
  259. * Every task in system belong to this group at bootup.
  260. */
  261. struct task_group init_task_group;
  262. /* return group to which a task belongs */
  263. static inline struct task_group *task_group(struct task_struct *p)
  264. {
  265. struct task_group *tg;
  266. #ifdef CONFIG_USER_SCHED
  267. tg = p->user->tg;
  268. #elif defined(CONFIG_CGROUP_SCHED)
  269. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  270. struct task_group, css);
  271. #else
  272. tg = &init_task_group;
  273. #endif
  274. return tg;
  275. }
  276. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  277. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  278. {
  279. #ifdef CONFIG_FAIR_GROUP_SCHED
  280. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  281. p->se.parent = task_group(p)->se[cpu];
  282. #endif
  283. #ifdef CONFIG_RT_GROUP_SCHED
  284. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  285. p->rt.parent = task_group(p)->rt_se[cpu];
  286. #endif
  287. }
  288. static inline void lock_doms_cur(void)
  289. {
  290. mutex_lock(&doms_cur_mutex);
  291. }
  292. static inline void unlock_doms_cur(void)
  293. {
  294. mutex_unlock(&doms_cur_mutex);
  295. }
  296. #else
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  298. static inline void lock_doms_cur(void) { }
  299. static inline void unlock_doms_cur(void) { }
  300. #endif /* CONFIG_GROUP_SCHED */
  301. /* CFS-related fields in a runqueue */
  302. struct cfs_rq {
  303. struct load_weight load;
  304. unsigned long nr_running;
  305. u64 exec_clock;
  306. u64 min_vruntime;
  307. struct rb_root tasks_timeline;
  308. struct rb_node *rb_leftmost;
  309. struct rb_node *rb_load_balance_curr;
  310. /* 'curr' points to currently running entity on this cfs_rq.
  311. * It is set to NULL otherwise (i.e when none are currently running).
  312. */
  313. struct sched_entity *curr, *next;
  314. unsigned long nr_spread_over;
  315. #ifdef CONFIG_FAIR_GROUP_SCHED
  316. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  317. /*
  318. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  319. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  320. * (like users, containers etc.)
  321. *
  322. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  323. * list is used during load balance.
  324. */
  325. struct list_head leaf_cfs_rq_list;
  326. struct task_group *tg; /* group that "owns" this runqueue */
  327. #endif
  328. };
  329. /* Real-Time classes' related field in a runqueue: */
  330. struct rt_rq {
  331. struct rt_prio_array active;
  332. unsigned long rt_nr_running;
  333. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  334. int highest_prio; /* highest queued rt task prio */
  335. #endif
  336. #ifdef CONFIG_SMP
  337. unsigned long rt_nr_migratory;
  338. int overloaded;
  339. #endif
  340. int rt_throttled;
  341. u64 rt_time;
  342. u64 rt_runtime;
  343. spinlock_t rt_runtime_lock;
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. unsigned long rt_nr_boosted;
  346. struct rq *rq;
  347. struct list_head leaf_rt_rq_list;
  348. struct task_group *tg;
  349. struct sched_rt_entity *rt_se;
  350. #endif
  351. };
  352. #ifdef CONFIG_SMP
  353. /*
  354. * We add the notion of a root-domain which will be used to define per-domain
  355. * variables. Each exclusive cpuset essentially defines an island domain by
  356. * fully partitioning the member cpus from any other cpuset. Whenever a new
  357. * exclusive cpuset is created, we also create and attach a new root-domain
  358. * object.
  359. *
  360. */
  361. struct root_domain {
  362. atomic_t refcount;
  363. cpumask_t span;
  364. cpumask_t online;
  365. /*
  366. * The "RT overload" flag: it gets set if a CPU has more than
  367. * one runnable RT task.
  368. */
  369. cpumask_t rto_mask;
  370. atomic_t rto_count;
  371. };
  372. /*
  373. * By default the system creates a single root-domain with all cpus as
  374. * members (mimicking the global state we have today).
  375. */
  376. static struct root_domain def_root_domain;
  377. #endif
  378. /*
  379. * This is the main, per-CPU runqueue data structure.
  380. *
  381. * Locking rule: those places that want to lock multiple runqueues
  382. * (such as the load balancing or the thread migration code), lock
  383. * acquire operations must be ordered by ascending &runqueue.
  384. */
  385. struct rq {
  386. /* runqueue lock: */
  387. spinlock_t lock;
  388. /*
  389. * nr_running and cpu_load should be in the same cacheline because
  390. * remote CPUs use both these fields when doing load calculation.
  391. */
  392. unsigned long nr_running;
  393. #define CPU_LOAD_IDX_MAX 5
  394. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  395. unsigned char idle_at_tick;
  396. #ifdef CONFIG_NO_HZ
  397. unsigned long last_tick_seen;
  398. unsigned char in_nohz_recently;
  399. #endif
  400. /* capture load from *all* tasks on this cpu: */
  401. struct load_weight load;
  402. unsigned long nr_load_updates;
  403. u64 nr_switches;
  404. struct cfs_rq cfs;
  405. struct rt_rq rt;
  406. #ifdef CONFIG_FAIR_GROUP_SCHED
  407. /* list of leaf cfs_rq on this cpu: */
  408. struct list_head leaf_cfs_rq_list;
  409. #endif
  410. #ifdef CONFIG_RT_GROUP_SCHED
  411. struct list_head leaf_rt_rq_list;
  412. #endif
  413. /*
  414. * This is part of a global counter where only the total sum
  415. * over all CPUs matters. A task can increase this counter on
  416. * one CPU and if it got migrated afterwards it may decrease
  417. * it on another CPU. Always updated under the runqueue lock:
  418. */
  419. unsigned long nr_uninterruptible;
  420. struct task_struct *curr, *idle;
  421. unsigned long next_balance;
  422. struct mm_struct *prev_mm;
  423. u64 clock, prev_clock_raw;
  424. s64 clock_max_delta;
  425. unsigned int clock_warps, clock_overflows, clock_underflows;
  426. u64 idle_clock;
  427. unsigned int clock_deep_idle_events;
  428. u64 tick_timestamp;
  429. atomic_t nr_iowait;
  430. #ifdef CONFIG_SMP
  431. struct root_domain *rd;
  432. struct sched_domain *sd;
  433. /* For active balancing */
  434. int active_balance;
  435. int push_cpu;
  436. /* cpu of this runqueue: */
  437. int cpu;
  438. struct task_struct *migration_thread;
  439. struct list_head migration_queue;
  440. #endif
  441. #ifdef CONFIG_SCHED_HRTICK
  442. unsigned long hrtick_flags;
  443. ktime_t hrtick_expire;
  444. struct hrtimer hrtick_timer;
  445. #endif
  446. #ifdef CONFIG_SCHEDSTATS
  447. /* latency stats */
  448. struct sched_info rq_sched_info;
  449. /* sys_sched_yield() stats */
  450. unsigned int yld_exp_empty;
  451. unsigned int yld_act_empty;
  452. unsigned int yld_both_empty;
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. struct lock_class_key rq_lock_key;
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  468. {
  469. rq->curr->sched_class->check_preempt_curr(rq, p);
  470. }
  471. static inline int cpu_of(struct rq *rq)
  472. {
  473. #ifdef CONFIG_SMP
  474. return rq->cpu;
  475. #else
  476. return 0;
  477. #endif
  478. }
  479. #ifdef CONFIG_NO_HZ
  480. static inline bool nohz_on(int cpu)
  481. {
  482. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  483. }
  484. static inline u64 max_skipped_ticks(struct rq *rq)
  485. {
  486. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  487. }
  488. static inline void update_last_tick_seen(struct rq *rq)
  489. {
  490. rq->last_tick_seen = jiffies;
  491. }
  492. #else
  493. static inline u64 max_skipped_ticks(struct rq *rq)
  494. {
  495. return 1;
  496. }
  497. static inline void update_last_tick_seen(struct rq *rq)
  498. {
  499. }
  500. #endif
  501. /*
  502. * Update the per-runqueue clock, as finegrained as the platform can give
  503. * us, but without assuming monotonicity, etc.:
  504. */
  505. static void __update_rq_clock(struct rq *rq)
  506. {
  507. u64 prev_raw = rq->prev_clock_raw;
  508. u64 now = sched_clock();
  509. s64 delta = now - prev_raw;
  510. u64 clock = rq->clock;
  511. #ifdef CONFIG_SCHED_DEBUG
  512. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  513. #endif
  514. /*
  515. * Protect against sched_clock() occasionally going backwards:
  516. */
  517. if (unlikely(delta < 0)) {
  518. clock++;
  519. rq->clock_warps++;
  520. } else {
  521. /*
  522. * Catch too large forward jumps too:
  523. */
  524. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  525. u64 max_time = rq->tick_timestamp + max_jump;
  526. if (unlikely(clock + delta > max_time)) {
  527. if (clock < max_time)
  528. clock = max_time;
  529. else
  530. clock++;
  531. rq->clock_overflows++;
  532. } else {
  533. if (unlikely(delta > rq->clock_max_delta))
  534. rq->clock_max_delta = delta;
  535. clock += delta;
  536. }
  537. }
  538. rq->prev_clock_raw = now;
  539. rq->clock = clock;
  540. }
  541. static void update_rq_clock(struct rq *rq)
  542. {
  543. if (likely(smp_processor_id() == cpu_of(rq)))
  544. __update_rq_clock(rq);
  545. }
  546. /*
  547. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  548. * See detach_destroy_domains: synchronize_sched for details.
  549. *
  550. * The domain tree of any CPU may only be accessed from within
  551. * preempt-disabled sections.
  552. */
  553. #define for_each_domain(cpu, __sd) \
  554. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  555. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  556. #define this_rq() (&__get_cpu_var(runqueues))
  557. #define task_rq(p) cpu_rq(task_cpu(p))
  558. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. enum {
  571. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  572. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  573. SCHED_FEAT_START_DEBIT = 4,
  574. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  575. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  576. SCHED_FEAT_SYNC_WAKEUPS = 32,
  577. SCHED_FEAT_HRTICK = 64,
  578. SCHED_FEAT_DOUBLE_TICK = 128,
  579. };
  580. const_debug unsigned int sysctl_sched_features =
  581. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  582. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  583. SCHED_FEAT_START_DEBIT * 1 |
  584. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  585. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  586. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  587. SCHED_FEAT_HRTICK * 1 |
  588. SCHED_FEAT_DOUBLE_TICK * 0;
  589. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  590. /*
  591. * Number of tasks to iterate in a single balance run.
  592. * Limited because this is done with IRQs disabled.
  593. */
  594. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  595. /*
  596. * period over which we measure -rt task cpu usage in us.
  597. * default: 1s
  598. */
  599. unsigned int sysctl_sched_rt_period = 1000000;
  600. static __read_mostly int scheduler_running;
  601. /*
  602. * part of the period that we allow rt tasks to run in us.
  603. * default: 0.95s
  604. */
  605. int sysctl_sched_rt_runtime = 950000;
  606. static inline u64 global_rt_period(void)
  607. {
  608. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  609. }
  610. static inline u64 global_rt_runtime(void)
  611. {
  612. if (sysctl_sched_rt_period < 0)
  613. return RUNTIME_INF;
  614. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  615. }
  616. static const unsigned long long time_sync_thresh = 100000;
  617. static DEFINE_PER_CPU(unsigned long long, time_offset);
  618. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  619. /*
  620. * Global lock which we take every now and then to synchronize
  621. * the CPUs time. This method is not warp-safe, but it's good
  622. * enough to synchronize slowly diverging time sources and thus
  623. * it's good enough for tracing:
  624. */
  625. static DEFINE_SPINLOCK(time_sync_lock);
  626. static unsigned long long prev_global_time;
  627. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  628. {
  629. unsigned long flags;
  630. spin_lock_irqsave(&time_sync_lock, flags);
  631. if (time < prev_global_time) {
  632. per_cpu(time_offset, cpu) += prev_global_time - time;
  633. time = prev_global_time;
  634. } else {
  635. prev_global_time = time;
  636. }
  637. spin_unlock_irqrestore(&time_sync_lock, flags);
  638. return time;
  639. }
  640. static unsigned long long __cpu_clock(int cpu)
  641. {
  642. unsigned long long now;
  643. unsigned long flags;
  644. struct rq *rq;
  645. /*
  646. * Only call sched_clock() if the scheduler has already been
  647. * initialized (some code might call cpu_clock() very early):
  648. */
  649. if (unlikely(!scheduler_running))
  650. return 0;
  651. local_irq_save(flags);
  652. rq = cpu_rq(cpu);
  653. update_rq_clock(rq);
  654. now = rq->clock;
  655. local_irq_restore(flags);
  656. return now;
  657. }
  658. /*
  659. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  660. * clock constructed from sched_clock():
  661. */
  662. unsigned long long cpu_clock(int cpu)
  663. {
  664. unsigned long long prev_cpu_time, time, delta_time;
  665. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  666. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  667. delta_time = time-prev_cpu_time;
  668. if (unlikely(delta_time > time_sync_thresh))
  669. time = __sync_cpu_clock(time, cpu);
  670. return time;
  671. }
  672. EXPORT_SYMBOL_GPL(cpu_clock);
  673. #ifndef prepare_arch_switch
  674. # define prepare_arch_switch(next) do { } while (0)
  675. #endif
  676. #ifndef finish_arch_switch
  677. # define finish_arch_switch(prev) do { } while (0)
  678. #endif
  679. static inline int task_current(struct rq *rq, struct task_struct *p)
  680. {
  681. return rq->curr == p;
  682. }
  683. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  684. static inline int task_running(struct rq *rq, struct task_struct *p)
  685. {
  686. return task_current(rq, p);
  687. }
  688. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  689. {
  690. }
  691. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  692. {
  693. #ifdef CONFIG_DEBUG_SPINLOCK
  694. /* this is a valid case when another task releases the spinlock */
  695. rq->lock.owner = current;
  696. #endif
  697. /*
  698. * If we are tracking spinlock dependencies then we have to
  699. * fix up the runqueue lock - which gets 'carried over' from
  700. * prev into current:
  701. */
  702. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  703. spin_unlock_irq(&rq->lock);
  704. }
  705. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  706. static inline int task_running(struct rq *rq, struct task_struct *p)
  707. {
  708. #ifdef CONFIG_SMP
  709. return p->oncpu;
  710. #else
  711. return task_current(rq, p);
  712. #endif
  713. }
  714. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  715. {
  716. #ifdef CONFIG_SMP
  717. /*
  718. * We can optimise this out completely for !SMP, because the
  719. * SMP rebalancing from interrupt is the only thing that cares
  720. * here.
  721. */
  722. next->oncpu = 1;
  723. #endif
  724. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  725. spin_unlock_irq(&rq->lock);
  726. #else
  727. spin_unlock(&rq->lock);
  728. #endif
  729. }
  730. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * After ->oncpu is cleared, the task can be moved to a different CPU.
  735. * We must ensure this doesn't happen until the switch is completely
  736. * finished.
  737. */
  738. smp_wmb();
  739. prev->oncpu = 0;
  740. #endif
  741. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  742. local_irq_enable();
  743. #endif
  744. }
  745. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  746. /*
  747. * __task_rq_lock - lock the runqueue a given task resides on.
  748. * Must be called interrupts disabled.
  749. */
  750. static inline struct rq *__task_rq_lock(struct task_struct *p)
  751. __acquires(rq->lock)
  752. {
  753. for (;;) {
  754. struct rq *rq = task_rq(p);
  755. spin_lock(&rq->lock);
  756. if (likely(rq == task_rq(p)))
  757. return rq;
  758. spin_unlock(&rq->lock);
  759. }
  760. }
  761. /*
  762. * task_rq_lock - lock the runqueue a given task resides on and disable
  763. * interrupts. Note the ordering: we can safely lookup the task_rq without
  764. * explicitly disabling preemption.
  765. */
  766. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  767. __acquires(rq->lock)
  768. {
  769. struct rq *rq;
  770. for (;;) {
  771. local_irq_save(*flags);
  772. rq = task_rq(p);
  773. spin_lock(&rq->lock);
  774. if (likely(rq == task_rq(p)))
  775. return rq;
  776. spin_unlock_irqrestore(&rq->lock, *flags);
  777. }
  778. }
  779. static void __task_rq_unlock(struct rq *rq)
  780. __releases(rq->lock)
  781. {
  782. spin_unlock(&rq->lock);
  783. }
  784. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  785. __releases(rq->lock)
  786. {
  787. spin_unlock_irqrestore(&rq->lock, *flags);
  788. }
  789. /*
  790. * this_rq_lock - lock this runqueue and disable interrupts.
  791. */
  792. static struct rq *this_rq_lock(void)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. local_irq_disable();
  797. rq = this_rq();
  798. spin_lock(&rq->lock);
  799. return rq;
  800. }
  801. /*
  802. * We are going deep-idle (irqs are disabled):
  803. */
  804. void sched_clock_idle_sleep_event(void)
  805. {
  806. struct rq *rq = cpu_rq(smp_processor_id());
  807. spin_lock(&rq->lock);
  808. __update_rq_clock(rq);
  809. spin_unlock(&rq->lock);
  810. rq->clock_deep_idle_events++;
  811. }
  812. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  813. /*
  814. * We just idled delta nanoseconds (called with irqs disabled):
  815. */
  816. void sched_clock_idle_wakeup_event(u64 delta_ns)
  817. {
  818. struct rq *rq = cpu_rq(smp_processor_id());
  819. u64 now = sched_clock();
  820. rq->idle_clock += delta_ns;
  821. /*
  822. * Override the previous timestamp and ignore all
  823. * sched_clock() deltas that occured while we idled,
  824. * and use the PM-provided delta_ns to advance the
  825. * rq clock:
  826. */
  827. spin_lock(&rq->lock);
  828. rq->prev_clock_raw = now;
  829. rq->clock += delta_ns;
  830. spin_unlock(&rq->lock);
  831. touch_softlockup_watchdog();
  832. }
  833. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  834. static void __resched_task(struct task_struct *p, int tif_bit);
  835. static inline void resched_task(struct task_struct *p)
  836. {
  837. __resched_task(p, TIF_NEED_RESCHED);
  838. }
  839. #ifdef CONFIG_SCHED_HRTICK
  840. /*
  841. * Use HR-timers to deliver accurate preemption points.
  842. *
  843. * Its all a bit involved since we cannot program an hrt while holding the
  844. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  845. * reschedule event.
  846. *
  847. * When we get rescheduled we reprogram the hrtick_timer outside of the
  848. * rq->lock.
  849. */
  850. static inline void resched_hrt(struct task_struct *p)
  851. {
  852. __resched_task(p, TIF_HRTICK_RESCHED);
  853. }
  854. static inline void resched_rq(struct rq *rq)
  855. {
  856. unsigned long flags;
  857. spin_lock_irqsave(&rq->lock, flags);
  858. resched_task(rq->curr);
  859. spin_unlock_irqrestore(&rq->lock, flags);
  860. }
  861. enum {
  862. HRTICK_SET, /* re-programm hrtick_timer */
  863. HRTICK_RESET, /* not a new slice */
  864. };
  865. /*
  866. * Use hrtick when:
  867. * - enabled by features
  868. * - hrtimer is actually high res
  869. */
  870. static inline int hrtick_enabled(struct rq *rq)
  871. {
  872. if (!sched_feat(HRTICK))
  873. return 0;
  874. return hrtimer_is_hres_active(&rq->hrtick_timer);
  875. }
  876. /*
  877. * Called to set the hrtick timer state.
  878. *
  879. * called with rq->lock held and irqs disabled
  880. */
  881. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  882. {
  883. assert_spin_locked(&rq->lock);
  884. /*
  885. * preempt at: now + delay
  886. */
  887. rq->hrtick_expire =
  888. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  889. /*
  890. * indicate we need to program the timer
  891. */
  892. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  893. if (reset)
  894. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  895. /*
  896. * New slices are called from the schedule path and don't need a
  897. * forced reschedule.
  898. */
  899. if (reset)
  900. resched_hrt(rq->curr);
  901. }
  902. static void hrtick_clear(struct rq *rq)
  903. {
  904. if (hrtimer_active(&rq->hrtick_timer))
  905. hrtimer_cancel(&rq->hrtick_timer);
  906. }
  907. /*
  908. * Update the timer from the possible pending state.
  909. */
  910. static void hrtick_set(struct rq *rq)
  911. {
  912. ktime_t time;
  913. int set, reset;
  914. unsigned long flags;
  915. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  916. spin_lock_irqsave(&rq->lock, flags);
  917. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  918. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  919. time = rq->hrtick_expire;
  920. clear_thread_flag(TIF_HRTICK_RESCHED);
  921. spin_unlock_irqrestore(&rq->lock, flags);
  922. if (set) {
  923. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  924. if (reset && !hrtimer_active(&rq->hrtick_timer))
  925. resched_rq(rq);
  926. } else
  927. hrtick_clear(rq);
  928. }
  929. /*
  930. * High-resolution timer tick.
  931. * Runs from hardirq context with interrupts disabled.
  932. */
  933. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  934. {
  935. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  936. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  937. spin_lock(&rq->lock);
  938. __update_rq_clock(rq);
  939. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  940. spin_unlock(&rq->lock);
  941. return HRTIMER_NORESTART;
  942. }
  943. static inline void init_rq_hrtick(struct rq *rq)
  944. {
  945. rq->hrtick_flags = 0;
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  949. }
  950. void hrtick_resched(void)
  951. {
  952. struct rq *rq;
  953. unsigned long flags;
  954. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  955. return;
  956. local_irq_save(flags);
  957. rq = cpu_rq(smp_processor_id());
  958. hrtick_set(rq);
  959. local_irq_restore(flags);
  960. }
  961. #else
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void hrtick_set(struct rq *rq)
  966. {
  967. }
  968. static inline void init_rq_hrtick(struct rq *rq)
  969. {
  970. }
  971. void hrtick_resched(void)
  972. {
  973. }
  974. #endif
  975. /*
  976. * resched_task - mark a task 'to be rescheduled now'.
  977. *
  978. * On UP this means the setting of the need_resched flag, on SMP it
  979. * might also involve a cross-CPU call to trigger the scheduler on
  980. * the target CPU.
  981. */
  982. #ifdef CONFIG_SMP
  983. #ifndef tsk_is_polling
  984. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  985. #endif
  986. static void __resched_task(struct task_struct *p, int tif_bit)
  987. {
  988. int cpu;
  989. assert_spin_locked(&task_rq(p)->lock);
  990. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  991. return;
  992. set_tsk_thread_flag(p, tif_bit);
  993. cpu = task_cpu(p);
  994. if (cpu == smp_processor_id())
  995. return;
  996. /* NEED_RESCHED must be visible before we test polling */
  997. smp_mb();
  998. if (!tsk_is_polling(p))
  999. smp_send_reschedule(cpu);
  1000. }
  1001. static void resched_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. unsigned long flags;
  1005. if (!spin_trylock_irqsave(&rq->lock, flags))
  1006. return;
  1007. resched_task(cpu_curr(cpu));
  1008. spin_unlock_irqrestore(&rq->lock, flags);
  1009. }
  1010. #ifdef CONFIG_NO_HZ
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif
  1047. #else
  1048. static void __resched_task(struct task_struct *p, int tif_bit)
  1049. {
  1050. assert_spin_locked(&task_rq(p)->lock);
  1051. set_tsk_thread_flag(p, tif_bit);
  1052. }
  1053. #endif
  1054. #if BITS_PER_LONG == 32
  1055. # define WMULT_CONST (~0UL)
  1056. #else
  1057. # define WMULT_CONST (1UL << 32)
  1058. #endif
  1059. #define WMULT_SHIFT 32
  1060. /*
  1061. * Shift right and round:
  1062. */
  1063. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1064. static unsigned long
  1065. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1066. struct load_weight *lw)
  1067. {
  1068. u64 tmp;
  1069. if (unlikely(!lw->inv_weight))
  1070. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline unsigned long
  1083. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1084. {
  1085. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1086. }
  1087. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1088. {
  1089. lw->weight += inc;
  1090. lw->inv_weight = 0;
  1091. }
  1092. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1093. {
  1094. lw->weight -= dec;
  1095. lw->inv_weight = 0;
  1096. }
  1097. /*
  1098. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1099. * of tasks with abnormal "nice" values across CPUs the contribution that
  1100. * each task makes to its run queue's load is weighted according to its
  1101. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1102. * scaled version of the new time slice allocation that they receive on time
  1103. * slice expiry etc.
  1104. */
  1105. #define WEIGHT_IDLEPRIO 2
  1106. #define WMULT_IDLEPRIO (1 << 31)
  1107. /*
  1108. * Nice levels are multiplicative, with a gentle 10% change for every
  1109. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1110. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1111. * that remained on nice 0.
  1112. *
  1113. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1114. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1115. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1116. * If a task goes up by ~10% and another task goes down by ~10% then
  1117. * the relative distance between them is ~25%.)
  1118. */
  1119. static const int prio_to_weight[40] = {
  1120. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1121. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1122. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1123. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1124. /* 0 */ 1024, 820, 655, 526, 423,
  1125. /* 5 */ 335, 272, 215, 172, 137,
  1126. /* 10 */ 110, 87, 70, 56, 45,
  1127. /* 15 */ 36, 29, 23, 18, 15,
  1128. };
  1129. /*
  1130. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1131. *
  1132. * In cases where the weight does not change often, we can use the
  1133. * precalculated inverse to speed up arithmetics by turning divisions
  1134. * into multiplications:
  1135. */
  1136. static const u32 prio_to_wmult[40] = {
  1137. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1138. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1139. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1140. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1141. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1142. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1143. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1144. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1145. };
  1146. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1147. /*
  1148. * runqueue iterator, to support SMP load-balancing between different
  1149. * scheduling classes, without having to expose their internal data
  1150. * structures to the load-balancing proper:
  1151. */
  1152. struct rq_iterator {
  1153. void *arg;
  1154. struct task_struct *(*start)(void *);
  1155. struct task_struct *(*next)(void *);
  1156. };
  1157. #ifdef CONFIG_SMP
  1158. static unsigned long
  1159. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. unsigned long max_load_move, struct sched_domain *sd,
  1161. enum cpu_idle_type idle, int *all_pinned,
  1162. int *this_best_prio, struct rq_iterator *iterator);
  1163. static int
  1164. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1165. struct sched_domain *sd, enum cpu_idle_type idle,
  1166. struct rq_iterator *iterator);
  1167. #endif
  1168. #ifdef CONFIG_CGROUP_CPUACCT
  1169. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1170. #else
  1171. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1172. #endif
  1173. #ifdef CONFIG_SMP
  1174. static unsigned long source_load(int cpu, int type);
  1175. static unsigned long target_load(int cpu, int type);
  1176. static unsigned long cpu_avg_load_per_task(int cpu);
  1177. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1178. #endif /* CONFIG_SMP */
  1179. #include "sched_stats.h"
  1180. #include "sched_idletask.c"
  1181. #include "sched_fair.c"
  1182. #include "sched_rt.c"
  1183. #ifdef CONFIG_SCHED_DEBUG
  1184. # include "sched_debug.c"
  1185. #endif
  1186. #define sched_class_highest (&rt_sched_class)
  1187. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1188. {
  1189. update_load_add(&rq->load, p->se.load.weight);
  1190. }
  1191. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1192. {
  1193. update_load_sub(&rq->load, p->se.load.weight);
  1194. }
  1195. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1196. {
  1197. rq->nr_running++;
  1198. inc_load(rq, p);
  1199. }
  1200. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1201. {
  1202. rq->nr_running--;
  1203. dec_load(rq, p);
  1204. }
  1205. static void set_load_weight(struct task_struct *p)
  1206. {
  1207. if (task_has_rt_policy(p)) {
  1208. p->se.load.weight = prio_to_weight[0] * 2;
  1209. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1210. return;
  1211. }
  1212. /*
  1213. * SCHED_IDLE tasks get minimal weight:
  1214. */
  1215. if (p->policy == SCHED_IDLE) {
  1216. p->se.load.weight = WEIGHT_IDLEPRIO;
  1217. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1218. return;
  1219. }
  1220. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1221. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1222. }
  1223. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1224. {
  1225. sched_info_queued(p);
  1226. p->sched_class->enqueue_task(rq, p, wakeup);
  1227. p->se.on_rq = 1;
  1228. }
  1229. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1230. {
  1231. p->sched_class->dequeue_task(rq, p, sleep);
  1232. p->se.on_rq = 0;
  1233. }
  1234. /*
  1235. * __normal_prio - return the priority that is based on the static prio
  1236. */
  1237. static inline int __normal_prio(struct task_struct *p)
  1238. {
  1239. return p->static_prio;
  1240. }
  1241. /*
  1242. * Calculate the expected normal priority: i.e. priority
  1243. * without taking RT-inheritance into account. Might be
  1244. * boosted by interactivity modifiers. Changes upon fork,
  1245. * setprio syscalls, and whenever the interactivity
  1246. * estimator recalculates.
  1247. */
  1248. static inline int normal_prio(struct task_struct *p)
  1249. {
  1250. int prio;
  1251. if (task_has_rt_policy(p))
  1252. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1253. else
  1254. prio = __normal_prio(p);
  1255. return prio;
  1256. }
  1257. /*
  1258. * Calculate the current priority, i.e. the priority
  1259. * taken into account by the scheduler. This value might
  1260. * be boosted by RT tasks, or might be boosted by
  1261. * interactivity modifiers. Will be RT if the task got
  1262. * RT-boosted. If not then it returns p->normal_prio.
  1263. */
  1264. static int effective_prio(struct task_struct *p)
  1265. {
  1266. p->normal_prio = normal_prio(p);
  1267. /*
  1268. * If we are RT tasks or we were boosted to RT priority,
  1269. * keep the priority unchanged. Otherwise, update priority
  1270. * to the normal priority:
  1271. */
  1272. if (!rt_prio(p->prio))
  1273. return p->normal_prio;
  1274. return p->prio;
  1275. }
  1276. /*
  1277. * activate_task - move a task to the runqueue.
  1278. */
  1279. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1280. {
  1281. if (task_contributes_to_load(p))
  1282. rq->nr_uninterruptible--;
  1283. enqueue_task(rq, p, wakeup);
  1284. inc_nr_running(p, rq);
  1285. }
  1286. /*
  1287. * deactivate_task - remove a task from the runqueue.
  1288. */
  1289. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1290. {
  1291. if (task_contributes_to_load(p))
  1292. rq->nr_uninterruptible++;
  1293. dequeue_task(rq, p, sleep);
  1294. dec_nr_running(p, rq);
  1295. }
  1296. /**
  1297. * task_curr - is this task currently executing on a CPU?
  1298. * @p: the task in question.
  1299. */
  1300. inline int task_curr(const struct task_struct *p)
  1301. {
  1302. return cpu_curr(task_cpu(p)) == p;
  1303. }
  1304. /* Used instead of source_load when we know the type == 0 */
  1305. unsigned long weighted_cpuload(const int cpu)
  1306. {
  1307. return cpu_rq(cpu)->load.weight;
  1308. }
  1309. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1310. {
  1311. set_task_rq(p, cpu);
  1312. #ifdef CONFIG_SMP
  1313. /*
  1314. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1315. * successfuly executed on another CPU. We must ensure that updates of
  1316. * per-task data have been completed by this moment.
  1317. */
  1318. smp_wmb();
  1319. task_thread_info(p)->cpu = cpu;
  1320. #endif
  1321. }
  1322. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1323. const struct sched_class *prev_class,
  1324. int oldprio, int running)
  1325. {
  1326. if (prev_class != p->sched_class) {
  1327. if (prev_class->switched_from)
  1328. prev_class->switched_from(rq, p, running);
  1329. p->sched_class->switched_to(rq, p, running);
  1330. } else
  1331. p->sched_class->prio_changed(rq, p, oldprio, running);
  1332. }
  1333. #ifdef CONFIG_SMP
  1334. /*
  1335. * Is this task likely cache-hot:
  1336. */
  1337. static int
  1338. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1339. {
  1340. s64 delta;
  1341. /*
  1342. * Buddy candidates are cache hot:
  1343. */
  1344. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1345. return 1;
  1346. if (p->sched_class != &fair_sched_class)
  1347. return 0;
  1348. if (sysctl_sched_migration_cost == -1)
  1349. return 1;
  1350. if (sysctl_sched_migration_cost == 0)
  1351. return 0;
  1352. delta = now - p->se.exec_start;
  1353. return delta < (s64)sysctl_sched_migration_cost;
  1354. }
  1355. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1356. {
  1357. int old_cpu = task_cpu(p);
  1358. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1359. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1360. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1361. u64 clock_offset;
  1362. clock_offset = old_rq->clock - new_rq->clock;
  1363. #ifdef CONFIG_SCHEDSTATS
  1364. if (p->se.wait_start)
  1365. p->se.wait_start -= clock_offset;
  1366. if (p->se.sleep_start)
  1367. p->se.sleep_start -= clock_offset;
  1368. if (p->se.block_start)
  1369. p->se.block_start -= clock_offset;
  1370. if (old_cpu != new_cpu) {
  1371. schedstat_inc(p, se.nr_migrations);
  1372. if (task_hot(p, old_rq->clock, NULL))
  1373. schedstat_inc(p, se.nr_forced2_migrations);
  1374. }
  1375. #endif
  1376. p->se.vruntime -= old_cfsrq->min_vruntime -
  1377. new_cfsrq->min_vruntime;
  1378. __set_task_cpu(p, new_cpu);
  1379. }
  1380. struct migration_req {
  1381. struct list_head list;
  1382. struct task_struct *task;
  1383. int dest_cpu;
  1384. struct completion done;
  1385. };
  1386. /*
  1387. * The task's runqueue lock must be held.
  1388. * Returns true if you have to wait for migration thread.
  1389. */
  1390. static int
  1391. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. /*
  1395. * If the task is not on a runqueue (and not running), then
  1396. * it is sufficient to simply update the task's cpu field.
  1397. */
  1398. if (!p->se.on_rq && !task_running(rq, p)) {
  1399. set_task_cpu(p, dest_cpu);
  1400. return 0;
  1401. }
  1402. init_completion(&req->done);
  1403. req->task = p;
  1404. req->dest_cpu = dest_cpu;
  1405. list_add(&req->list, &rq->migration_queue);
  1406. return 1;
  1407. }
  1408. /*
  1409. * wait_task_inactive - wait for a thread to unschedule.
  1410. *
  1411. * The caller must ensure that the task *will* unschedule sometime soon,
  1412. * else this function might spin for a *long* time. This function can't
  1413. * be called with interrupts off, or it may introduce deadlock with
  1414. * smp_call_function() if an IPI is sent by the same process we are
  1415. * waiting to become inactive.
  1416. */
  1417. void wait_task_inactive(struct task_struct *p)
  1418. {
  1419. unsigned long flags;
  1420. int running, on_rq;
  1421. struct rq *rq;
  1422. for (;;) {
  1423. /*
  1424. * We do the initial early heuristics without holding
  1425. * any task-queue locks at all. We'll only try to get
  1426. * the runqueue lock when things look like they will
  1427. * work out!
  1428. */
  1429. rq = task_rq(p);
  1430. /*
  1431. * If the task is actively running on another CPU
  1432. * still, just relax and busy-wait without holding
  1433. * any locks.
  1434. *
  1435. * NOTE! Since we don't hold any locks, it's not
  1436. * even sure that "rq" stays as the right runqueue!
  1437. * But we don't care, since "task_running()" will
  1438. * return false if the runqueue has changed and p
  1439. * is actually now running somewhere else!
  1440. */
  1441. while (task_running(rq, p))
  1442. cpu_relax();
  1443. /*
  1444. * Ok, time to look more closely! We need the rq
  1445. * lock now, to be *sure*. If we're wrong, we'll
  1446. * just go back and repeat.
  1447. */
  1448. rq = task_rq_lock(p, &flags);
  1449. running = task_running(rq, p);
  1450. on_rq = p->se.on_rq;
  1451. task_rq_unlock(rq, &flags);
  1452. /*
  1453. * Was it really running after all now that we
  1454. * checked with the proper locks actually held?
  1455. *
  1456. * Oops. Go back and try again..
  1457. */
  1458. if (unlikely(running)) {
  1459. cpu_relax();
  1460. continue;
  1461. }
  1462. /*
  1463. * It's not enough that it's not actively running,
  1464. * it must be off the runqueue _entirely_, and not
  1465. * preempted!
  1466. *
  1467. * So if it wa still runnable (but just not actively
  1468. * running right now), it's preempted, and we should
  1469. * yield - it could be a while.
  1470. */
  1471. if (unlikely(on_rq)) {
  1472. schedule_timeout_uninterruptible(1);
  1473. continue;
  1474. }
  1475. /*
  1476. * Ahh, all good. It wasn't running, and it wasn't
  1477. * runnable, which means that it will never become
  1478. * running in the future either. We're all done!
  1479. */
  1480. break;
  1481. }
  1482. }
  1483. /***
  1484. * kick_process - kick a running thread to enter/exit the kernel
  1485. * @p: the to-be-kicked thread
  1486. *
  1487. * Cause a process which is running on another CPU to enter
  1488. * kernel-mode, without any delay. (to get signals handled.)
  1489. *
  1490. * NOTE: this function doesnt have to take the runqueue lock,
  1491. * because all it wants to ensure is that the remote task enters
  1492. * the kernel. If the IPI races and the task has been migrated
  1493. * to another CPU then no harm is done and the purpose has been
  1494. * achieved as well.
  1495. */
  1496. void kick_process(struct task_struct *p)
  1497. {
  1498. int cpu;
  1499. preempt_disable();
  1500. cpu = task_cpu(p);
  1501. if ((cpu != smp_processor_id()) && task_curr(p))
  1502. smp_send_reschedule(cpu);
  1503. preempt_enable();
  1504. }
  1505. /*
  1506. * Return a low guess at the load of a migration-source cpu weighted
  1507. * according to the scheduling class and "nice" value.
  1508. *
  1509. * We want to under-estimate the load of migration sources, to
  1510. * balance conservatively.
  1511. */
  1512. static unsigned long source_load(int cpu, int type)
  1513. {
  1514. struct rq *rq = cpu_rq(cpu);
  1515. unsigned long total = weighted_cpuload(cpu);
  1516. if (type == 0)
  1517. return total;
  1518. return min(rq->cpu_load[type-1], total);
  1519. }
  1520. /*
  1521. * Return a high guess at the load of a migration-target cpu weighted
  1522. * according to the scheduling class and "nice" value.
  1523. */
  1524. static unsigned long target_load(int cpu, int type)
  1525. {
  1526. struct rq *rq = cpu_rq(cpu);
  1527. unsigned long total = weighted_cpuload(cpu);
  1528. if (type == 0)
  1529. return total;
  1530. return max(rq->cpu_load[type-1], total);
  1531. }
  1532. /*
  1533. * Return the average load per task on the cpu's run queue
  1534. */
  1535. static unsigned long cpu_avg_load_per_task(int cpu)
  1536. {
  1537. struct rq *rq = cpu_rq(cpu);
  1538. unsigned long total = weighted_cpuload(cpu);
  1539. unsigned long n = rq->nr_running;
  1540. return n ? total / n : SCHED_LOAD_SCALE;
  1541. }
  1542. /*
  1543. * find_idlest_group finds and returns the least busy CPU group within the
  1544. * domain.
  1545. */
  1546. static struct sched_group *
  1547. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1548. {
  1549. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1550. unsigned long min_load = ULONG_MAX, this_load = 0;
  1551. int load_idx = sd->forkexec_idx;
  1552. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1553. do {
  1554. unsigned long load, avg_load;
  1555. int local_group;
  1556. int i;
  1557. /* Skip over this group if it has no CPUs allowed */
  1558. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1559. continue;
  1560. local_group = cpu_isset(this_cpu, group->cpumask);
  1561. /* Tally up the load of all CPUs in the group */
  1562. avg_load = 0;
  1563. for_each_cpu_mask(i, group->cpumask) {
  1564. /* Bias balancing toward cpus of our domain */
  1565. if (local_group)
  1566. load = source_load(i, load_idx);
  1567. else
  1568. load = target_load(i, load_idx);
  1569. avg_load += load;
  1570. }
  1571. /* Adjust by relative CPU power of the group */
  1572. avg_load = sg_div_cpu_power(group,
  1573. avg_load * SCHED_LOAD_SCALE);
  1574. if (local_group) {
  1575. this_load = avg_load;
  1576. this = group;
  1577. } else if (avg_load < min_load) {
  1578. min_load = avg_load;
  1579. idlest = group;
  1580. }
  1581. } while (group = group->next, group != sd->groups);
  1582. if (!idlest || 100*this_load < imbalance*min_load)
  1583. return NULL;
  1584. return idlest;
  1585. }
  1586. /*
  1587. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1588. */
  1589. static int
  1590. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1591. cpumask_t *tmp)
  1592. {
  1593. unsigned long load, min_load = ULONG_MAX;
  1594. int idlest = -1;
  1595. int i;
  1596. /* Traverse only the allowed CPUs */
  1597. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1598. for_each_cpu_mask(i, *tmp) {
  1599. load = weighted_cpuload(i);
  1600. if (load < min_load || (load == min_load && i == this_cpu)) {
  1601. min_load = load;
  1602. idlest = i;
  1603. }
  1604. }
  1605. return idlest;
  1606. }
  1607. /*
  1608. * sched_balance_self: balance the current task (running on cpu) in domains
  1609. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1610. * SD_BALANCE_EXEC.
  1611. *
  1612. * Balance, ie. select the least loaded group.
  1613. *
  1614. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1615. *
  1616. * preempt must be disabled.
  1617. */
  1618. static int sched_balance_self(int cpu, int flag)
  1619. {
  1620. struct task_struct *t = current;
  1621. struct sched_domain *tmp, *sd = NULL;
  1622. for_each_domain(cpu, tmp) {
  1623. /*
  1624. * If power savings logic is enabled for a domain, stop there.
  1625. */
  1626. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1627. break;
  1628. if (tmp->flags & flag)
  1629. sd = tmp;
  1630. }
  1631. while (sd) {
  1632. cpumask_t span, tmpmask;
  1633. struct sched_group *group;
  1634. int new_cpu, weight;
  1635. if (!(sd->flags & flag)) {
  1636. sd = sd->child;
  1637. continue;
  1638. }
  1639. span = sd->span;
  1640. group = find_idlest_group(sd, t, cpu);
  1641. if (!group) {
  1642. sd = sd->child;
  1643. continue;
  1644. }
  1645. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1646. if (new_cpu == -1 || new_cpu == cpu) {
  1647. /* Now try balancing at a lower domain level of cpu */
  1648. sd = sd->child;
  1649. continue;
  1650. }
  1651. /* Now try balancing at a lower domain level of new_cpu */
  1652. cpu = new_cpu;
  1653. sd = NULL;
  1654. weight = cpus_weight(span);
  1655. for_each_domain(cpu, tmp) {
  1656. if (weight <= cpus_weight(tmp->span))
  1657. break;
  1658. if (tmp->flags & flag)
  1659. sd = tmp;
  1660. }
  1661. /* while loop will break here if sd == NULL */
  1662. }
  1663. return cpu;
  1664. }
  1665. #endif /* CONFIG_SMP */
  1666. /***
  1667. * try_to_wake_up - wake up a thread
  1668. * @p: the to-be-woken-up thread
  1669. * @state: the mask of task states that can be woken
  1670. * @sync: do a synchronous wakeup?
  1671. *
  1672. * Put it on the run-queue if it's not already there. The "current"
  1673. * thread is always on the run-queue (except when the actual
  1674. * re-schedule is in progress), and as such you're allowed to do
  1675. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1676. * runnable without the overhead of this.
  1677. *
  1678. * returns failure only if the task is already active.
  1679. */
  1680. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1681. {
  1682. int cpu, orig_cpu, this_cpu, success = 0;
  1683. unsigned long flags;
  1684. long old_state;
  1685. struct rq *rq;
  1686. if (!sched_feat(SYNC_WAKEUPS))
  1687. sync = 0;
  1688. smp_wmb();
  1689. rq = task_rq_lock(p, &flags);
  1690. old_state = p->state;
  1691. if (!(old_state & state))
  1692. goto out;
  1693. if (p->se.on_rq)
  1694. goto out_running;
  1695. cpu = task_cpu(p);
  1696. orig_cpu = cpu;
  1697. this_cpu = smp_processor_id();
  1698. #ifdef CONFIG_SMP
  1699. if (unlikely(task_running(rq, p)))
  1700. goto out_activate;
  1701. cpu = p->sched_class->select_task_rq(p, sync);
  1702. if (cpu != orig_cpu) {
  1703. set_task_cpu(p, cpu);
  1704. task_rq_unlock(rq, &flags);
  1705. /* might preempt at this point */
  1706. rq = task_rq_lock(p, &flags);
  1707. old_state = p->state;
  1708. if (!(old_state & state))
  1709. goto out;
  1710. if (p->se.on_rq)
  1711. goto out_running;
  1712. this_cpu = smp_processor_id();
  1713. cpu = task_cpu(p);
  1714. }
  1715. #ifdef CONFIG_SCHEDSTATS
  1716. schedstat_inc(rq, ttwu_count);
  1717. if (cpu == this_cpu)
  1718. schedstat_inc(rq, ttwu_local);
  1719. else {
  1720. struct sched_domain *sd;
  1721. for_each_domain(this_cpu, sd) {
  1722. if (cpu_isset(cpu, sd->span)) {
  1723. schedstat_inc(sd, ttwu_wake_remote);
  1724. break;
  1725. }
  1726. }
  1727. }
  1728. #endif
  1729. out_activate:
  1730. #endif /* CONFIG_SMP */
  1731. schedstat_inc(p, se.nr_wakeups);
  1732. if (sync)
  1733. schedstat_inc(p, se.nr_wakeups_sync);
  1734. if (orig_cpu != cpu)
  1735. schedstat_inc(p, se.nr_wakeups_migrate);
  1736. if (cpu == this_cpu)
  1737. schedstat_inc(p, se.nr_wakeups_local);
  1738. else
  1739. schedstat_inc(p, se.nr_wakeups_remote);
  1740. update_rq_clock(rq);
  1741. activate_task(rq, p, 1);
  1742. success = 1;
  1743. out_running:
  1744. check_preempt_curr(rq, p);
  1745. p->state = TASK_RUNNING;
  1746. #ifdef CONFIG_SMP
  1747. if (p->sched_class->task_wake_up)
  1748. p->sched_class->task_wake_up(rq, p);
  1749. #endif
  1750. out:
  1751. task_rq_unlock(rq, &flags);
  1752. return success;
  1753. }
  1754. int wake_up_process(struct task_struct *p)
  1755. {
  1756. return try_to_wake_up(p, TASK_ALL, 0);
  1757. }
  1758. EXPORT_SYMBOL(wake_up_process);
  1759. int wake_up_state(struct task_struct *p, unsigned int state)
  1760. {
  1761. return try_to_wake_up(p, state, 0);
  1762. }
  1763. /*
  1764. * Perform scheduler related setup for a newly forked process p.
  1765. * p is forked by current.
  1766. *
  1767. * __sched_fork() is basic setup used by init_idle() too:
  1768. */
  1769. static void __sched_fork(struct task_struct *p)
  1770. {
  1771. p->se.exec_start = 0;
  1772. p->se.sum_exec_runtime = 0;
  1773. p->se.prev_sum_exec_runtime = 0;
  1774. p->se.last_wakeup = 0;
  1775. p->se.avg_overlap = 0;
  1776. #ifdef CONFIG_SCHEDSTATS
  1777. p->se.wait_start = 0;
  1778. p->se.sum_sleep_runtime = 0;
  1779. p->se.sleep_start = 0;
  1780. p->se.block_start = 0;
  1781. p->se.sleep_max = 0;
  1782. p->se.block_max = 0;
  1783. p->se.exec_max = 0;
  1784. p->se.slice_max = 0;
  1785. p->se.wait_max = 0;
  1786. #endif
  1787. INIT_LIST_HEAD(&p->rt.run_list);
  1788. p->se.on_rq = 0;
  1789. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1790. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1791. #endif
  1792. /*
  1793. * We mark the process as running here, but have not actually
  1794. * inserted it onto the runqueue yet. This guarantees that
  1795. * nobody will actually run it, and a signal or other external
  1796. * event cannot wake it up and insert it on the runqueue either.
  1797. */
  1798. p->state = TASK_RUNNING;
  1799. }
  1800. /*
  1801. * fork()/clone()-time setup:
  1802. */
  1803. void sched_fork(struct task_struct *p, int clone_flags)
  1804. {
  1805. int cpu = get_cpu();
  1806. __sched_fork(p);
  1807. #ifdef CONFIG_SMP
  1808. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1809. #endif
  1810. set_task_cpu(p, cpu);
  1811. /*
  1812. * Make sure we do not leak PI boosting priority to the child:
  1813. */
  1814. p->prio = current->normal_prio;
  1815. if (!rt_prio(p->prio))
  1816. p->sched_class = &fair_sched_class;
  1817. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1818. if (likely(sched_info_on()))
  1819. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1820. #endif
  1821. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1822. p->oncpu = 0;
  1823. #endif
  1824. #ifdef CONFIG_PREEMPT
  1825. /* Want to start with kernel preemption disabled. */
  1826. task_thread_info(p)->preempt_count = 1;
  1827. #endif
  1828. put_cpu();
  1829. }
  1830. /*
  1831. * wake_up_new_task - wake up a newly created task for the first time.
  1832. *
  1833. * This function will do some initial scheduler statistics housekeeping
  1834. * that must be done for every newly created context, then puts the task
  1835. * on the runqueue and wakes it.
  1836. */
  1837. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1838. {
  1839. unsigned long flags;
  1840. struct rq *rq;
  1841. rq = task_rq_lock(p, &flags);
  1842. BUG_ON(p->state != TASK_RUNNING);
  1843. update_rq_clock(rq);
  1844. p->prio = effective_prio(p);
  1845. if (!p->sched_class->task_new || !current->se.on_rq) {
  1846. activate_task(rq, p, 0);
  1847. } else {
  1848. /*
  1849. * Let the scheduling class do new task startup
  1850. * management (if any):
  1851. */
  1852. p->sched_class->task_new(rq, p);
  1853. inc_nr_running(p, rq);
  1854. }
  1855. check_preempt_curr(rq, p);
  1856. #ifdef CONFIG_SMP
  1857. if (p->sched_class->task_wake_up)
  1858. p->sched_class->task_wake_up(rq, p);
  1859. #endif
  1860. task_rq_unlock(rq, &flags);
  1861. }
  1862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1863. /**
  1864. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1865. * @notifier: notifier struct to register
  1866. */
  1867. void preempt_notifier_register(struct preempt_notifier *notifier)
  1868. {
  1869. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1870. }
  1871. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1872. /**
  1873. * preempt_notifier_unregister - no longer interested in preemption notifications
  1874. * @notifier: notifier struct to unregister
  1875. *
  1876. * This is safe to call from within a preemption notifier.
  1877. */
  1878. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1879. {
  1880. hlist_del(&notifier->link);
  1881. }
  1882. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1883. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1884. {
  1885. struct preempt_notifier *notifier;
  1886. struct hlist_node *node;
  1887. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1888. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1889. }
  1890. static void
  1891. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1892. struct task_struct *next)
  1893. {
  1894. struct preempt_notifier *notifier;
  1895. struct hlist_node *node;
  1896. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1897. notifier->ops->sched_out(notifier, next);
  1898. }
  1899. #else
  1900. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1901. {
  1902. }
  1903. static void
  1904. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1905. struct task_struct *next)
  1906. {
  1907. }
  1908. #endif
  1909. /**
  1910. * prepare_task_switch - prepare to switch tasks
  1911. * @rq: the runqueue preparing to switch
  1912. * @prev: the current task that is being switched out
  1913. * @next: the task we are going to switch to.
  1914. *
  1915. * This is called with the rq lock held and interrupts off. It must
  1916. * be paired with a subsequent finish_task_switch after the context
  1917. * switch.
  1918. *
  1919. * prepare_task_switch sets up locking and calls architecture specific
  1920. * hooks.
  1921. */
  1922. static inline void
  1923. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1924. struct task_struct *next)
  1925. {
  1926. fire_sched_out_preempt_notifiers(prev, next);
  1927. prepare_lock_switch(rq, next);
  1928. prepare_arch_switch(next);
  1929. }
  1930. /**
  1931. * finish_task_switch - clean up after a task-switch
  1932. * @rq: runqueue associated with task-switch
  1933. * @prev: the thread we just switched away from.
  1934. *
  1935. * finish_task_switch must be called after the context switch, paired
  1936. * with a prepare_task_switch call before the context switch.
  1937. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1938. * and do any other architecture-specific cleanup actions.
  1939. *
  1940. * Note that we may have delayed dropping an mm in context_switch(). If
  1941. * so, we finish that here outside of the runqueue lock. (Doing it
  1942. * with the lock held can cause deadlocks; see schedule() for
  1943. * details.)
  1944. */
  1945. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1946. __releases(rq->lock)
  1947. {
  1948. struct mm_struct *mm = rq->prev_mm;
  1949. long prev_state;
  1950. rq->prev_mm = NULL;
  1951. /*
  1952. * A task struct has one reference for the use as "current".
  1953. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1954. * schedule one last time. The schedule call will never return, and
  1955. * the scheduled task must drop that reference.
  1956. * The test for TASK_DEAD must occur while the runqueue locks are
  1957. * still held, otherwise prev could be scheduled on another cpu, die
  1958. * there before we look at prev->state, and then the reference would
  1959. * be dropped twice.
  1960. * Manfred Spraul <manfred@colorfullife.com>
  1961. */
  1962. prev_state = prev->state;
  1963. finish_arch_switch(prev);
  1964. finish_lock_switch(rq, prev);
  1965. #ifdef CONFIG_SMP
  1966. if (current->sched_class->post_schedule)
  1967. current->sched_class->post_schedule(rq);
  1968. #endif
  1969. fire_sched_in_preempt_notifiers(current);
  1970. if (mm)
  1971. mmdrop(mm);
  1972. if (unlikely(prev_state == TASK_DEAD)) {
  1973. /*
  1974. * Remove function-return probe instances associated with this
  1975. * task and put them back on the free list.
  1976. */
  1977. kprobe_flush_task(prev);
  1978. put_task_struct(prev);
  1979. }
  1980. }
  1981. /**
  1982. * schedule_tail - first thing a freshly forked thread must call.
  1983. * @prev: the thread we just switched away from.
  1984. */
  1985. asmlinkage void schedule_tail(struct task_struct *prev)
  1986. __releases(rq->lock)
  1987. {
  1988. struct rq *rq = this_rq();
  1989. finish_task_switch(rq, prev);
  1990. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1991. /* In this case, finish_task_switch does not reenable preemption */
  1992. preempt_enable();
  1993. #endif
  1994. if (current->set_child_tid)
  1995. put_user(task_pid_vnr(current), current->set_child_tid);
  1996. }
  1997. /*
  1998. * context_switch - switch to the new MM and the new
  1999. * thread's register state.
  2000. */
  2001. static inline void
  2002. context_switch(struct rq *rq, struct task_struct *prev,
  2003. struct task_struct *next)
  2004. {
  2005. struct mm_struct *mm, *oldmm;
  2006. prepare_task_switch(rq, prev, next);
  2007. mm = next->mm;
  2008. oldmm = prev->active_mm;
  2009. /*
  2010. * For paravirt, this is coupled with an exit in switch_to to
  2011. * combine the page table reload and the switch backend into
  2012. * one hypercall.
  2013. */
  2014. arch_enter_lazy_cpu_mode();
  2015. if (unlikely(!mm)) {
  2016. next->active_mm = oldmm;
  2017. atomic_inc(&oldmm->mm_count);
  2018. enter_lazy_tlb(oldmm, next);
  2019. } else
  2020. switch_mm(oldmm, mm, next);
  2021. if (unlikely(!prev->mm)) {
  2022. prev->active_mm = NULL;
  2023. rq->prev_mm = oldmm;
  2024. }
  2025. /*
  2026. * Since the runqueue lock will be released by the next
  2027. * task (which is an invalid locking op but in the case
  2028. * of the scheduler it's an obvious special-case), so we
  2029. * do an early lockdep release here:
  2030. */
  2031. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2032. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2033. #endif
  2034. /* Here we just switch the register state and the stack. */
  2035. switch_to(prev, next, prev);
  2036. barrier();
  2037. /*
  2038. * this_rq must be evaluated again because prev may have moved
  2039. * CPUs since it called schedule(), thus the 'rq' on its stack
  2040. * frame will be invalid.
  2041. */
  2042. finish_task_switch(this_rq(), prev);
  2043. }
  2044. /*
  2045. * nr_running, nr_uninterruptible and nr_context_switches:
  2046. *
  2047. * externally visible scheduler statistics: current number of runnable
  2048. * threads, current number of uninterruptible-sleeping threads, total
  2049. * number of context switches performed since bootup.
  2050. */
  2051. unsigned long nr_running(void)
  2052. {
  2053. unsigned long i, sum = 0;
  2054. for_each_online_cpu(i)
  2055. sum += cpu_rq(i)->nr_running;
  2056. return sum;
  2057. }
  2058. unsigned long nr_uninterruptible(void)
  2059. {
  2060. unsigned long i, sum = 0;
  2061. for_each_possible_cpu(i)
  2062. sum += cpu_rq(i)->nr_uninterruptible;
  2063. /*
  2064. * Since we read the counters lockless, it might be slightly
  2065. * inaccurate. Do not allow it to go below zero though:
  2066. */
  2067. if (unlikely((long)sum < 0))
  2068. sum = 0;
  2069. return sum;
  2070. }
  2071. unsigned long long nr_context_switches(void)
  2072. {
  2073. int i;
  2074. unsigned long long sum = 0;
  2075. for_each_possible_cpu(i)
  2076. sum += cpu_rq(i)->nr_switches;
  2077. return sum;
  2078. }
  2079. unsigned long nr_iowait(void)
  2080. {
  2081. unsigned long i, sum = 0;
  2082. for_each_possible_cpu(i)
  2083. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2084. return sum;
  2085. }
  2086. unsigned long nr_active(void)
  2087. {
  2088. unsigned long i, running = 0, uninterruptible = 0;
  2089. for_each_online_cpu(i) {
  2090. running += cpu_rq(i)->nr_running;
  2091. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2092. }
  2093. if (unlikely((long)uninterruptible < 0))
  2094. uninterruptible = 0;
  2095. return running + uninterruptible;
  2096. }
  2097. /*
  2098. * Update rq->cpu_load[] statistics. This function is usually called every
  2099. * scheduler tick (TICK_NSEC).
  2100. */
  2101. static void update_cpu_load(struct rq *this_rq)
  2102. {
  2103. unsigned long this_load = this_rq->load.weight;
  2104. int i, scale;
  2105. this_rq->nr_load_updates++;
  2106. /* Update our load: */
  2107. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2108. unsigned long old_load, new_load;
  2109. /* scale is effectively 1 << i now, and >> i divides by scale */
  2110. old_load = this_rq->cpu_load[i];
  2111. new_load = this_load;
  2112. /*
  2113. * Round up the averaging division if load is increasing. This
  2114. * prevents us from getting stuck on 9 if the load is 10, for
  2115. * example.
  2116. */
  2117. if (new_load > old_load)
  2118. new_load += scale-1;
  2119. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2120. }
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. /*
  2124. * double_rq_lock - safely lock two runqueues
  2125. *
  2126. * Note this does not disable interrupts like task_rq_lock,
  2127. * you need to do so manually before calling.
  2128. */
  2129. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2130. __acquires(rq1->lock)
  2131. __acquires(rq2->lock)
  2132. {
  2133. BUG_ON(!irqs_disabled());
  2134. if (rq1 == rq2) {
  2135. spin_lock(&rq1->lock);
  2136. __acquire(rq2->lock); /* Fake it out ;) */
  2137. } else {
  2138. if (rq1 < rq2) {
  2139. spin_lock(&rq1->lock);
  2140. spin_lock(&rq2->lock);
  2141. } else {
  2142. spin_lock(&rq2->lock);
  2143. spin_lock(&rq1->lock);
  2144. }
  2145. }
  2146. update_rq_clock(rq1);
  2147. update_rq_clock(rq2);
  2148. }
  2149. /*
  2150. * double_rq_unlock - safely unlock two runqueues
  2151. *
  2152. * Note this does not restore interrupts like task_rq_unlock,
  2153. * you need to do so manually after calling.
  2154. */
  2155. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2156. __releases(rq1->lock)
  2157. __releases(rq2->lock)
  2158. {
  2159. spin_unlock(&rq1->lock);
  2160. if (rq1 != rq2)
  2161. spin_unlock(&rq2->lock);
  2162. else
  2163. __release(rq2->lock);
  2164. }
  2165. /*
  2166. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2167. */
  2168. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2169. __releases(this_rq->lock)
  2170. __acquires(busiest->lock)
  2171. __acquires(this_rq->lock)
  2172. {
  2173. int ret = 0;
  2174. if (unlikely(!irqs_disabled())) {
  2175. /* printk() doesn't work good under rq->lock */
  2176. spin_unlock(&this_rq->lock);
  2177. BUG_ON(1);
  2178. }
  2179. if (unlikely(!spin_trylock(&busiest->lock))) {
  2180. if (busiest < this_rq) {
  2181. spin_unlock(&this_rq->lock);
  2182. spin_lock(&busiest->lock);
  2183. spin_lock(&this_rq->lock);
  2184. ret = 1;
  2185. } else
  2186. spin_lock(&busiest->lock);
  2187. }
  2188. return ret;
  2189. }
  2190. /*
  2191. * If dest_cpu is allowed for this process, migrate the task to it.
  2192. * This is accomplished by forcing the cpu_allowed mask to only
  2193. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2194. * the cpu_allowed mask is restored.
  2195. */
  2196. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2197. {
  2198. struct migration_req req;
  2199. unsigned long flags;
  2200. struct rq *rq;
  2201. rq = task_rq_lock(p, &flags);
  2202. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2203. || unlikely(cpu_is_offline(dest_cpu)))
  2204. goto out;
  2205. /* force the process onto the specified CPU */
  2206. if (migrate_task(p, dest_cpu, &req)) {
  2207. /* Need to wait for migration thread (might exit: take ref). */
  2208. struct task_struct *mt = rq->migration_thread;
  2209. get_task_struct(mt);
  2210. task_rq_unlock(rq, &flags);
  2211. wake_up_process(mt);
  2212. put_task_struct(mt);
  2213. wait_for_completion(&req.done);
  2214. return;
  2215. }
  2216. out:
  2217. task_rq_unlock(rq, &flags);
  2218. }
  2219. /*
  2220. * sched_exec - execve() is a valuable balancing opportunity, because at
  2221. * this point the task has the smallest effective memory and cache footprint.
  2222. */
  2223. void sched_exec(void)
  2224. {
  2225. int new_cpu, this_cpu = get_cpu();
  2226. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2227. put_cpu();
  2228. if (new_cpu != this_cpu)
  2229. sched_migrate_task(current, new_cpu);
  2230. }
  2231. /*
  2232. * pull_task - move a task from a remote runqueue to the local runqueue.
  2233. * Both runqueues must be locked.
  2234. */
  2235. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2236. struct rq *this_rq, int this_cpu)
  2237. {
  2238. deactivate_task(src_rq, p, 0);
  2239. set_task_cpu(p, this_cpu);
  2240. activate_task(this_rq, p, 0);
  2241. /*
  2242. * Note that idle threads have a prio of MAX_PRIO, for this test
  2243. * to be always true for them.
  2244. */
  2245. check_preempt_curr(this_rq, p);
  2246. }
  2247. /*
  2248. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2249. */
  2250. static
  2251. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2252. struct sched_domain *sd, enum cpu_idle_type idle,
  2253. int *all_pinned)
  2254. {
  2255. /*
  2256. * We do not migrate tasks that are:
  2257. * 1) running (obviously), or
  2258. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2259. * 3) are cache-hot on their current CPU.
  2260. */
  2261. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2262. schedstat_inc(p, se.nr_failed_migrations_affine);
  2263. return 0;
  2264. }
  2265. *all_pinned = 0;
  2266. if (task_running(rq, p)) {
  2267. schedstat_inc(p, se.nr_failed_migrations_running);
  2268. return 0;
  2269. }
  2270. /*
  2271. * Aggressive migration if:
  2272. * 1) task is cache cold, or
  2273. * 2) too many balance attempts have failed.
  2274. */
  2275. if (!task_hot(p, rq->clock, sd) ||
  2276. sd->nr_balance_failed > sd->cache_nice_tries) {
  2277. #ifdef CONFIG_SCHEDSTATS
  2278. if (task_hot(p, rq->clock, sd)) {
  2279. schedstat_inc(sd, lb_hot_gained[idle]);
  2280. schedstat_inc(p, se.nr_forced_migrations);
  2281. }
  2282. #endif
  2283. return 1;
  2284. }
  2285. if (task_hot(p, rq->clock, sd)) {
  2286. schedstat_inc(p, se.nr_failed_migrations_hot);
  2287. return 0;
  2288. }
  2289. return 1;
  2290. }
  2291. static unsigned long
  2292. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2293. unsigned long max_load_move, struct sched_domain *sd,
  2294. enum cpu_idle_type idle, int *all_pinned,
  2295. int *this_best_prio, struct rq_iterator *iterator)
  2296. {
  2297. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2298. struct task_struct *p;
  2299. long rem_load_move = max_load_move;
  2300. if (max_load_move == 0)
  2301. goto out;
  2302. pinned = 1;
  2303. /*
  2304. * Start the load-balancing iterator:
  2305. */
  2306. p = iterator->start(iterator->arg);
  2307. next:
  2308. if (!p || loops++ > sysctl_sched_nr_migrate)
  2309. goto out;
  2310. /*
  2311. * To help distribute high priority tasks across CPUs we don't
  2312. * skip a task if it will be the highest priority task (i.e. smallest
  2313. * prio value) on its new queue regardless of its load weight
  2314. */
  2315. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2316. SCHED_LOAD_SCALE_FUZZ;
  2317. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2318. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2319. p = iterator->next(iterator->arg);
  2320. goto next;
  2321. }
  2322. pull_task(busiest, p, this_rq, this_cpu);
  2323. pulled++;
  2324. rem_load_move -= p->se.load.weight;
  2325. /*
  2326. * We only want to steal up to the prescribed amount of weighted load.
  2327. */
  2328. if (rem_load_move > 0) {
  2329. if (p->prio < *this_best_prio)
  2330. *this_best_prio = p->prio;
  2331. p = iterator->next(iterator->arg);
  2332. goto next;
  2333. }
  2334. out:
  2335. /*
  2336. * Right now, this is one of only two places pull_task() is called,
  2337. * so we can safely collect pull_task() stats here rather than
  2338. * inside pull_task().
  2339. */
  2340. schedstat_add(sd, lb_gained[idle], pulled);
  2341. if (all_pinned)
  2342. *all_pinned = pinned;
  2343. return max_load_move - rem_load_move;
  2344. }
  2345. /*
  2346. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2347. * this_rq, as part of a balancing operation within domain "sd".
  2348. * Returns 1 if successful and 0 otherwise.
  2349. *
  2350. * Called with both runqueues locked.
  2351. */
  2352. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2353. unsigned long max_load_move,
  2354. struct sched_domain *sd, enum cpu_idle_type idle,
  2355. int *all_pinned)
  2356. {
  2357. const struct sched_class *class = sched_class_highest;
  2358. unsigned long total_load_moved = 0;
  2359. int this_best_prio = this_rq->curr->prio;
  2360. do {
  2361. total_load_moved +=
  2362. class->load_balance(this_rq, this_cpu, busiest,
  2363. max_load_move - total_load_moved,
  2364. sd, idle, all_pinned, &this_best_prio);
  2365. class = class->next;
  2366. } while (class && max_load_move > total_load_moved);
  2367. return total_load_moved > 0;
  2368. }
  2369. static int
  2370. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2371. struct sched_domain *sd, enum cpu_idle_type idle,
  2372. struct rq_iterator *iterator)
  2373. {
  2374. struct task_struct *p = iterator->start(iterator->arg);
  2375. int pinned = 0;
  2376. while (p) {
  2377. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2378. pull_task(busiest, p, this_rq, this_cpu);
  2379. /*
  2380. * Right now, this is only the second place pull_task()
  2381. * is called, so we can safely collect pull_task()
  2382. * stats here rather than inside pull_task().
  2383. */
  2384. schedstat_inc(sd, lb_gained[idle]);
  2385. return 1;
  2386. }
  2387. p = iterator->next(iterator->arg);
  2388. }
  2389. return 0;
  2390. }
  2391. /*
  2392. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2393. * part of active balancing operations within "domain".
  2394. * Returns 1 if successful and 0 otherwise.
  2395. *
  2396. * Called with both runqueues locked.
  2397. */
  2398. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2399. struct sched_domain *sd, enum cpu_idle_type idle)
  2400. {
  2401. const struct sched_class *class;
  2402. for (class = sched_class_highest; class; class = class->next)
  2403. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2404. return 1;
  2405. return 0;
  2406. }
  2407. /*
  2408. * find_busiest_group finds and returns the busiest CPU group within the
  2409. * domain. It calculates and returns the amount of weighted load which
  2410. * should be moved to restore balance via the imbalance parameter.
  2411. */
  2412. static struct sched_group *
  2413. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2414. unsigned long *imbalance, enum cpu_idle_type idle,
  2415. int *sd_idle, const cpumask_t *cpus, int *balance)
  2416. {
  2417. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2418. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2419. unsigned long max_pull;
  2420. unsigned long busiest_load_per_task, busiest_nr_running;
  2421. unsigned long this_load_per_task, this_nr_running;
  2422. int load_idx, group_imb = 0;
  2423. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2424. int power_savings_balance = 1;
  2425. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2426. unsigned long min_nr_running = ULONG_MAX;
  2427. struct sched_group *group_min = NULL, *group_leader = NULL;
  2428. #endif
  2429. max_load = this_load = total_load = total_pwr = 0;
  2430. busiest_load_per_task = busiest_nr_running = 0;
  2431. this_load_per_task = this_nr_running = 0;
  2432. if (idle == CPU_NOT_IDLE)
  2433. load_idx = sd->busy_idx;
  2434. else if (idle == CPU_NEWLY_IDLE)
  2435. load_idx = sd->newidle_idx;
  2436. else
  2437. load_idx = sd->idle_idx;
  2438. do {
  2439. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2440. int local_group;
  2441. int i;
  2442. int __group_imb = 0;
  2443. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2444. unsigned long sum_nr_running, sum_weighted_load;
  2445. local_group = cpu_isset(this_cpu, group->cpumask);
  2446. if (local_group)
  2447. balance_cpu = first_cpu(group->cpumask);
  2448. /* Tally up the load of all CPUs in the group */
  2449. sum_weighted_load = sum_nr_running = avg_load = 0;
  2450. max_cpu_load = 0;
  2451. min_cpu_load = ~0UL;
  2452. for_each_cpu_mask(i, group->cpumask) {
  2453. struct rq *rq;
  2454. if (!cpu_isset(i, *cpus))
  2455. continue;
  2456. rq = cpu_rq(i);
  2457. if (*sd_idle && rq->nr_running)
  2458. *sd_idle = 0;
  2459. /* Bias balancing toward cpus of our domain */
  2460. if (local_group) {
  2461. if (idle_cpu(i) && !first_idle_cpu) {
  2462. first_idle_cpu = 1;
  2463. balance_cpu = i;
  2464. }
  2465. load = target_load(i, load_idx);
  2466. } else {
  2467. load = source_load(i, load_idx);
  2468. if (load > max_cpu_load)
  2469. max_cpu_load = load;
  2470. if (min_cpu_load > load)
  2471. min_cpu_load = load;
  2472. }
  2473. avg_load += load;
  2474. sum_nr_running += rq->nr_running;
  2475. sum_weighted_load += weighted_cpuload(i);
  2476. }
  2477. /*
  2478. * First idle cpu or the first cpu(busiest) in this sched group
  2479. * is eligible for doing load balancing at this and above
  2480. * domains. In the newly idle case, we will allow all the cpu's
  2481. * to do the newly idle load balance.
  2482. */
  2483. if (idle != CPU_NEWLY_IDLE && local_group &&
  2484. balance_cpu != this_cpu && balance) {
  2485. *balance = 0;
  2486. goto ret;
  2487. }
  2488. total_load += avg_load;
  2489. total_pwr += group->__cpu_power;
  2490. /* Adjust by relative CPU power of the group */
  2491. avg_load = sg_div_cpu_power(group,
  2492. avg_load * SCHED_LOAD_SCALE);
  2493. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2494. __group_imb = 1;
  2495. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2496. if (local_group) {
  2497. this_load = avg_load;
  2498. this = group;
  2499. this_nr_running = sum_nr_running;
  2500. this_load_per_task = sum_weighted_load;
  2501. } else if (avg_load > max_load &&
  2502. (sum_nr_running > group_capacity || __group_imb)) {
  2503. max_load = avg_load;
  2504. busiest = group;
  2505. busiest_nr_running = sum_nr_running;
  2506. busiest_load_per_task = sum_weighted_load;
  2507. group_imb = __group_imb;
  2508. }
  2509. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2510. /*
  2511. * Busy processors will not participate in power savings
  2512. * balance.
  2513. */
  2514. if (idle == CPU_NOT_IDLE ||
  2515. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2516. goto group_next;
  2517. /*
  2518. * If the local group is idle or completely loaded
  2519. * no need to do power savings balance at this domain
  2520. */
  2521. if (local_group && (this_nr_running >= group_capacity ||
  2522. !this_nr_running))
  2523. power_savings_balance = 0;
  2524. /*
  2525. * If a group is already running at full capacity or idle,
  2526. * don't include that group in power savings calculations
  2527. */
  2528. if (!power_savings_balance || sum_nr_running >= group_capacity
  2529. || !sum_nr_running)
  2530. goto group_next;
  2531. /*
  2532. * Calculate the group which has the least non-idle load.
  2533. * This is the group from where we need to pick up the load
  2534. * for saving power
  2535. */
  2536. if ((sum_nr_running < min_nr_running) ||
  2537. (sum_nr_running == min_nr_running &&
  2538. first_cpu(group->cpumask) <
  2539. first_cpu(group_min->cpumask))) {
  2540. group_min = group;
  2541. min_nr_running = sum_nr_running;
  2542. min_load_per_task = sum_weighted_load /
  2543. sum_nr_running;
  2544. }
  2545. /*
  2546. * Calculate the group which is almost near its
  2547. * capacity but still has some space to pick up some load
  2548. * from other group and save more power
  2549. */
  2550. if (sum_nr_running <= group_capacity - 1) {
  2551. if (sum_nr_running > leader_nr_running ||
  2552. (sum_nr_running == leader_nr_running &&
  2553. first_cpu(group->cpumask) >
  2554. first_cpu(group_leader->cpumask))) {
  2555. group_leader = group;
  2556. leader_nr_running = sum_nr_running;
  2557. }
  2558. }
  2559. group_next:
  2560. #endif
  2561. group = group->next;
  2562. } while (group != sd->groups);
  2563. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2564. goto out_balanced;
  2565. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2566. if (this_load >= avg_load ||
  2567. 100*max_load <= sd->imbalance_pct*this_load)
  2568. goto out_balanced;
  2569. busiest_load_per_task /= busiest_nr_running;
  2570. if (group_imb)
  2571. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2572. /*
  2573. * We're trying to get all the cpus to the average_load, so we don't
  2574. * want to push ourselves above the average load, nor do we wish to
  2575. * reduce the max loaded cpu below the average load, as either of these
  2576. * actions would just result in more rebalancing later, and ping-pong
  2577. * tasks around. Thus we look for the minimum possible imbalance.
  2578. * Negative imbalances (*we* are more loaded than anyone else) will
  2579. * be counted as no imbalance for these purposes -- we can't fix that
  2580. * by pulling tasks to us. Be careful of negative numbers as they'll
  2581. * appear as very large values with unsigned longs.
  2582. */
  2583. if (max_load <= busiest_load_per_task)
  2584. goto out_balanced;
  2585. /*
  2586. * In the presence of smp nice balancing, certain scenarios can have
  2587. * max load less than avg load(as we skip the groups at or below
  2588. * its cpu_power, while calculating max_load..)
  2589. */
  2590. if (max_load < avg_load) {
  2591. *imbalance = 0;
  2592. goto small_imbalance;
  2593. }
  2594. /* Don't want to pull so many tasks that a group would go idle */
  2595. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2596. /* How much load to actually move to equalise the imbalance */
  2597. *imbalance = min(max_pull * busiest->__cpu_power,
  2598. (avg_load - this_load) * this->__cpu_power)
  2599. / SCHED_LOAD_SCALE;
  2600. /*
  2601. * if *imbalance is less than the average load per runnable task
  2602. * there is no gaurantee that any tasks will be moved so we'll have
  2603. * a think about bumping its value to force at least one task to be
  2604. * moved
  2605. */
  2606. if (*imbalance < busiest_load_per_task) {
  2607. unsigned long tmp, pwr_now, pwr_move;
  2608. unsigned int imbn;
  2609. small_imbalance:
  2610. pwr_move = pwr_now = 0;
  2611. imbn = 2;
  2612. if (this_nr_running) {
  2613. this_load_per_task /= this_nr_running;
  2614. if (busiest_load_per_task > this_load_per_task)
  2615. imbn = 1;
  2616. } else
  2617. this_load_per_task = SCHED_LOAD_SCALE;
  2618. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2619. busiest_load_per_task * imbn) {
  2620. *imbalance = busiest_load_per_task;
  2621. return busiest;
  2622. }
  2623. /*
  2624. * OK, we don't have enough imbalance to justify moving tasks,
  2625. * however we may be able to increase total CPU power used by
  2626. * moving them.
  2627. */
  2628. pwr_now += busiest->__cpu_power *
  2629. min(busiest_load_per_task, max_load);
  2630. pwr_now += this->__cpu_power *
  2631. min(this_load_per_task, this_load);
  2632. pwr_now /= SCHED_LOAD_SCALE;
  2633. /* Amount of load we'd subtract */
  2634. tmp = sg_div_cpu_power(busiest,
  2635. busiest_load_per_task * SCHED_LOAD_SCALE);
  2636. if (max_load > tmp)
  2637. pwr_move += busiest->__cpu_power *
  2638. min(busiest_load_per_task, max_load - tmp);
  2639. /* Amount of load we'd add */
  2640. if (max_load * busiest->__cpu_power <
  2641. busiest_load_per_task * SCHED_LOAD_SCALE)
  2642. tmp = sg_div_cpu_power(this,
  2643. max_load * busiest->__cpu_power);
  2644. else
  2645. tmp = sg_div_cpu_power(this,
  2646. busiest_load_per_task * SCHED_LOAD_SCALE);
  2647. pwr_move += this->__cpu_power *
  2648. min(this_load_per_task, this_load + tmp);
  2649. pwr_move /= SCHED_LOAD_SCALE;
  2650. /* Move if we gain throughput */
  2651. if (pwr_move > pwr_now)
  2652. *imbalance = busiest_load_per_task;
  2653. }
  2654. return busiest;
  2655. out_balanced:
  2656. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2657. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2658. goto ret;
  2659. if (this == group_leader && group_leader != group_min) {
  2660. *imbalance = min_load_per_task;
  2661. return group_min;
  2662. }
  2663. #endif
  2664. ret:
  2665. *imbalance = 0;
  2666. return NULL;
  2667. }
  2668. /*
  2669. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2670. */
  2671. static struct rq *
  2672. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2673. unsigned long imbalance, const cpumask_t *cpus)
  2674. {
  2675. struct rq *busiest = NULL, *rq;
  2676. unsigned long max_load = 0;
  2677. int i;
  2678. for_each_cpu_mask(i, group->cpumask) {
  2679. unsigned long wl;
  2680. if (!cpu_isset(i, *cpus))
  2681. continue;
  2682. rq = cpu_rq(i);
  2683. wl = weighted_cpuload(i);
  2684. if (rq->nr_running == 1 && wl > imbalance)
  2685. continue;
  2686. if (wl > max_load) {
  2687. max_load = wl;
  2688. busiest = rq;
  2689. }
  2690. }
  2691. return busiest;
  2692. }
  2693. /*
  2694. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2695. * so long as it is large enough.
  2696. */
  2697. #define MAX_PINNED_INTERVAL 512
  2698. /*
  2699. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2700. * tasks if there is an imbalance.
  2701. */
  2702. static int load_balance(int this_cpu, struct rq *this_rq,
  2703. struct sched_domain *sd, enum cpu_idle_type idle,
  2704. int *balance, cpumask_t *cpus)
  2705. {
  2706. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2707. struct sched_group *group;
  2708. unsigned long imbalance;
  2709. struct rq *busiest;
  2710. unsigned long flags;
  2711. cpus_setall(*cpus);
  2712. /*
  2713. * When power savings policy is enabled for the parent domain, idle
  2714. * sibling can pick up load irrespective of busy siblings. In this case,
  2715. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2716. * portraying it as CPU_NOT_IDLE.
  2717. */
  2718. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2719. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2720. sd_idle = 1;
  2721. schedstat_inc(sd, lb_count[idle]);
  2722. redo:
  2723. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2724. cpus, balance);
  2725. if (*balance == 0)
  2726. goto out_balanced;
  2727. if (!group) {
  2728. schedstat_inc(sd, lb_nobusyg[idle]);
  2729. goto out_balanced;
  2730. }
  2731. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2732. if (!busiest) {
  2733. schedstat_inc(sd, lb_nobusyq[idle]);
  2734. goto out_balanced;
  2735. }
  2736. BUG_ON(busiest == this_rq);
  2737. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2738. ld_moved = 0;
  2739. if (busiest->nr_running > 1) {
  2740. /*
  2741. * Attempt to move tasks. If find_busiest_group has found
  2742. * an imbalance but busiest->nr_running <= 1, the group is
  2743. * still unbalanced. ld_moved simply stays zero, so it is
  2744. * correctly treated as an imbalance.
  2745. */
  2746. local_irq_save(flags);
  2747. double_rq_lock(this_rq, busiest);
  2748. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2749. imbalance, sd, idle, &all_pinned);
  2750. double_rq_unlock(this_rq, busiest);
  2751. local_irq_restore(flags);
  2752. /*
  2753. * some other cpu did the load balance for us.
  2754. */
  2755. if (ld_moved && this_cpu != smp_processor_id())
  2756. resched_cpu(this_cpu);
  2757. /* All tasks on this runqueue were pinned by CPU affinity */
  2758. if (unlikely(all_pinned)) {
  2759. cpu_clear(cpu_of(busiest), *cpus);
  2760. if (!cpus_empty(*cpus))
  2761. goto redo;
  2762. goto out_balanced;
  2763. }
  2764. }
  2765. if (!ld_moved) {
  2766. schedstat_inc(sd, lb_failed[idle]);
  2767. sd->nr_balance_failed++;
  2768. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2769. spin_lock_irqsave(&busiest->lock, flags);
  2770. /* don't kick the migration_thread, if the curr
  2771. * task on busiest cpu can't be moved to this_cpu
  2772. */
  2773. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2774. spin_unlock_irqrestore(&busiest->lock, flags);
  2775. all_pinned = 1;
  2776. goto out_one_pinned;
  2777. }
  2778. if (!busiest->active_balance) {
  2779. busiest->active_balance = 1;
  2780. busiest->push_cpu = this_cpu;
  2781. active_balance = 1;
  2782. }
  2783. spin_unlock_irqrestore(&busiest->lock, flags);
  2784. if (active_balance)
  2785. wake_up_process(busiest->migration_thread);
  2786. /*
  2787. * We've kicked active balancing, reset the failure
  2788. * counter.
  2789. */
  2790. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2791. }
  2792. } else
  2793. sd->nr_balance_failed = 0;
  2794. if (likely(!active_balance)) {
  2795. /* We were unbalanced, so reset the balancing interval */
  2796. sd->balance_interval = sd->min_interval;
  2797. } else {
  2798. /*
  2799. * If we've begun active balancing, start to back off. This
  2800. * case may not be covered by the all_pinned logic if there
  2801. * is only 1 task on the busy runqueue (because we don't call
  2802. * move_tasks).
  2803. */
  2804. if (sd->balance_interval < sd->max_interval)
  2805. sd->balance_interval *= 2;
  2806. }
  2807. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2808. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2809. return -1;
  2810. return ld_moved;
  2811. out_balanced:
  2812. schedstat_inc(sd, lb_balanced[idle]);
  2813. sd->nr_balance_failed = 0;
  2814. out_one_pinned:
  2815. /* tune up the balancing interval */
  2816. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2817. (sd->balance_interval < sd->max_interval))
  2818. sd->balance_interval *= 2;
  2819. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2820. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2821. return -1;
  2822. return 0;
  2823. }
  2824. /*
  2825. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2826. * tasks if there is an imbalance.
  2827. *
  2828. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2829. * this_rq is locked.
  2830. */
  2831. static int
  2832. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2833. cpumask_t *cpus)
  2834. {
  2835. struct sched_group *group;
  2836. struct rq *busiest = NULL;
  2837. unsigned long imbalance;
  2838. int ld_moved = 0;
  2839. int sd_idle = 0;
  2840. int all_pinned = 0;
  2841. cpus_setall(*cpus);
  2842. /*
  2843. * When power savings policy is enabled for the parent domain, idle
  2844. * sibling can pick up load irrespective of busy siblings. In this case,
  2845. * let the state of idle sibling percolate up as IDLE, instead of
  2846. * portraying it as CPU_NOT_IDLE.
  2847. */
  2848. if (sd->flags & SD_SHARE_CPUPOWER &&
  2849. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2850. sd_idle = 1;
  2851. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2852. redo:
  2853. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2854. &sd_idle, cpus, NULL);
  2855. if (!group) {
  2856. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2857. goto out_balanced;
  2858. }
  2859. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2860. if (!busiest) {
  2861. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2862. goto out_balanced;
  2863. }
  2864. BUG_ON(busiest == this_rq);
  2865. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2866. ld_moved = 0;
  2867. if (busiest->nr_running > 1) {
  2868. /* Attempt to move tasks */
  2869. double_lock_balance(this_rq, busiest);
  2870. /* this_rq->clock is already updated */
  2871. update_rq_clock(busiest);
  2872. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2873. imbalance, sd, CPU_NEWLY_IDLE,
  2874. &all_pinned);
  2875. spin_unlock(&busiest->lock);
  2876. if (unlikely(all_pinned)) {
  2877. cpu_clear(cpu_of(busiest), *cpus);
  2878. if (!cpus_empty(*cpus))
  2879. goto redo;
  2880. }
  2881. }
  2882. if (!ld_moved) {
  2883. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2884. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2885. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2886. return -1;
  2887. } else
  2888. sd->nr_balance_failed = 0;
  2889. return ld_moved;
  2890. out_balanced:
  2891. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2892. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2893. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2894. return -1;
  2895. sd->nr_balance_failed = 0;
  2896. return 0;
  2897. }
  2898. /*
  2899. * idle_balance is called by schedule() if this_cpu is about to become
  2900. * idle. Attempts to pull tasks from other CPUs.
  2901. */
  2902. static void idle_balance(int this_cpu, struct rq *this_rq)
  2903. {
  2904. struct sched_domain *sd;
  2905. int pulled_task = -1;
  2906. unsigned long next_balance = jiffies + HZ;
  2907. cpumask_t tmpmask;
  2908. for_each_domain(this_cpu, sd) {
  2909. unsigned long interval;
  2910. if (!(sd->flags & SD_LOAD_BALANCE))
  2911. continue;
  2912. if (sd->flags & SD_BALANCE_NEWIDLE)
  2913. /* If we've pulled tasks over stop searching: */
  2914. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2915. sd, &tmpmask);
  2916. interval = msecs_to_jiffies(sd->balance_interval);
  2917. if (time_after(next_balance, sd->last_balance + interval))
  2918. next_balance = sd->last_balance + interval;
  2919. if (pulled_task)
  2920. break;
  2921. }
  2922. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2923. /*
  2924. * We are going idle. next_balance may be set based on
  2925. * a busy processor. So reset next_balance.
  2926. */
  2927. this_rq->next_balance = next_balance;
  2928. }
  2929. }
  2930. /*
  2931. * active_load_balance is run by migration threads. It pushes running tasks
  2932. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2933. * running on each physical CPU where possible, and avoids physical /
  2934. * logical imbalances.
  2935. *
  2936. * Called with busiest_rq locked.
  2937. */
  2938. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2939. {
  2940. int target_cpu = busiest_rq->push_cpu;
  2941. struct sched_domain *sd;
  2942. struct rq *target_rq;
  2943. /* Is there any task to move? */
  2944. if (busiest_rq->nr_running <= 1)
  2945. return;
  2946. target_rq = cpu_rq(target_cpu);
  2947. /*
  2948. * This condition is "impossible", if it occurs
  2949. * we need to fix it. Originally reported by
  2950. * Bjorn Helgaas on a 128-cpu setup.
  2951. */
  2952. BUG_ON(busiest_rq == target_rq);
  2953. /* move a task from busiest_rq to target_rq */
  2954. double_lock_balance(busiest_rq, target_rq);
  2955. update_rq_clock(busiest_rq);
  2956. update_rq_clock(target_rq);
  2957. /* Search for an sd spanning us and the target CPU. */
  2958. for_each_domain(target_cpu, sd) {
  2959. if ((sd->flags & SD_LOAD_BALANCE) &&
  2960. cpu_isset(busiest_cpu, sd->span))
  2961. break;
  2962. }
  2963. if (likely(sd)) {
  2964. schedstat_inc(sd, alb_count);
  2965. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2966. sd, CPU_IDLE))
  2967. schedstat_inc(sd, alb_pushed);
  2968. else
  2969. schedstat_inc(sd, alb_failed);
  2970. }
  2971. spin_unlock(&target_rq->lock);
  2972. }
  2973. #ifdef CONFIG_NO_HZ
  2974. static struct {
  2975. atomic_t load_balancer;
  2976. cpumask_t cpu_mask;
  2977. } nohz ____cacheline_aligned = {
  2978. .load_balancer = ATOMIC_INIT(-1),
  2979. .cpu_mask = CPU_MASK_NONE,
  2980. };
  2981. /*
  2982. * This routine will try to nominate the ilb (idle load balancing)
  2983. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2984. * load balancing on behalf of all those cpus. If all the cpus in the system
  2985. * go into this tickless mode, then there will be no ilb owner (as there is
  2986. * no need for one) and all the cpus will sleep till the next wakeup event
  2987. * arrives...
  2988. *
  2989. * For the ilb owner, tick is not stopped. And this tick will be used
  2990. * for idle load balancing. ilb owner will still be part of
  2991. * nohz.cpu_mask..
  2992. *
  2993. * While stopping the tick, this cpu will become the ilb owner if there
  2994. * is no other owner. And will be the owner till that cpu becomes busy
  2995. * or if all cpus in the system stop their ticks at which point
  2996. * there is no need for ilb owner.
  2997. *
  2998. * When the ilb owner becomes busy, it nominates another owner, during the
  2999. * next busy scheduler_tick()
  3000. */
  3001. int select_nohz_load_balancer(int stop_tick)
  3002. {
  3003. int cpu = smp_processor_id();
  3004. if (stop_tick) {
  3005. cpu_set(cpu, nohz.cpu_mask);
  3006. cpu_rq(cpu)->in_nohz_recently = 1;
  3007. /*
  3008. * If we are going offline and still the leader, give up!
  3009. */
  3010. if (cpu_is_offline(cpu) &&
  3011. atomic_read(&nohz.load_balancer) == cpu) {
  3012. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3013. BUG();
  3014. return 0;
  3015. }
  3016. /* time for ilb owner also to sleep */
  3017. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3018. if (atomic_read(&nohz.load_balancer) == cpu)
  3019. atomic_set(&nohz.load_balancer, -1);
  3020. return 0;
  3021. }
  3022. if (atomic_read(&nohz.load_balancer) == -1) {
  3023. /* make me the ilb owner */
  3024. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3025. return 1;
  3026. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3027. return 1;
  3028. } else {
  3029. if (!cpu_isset(cpu, nohz.cpu_mask))
  3030. return 0;
  3031. cpu_clear(cpu, nohz.cpu_mask);
  3032. if (atomic_read(&nohz.load_balancer) == cpu)
  3033. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3034. BUG();
  3035. }
  3036. return 0;
  3037. }
  3038. #endif
  3039. static DEFINE_SPINLOCK(balancing);
  3040. /*
  3041. * It checks each scheduling domain to see if it is due to be balanced,
  3042. * and initiates a balancing operation if so.
  3043. *
  3044. * Balancing parameters are set up in arch_init_sched_domains.
  3045. */
  3046. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3047. {
  3048. int balance = 1;
  3049. struct rq *rq = cpu_rq(cpu);
  3050. unsigned long interval;
  3051. struct sched_domain *sd;
  3052. /* Earliest time when we have to do rebalance again */
  3053. unsigned long next_balance = jiffies + 60*HZ;
  3054. int update_next_balance = 0;
  3055. cpumask_t tmp;
  3056. for_each_domain(cpu, sd) {
  3057. if (!(sd->flags & SD_LOAD_BALANCE))
  3058. continue;
  3059. interval = sd->balance_interval;
  3060. if (idle != CPU_IDLE)
  3061. interval *= sd->busy_factor;
  3062. /* scale ms to jiffies */
  3063. interval = msecs_to_jiffies(interval);
  3064. if (unlikely(!interval))
  3065. interval = 1;
  3066. if (interval > HZ*NR_CPUS/10)
  3067. interval = HZ*NR_CPUS/10;
  3068. if (sd->flags & SD_SERIALIZE) {
  3069. if (!spin_trylock(&balancing))
  3070. goto out;
  3071. }
  3072. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3073. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3074. /*
  3075. * We've pulled tasks over so either we're no
  3076. * longer idle, or one of our SMT siblings is
  3077. * not idle.
  3078. */
  3079. idle = CPU_NOT_IDLE;
  3080. }
  3081. sd->last_balance = jiffies;
  3082. }
  3083. if (sd->flags & SD_SERIALIZE)
  3084. spin_unlock(&balancing);
  3085. out:
  3086. if (time_after(next_balance, sd->last_balance + interval)) {
  3087. next_balance = sd->last_balance + interval;
  3088. update_next_balance = 1;
  3089. }
  3090. /*
  3091. * Stop the load balance at this level. There is another
  3092. * CPU in our sched group which is doing load balancing more
  3093. * actively.
  3094. */
  3095. if (!balance)
  3096. break;
  3097. }
  3098. /*
  3099. * next_balance will be updated only when there is a need.
  3100. * When the cpu is attached to null domain for ex, it will not be
  3101. * updated.
  3102. */
  3103. if (likely(update_next_balance))
  3104. rq->next_balance = next_balance;
  3105. }
  3106. /*
  3107. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3108. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3109. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3110. */
  3111. static void run_rebalance_domains(struct softirq_action *h)
  3112. {
  3113. int this_cpu = smp_processor_id();
  3114. struct rq *this_rq = cpu_rq(this_cpu);
  3115. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3116. CPU_IDLE : CPU_NOT_IDLE;
  3117. rebalance_domains(this_cpu, idle);
  3118. #ifdef CONFIG_NO_HZ
  3119. /*
  3120. * If this cpu is the owner for idle load balancing, then do the
  3121. * balancing on behalf of the other idle cpus whose ticks are
  3122. * stopped.
  3123. */
  3124. if (this_rq->idle_at_tick &&
  3125. atomic_read(&nohz.load_balancer) == this_cpu) {
  3126. cpumask_t cpus = nohz.cpu_mask;
  3127. struct rq *rq;
  3128. int balance_cpu;
  3129. cpu_clear(this_cpu, cpus);
  3130. for_each_cpu_mask(balance_cpu, cpus) {
  3131. /*
  3132. * If this cpu gets work to do, stop the load balancing
  3133. * work being done for other cpus. Next load
  3134. * balancing owner will pick it up.
  3135. */
  3136. if (need_resched())
  3137. break;
  3138. rebalance_domains(balance_cpu, CPU_IDLE);
  3139. rq = cpu_rq(balance_cpu);
  3140. if (time_after(this_rq->next_balance, rq->next_balance))
  3141. this_rq->next_balance = rq->next_balance;
  3142. }
  3143. }
  3144. #endif
  3145. }
  3146. /*
  3147. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3148. *
  3149. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3150. * idle load balancing owner or decide to stop the periodic load balancing,
  3151. * if the whole system is idle.
  3152. */
  3153. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3154. {
  3155. #ifdef CONFIG_NO_HZ
  3156. /*
  3157. * If we were in the nohz mode recently and busy at the current
  3158. * scheduler tick, then check if we need to nominate new idle
  3159. * load balancer.
  3160. */
  3161. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3162. rq->in_nohz_recently = 0;
  3163. if (atomic_read(&nohz.load_balancer) == cpu) {
  3164. cpu_clear(cpu, nohz.cpu_mask);
  3165. atomic_set(&nohz.load_balancer, -1);
  3166. }
  3167. if (atomic_read(&nohz.load_balancer) == -1) {
  3168. /*
  3169. * simple selection for now: Nominate the
  3170. * first cpu in the nohz list to be the next
  3171. * ilb owner.
  3172. *
  3173. * TBD: Traverse the sched domains and nominate
  3174. * the nearest cpu in the nohz.cpu_mask.
  3175. */
  3176. int ilb = first_cpu(nohz.cpu_mask);
  3177. if (ilb < nr_cpu_ids)
  3178. resched_cpu(ilb);
  3179. }
  3180. }
  3181. /*
  3182. * If this cpu is idle and doing idle load balancing for all the
  3183. * cpus with ticks stopped, is it time for that to stop?
  3184. */
  3185. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3186. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3187. resched_cpu(cpu);
  3188. return;
  3189. }
  3190. /*
  3191. * If this cpu is idle and the idle load balancing is done by
  3192. * someone else, then no need raise the SCHED_SOFTIRQ
  3193. */
  3194. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3195. cpu_isset(cpu, nohz.cpu_mask))
  3196. return;
  3197. #endif
  3198. if (time_after_eq(jiffies, rq->next_balance))
  3199. raise_softirq(SCHED_SOFTIRQ);
  3200. }
  3201. #else /* CONFIG_SMP */
  3202. /*
  3203. * on UP we do not need to balance between CPUs:
  3204. */
  3205. static inline void idle_balance(int cpu, struct rq *rq)
  3206. {
  3207. }
  3208. #endif
  3209. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3210. EXPORT_PER_CPU_SYMBOL(kstat);
  3211. /*
  3212. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3213. * that have not yet been banked in case the task is currently running.
  3214. */
  3215. unsigned long long task_sched_runtime(struct task_struct *p)
  3216. {
  3217. unsigned long flags;
  3218. u64 ns, delta_exec;
  3219. struct rq *rq;
  3220. rq = task_rq_lock(p, &flags);
  3221. ns = p->se.sum_exec_runtime;
  3222. if (task_current(rq, p)) {
  3223. update_rq_clock(rq);
  3224. delta_exec = rq->clock - p->se.exec_start;
  3225. if ((s64)delta_exec > 0)
  3226. ns += delta_exec;
  3227. }
  3228. task_rq_unlock(rq, &flags);
  3229. return ns;
  3230. }
  3231. /*
  3232. * Account user cpu time to a process.
  3233. * @p: the process that the cpu time gets accounted to
  3234. * @cputime: the cpu time spent in user space since the last update
  3235. */
  3236. void account_user_time(struct task_struct *p, cputime_t cputime)
  3237. {
  3238. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3239. cputime64_t tmp;
  3240. p->utime = cputime_add(p->utime, cputime);
  3241. /* Add user time to cpustat. */
  3242. tmp = cputime_to_cputime64(cputime);
  3243. if (TASK_NICE(p) > 0)
  3244. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3245. else
  3246. cpustat->user = cputime64_add(cpustat->user, tmp);
  3247. }
  3248. /*
  3249. * Account guest cpu time to a process.
  3250. * @p: the process that the cpu time gets accounted to
  3251. * @cputime: the cpu time spent in virtual machine since the last update
  3252. */
  3253. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3254. {
  3255. cputime64_t tmp;
  3256. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3257. tmp = cputime_to_cputime64(cputime);
  3258. p->utime = cputime_add(p->utime, cputime);
  3259. p->gtime = cputime_add(p->gtime, cputime);
  3260. cpustat->user = cputime64_add(cpustat->user, tmp);
  3261. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3262. }
  3263. /*
  3264. * Account scaled user cpu time to a process.
  3265. * @p: the process that the cpu time gets accounted to
  3266. * @cputime: the cpu time spent in user space since the last update
  3267. */
  3268. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3269. {
  3270. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3271. }
  3272. /*
  3273. * Account system cpu time to a process.
  3274. * @p: the process that the cpu time gets accounted to
  3275. * @hardirq_offset: the offset to subtract from hardirq_count()
  3276. * @cputime: the cpu time spent in kernel space since the last update
  3277. */
  3278. void account_system_time(struct task_struct *p, int hardirq_offset,
  3279. cputime_t cputime)
  3280. {
  3281. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3282. struct rq *rq = this_rq();
  3283. cputime64_t tmp;
  3284. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3285. return account_guest_time(p, cputime);
  3286. p->stime = cputime_add(p->stime, cputime);
  3287. /* Add system time to cpustat. */
  3288. tmp = cputime_to_cputime64(cputime);
  3289. if (hardirq_count() - hardirq_offset)
  3290. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3291. else if (softirq_count())
  3292. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3293. else if (p != rq->idle)
  3294. cpustat->system = cputime64_add(cpustat->system, tmp);
  3295. else if (atomic_read(&rq->nr_iowait) > 0)
  3296. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3297. else
  3298. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3299. /* Account for system time used */
  3300. acct_update_integrals(p);
  3301. }
  3302. /*
  3303. * Account scaled system cpu time to a process.
  3304. * @p: the process that the cpu time gets accounted to
  3305. * @hardirq_offset: the offset to subtract from hardirq_count()
  3306. * @cputime: the cpu time spent in kernel space since the last update
  3307. */
  3308. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3309. {
  3310. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3311. }
  3312. /*
  3313. * Account for involuntary wait time.
  3314. * @p: the process from which the cpu time has been stolen
  3315. * @steal: the cpu time spent in involuntary wait
  3316. */
  3317. void account_steal_time(struct task_struct *p, cputime_t steal)
  3318. {
  3319. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3320. cputime64_t tmp = cputime_to_cputime64(steal);
  3321. struct rq *rq = this_rq();
  3322. if (p == rq->idle) {
  3323. p->stime = cputime_add(p->stime, steal);
  3324. if (atomic_read(&rq->nr_iowait) > 0)
  3325. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3326. else
  3327. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3328. } else
  3329. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3330. }
  3331. /*
  3332. * This function gets called by the timer code, with HZ frequency.
  3333. * We call it with interrupts disabled.
  3334. *
  3335. * It also gets called by the fork code, when changing the parent's
  3336. * timeslices.
  3337. */
  3338. void scheduler_tick(void)
  3339. {
  3340. int cpu = smp_processor_id();
  3341. struct rq *rq = cpu_rq(cpu);
  3342. struct task_struct *curr = rq->curr;
  3343. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3344. spin_lock(&rq->lock);
  3345. __update_rq_clock(rq);
  3346. /*
  3347. * Let rq->clock advance by at least TICK_NSEC:
  3348. */
  3349. if (unlikely(rq->clock < next_tick)) {
  3350. rq->clock = next_tick;
  3351. rq->clock_underflows++;
  3352. }
  3353. rq->tick_timestamp = rq->clock;
  3354. update_last_tick_seen(rq);
  3355. update_cpu_load(rq);
  3356. curr->sched_class->task_tick(rq, curr, 0);
  3357. spin_unlock(&rq->lock);
  3358. #ifdef CONFIG_SMP
  3359. rq->idle_at_tick = idle_cpu(cpu);
  3360. trigger_load_balance(rq, cpu);
  3361. #endif
  3362. }
  3363. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3364. void __kprobes add_preempt_count(int val)
  3365. {
  3366. /*
  3367. * Underflow?
  3368. */
  3369. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3370. return;
  3371. preempt_count() += val;
  3372. /*
  3373. * Spinlock count overflowing soon?
  3374. */
  3375. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3376. PREEMPT_MASK - 10);
  3377. }
  3378. EXPORT_SYMBOL(add_preempt_count);
  3379. void __kprobes sub_preempt_count(int val)
  3380. {
  3381. /*
  3382. * Underflow?
  3383. */
  3384. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3385. return;
  3386. /*
  3387. * Is the spinlock portion underflowing?
  3388. */
  3389. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3390. !(preempt_count() & PREEMPT_MASK)))
  3391. return;
  3392. preempt_count() -= val;
  3393. }
  3394. EXPORT_SYMBOL(sub_preempt_count);
  3395. #endif
  3396. /*
  3397. * Print scheduling while atomic bug:
  3398. */
  3399. static noinline void __schedule_bug(struct task_struct *prev)
  3400. {
  3401. struct pt_regs *regs = get_irq_regs();
  3402. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3403. prev->comm, prev->pid, preempt_count());
  3404. debug_show_held_locks(prev);
  3405. if (irqs_disabled())
  3406. print_irqtrace_events(prev);
  3407. if (regs)
  3408. show_regs(regs);
  3409. else
  3410. dump_stack();
  3411. }
  3412. /*
  3413. * Various schedule()-time debugging checks and statistics:
  3414. */
  3415. static inline void schedule_debug(struct task_struct *prev)
  3416. {
  3417. /*
  3418. * Test if we are atomic. Since do_exit() needs to call into
  3419. * schedule() atomically, we ignore that path for now.
  3420. * Otherwise, whine if we are scheduling when we should not be.
  3421. */
  3422. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3423. __schedule_bug(prev);
  3424. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3425. schedstat_inc(this_rq(), sched_count);
  3426. #ifdef CONFIG_SCHEDSTATS
  3427. if (unlikely(prev->lock_depth >= 0)) {
  3428. schedstat_inc(this_rq(), bkl_count);
  3429. schedstat_inc(prev, sched_info.bkl_count);
  3430. }
  3431. #endif
  3432. }
  3433. /*
  3434. * Pick up the highest-prio task:
  3435. */
  3436. static inline struct task_struct *
  3437. pick_next_task(struct rq *rq, struct task_struct *prev)
  3438. {
  3439. const struct sched_class *class;
  3440. struct task_struct *p;
  3441. /*
  3442. * Optimization: we know that if all tasks are in
  3443. * the fair class we can call that function directly:
  3444. */
  3445. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3446. p = fair_sched_class.pick_next_task(rq);
  3447. if (likely(p))
  3448. return p;
  3449. }
  3450. class = sched_class_highest;
  3451. for ( ; ; ) {
  3452. p = class->pick_next_task(rq);
  3453. if (p)
  3454. return p;
  3455. /*
  3456. * Will never be NULL as the idle class always
  3457. * returns a non-NULL p:
  3458. */
  3459. class = class->next;
  3460. }
  3461. }
  3462. /*
  3463. * schedule() is the main scheduler function.
  3464. */
  3465. asmlinkage void __sched schedule(void)
  3466. {
  3467. struct task_struct *prev, *next;
  3468. unsigned long *switch_count;
  3469. struct rq *rq;
  3470. int cpu;
  3471. need_resched:
  3472. preempt_disable();
  3473. cpu = smp_processor_id();
  3474. rq = cpu_rq(cpu);
  3475. rcu_qsctr_inc(cpu);
  3476. prev = rq->curr;
  3477. switch_count = &prev->nivcsw;
  3478. release_kernel_lock(prev);
  3479. need_resched_nonpreemptible:
  3480. schedule_debug(prev);
  3481. hrtick_clear(rq);
  3482. /*
  3483. * Do the rq-clock update outside the rq lock:
  3484. */
  3485. local_irq_disable();
  3486. __update_rq_clock(rq);
  3487. spin_lock(&rq->lock);
  3488. clear_tsk_need_resched(prev);
  3489. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3490. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3491. signal_pending(prev))) {
  3492. prev->state = TASK_RUNNING;
  3493. } else {
  3494. deactivate_task(rq, prev, 1);
  3495. }
  3496. switch_count = &prev->nvcsw;
  3497. }
  3498. #ifdef CONFIG_SMP
  3499. if (prev->sched_class->pre_schedule)
  3500. prev->sched_class->pre_schedule(rq, prev);
  3501. #endif
  3502. if (unlikely(!rq->nr_running))
  3503. idle_balance(cpu, rq);
  3504. prev->sched_class->put_prev_task(rq, prev);
  3505. next = pick_next_task(rq, prev);
  3506. sched_info_switch(prev, next);
  3507. if (likely(prev != next)) {
  3508. rq->nr_switches++;
  3509. rq->curr = next;
  3510. ++*switch_count;
  3511. context_switch(rq, prev, next); /* unlocks the rq */
  3512. /*
  3513. * the context switch might have flipped the stack from under
  3514. * us, hence refresh the local variables.
  3515. */
  3516. cpu = smp_processor_id();
  3517. rq = cpu_rq(cpu);
  3518. } else
  3519. spin_unlock_irq(&rq->lock);
  3520. hrtick_set(rq);
  3521. if (unlikely(reacquire_kernel_lock(current) < 0))
  3522. goto need_resched_nonpreemptible;
  3523. preempt_enable_no_resched();
  3524. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3525. goto need_resched;
  3526. }
  3527. EXPORT_SYMBOL(schedule);
  3528. #ifdef CONFIG_PREEMPT
  3529. /*
  3530. * this is the entry point to schedule() from in-kernel preemption
  3531. * off of preempt_enable. Kernel preemptions off return from interrupt
  3532. * occur there and call schedule directly.
  3533. */
  3534. asmlinkage void __sched preempt_schedule(void)
  3535. {
  3536. struct thread_info *ti = current_thread_info();
  3537. struct task_struct *task = current;
  3538. int saved_lock_depth;
  3539. /*
  3540. * If there is a non-zero preempt_count or interrupts are disabled,
  3541. * we do not want to preempt the current task. Just return..
  3542. */
  3543. if (likely(ti->preempt_count || irqs_disabled()))
  3544. return;
  3545. do {
  3546. add_preempt_count(PREEMPT_ACTIVE);
  3547. /*
  3548. * We keep the big kernel semaphore locked, but we
  3549. * clear ->lock_depth so that schedule() doesnt
  3550. * auto-release the semaphore:
  3551. */
  3552. saved_lock_depth = task->lock_depth;
  3553. task->lock_depth = -1;
  3554. schedule();
  3555. task->lock_depth = saved_lock_depth;
  3556. sub_preempt_count(PREEMPT_ACTIVE);
  3557. /*
  3558. * Check again in case we missed a preemption opportunity
  3559. * between schedule and now.
  3560. */
  3561. barrier();
  3562. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3563. }
  3564. EXPORT_SYMBOL(preempt_schedule);
  3565. /*
  3566. * this is the entry point to schedule() from kernel preemption
  3567. * off of irq context.
  3568. * Note, that this is called and return with irqs disabled. This will
  3569. * protect us against recursive calling from irq.
  3570. */
  3571. asmlinkage void __sched preempt_schedule_irq(void)
  3572. {
  3573. struct thread_info *ti = current_thread_info();
  3574. struct task_struct *task = current;
  3575. int saved_lock_depth;
  3576. /* Catch callers which need to be fixed */
  3577. BUG_ON(ti->preempt_count || !irqs_disabled());
  3578. do {
  3579. add_preempt_count(PREEMPT_ACTIVE);
  3580. /*
  3581. * We keep the big kernel semaphore locked, but we
  3582. * clear ->lock_depth so that schedule() doesnt
  3583. * auto-release the semaphore:
  3584. */
  3585. saved_lock_depth = task->lock_depth;
  3586. task->lock_depth = -1;
  3587. local_irq_enable();
  3588. schedule();
  3589. local_irq_disable();
  3590. task->lock_depth = saved_lock_depth;
  3591. sub_preempt_count(PREEMPT_ACTIVE);
  3592. /*
  3593. * Check again in case we missed a preemption opportunity
  3594. * between schedule and now.
  3595. */
  3596. barrier();
  3597. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3598. }
  3599. #endif /* CONFIG_PREEMPT */
  3600. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3601. void *key)
  3602. {
  3603. return try_to_wake_up(curr->private, mode, sync);
  3604. }
  3605. EXPORT_SYMBOL(default_wake_function);
  3606. /*
  3607. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3608. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3609. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3610. *
  3611. * There are circumstances in which we can try to wake a task which has already
  3612. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3613. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3614. */
  3615. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3616. int nr_exclusive, int sync, void *key)
  3617. {
  3618. wait_queue_t *curr, *next;
  3619. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3620. unsigned flags = curr->flags;
  3621. if (curr->func(curr, mode, sync, key) &&
  3622. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3623. break;
  3624. }
  3625. }
  3626. /**
  3627. * __wake_up - wake up threads blocked on a waitqueue.
  3628. * @q: the waitqueue
  3629. * @mode: which threads
  3630. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3631. * @key: is directly passed to the wakeup function
  3632. */
  3633. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3634. int nr_exclusive, void *key)
  3635. {
  3636. unsigned long flags;
  3637. spin_lock_irqsave(&q->lock, flags);
  3638. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3639. spin_unlock_irqrestore(&q->lock, flags);
  3640. }
  3641. EXPORT_SYMBOL(__wake_up);
  3642. /*
  3643. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3644. */
  3645. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3646. {
  3647. __wake_up_common(q, mode, 1, 0, NULL);
  3648. }
  3649. /**
  3650. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3651. * @q: the waitqueue
  3652. * @mode: which threads
  3653. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3654. *
  3655. * The sync wakeup differs that the waker knows that it will schedule
  3656. * away soon, so while the target thread will be woken up, it will not
  3657. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3658. * with each other. This can prevent needless bouncing between CPUs.
  3659. *
  3660. * On UP it can prevent extra preemption.
  3661. */
  3662. void
  3663. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3664. {
  3665. unsigned long flags;
  3666. int sync = 1;
  3667. if (unlikely(!q))
  3668. return;
  3669. if (unlikely(!nr_exclusive))
  3670. sync = 0;
  3671. spin_lock_irqsave(&q->lock, flags);
  3672. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3673. spin_unlock_irqrestore(&q->lock, flags);
  3674. }
  3675. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3676. void complete(struct completion *x)
  3677. {
  3678. unsigned long flags;
  3679. spin_lock_irqsave(&x->wait.lock, flags);
  3680. x->done++;
  3681. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3682. spin_unlock_irqrestore(&x->wait.lock, flags);
  3683. }
  3684. EXPORT_SYMBOL(complete);
  3685. void complete_all(struct completion *x)
  3686. {
  3687. unsigned long flags;
  3688. spin_lock_irqsave(&x->wait.lock, flags);
  3689. x->done += UINT_MAX/2;
  3690. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3691. spin_unlock_irqrestore(&x->wait.lock, flags);
  3692. }
  3693. EXPORT_SYMBOL(complete_all);
  3694. static inline long __sched
  3695. do_wait_for_common(struct completion *x, long timeout, int state)
  3696. {
  3697. if (!x->done) {
  3698. DECLARE_WAITQUEUE(wait, current);
  3699. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3700. __add_wait_queue_tail(&x->wait, &wait);
  3701. do {
  3702. if ((state == TASK_INTERRUPTIBLE &&
  3703. signal_pending(current)) ||
  3704. (state == TASK_KILLABLE &&
  3705. fatal_signal_pending(current))) {
  3706. __remove_wait_queue(&x->wait, &wait);
  3707. return -ERESTARTSYS;
  3708. }
  3709. __set_current_state(state);
  3710. spin_unlock_irq(&x->wait.lock);
  3711. timeout = schedule_timeout(timeout);
  3712. spin_lock_irq(&x->wait.lock);
  3713. if (!timeout) {
  3714. __remove_wait_queue(&x->wait, &wait);
  3715. return timeout;
  3716. }
  3717. } while (!x->done);
  3718. __remove_wait_queue(&x->wait, &wait);
  3719. }
  3720. x->done--;
  3721. return timeout;
  3722. }
  3723. static long __sched
  3724. wait_for_common(struct completion *x, long timeout, int state)
  3725. {
  3726. might_sleep();
  3727. spin_lock_irq(&x->wait.lock);
  3728. timeout = do_wait_for_common(x, timeout, state);
  3729. spin_unlock_irq(&x->wait.lock);
  3730. return timeout;
  3731. }
  3732. void __sched wait_for_completion(struct completion *x)
  3733. {
  3734. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3735. }
  3736. EXPORT_SYMBOL(wait_for_completion);
  3737. unsigned long __sched
  3738. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3739. {
  3740. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3741. }
  3742. EXPORT_SYMBOL(wait_for_completion_timeout);
  3743. int __sched wait_for_completion_interruptible(struct completion *x)
  3744. {
  3745. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3746. if (t == -ERESTARTSYS)
  3747. return t;
  3748. return 0;
  3749. }
  3750. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3751. unsigned long __sched
  3752. wait_for_completion_interruptible_timeout(struct completion *x,
  3753. unsigned long timeout)
  3754. {
  3755. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3756. }
  3757. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3758. int __sched wait_for_completion_killable(struct completion *x)
  3759. {
  3760. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3761. if (t == -ERESTARTSYS)
  3762. return t;
  3763. return 0;
  3764. }
  3765. EXPORT_SYMBOL(wait_for_completion_killable);
  3766. static long __sched
  3767. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3768. {
  3769. unsigned long flags;
  3770. wait_queue_t wait;
  3771. init_waitqueue_entry(&wait, current);
  3772. __set_current_state(state);
  3773. spin_lock_irqsave(&q->lock, flags);
  3774. __add_wait_queue(q, &wait);
  3775. spin_unlock(&q->lock);
  3776. timeout = schedule_timeout(timeout);
  3777. spin_lock_irq(&q->lock);
  3778. __remove_wait_queue(q, &wait);
  3779. spin_unlock_irqrestore(&q->lock, flags);
  3780. return timeout;
  3781. }
  3782. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3783. {
  3784. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3785. }
  3786. EXPORT_SYMBOL(interruptible_sleep_on);
  3787. long __sched
  3788. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3789. {
  3790. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3791. }
  3792. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3793. void __sched sleep_on(wait_queue_head_t *q)
  3794. {
  3795. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3796. }
  3797. EXPORT_SYMBOL(sleep_on);
  3798. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3799. {
  3800. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3801. }
  3802. EXPORT_SYMBOL(sleep_on_timeout);
  3803. #ifdef CONFIG_RT_MUTEXES
  3804. /*
  3805. * rt_mutex_setprio - set the current priority of a task
  3806. * @p: task
  3807. * @prio: prio value (kernel-internal form)
  3808. *
  3809. * This function changes the 'effective' priority of a task. It does
  3810. * not touch ->normal_prio like __setscheduler().
  3811. *
  3812. * Used by the rt_mutex code to implement priority inheritance logic.
  3813. */
  3814. void rt_mutex_setprio(struct task_struct *p, int prio)
  3815. {
  3816. unsigned long flags;
  3817. int oldprio, on_rq, running;
  3818. struct rq *rq;
  3819. const struct sched_class *prev_class = p->sched_class;
  3820. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3821. rq = task_rq_lock(p, &flags);
  3822. update_rq_clock(rq);
  3823. oldprio = p->prio;
  3824. on_rq = p->se.on_rq;
  3825. running = task_current(rq, p);
  3826. if (on_rq)
  3827. dequeue_task(rq, p, 0);
  3828. if (running)
  3829. p->sched_class->put_prev_task(rq, p);
  3830. if (rt_prio(prio))
  3831. p->sched_class = &rt_sched_class;
  3832. else
  3833. p->sched_class = &fair_sched_class;
  3834. p->prio = prio;
  3835. if (running)
  3836. p->sched_class->set_curr_task(rq);
  3837. if (on_rq) {
  3838. enqueue_task(rq, p, 0);
  3839. check_class_changed(rq, p, prev_class, oldprio, running);
  3840. }
  3841. task_rq_unlock(rq, &flags);
  3842. }
  3843. #endif
  3844. void set_user_nice(struct task_struct *p, long nice)
  3845. {
  3846. int old_prio, delta, on_rq;
  3847. unsigned long flags;
  3848. struct rq *rq;
  3849. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3850. return;
  3851. /*
  3852. * We have to be careful, if called from sys_setpriority(),
  3853. * the task might be in the middle of scheduling on another CPU.
  3854. */
  3855. rq = task_rq_lock(p, &flags);
  3856. update_rq_clock(rq);
  3857. /*
  3858. * The RT priorities are set via sched_setscheduler(), but we still
  3859. * allow the 'normal' nice value to be set - but as expected
  3860. * it wont have any effect on scheduling until the task is
  3861. * SCHED_FIFO/SCHED_RR:
  3862. */
  3863. if (task_has_rt_policy(p)) {
  3864. p->static_prio = NICE_TO_PRIO(nice);
  3865. goto out_unlock;
  3866. }
  3867. on_rq = p->se.on_rq;
  3868. if (on_rq) {
  3869. dequeue_task(rq, p, 0);
  3870. dec_load(rq, p);
  3871. }
  3872. p->static_prio = NICE_TO_PRIO(nice);
  3873. set_load_weight(p);
  3874. old_prio = p->prio;
  3875. p->prio = effective_prio(p);
  3876. delta = p->prio - old_prio;
  3877. if (on_rq) {
  3878. enqueue_task(rq, p, 0);
  3879. inc_load(rq, p);
  3880. /*
  3881. * If the task increased its priority or is running and
  3882. * lowered its priority, then reschedule its CPU:
  3883. */
  3884. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3885. resched_task(rq->curr);
  3886. }
  3887. out_unlock:
  3888. task_rq_unlock(rq, &flags);
  3889. }
  3890. EXPORT_SYMBOL(set_user_nice);
  3891. /*
  3892. * can_nice - check if a task can reduce its nice value
  3893. * @p: task
  3894. * @nice: nice value
  3895. */
  3896. int can_nice(const struct task_struct *p, const int nice)
  3897. {
  3898. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3899. int nice_rlim = 20 - nice;
  3900. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3901. capable(CAP_SYS_NICE));
  3902. }
  3903. #ifdef __ARCH_WANT_SYS_NICE
  3904. /*
  3905. * sys_nice - change the priority of the current process.
  3906. * @increment: priority increment
  3907. *
  3908. * sys_setpriority is a more generic, but much slower function that
  3909. * does similar things.
  3910. */
  3911. asmlinkage long sys_nice(int increment)
  3912. {
  3913. long nice, retval;
  3914. /*
  3915. * Setpriority might change our priority at the same moment.
  3916. * We don't have to worry. Conceptually one call occurs first
  3917. * and we have a single winner.
  3918. */
  3919. if (increment < -40)
  3920. increment = -40;
  3921. if (increment > 40)
  3922. increment = 40;
  3923. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3924. if (nice < -20)
  3925. nice = -20;
  3926. if (nice > 19)
  3927. nice = 19;
  3928. if (increment < 0 && !can_nice(current, nice))
  3929. return -EPERM;
  3930. retval = security_task_setnice(current, nice);
  3931. if (retval)
  3932. return retval;
  3933. set_user_nice(current, nice);
  3934. return 0;
  3935. }
  3936. #endif
  3937. /**
  3938. * task_prio - return the priority value of a given task.
  3939. * @p: the task in question.
  3940. *
  3941. * This is the priority value as seen by users in /proc.
  3942. * RT tasks are offset by -200. Normal tasks are centered
  3943. * around 0, value goes from -16 to +15.
  3944. */
  3945. int task_prio(const struct task_struct *p)
  3946. {
  3947. return p->prio - MAX_RT_PRIO;
  3948. }
  3949. /**
  3950. * task_nice - return the nice value of a given task.
  3951. * @p: the task in question.
  3952. */
  3953. int task_nice(const struct task_struct *p)
  3954. {
  3955. return TASK_NICE(p);
  3956. }
  3957. EXPORT_SYMBOL(task_nice);
  3958. /**
  3959. * idle_cpu - is a given cpu idle currently?
  3960. * @cpu: the processor in question.
  3961. */
  3962. int idle_cpu(int cpu)
  3963. {
  3964. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3965. }
  3966. /**
  3967. * idle_task - return the idle task for a given cpu.
  3968. * @cpu: the processor in question.
  3969. */
  3970. struct task_struct *idle_task(int cpu)
  3971. {
  3972. return cpu_rq(cpu)->idle;
  3973. }
  3974. /**
  3975. * find_process_by_pid - find a process with a matching PID value.
  3976. * @pid: the pid in question.
  3977. */
  3978. static struct task_struct *find_process_by_pid(pid_t pid)
  3979. {
  3980. return pid ? find_task_by_vpid(pid) : current;
  3981. }
  3982. /* Actually do priority change: must hold rq lock. */
  3983. static void
  3984. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3985. {
  3986. BUG_ON(p->se.on_rq);
  3987. p->policy = policy;
  3988. switch (p->policy) {
  3989. case SCHED_NORMAL:
  3990. case SCHED_BATCH:
  3991. case SCHED_IDLE:
  3992. p->sched_class = &fair_sched_class;
  3993. break;
  3994. case SCHED_FIFO:
  3995. case SCHED_RR:
  3996. p->sched_class = &rt_sched_class;
  3997. break;
  3998. }
  3999. p->rt_priority = prio;
  4000. p->normal_prio = normal_prio(p);
  4001. /* we are holding p->pi_lock already */
  4002. p->prio = rt_mutex_getprio(p);
  4003. set_load_weight(p);
  4004. }
  4005. /**
  4006. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4007. * @p: the task in question.
  4008. * @policy: new policy.
  4009. * @param: structure containing the new RT priority.
  4010. *
  4011. * NOTE that the task may be already dead.
  4012. */
  4013. int sched_setscheduler(struct task_struct *p, int policy,
  4014. struct sched_param *param)
  4015. {
  4016. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4017. unsigned long flags;
  4018. const struct sched_class *prev_class = p->sched_class;
  4019. struct rq *rq;
  4020. /* may grab non-irq protected spin_locks */
  4021. BUG_ON(in_interrupt());
  4022. recheck:
  4023. /* double check policy once rq lock held */
  4024. if (policy < 0)
  4025. policy = oldpolicy = p->policy;
  4026. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4027. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4028. policy != SCHED_IDLE)
  4029. return -EINVAL;
  4030. /*
  4031. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4032. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4033. * SCHED_BATCH and SCHED_IDLE is 0.
  4034. */
  4035. if (param->sched_priority < 0 ||
  4036. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4037. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4038. return -EINVAL;
  4039. if (rt_policy(policy) != (param->sched_priority != 0))
  4040. return -EINVAL;
  4041. /*
  4042. * Allow unprivileged RT tasks to decrease priority:
  4043. */
  4044. if (!capable(CAP_SYS_NICE)) {
  4045. if (rt_policy(policy)) {
  4046. unsigned long rlim_rtprio;
  4047. if (!lock_task_sighand(p, &flags))
  4048. return -ESRCH;
  4049. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4050. unlock_task_sighand(p, &flags);
  4051. /* can't set/change the rt policy */
  4052. if (policy != p->policy && !rlim_rtprio)
  4053. return -EPERM;
  4054. /* can't increase priority */
  4055. if (param->sched_priority > p->rt_priority &&
  4056. param->sched_priority > rlim_rtprio)
  4057. return -EPERM;
  4058. }
  4059. /*
  4060. * Like positive nice levels, dont allow tasks to
  4061. * move out of SCHED_IDLE either:
  4062. */
  4063. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4064. return -EPERM;
  4065. /* can't change other user's priorities */
  4066. if ((current->euid != p->euid) &&
  4067. (current->euid != p->uid))
  4068. return -EPERM;
  4069. }
  4070. #ifdef CONFIG_RT_GROUP_SCHED
  4071. /*
  4072. * Do not allow realtime tasks into groups that have no runtime
  4073. * assigned.
  4074. */
  4075. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4076. return -EPERM;
  4077. #endif
  4078. retval = security_task_setscheduler(p, policy, param);
  4079. if (retval)
  4080. return retval;
  4081. /*
  4082. * make sure no PI-waiters arrive (or leave) while we are
  4083. * changing the priority of the task:
  4084. */
  4085. spin_lock_irqsave(&p->pi_lock, flags);
  4086. /*
  4087. * To be able to change p->policy safely, the apropriate
  4088. * runqueue lock must be held.
  4089. */
  4090. rq = __task_rq_lock(p);
  4091. /* recheck policy now with rq lock held */
  4092. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4093. policy = oldpolicy = -1;
  4094. __task_rq_unlock(rq);
  4095. spin_unlock_irqrestore(&p->pi_lock, flags);
  4096. goto recheck;
  4097. }
  4098. update_rq_clock(rq);
  4099. on_rq = p->se.on_rq;
  4100. running = task_current(rq, p);
  4101. if (on_rq)
  4102. deactivate_task(rq, p, 0);
  4103. if (running)
  4104. p->sched_class->put_prev_task(rq, p);
  4105. oldprio = p->prio;
  4106. __setscheduler(rq, p, policy, param->sched_priority);
  4107. if (running)
  4108. p->sched_class->set_curr_task(rq);
  4109. if (on_rq) {
  4110. activate_task(rq, p, 0);
  4111. check_class_changed(rq, p, prev_class, oldprio, running);
  4112. }
  4113. __task_rq_unlock(rq);
  4114. spin_unlock_irqrestore(&p->pi_lock, flags);
  4115. rt_mutex_adjust_pi(p);
  4116. return 0;
  4117. }
  4118. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4119. static int
  4120. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4121. {
  4122. struct sched_param lparam;
  4123. struct task_struct *p;
  4124. int retval;
  4125. if (!param || pid < 0)
  4126. return -EINVAL;
  4127. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4128. return -EFAULT;
  4129. rcu_read_lock();
  4130. retval = -ESRCH;
  4131. p = find_process_by_pid(pid);
  4132. if (p != NULL)
  4133. retval = sched_setscheduler(p, policy, &lparam);
  4134. rcu_read_unlock();
  4135. return retval;
  4136. }
  4137. /**
  4138. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4139. * @pid: the pid in question.
  4140. * @policy: new policy.
  4141. * @param: structure containing the new RT priority.
  4142. */
  4143. asmlinkage long
  4144. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4145. {
  4146. /* negative values for policy are not valid */
  4147. if (policy < 0)
  4148. return -EINVAL;
  4149. return do_sched_setscheduler(pid, policy, param);
  4150. }
  4151. /**
  4152. * sys_sched_setparam - set/change the RT priority of a thread
  4153. * @pid: the pid in question.
  4154. * @param: structure containing the new RT priority.
  4155. */
  4156. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4157. {
  4158. return do_sched_setscheduler(pid, -1, param);
  4159. }
  4160. /**
  4161. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4162. * @pid: the pid in question.
  4163. */
  4164. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4165. {
  4166. struct task_struct *p;
  4167. int retval;
  4168. if (pid < 0)
  4169. return -EINVAL;
  4170. retval = -ESRCH;
  4171. read_lock(&tasklist_lock);
  4172. p = find_process_by_pid(pid);
  4173. if (p) {
  4174. retval = security_task_getscheduler(p);
  4175. if (!retval)
  4176. retval = p->policy;
  4177. }
  4178. read_unlock(&tasklist_lock);
  4179. return retval;
  4180. }
  4181. /**
  4182. * sys_sched_getscheduler - get the RT priority of a thread
  4183. * @pid: the pid in question.
  4184. * @param: structure containing the RT priority.
  4185. */
  4186. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4187. {
  4188. struct sched_param lp;
  4189. struct task_struct *p;
  4190. int retval;
  4191. if (!param || pid < 0)
  4192. return -EINVAL;
  4193. read_lock(&tasklist_lock);
  4194. p = find_process_by_pid(pid);
  4195. retval = -ESRCH;
  4196. if (!p)
  4197. goto out_unlock;
  4198. retval = security_task_getscheduler(p);
  4199. if (retval)
  4200. goto out_unlock;
  4201. lp.sched_priority = p->rt_priority;
  4202. read_unlock(&tasklist_lock);
  4203. /*
  4204. * This one might sleep, we cannot do it with a spinlock held ...
  4205. */
  4206. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4207. return retval;
  4208. out_unlock:
  4209. read_unlock(&tasklist_lock);
  4210. return retval;
  4211. }
  4212. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4213. {
  4214. cpumask_t cpus_allowed;
  4215. cpumask_t new_mask = *in_mask;
  4216. struct task_struct *p;
  4217. int retval;
  4218. get_online_cpus();
  4219. read_lock(&tasklist_lock);
  4220. p = find_process_by_pid(pid);
  4221. if (!p) {
  4222. read_unlock(&tasklist_lock);
  4223. put_online_cpus();
  4224. return -ESRCH;
  4225. }
  4226. /*
  4227. * It is not safe to call set_cpus_allowed with the
  4228. * tasklist_lock held. We will bump the task_struct's
  4229. * usage count and then drop tasklist_lock.
  4230. */
  4231. get_task_struct(p);
  4232. read_unlock(&tasklist_lock);
  4233. retval = -EPERM;
  4234. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4235. !capable(CAP_SYS_NICE))
  4236. goto out_unlock;
  4237. retval = security_task_setscheduler(p, 0, NULL);
  4238. if (retval)
  4239. goto out_unlock;
  4240. cpuset_cpus_allowed(p, &cpus_allowed);
  4241. cpus_and(new_mask, new_mask, cpus_allowed);
  4242. again:
  4243. retval = set_cpus_allowed_ptr(p, &new_mask);
  4244. if (!retval) {
  4245. cpuset_cpus_allowed(p, &cpus_allowed);
  4246. if (!cpus_subset(new_mask, cpus_allowed)) {
  4247. /*
  4248. * We must have raced with a concurrent cpuset
  4249. * update. Just reset the cpus_allowed to the
  4250. * cpuset's cpus_allowed
  4251. */
  4252. new_mask = cpus_allowed;
  4253. goto again;
  4254. }
  4255. }
  4256. out_unlock:
  4257. put_task_struct(p);
  4258. put_online_cpus();
  4259. return retval;
  4260. }
  4261. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4262. cpumask_t *new_mask)
  4263. {
  4264. if (len < sizeof(cpumask_t)) {
  4265. memset(new_mask, 0, sizeof(cpumask_t));
  4266. } else if (len > sizeof(cpumask_t)) {
  4267. len = sizeof(cpumask_t);
  4268. }
  4269. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4270. }
  4271. /**
  4272. * sys_sched_setaffinity - set the cpu affinity of a process
  4273. * @pid: pid of the process
  4274. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4275. * @user_mask_ptr: user-space pointer to the new cpu mask
  4276. */
  4277. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4278. unsigned long __user *user_mask_ptr)
  4279. {
  4280. cpumask_t new_mask;
  4281. int retval;
  4282. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4283. if (retval)
  4284. return retval;
  4285. return sched_setaffinity(pid, &new_mask);
  4286. }
  4287. /*
  4288. * Represents all cpu's present in the system
  4289. * In systems capable of hotplug, this map could dynamically grow
  4290. * as new cpu's are detected in the system via any platform specific
  4291. * method, such as ACPI for e.g.
  4292. */
  4293. cpumask_t cpu_present_map __read_mostly;
  4294. EXPORT_SYMBOL(cpu_present_map);
  4295. #ifndef CONFIG_SMP
  4296. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4297. EXPORT_SYMBOL(cpu_online_map);
  4298. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4299. EXPORT_SYMBOL(cpu_possible_map);
  4300. #endif
  4301. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4302. {
  4303. struct task_struct *p;
  4304. int retval;
  4305. get_online_cpus();
  4306. read_lock(&tasklist_lock);
  4307. retval = -ESRCH;
  4308. p = find_process_by_pid(pid);
  4309. if (!p)
  4310. goto out_unlock;
  4311. retval = security_task_getscheduler(p);
  4312. if (retval)
  4313. goto out_unlock;
  4314. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4315. out_unlock:
  4316. read_unlock(&tasklist_lock);
  4317. put_online_cpus();
  4318. return retval;
  4319. }
  4320. /**
  4321. * sys_sched_getaffinity - get the cpu affinity of a process
  4322. * @pid: pid of the process
  4323. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4324. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4325. */
  4326. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4327. unsigned long __user *user_mask_ptr)
  4328. {
  4329. int ret;
  4330. cpumask_t mask;
  4331. if (len < sizeof(cpumask_t))
  4332. return -EINVAL;
  4333. ret = sched_getaffinity(pid, &mask);
  4334. if (ret < 0)
  4335. return ret;
  4336. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4337. return -EFAULT;
  4338. return sizeof(cpumask_t);
  4339. }
  4340. /**
  4341. * sys_sched_yield - yield the current processor to other threads.
  4342. *
  4343. * This function yields the current CPU to other tasks. If there are no
  4344. * other threads running on this CPU then this function will return.
  4345. */
  4346. asmlinkage long sys_sched_yield(void)
  4347. {
  4348. struct rq *rq = this_rq_lock();
  4349. schedstat_inc(rq, yld_count);
  4350. current->sched_class->yield_task(rq);
  4351. /*
  4352. * Since we are going to call schedule() anyway, there's
  4353. * no need to preempt or enable interrupts:
  4354. */
  4355. __release(rq->lock);
  4356. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4357. _raw_spin_unlock(&rq->lock);
  4358. preempt_enable_no_resched();
  4359. schedule();
  4360. return 0;
  4361. }
  4362. static void __cond_resched(void)
  4363. {
  4364. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4365. __might_sleep(__FILE__, __LINE__);
  4366. #endif
  4367. /*
  4368. * The BKS might be reacquired before we have dropped
  4369. * PREEMPT_ACTIVE, which could trigger a second
  4370. * cond_resched() call.
  4371. */
  4372. do {
  4373. add_preempt_count(PREEMPT_ACTIVE);
  4374. schedule();
  4375. sub_preempt_count(PREEMPT_ACTIVE);
  4376. } while (need_resched());
  4377. }
  4378. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4379. int __sched _cond_resched(void)
  4380. {
  4381. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4382. system_state == SYSTEM_RUNNING) {
  4383. __cond_resched();
  4384. return 1;
  4385. }
  4386. return 0;
  4387. }
  4388. EXPORT_SYMBOL(_cond_resched);
  4389. #endif
  4390. /*
  4391. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4392. * call schedule, and on return reacquire the lock.
  4393. *
  4394. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4395. * operations here to prevent schedule() from being called twice (once via
  4396. * spin_unlock(), once by hand).
  4397. */
  4398. int cond_resched_lock(spinlock_t *lock)
  4399. {
  4400. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4401. int ret = 0;
  4402. if (spin_needbreak(lock) || resched) {
  4403. spin_unlock(lock);
  4404. if (resched && need_resched())
  4405. __cond_resched();
  4406. else
  4407. cpu_relax();
  4408. ret = 1;
  4409. spin_lock(lock);
  4410. }
  4411. return ret;
  4412. }
  4413. EXPORT_SYMBOL(cond_resched_lock);
  4414. int __sched cond_resched_softirq(void)
  4415. {
  4416. BUG_ON(!in_softirq());
  4417. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4418. local_bh_enable();
  4419. __cond_resched();
  4420. local_bh_disable();
  4421. return 1;
  4422. }
  4423. return 0;
  4424. }
  4425. EXPORT_SYMBOL(cond_resched_softirq);
  4426. /**
  4427. * yield - yield the current processor to other threads.
  4428. *
  4429. * This is a shortcut for kernel-space yielding - it marks the
  4430. * thread runnable and calls sys_sched_yield().
  4431. */
  4432. void __sched yield(void)
  4433. {
  4434. set_current_state(TASK_RUNNING);
  4435. sys_sched_yield();
  4436. }
  4437. EXPORT_SYMBOL(yield);
  4438. /*
  4439. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4440. * that process accounting knows that this is a task in IO wait state.
  4441. *
  4442. * But don't do that if it is a deliberate, throttling IO wait (this task
  4443. * has set its backing_dev_info: the queue against which it should throttle)
  4444. */
  4445. void __sched io_schedule(void)
  4446. {
  4447. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4448. delayacct_blkio_start();
  4449. atomic_inc(&rq->nr_iowait);
  4450. schedule();
  4451. atomic_dec(&rq->nr_iowait);
  4452. delayacct_blkio_end();
  4453. }
  4454. EXPORT_SYMBOL(io_schedule);
  4455. long __sched io_schedule_timeout(long timeout)
  4456. {
  4457. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4458. long ret;
  4459. delayacct_blkio_start();
  4460. atomic_inc(&rq->nr_iowait);
  4461. ret = schedule_timeout(timeout);
  4462. atomic_dec(&rq->nr_iowait);
  4463. delayacct_blkio_end();
  4464. return ret;
  4465. }
  4466. /**
  4467. * sys_sched_get_priority_max - return maximum RT priority.
  4468. * @policy: scheduling class.
  4469. *
  4470. * this syscall returns the maximum rt_priority that can be used
  4471. * by a given scheduling class.
  4472. */
  4473. asmlinkage long sys_sched_get_priority_max(int policy)
  4474. {
  4475. int ret = -EINVAL;
  4476. switch (policy) {
  4477. case SCHED_FIFO:
  4478. case SCHED_RR:
  4479. ret = MAX_USER_RT_PRIO-1;
  4480. break;
  4481. case SCHED_NORMAL:
  4482. case SCHED_BATCH:
  4483. case SCHED_IDLE:
  4484. ret = 0;
  4485. break;
  4486. }
  4487. return ret;
  4488. }
  4489. /**
  4490. * sys_sched_get_priority_min - return minimum RT priority.
  4491. * @policy: scheduling class.
  4492. *
  4493. * this syscall returns the minimum rt_priority that can be used
  4494. * by a given scheduling class.
  4495. */
  4496. asmlinkage long sys_sched_get_priority_min(int policy)
  4497. {
  4498. int ret = -EINVAL;
  4499. switch (policy) {
  4500. case SCHED_FIFO:
  4501. case SCHED_RR:
  4502. ret = 1;
  4503. break;
  4504. case SCHED_NORMAL:
  4505. case SCHED_BATCH:
  4506. case SCHED_IDLE:
  4507. ret = 0;
  4508. }
  4509. return ret;
  4510. }
  4511. /**
  4512. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4513. * @pid: pid of the process.
  4514. * @interval: userspace pointer to the timeslice value.
  4515. *
  4516. * this syscall writes the default timeslice value of a given process
  4517. * into the user-space timespec buffer. A value of '0' means infinity.
  4518. */
  4519. asmlinkage
  4520. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4521. {
  4522. struct task_struct *p;
  4523. unsigned int time_slice;
  4524. int retval;
  4525. struct timespec t;
  4526. if (pid < 0)
  4527. return -EINVAL;
  4528. retval = -ESRCH;
  4529. read_lock(&tasklist_lock);
  4530. p = find_process_by_pid(pid);
  4531. if (!p)
  4532. goto out_unlock;
  4533. retval = security_task_getscheduler(p);
  4534. if (retval)
  4535. goto out_unlock;
  4536. /*
  4537. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4538. * tasks that are on an otherwise idle runqueue:
  4539. */
  4540. time_slice = 0;
  4541. if (p->policy == SCHED_RR) {
  4542. time_slice = DEF_TIMESLICE;
  4543. } else if (p->policy != SCHED_FIFO) {
  4544. struct sched_entity *se = &p->se;
  4545. unsigned long flags;
  4546. struct rq *rq;
  4547. rq = task_rq_lock(p, &flags);
  4548. if (rq->cfs.load.weight)
  4549. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4550. task_rq_unlock(rq, &flags);
  4551. }
  4552. read_unlock(&tasklist_lock);
  4553. jiffies_to_timespec(time_slice, &t);
  4554. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4555. return retval;
  4556. out_unlock:
  4557. read_unlock(&tasklist_lock);
  4558. return retval;
  4559. }
  4560. static const char stat_nam[] = "RSDTtZX";
  4561. void sched_show_task(struct task_struct *p)
  4562. {
  4563. unsigned long free = 0;
  4564. unsigned state;
  4565. state = p->state ? __ffs(p->state) + 1 : 0;
  4566. printk(KERN_INFO "%-13.13s %c", p->comm,
  4567. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4568. #if BITS_PER_LONG == 32
  4569. if (state == TASK_RUNNING)
  4570. printk(KERN_CONT " running ");
  4571. else
  4572. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4573. #else
  4574. if (state == TASK_RUNNING)
  4575. printk(KERN_CONT " running task ");
  4576. else
  4577. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4578. #endif
  4579. #ifdef CONFIG_DEBUG_STACK_USAGE
  4580. {
  4581. unsigned long *n = end_of_stack(p);
  4582. while (!*n)
  4583. n++;
  4584. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4585. }
  4586. #endif
  4587. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4588. task_pid_nr(p), task_pid_nr(p->real_parent));
  4589. show_stack(p, NULL);
  4590. }
  4591. void show_state_filter(unsigned long state_filter)
  4592. {
  4593. struct task_struct *g, *p;
  4594. #if BITS_PER_LONG == 32
  4595. printk(KERN_INFO
  4596. " task PC stack pid father\n");
  4597. #else
  4598. printk(KERN_INFO
  4599. " task PC stack pid father\n");
  4600. #endif
  4601. read_lock(&tasklist_lock);
  4602. do_each_thread(g, p) {
  4603. /*
  4604. * reset the NMI-timeout, listing all files on a slow
  4605. * console might take alot of time:
  4606. */
  4607. touch_nmi_watchdog();
  4608. if (!state_filter || (p->state & state_filter))
  4609. sched_show_task(p);
  4610. } while_each_thread(g, p);
  4611. touch_all_softlockup_watchdogs();
  4612. #ifdef CONFIG_SCHED_DEBUG
  4613. sysrq_sched_debug_show();
  4614. #endif
  4615. read_unlock(&tasklist_lock);
  4616. /*
  4617. * Only show locks if all tasks are dumped:
  4618. */
  4619. if (state_filter == -1)
  4620. debug_show_all_locks();
  4621. }
  4622. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4623. {
  4624. idle->sched_class = &idle_sched_class;
  4625. }
  4626. /**
  4627. * init_idle - set up an idle thread for a given CPU
  4628. * @idle: task in question
  4629. * @cpu: cpu the idle task belongs to
  4630. *
  4631. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4632. * flag, to make booting more robust.
  4633. */
  4634. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4635. {
  4636. struct rq *rq = cpu_rq(cpu);
  4637. unsigned long flags;
  4638. __sched_fork(idle);
  4639. idle->se.exec_start = sched_clock();
  4640. idle->prio = idle->normal_prio = MAX_PRIO;
  4641. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4642. __set_task_cpu(idle, cpu);
  4643. spin_lock_irqsave(&rq->lock, flags);
  4644. rq->curr = rq->idle = idle;
  4645. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4646. idle->oncpu = 1;
  4647. #endif
  4648. spin_unlock_irqrestore(&rq->lock, flags);
  4649. /* Set the preempt count _outside_ the spinlocks! */
  4650. task_thread_info(idle)->preempt_count = 0;
  4651. /*
  4652. * The idle tasks have their own, simple scheduling class:
  4653. */
  4654. idle->sched_class = &idle_sched_class;
  4655. }
  4656. /*
  4657. * In a system that switches off the HZ timer nohz_cpu_mask
  4658. * indicates which cpus entered this state. This is used
  4659. * in the rcu update to wait only for active cpus. For system
  4660. * which do not switch off the HZ timer nohz_cpu_mask should
  4661. * always be CPU_MASK_NONE.
  4662. */
  4663. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4664. /*
  4665. * Increase the granularity value when there are more CPUs,
  4666. * because with more CPUs the 'effective latency' as visible
  4667. * to users decreases. But the relationship is not linear,
  4668. * so pick a second-best guess by going with the log2 of the
  4669. * number of CPUs.
  4670. *
  4671. * This idea comes from the SD scheduler of Con Kolivas:
  4672. */
  4673. static inline void sched_init_granularity(void)
  4674. {
  4675. unsigned int factor = 1 + ilog2(num_online_cpus());
  4676. const unsigned long limit = 200000000;
  4677. sysctl_sched_min_granularity *= factor;
  4678. if (sysctl_sched_min_granularity > limit)
  4679. sysctl_sched_min_granularity = limit;
  4680. sysctl_sched_latency *= factor;
  4681. if (sysctl_sched_latency > limit)
  4682. sysctl_sched_latency = limit;
  4683. sysctl_sched_wakeup_granularity *= factor;
  4684. }
  4685. #ifdef CONFIG_SMP
  4686. /*
  4687. * This is how migration works:
  4688. *
  4689. * 1) we queue a struct migration_req structure in the source CPU's
  4690. * runqueue and wake up that CPU's migration thread.
  4691. * 2) we down() the locked semaphore => thread blocks.
  4692. * 3) migration thread wakes up (implicitly it forces the migrated
  4693. * thread off the CPU)
  4694. * 4) it gets the migration request and checks whether the migrated
  4695. * task is still in the wrong runqueue.
  4696. * 5) if it's in the wrong runqueue then the migration thread removes
  4697. * it and puts it into the right queue.
  4698. * 6) migration thread up()s the semaphore.
  4699. * 7) we wake up and the migration is done.
  4700. */
  4701. /*
  4702. * Change a given task's CPU affinity. Migrate the thread to a
  4703. * proper CPU and schedule it away if the CPU it's executing on
  4704. * is removed from the allowed bitmask.
  4705. *
  4706. * NOTE: the caller must have a valid reference to the task, the
  4707. * task must not exit() & deallocate itself prematurely. The
  4708. * call is not atomic; no spinlocks may be held.
  4709. */
  4710. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4711. {
  4712. struct migration_req req;
  4713. unsigned long flags;
  4714. struct rq *rq;
  4715. int ret = 0;
  4716. rq = task_rq_lock(p, &flags);
  4717. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4718. ret = -EINVAL;
  4719. goto out;
  4720. }
  4721. if (p->sched_class->set_cpus_allowed)
  4722. p->sched_class->set_cpus_allowed(p, &new_mask);
  4723. else {
  4724. p->cpus_allowed = new_mask;
  4725. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4726. }
  4727. /* Can the task run on the task's current CPU? If so, we're done */
  4728. if (cpu_isset(task_cpu(p), new_mask))
  4729. goto out;
  4730. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4731. /* Need help from migration thread: drop lock and wait. */
  4732. task_rq_unlock(rq, &flags);
  4733. wake_up_process(rq->migration_thread);
  4734. wait_for_completion(&req.done);
  4735. tlb_migrate_finish(p->mm);
  4736. return 0;
  4737. }
  4738. out:
  4739. task_rq_unlock(rq, &flags);
  4740. return ret;
  4741. }
  4742. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4743. /*
  4744. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4745. * this because either it can't run here any more (set_cpus_allowed()
  4746. * away from this CPU, or CPU going down), or because we're
  4747. * attempting to rebalance this task on exec (sched_exec).
  4748. *
  4749. * So we race with normal scheduler movements, but that's OK, as long
  4750. * as the task is no longer on this CPU.
  4751. *
  4752. * Returns non-zero if task was successfully migrated.
  4753. */
  4754. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4755. {
  4756. struct rq *rq_dest, *rq_src;
  4757. int ret = 0, on_rq;
  4758. if (unlikely(cpu_is_offline(dest_cpu)))
  4759. return ret;
  4760. rq_src = cpu_rq(src_cpu);
  4761. rq_dest = cpu_rq(dest_cpu);
  4762. double_rq_lock(rq_src, rq_dest);
  4763. /* Already moved. */
  4764. if (task_cpu(p) != src_cpu)
  4765. goto out;
  4766. /* Affinity changed (again). */
  4767. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4768. goto out;
  4769. on_rq = p->se.on_rq;
  4770. if (on_rq)
  4771. deactivate_task(rq_src, p, 0);
  4772. set_task_cpu(p, dest_cpu);
  4773. if (on_rq) {
  4774. activate_task(rq_dest, p, 0);
  4775. check_preempt_curr(rq_dest, p);
  4776. }
  4777. ret = 1;
  4778. out:
  4779. double_rq_unlock(rq_src, rq_dest);
  4780. return ret;
  4781. }
  4782. /*
  4783. * migration_thread - this is a highprio system thread that performs
  4784. * thread migration by bumping thread off CPU then 'pushing' onto
  4785. * another runqueue.
  4786. */
  4787. static int migration_thread(void *data)
  4788. {
  4789. int cpu = (long)data;
  4790. struct rq *rq;
  4791. rq = cpu_rq(cpu);
  4792. BUG_ON(rq->migration_thread != current);
  4793. set_current_state(TASK_INTERRUPTIBLE);
  4794. while (!kthread_should_stop()) {
  4795. struct migration_req *req;
  4796. struct list_head *head;
  4797. spin_lock_irq(&rq->lock);
  4798. if (cpu_is_offline(cpu)) {
  4799. spin_unlock_irq(&rq->lock);
  4800. goto wait_to_die;
  4801. }
  4802. if (rq->active_balance) {
  4803. active_load_balance(rq, cpu);
  4804. rq->active_balance = 0;
  4805. }
  4806. head = &rq->migration_queue;
  4807. if (list_empty(head)) {
  4808. spin_unlock_irq(&rq->lock);
  4809. schedule();
  4810. set_current_state(TASK_INTERRUPTIBLE);
  4811. continue;
  4812. }
  4813. req = list_entry(head->next, struct migration_req, list);
  4814. list_del_init(head->next);
  4815. spin_unlock(&rq->lock);
  4816. __migrate_task(req->task, cpu, req->dest_cpu);
  4817. local_irq_enable();
  4818. complete(&req->done);
  4819. }
  4820. __set_current_state(TASK_RUNNING);
  4821. return 0;
  4822. wait_to_die:
  4823. /* Wait for kthread_stop */
  4824. set_current_state(TASK_INTERRUPTIBLE);
  4825. while (!kthread_should_stop()) {
  4826. schedule();
  4827. set_current_state(TASK_INTERRUPTIBLE);
  4828. }
  4829. __set_current_state(TASK_RUNNING);
  4830. return 0;
  4831. }
  4832. #ifdef CONFIG_HOTPLUG_CPU
  4833. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4834. {
  4835. int ret;
  4836. local_irq_disable();
  4837. ret = __migrate_task(p, src_cpu, dest_cpu);
  4838. local_irq_enable();
  4839. return ret;
  4840. }
  4841. /*
  4842. * Figure out where task on dead CPU should go, use force if necessary.
  4843. * NOTE: interrupts should be disabled by the caller
  4844. */
  4845. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4846. {
  4847. unsigned long flags;
  4848. cpumask_t mask;
  4849. struct rq *rq;
  4850. int dest_cpu;
  4851. do {
  4852. /* On same node? */
  4853. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4854. cpus_and(mask, mask, p->cpus_allowed);
  4855. dest_cpu = any_online_cpu(mask);
  4856. /* On any allowed CPU? */
  4857. if (dest_cpu >= nr_cpu_ids)
  4858. dest_cpu = any_online_cpu(p->cpus_allowed);
  4859. /* No more Mr. Nice Guy. */
  4860. if (dest_cpu >= nr_cpu_ids) {
  4861. cpumask_t cpus_allowed;
  4862. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4863. /*
  4864. * Try to stay on the same cpuset, where the
  4865. * current cpuset may be a subset of all cpus.
  4866. * The cpuset_cpus_allowed_locked() variant of
  4867. * cpuset_cpus_allowed() will not block. It must be
  4868. * called within calls to cpuset_lock/cpuset_unlock.
  4869. */
  4870. rq = task_rq_lock(p, &flags);
  4871. p->cpus_allowed = cpus_allowed;
  4872. dest_cpu = any_online_cpu(p->cpus_allowed);
  4873. task_rq_unlock(rq, &flags);
  4874. /*
  4875. * Don't tell them about moving exiting tasks or
  4876. * kernel threads (both mm NULL), since they never
  4877. * leave kernel.
  4878. */
  4879. if (p->mm && printk_ratelimit()) {
  4880. printk(KERN_INFO "process %d (%s) no "
  4881. "longer affine to cpu%d\n",
  4882. task_pid_nr(p), p->comm, dead_cpu);
  4883. }
  4884. }
  4885. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4886. }
  4887. /*
  4888. * While a dead CPU has no uninterruptible tasks queued at this point,
  4889. * it might still have a nonzero ->nr_uninterruptible counter, because
  4890. * for performance reasons the counter is not stricly tracking tasks to
  4891. * their home CPUs. So we just add the counter to another CPU's counter,
  4892. * to keep the global sum constant after CPU-down:
  4893. */
  4894. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4895. {
  4896. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4897. unsigned long flags;
  4898. local_irq_save(flags);
  4899. double_rq_lock(rq_src, rq_dest);
  4900. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4901. rq_src->nr_uninterruptible = 0;
  4902. double_rq_unlock(rq_src, rq_dest);
  4903. local_irq_restore(flags);
  4904. }
  4905. /* Run through task list and migrate tasks from the dead cpu. */
  4906. static void migrate_live_tasks(int src_cpu)
  4907. {
  4908. struct task_struct *p, *t;
  4909. read_lock(&tasklist_lock);
  4910. do_each_thread(t, p) {
  4911. if (p == current)
  4912. continue;
  4913. if (task_cpu(p) == src_cpu)
  4914. move_task_off_dead_cpu(src_cpu, p);
  4915. } while_each_thread(t, p);
  4916. read_unlock(&tasklist_lock);
  4917. }
  4918. /*
  4919. * Schedules idle task to be the next runnable task on current CPU.
  4920. * It does so by boosting its priority to highest possible.
  4921. * Used by CPU offline code.
  4922. */
  4923. void sched_idle_next(void)
  4924. {
  4925. int this_cpu = smp_processor_id();
  4926. struct rq *rq = cpu_rq(this_cpu);
  4927. struct task_struct *p = rq->idle;
  4928. unsigned long flags;
  4929. /* cpu has to be offline */
  4930. BUG_ON(cpu_online(this_cpu));
  4931. /*
  4932. * Strictly not necessary since rest of the CPUs are stopped by now
  4933. * and interrupts disabled on the current cpu.
  4934. */
  4935. spin_lock_irqsave(&rq->lock, flags);
  4936. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4937. update_rq_clock(rq);
  4938. activate_task(rq, p, 0);
  4939. spin_unlock_irqrestore(&rq->lock, flags);
  4940. }
  4941. /*
  4942. * Ensures that the idle task is using init_mm right before its cpu goes
  4943. * offline.
  4944. */
  4945. void idle_task_exit(void)
  4946. {
  4947. struct mm_struct *mm = current->active_mm;
  4948. BUG_ON(cpu_online(smp_processor_id()));
  4949. if (mm != &init_mm)
  4950. switch_mm(mm, &init_mm, current);
  4951. mmdrop(mm);
  4952. }
  4953. /* called under rq->lock with disabled interrupts */
  4954. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4955. {
  4956. struct rq *rq = cpu_rq(dead_cpu);
  4957. /* Must be exiting, otherwise would be on tasklist. */
  4958. BUG_ON(!p->exit_state);
  4959. /* Cannot have done final schedule yet: would have vanished. */
  4960. BUG_ON(p->state == TASK_DEAD);
  4961. get_task_struct(p);
  4962. /*
  4963. * Drop lock around migration; if someone else moves it,
  4964. * that's OK. No task can be added to this CPU, so iteration is
  4965. * fine.
  4966. */
  4967. spin_unlock_irq(&rq->lock);
  4968. move_task_off_dead_cpu(dead_cpu, p);
  4969. spin_lock_irq(&rq->lock);
  4970. put_task_struct(p);
  4971. }
  4972. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4973. static void migrate_dead_tasks(unsigned int dead_cpu)
  4974. {
  4975. struct rq *rq = cpu_rq(dead_cpu);
  4976. struct task_struct *next;
  4977. for ( ; ; ) {
  4978. if (!rq->nr_running)
  4979. break;
  4980. update_rq_clock(rq);
  4981. next = pick_next_task(rq, rq->curr);
  4982. if (!next)
  4983. break;
  4984. migrate_dead(dead_cpu, next);
  4985. }
  4986. }
  4987. #endif /* CONFIG_HOTPLUG_CPU */
  4988. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4989. static struct ctl_table sd_ctl_dir[] = {
  4990. {
  4991. .procname = "sched_domain",
  4992. .mode = 0555,
  4993. },
  4994. {0, },
  4995. };
  4996. static struct ctl_table sd_ctl_root[] = {
  4997. {
  4998. .ctl_name = CTL_KERN,
  4999. .procname = "kernel",
  5000. .mode = 0555,
  5001. .child = sd_ctl_dir,
  5002. },
  5003. {0, },
  5004. };
  5005. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5006. {
  5007. struct ctl_table *entry =
  5008. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5009. return entry;
  5010. }
  5011. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5012. {
  5013. struct ctl_table *entry;
  5014. /*
  5015. * In the intermediate directories, both the child directory and
  5016. * procname are dynamically allocated and could fail but the mode
  5017. * will always be set. In the lowest directory the names are
  5018. * static strings and all have proc handlers.
  5019. */
  5020. for (entry = *tablep; entry->mode; entry++) {
  5021. if (entry->child)
  5022. sd_free_ctl_entry(&entry->child);
  5023. if (entry->proc_handler == NULL)
  5024. kfree(entry->procname);
  5025. }
  5026. kfree(*tablep);
  5027. *tablep = NULL;
  5028. }
  5029. static void
  5030. set_table_entry(struct ctl_table *entry,
  5031. const char *procname, void *data, int maxlen,
  5032. mode_t mode, proc_handler *proc_handler)
  5033. {
  5034. entry->procname = procname;
  5035. entry->data = data;
  5036. entry->maxlen = maxlen;
  5037. entry->mode = mode;
  5038. entry->proc_handler = proc_handler;
  5039. }
  5040. static struct ctl_table *
  5041. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5042. {
  5043. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5044. if (table == NULL)
  5045. return NULL;
  5046. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5047. sizeof(long), 0644, proc_doulongvec_minmax);
  5048. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5049. sizeof(long), 0644, proc_doulongvec_minmax);
  5050. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5051. sizeof(int), 0644, proc_dointvec_minmax);
  5052. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5053. sizeof(int), 0644, proc_dointvec_minmax);
  5054. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5055. sizeof(int), 0644, proc_dointvec_minmax);
  5056. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[9], "cache_nice_tries",
  5065. &sd->cache_nice_tries,
  5066. sizeof(int), 0644, proc_dointvec_minmax);
  5067. set_table_entry(&table[10], "flags", &sd->flags,
  5068. sizeof(int), 0644, proc_dointvec_minmax);
  5069. /* &table[11] is terminator */
  5070. return table;
  5071. }
  5072. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5073. {
  5074. struct ctl_table *entry, *table;
  5075. struct sched_domain *sd;
  5076. int domain_num = 0, i;
  5077. char buf[32];
  5078. for_each_domain(cpu, sd)
  5079. domain_num++;
  5080. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5081. if (table == NULL)
  5082. return NULL;
  5083. i = 0;
  5084. for_each_domain(cpu, sd) {
  5085. snprintf(buf, 32, "domain%d", i);
  5086. entry->procname = kstrdup(buf, GFP_KERNEL);
  5087. entry->mode = 0555;
  5088. entry->child = sd_alloc_ctl_domain_table(sd);
  5089. entry++;
  5090. i++;
  5091. }
  5092. return table;
  5093. }
  5094. static struct ctl_table_header *sd_sysctl_header;
  5095. static void register_sched_domain_sysctl(void)
  5096. {
  5097. int i, cpu_num = num_online_cpus();
  5098. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5099. char buf[32];
  5100. WARN_ON(sd_ctl_dir[0].child);
  5101. sd_ctl_dir[0].child = entry;
  5102. if (entry == NULL)
  5103. return;
  5104. for_each_online_cpu(i) {
  5105. snprintf(buf, 32, "cpu%d", i);
  5106. entry->procname = kstrdup(buf, GFP_KERNEL);
  5107. entry->mode = 0555;
  5108. entry->child = sd_alloc_ctl_cpu_table(i);
  5109. entry++;
  5110. }
  5111. WARN_ON(sd_sysctl_header);
  5112. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5113. }
  5114. /* may be called multiple times per register */
  5115. static void unregister_sched_domain_sysctl(void)
  5116. {
  5117. if (sd_sysctl_header)
  5118. unregister_sysctl_table(sd_sysctl_header);
  5119. sd_sysctl_header = NULL;
  5120. if (sd_ctl_dir[0].child)
  5121. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5122. }
  5123. #else
  5124. static void register_sched_domain_sysctl(void)
  5125. {
  5126. }
  5127. static void unregister_sched_domain_sysctl(void)
  5128. {
  5129. }
  5130. #endif
  5131. /*
  5132. * migration_call - callback that gets triggered when a CPU is added.
  5133. * Here we can start up the necessary migration thread for the new CPU.
  5134. */
  5135. static int __cpuinit
  5136. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5137. {
  5138. struct task_struct *p;
  5139. int cpu = (long)hcpu;
  5140. unsigned long flags;
  5141. struct rq *rq;
  5142. switch (action) {
  5143. case CPU_UP_PREPARE:
  5144. case CPU_UP_PREPARE_FROZEN:
  5145. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5146. if (IS_ERR(p))
  5147. return NOTIFY_BAD;
  5148. kthread_bind(p, cpu);
  5149. /* Must be high prio: stop_machine expects to yield to it. */
  5150. rq = task_rq_lock(p, &flags);
  5151. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5152. task_rq_unlock(rq, &flags);
  5153. cpu_rq(cpu)->migration_thread = p;
  5154. break;
  5155. case CPU_ONLINE:
  5156. case CPU_ONLINE_FROZEN:
  5157. /* Strictly unnecessary, as first user will wake it. */
  5158. wake_up_process(cpu_rq(cpu)->migration_thread);
  5159. /* Update our root-domain */
  5160. rq = cpu_rq(cpu);
  5161. spin_lock_irqsave(&rq->lock, flags);
  5162. if (rq->rd) {
  5163. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5164. cpu_set(cpu, rq->rd->online);
  5165. }
  5166. spin_unlock_irqrestore(&rq->lock, flags);
  5167. break;
  5168. #ifdef CONFIG_HOTPLUG_CPU
  5169. case CPU_UP_CANCELED:
  5170. case CPU_UP_CANCELED_FROZEN:
  5171. if (!cpu_rq(cpu)->migration_thread)
  5172. break;
  5173. /* Unbind it from offline cpu so it can run. Fall thru. */
  5174. kthread_bind(cpu_rq(cpu)->migration_thread,
  5175. any_online_cpu(cpu_online_map));
  5176. kthread_stop(cpu_rq(cpu)->migration_thread);
  5177. cpu_rq(cpu)->migration_thread = NULL;
  5178. break;
  5179. case CPU_DEAD:
  5180. case CPU_DEAD_FROZEN:
  5181. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5182. migrate_live_tasks(cpu);
  5183. rq = cpu_rq(cpu);
  5184. kthread_stop(rq->migration_thread);
  5185. rq->migration_thread = NULL;
  5186. /* Idle task back to normal (off runqueue, low prio) */
  5187. spin_lock_irq(&rq->lock);
  5188. update_rq_clock(rq);
  5189. deactivate_task(rq, rq->idle, 0);
  5190. rq->idle->static_prio = MAX_PRIO;
  5191. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5192. rq->idle->sched_class = &idle_sched_class;
  5193. migrate_dead_tasks(cpu);
  5194. spin_unlock_irq(&rq->lock);
  5195. cpuset_unlock();
  5196. migrate_nr_uninterruptible(rq);
  5197. BUG_ON(rq->nr_running != 0);
  5198. /*
  5199. * No need to migrate the tasks: it was best-effort if
  5200. * they didn't take sched_hotcpu_mutex. Just wake up
  5201. * the requestors.
  5202. */
  5203. spin_lock_irq(&rq->lock);
  5204. while (!list_empty(&rq->migration_queue)) {
  5205. struct migration_req *req;
  5206. req = list_entry(rq->migration_queue.next,
  5207. struct migration_req, list);
  5208. list_del_init(&req->list);
  5209. complete(&req->done);
  5210. }
  5211. spin_unlock_irq(&rq->lock);
  5212. break;
  5213. case CPU_DYING:
  5214. case CPU_DYING_FROZEN:
  5215. /* Update our root-domain */
  5216. rq = cpu_rq(cpu);
  5217. spin_lock_irqsave(&rq->lock, flags);
  5218. if (rq->rd) {
  5219. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5220. cpu_clear(cpu, rq->rd->online);
  5221. }
  5222. spin_unlock_irqrestore(&rq->lock, flags);
  5223. break;
  5224. #endif
  5225. }
  5226. return NOTIFY_OK;
  5227. }
  5228. /* Register at highest priority so that task migration (migrate_all_tasks)
  5229. * happens before everything else.
  5230. */
  5231. static struct notifier_block __cpuinitdata migration_notifier = {
  5232. .notifier_call = migration_call,
  5233. .priority = 10
  5234. };
  5235. void __init migration_init(void)
  5236. {
  5237. void *cpu = (void *)(long)smp_processor_id();
  5238. int err;
  5239. /* Start one for the boot CPU: */
  5240. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5241. BUG_ON(err == NOTIFY_BAD);
  5242. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5243. register_cpu_notifier(&migration_notifier);
  5244. }
  5245. #endif
  5246. #ifdef CONFIG_SMP
  5247. #ifdef CONFIG_SCHED_DEBUG
  5248. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5249. cpumask_t *groupmask)
  5250. {
  5251. struct sched_group *group = sd->groups;
  5252. char str[256];
  5253. cpulist_scnprintf(str, sizeof(str), sd->span);
  5254. cpus_clear(*groupmask);
  5255. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5256. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5257. printk("does not load-balance\n");
  5258. if (sd->parent)
  5259. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5260. " has parent");
  5261. return -1;
  5262. }
  5263. printk(KERN_CONT "span %s\n", str);
  5264. if (!cpu_isset(cpu, sd->span)) {
  5265. printk(KERN_ERR "ERROR: domain->span does not contain "
  5266. "CPU%d\n", cpu);
  5267. }
  5268. if (!cpu_isset(cpu, group->cpumask)) {
  5269. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5270. " CPU%d\n", cpu);
  5271. }
  5272. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5273. do {
  5274. if (!group) {
  5275. printk("\n");
  5276. printk(KERN_ERR "ERROR: group is NULL\n");
  5277. break;
  5278. }
  5279. if (!group->__cpu_power) {
  5280. printk(KERN_CONT "\n");
  5281. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5282. "set\n");
  5283. break;
  5284. }
  5285. if (!cpus_weight(group->cpumask)) {
  5286. printk(KERN_CONT "\n");
  5287. printk(KERN_ERR "ERROR: empty group\n");
  5288. break;
  5289. }
  5290. if (cpus_intersects(*groupmask, group->cpumask)) {
  5291. printk(KERN_CONT "\n");
  5292. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5293. break;
  5294. }
  5295. cpus_or(*groupmask, *groupmask, group->cpumask);
  5296. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5297. printk(KERN_CONT " %s", str);
  5298. group = group->next;
  5299. } while (group != sd->groups);
  5300. printk(KERN_CONT "\n");
  5301. if (!cpus_equal(sd->span, *groupmask))
  5302. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5303. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5304. printk(KERN_ERR "ERROR: parent span is not a superset "
  5305. "of domain->span\n");
  5306. return 0;
  5307. }
  5308. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5309. {
  5310. cpumask_t *groupmask;
  5311. int level = 0;
  5312. if (!sd) {
  5313. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5314. return;
  5315. }
  5316. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5317. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5318. if (!groupmask) {
  5319. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5320. return;
  5321. }
  5322. for (;;) {
  5323. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5324. break;
  5325. level++;
  5326. sd = sd->parent;
  5327. if (!sd)
  5328. break;
  5329. }
  5330. kfree(groupmask);
  5331. }
  5332. #else
  5333. # define sched_domain_debug(sd, cpu) do { } while (0)
  5334. #endif
  5335. static int sd_degenerate(struct sched_domain *sd)
  5336. {
  5337. if (cpus_weight(sd->span) == 1)
  5338. return 1;
  5339. /* Following flags need at least 2 groups */
  5340. if (sd->flags & (SD_LOAD_BALANCE |
  5341. SD_BALANCE_NEWIDLE |
  5342. SD_BALANCE_FORK |
  5343. SD_BALANCE_EXEC |
  5344. SD_SHARE_CPUPOWER |
  5345. SD_SHARE_PKG_RESOURCES)) {
  5346. if (sd->groups != sd->groups->next)
  5347. return 0;
  5348. }
  5349. /* Following flags don't use groups */
  5350. if (sd->flags & (SD_WAKE_IDLE |
  5351. SD_WAKE_AFFINE |
  5352. SD_WAKE_BALANCE))
  5353. return 0;
  5354. return 1;
  5355. }
  5356. static int
  5357. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5358. {
  5359. unsigned long cflags = sd->flags, pflags = parent->flags;
  5360. if (sd_degenerate(parent))
  5361. return 1;
  5362. if (!cpus_equal(sd->span, parent->span))
  5363. return 0;
  5364. /* Does parent contain flags not in child? */
  5365. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5366. if (cflags & SD_WAKE_AFFINE)
  5367. pflags &= ~SD_WAKE_BALANCE;
  5368. /* Flags needing groups don't count if only 1 group in parent */
  5369. if (parent->groups == parent->groups->next) {
  5370. pflags &= ~(SD_LOAD_BALANCE |
  5371. SD_BALANCE_NEWIDLE |
  5372. SD_BALANCE_FORK |
  5373. SD_BALANCE_EXEC |
  5374. SD_SHARE_CPUPOWER |
  5375. SD_SHARE_PKG_RESOURCES);
  5376. }
  5377. if (~cflags & pflags)
  5378. return 0;
  5379. return 1;
  5380. }
  5381. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5382. {
  5383. unsigned long flags;
  5384. const struct sched_class *class;
  5385. spin_lock_irqsave(&rq->lock, flags);
  5386. if (rq->rd) {
  5387. struct root_domain *old_rd = rq->rd;
  5388. for (class = sched_class_highest; class; class = class->next) {
  5389. if (class->leave_domain)
  5390. class->leave_domain(rq);
  5391. }
  5392. cpu_clear(rq->cpu, old_rd->span);
  5393. cpu_clear(rq->cpu, old_rd->online);
  5394. if (atomic_dec_and_test(&old_rd->refcount))
  5395. kfree(old_rd);
  5396. }
  5397. atomic_inc(&rd->refcount);
  5398. rq->rd = rd;
  5399. cpu_set(rq->cpu, rd->span);
  5400. if (cpu_isset(rq->cpu, cpu_online_map))
  5401. cpu_set(rq->cpu, rd->online);
  5402. for (class = sched_class_highest; class; class = class->next) {
  5403. if (class->join_domain)
  5404. class->join_domain(rq);
  5405. }
  5406. spin_unlock_irqrestore(&rq->lock, flags);
  5407. }
  5408. static void init_rootdomain(struct root_domain *rd)
  5409. {
  5410. memset(rd, 0, sizeof(*rd));
  5411. cpus_clear(rd->span);
  5412. cpus_clear(rd->online);
  5413. }
  5414. static void init_defrootdomain(void)
  5415. {
  5416. init_rootdomain(&def_root_domain);
  5417. atomic_set(&def_root_domain.refcount, 1);
  5418. }
  5419. static struct root_domain *alloc_rootdomain(void)
  5420. {
  5421. struct root_domain *rd;
  5422. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5423. if (!rd)
  5424. return NULL;
  5425. init_rootdomain(rd);
  5426. return rd;
  5427. }
  5428. /*
  5429. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5430. * hold the hotplug lock.
  5431. */
  5432. static void
  5433. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5434. {
  5435. struct rq *rq = cpu_rq(cpu);
  5436. struct sched_domain *tmp;
  5437. /* Remove the sched domains which do not contribute to scheduling. */
  5438. for (tmp = sd; tmp; tmp = tmp->parent) {
  5439. struct sched_domain *parent = tmp->parent;
  5440. if (!parent)
  5441. break;
  5442. if (sd_parent_degenerate(tmp, parent)) {
  5443. tmp->parent = parent->parent;
  5444. if (parent->parent)
  5445. parent->parent->child = tmp;
  5446. }
  5447. }
  5448. if (sd && sd_degenerate(sd)) {
  5449. sd = sd->parent;
  5450. if (sd)
  5451. sd->child = NULL;
  5452. }
  5453. sched_domain_debug(sd, cpu);
  5454. rq_attach_root(rq, rd);
  5455. rcu_assign_pointer(rq->sd, sd);
  5456. }
  5457. /* cpus with isolated domains */
  5458. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5459. /* Setup the mask of cpus configured for isolated domains */
  5460. static int __init isolated_cpu_setup(char *str)
  5461. {
  5462. int ints[NR_CPUS], i;
  5463. str = get_options(str, ARRAY_SIZE(ints), ints);
  5464. cpus_clear(cpu_isolated_map);
  5465. for (i = 1; i <= ints[0]; i++)
  5466. if (ints[i] < NR_CPUS)
  5467. cpu_set(ints[i], cpu_isolated_map);
  5468. return 1;
  5469. }
  5470. __setup("isolcpus=", isolated_cpu_setup);
  5471. /*
  5472. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5473. * to a function which identifies what group(along with sched group) a CPU
  5474. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5475. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5476. *
  5477. * init_sched_build_groups will build a circular linked list of the groups
  5478. * covered by the given span, and will set each group's ->cpumask correctly,
  5479. * and ->cpu_power to 0.
  5480. */
  5481. static void
  5482. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5483. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5484. struct sched_group **sg,
  5485. cpumask_t *tmpmask),
  5486. cpumask_t *covered, cpumask_t *tmpmask)
  5487. {
  5488. struct sched_group *first = NULL, *last = NULL;
  5489. int i;
  5490. cpus_clear(*covered);
  5491. for_each_cpu_mask(i, *span) {
  5492. struct sched_group *sg;
  5493. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5494. int j;
  5495. if (cpu_isset(i, *covered))
  5496. continue;
  5497. cpus_clear(sg->cpumask);
  5498. sg->__cpu_power = 0;
  5499. for_each_cpu_mask(j, *span) {
  5500. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5501. continue;
  5502. cpu_set(j, *covered);
  5503. cpu_set(j, sg->cpumask);
  5504. }
  5505. if (!first)
  5506. first = sg;
  5507. if (last)
  5508. last->next = sg;
  5509. last = sg;
  5510. }
  5511. last->next = first;
  5512. }
  5513. #define SD_NODES_PER_DOMAIN 16
  5514. #ifdef CONFIG_NUMA
  5515. /**
  5516. * find_next_best_node - find the next node to include in a sched_domain
  5517. * @node: node whose sched_domain we're building
  5518. * @used_nodes: nodes already in the sched_domain
  5519. *
  5520. * Find the next node to include in a given scheduling domain. Simply
  5521. * finds the closest node not already in the @used_nodes map.
  5522. *
  5523. * Should use nodemask_t.
  5524. */
  5525. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5526. {
  5527. int i, n, val, min_val, best_node = 0;
  5528. min_val = INT_MAX;
  5529. for (i = 0; i < MAX_NUMNODES; i++) {
  5530. /* Start at @node */
  5531. n = (node + i) % MAX_NUMNODES;
  5532. if (!nr_cpus_node(n))
  5533. continue;
  5534. /* Skip already used nodes */
  5535. if (node_isset(n, *used_nodes))
  5536. continue;
  5537. /* Simple min distance search */
  5538. val = node_distance(node, n);
  5539. if (val < min_val) {
  5540. min_val = val;
  5541. best_node = n;
  5542. }
  5543. }
  5544. node_set(best_node, *used_nodes);
  5545. return best_node;
  5546. }
  5547. /**
  5548. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5549. * @node: node whose cpumask we're constructing
  5550. *
  5551. * Given a node, construct a good cpumask for its sched_domain to span. It
  5552. * should be one that prevents unnecessary balancing, but also spreads tasks
  5553. * out optimally.
  5554. */
  5555. static void sched_domain_node_span(int node, cpumask_t *span)
  5556. {
  5557. nodemask_t used_nodes;
  5558. node_to_cpumask_ptr(nodemask, node);
  5559. int i;
  5560. cpus_clear(*span);
  5561. nodes_clear(used_nodes);
  5562. cpus_or(*span, *span, *nodemask);
  5563. node_set(node, used_nodes);
  5564. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5565. int next_node = find_next_best_node(node, &used_nodes);
  5566. node_to_cpumask_ptr_next(nodemask, next_node);
  5567. cpus_or(*span, *span, *nodemask);
  5568. }
  5569. }
  5570. #endif
  5571. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5572. /*
  5573. * SMT sched-domains:
  5574. */
  5575. #ifdef CONFIG_SCHED_SMT
  5576. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5577. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5578. static int
  5579. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5580. cpumask_t *unused)
  5581. {
  5582. if (sg)
  5583. *sg = &per_cpu(sched_group_cpus, cpu);
  5584. return cpu;
  5585. }
  5586. #endif
  5587. /*
  5588. * multi-core sched-domains:
  5589. */
  5590. #ifdef CONFIG_SCHED_MC
  5591. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5592. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5593. #endif
  5594. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5595. static int
  5596. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5597. cpumask_t *mask)
  5598. {
  5599. int group;
  5600. *mask = per_cpu(cpu_sibling_map, cpu);
  5601. cpus_and(*mask, *mask, *cpu_map);
  5602. group = first_cpu(*mask);
  5603. if (sg)
  5604. *sg = &per_cpu(sched_group_core, group);
  5605. return group;
  5606. }
  5607. #elif defined(CONFIG_SCHED_MC)
  5608. static int
  5609. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5610. cpumask_t *unused)
  5611. {
  5612. if (sg)
  5613. *sg = &per_cpu(sched_group_core, cpu);
  5614. return cpu;
  5615. }
  5616. #endif
  5617. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5618. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5619. static int
  5620. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5621. cpumask_t *mask)
  5622. {
  5623. int group;
  5624. #ifdef CONFIG_SCHED_MC
  5625. *mask = cpu_coregroup_map(cpu);
  5626. cpus_and(*mask, *mask, *cpu_map);
  5627. group = first_cpu(*mask);
  5628. #elif defined(CONFIG_SCHED_SMT)
  5629. *mask = per_cpu(cpu_sibling_map, cpu);
  5630. cpus_and(*mask, *mask, *cpu_map);
  5631. group = first_cpu(*mask);
  5632. #else
  5633. group = cpu;
  5634. #endif
  5635. if (sg)
  5636. *sg = &per_cpu(sched_group_phys, group);
  5637. return group;
  5638. }
  5639. #ifdef CONFIG_NUMA
  5640. /*
  5641. * The init_sched_build_groups can't handle what we want to do with node
  5642. * groups, so roll our own. Now each node has its own list of groups which
  5643. * gets dynamically allocated.
  5644. */
  5645. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5646. static struct sched_group ***sched_group_nodes_bycpu;
  5647. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5648. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5649. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5650. struct sched_group **sg, cpumask_t *nodemask)
  5651. {
  5652. int group;
  5653. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5654. cpus_and(*nodemask, *nodemask, *cpu_map);
  5655. group = first_cpu(*nodemask);
  5656. if (sg)
  5657. *sg = &per_cpu(sched_group_allnodes, group);
  5658. return group;
  5659. }
  5660. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5661. {
  5662. struct sched_group *sg = group_head;
  5663. int j;
  5664. if (!sg)
  5665. return;
  5666. do {
  5667. for_each_cpu_mask(j, sg->cpumask) {
  5668. struct sched_domain *sd;
  5669. sd = &per_cpu(phys_domains, j);
  5670. if (j != first_cpu(sd->groups->cpumask)) {
  5671. /*
  5672. * Only add "power" once for each
  5673. * physical package.
  5674. */
  5675. continue;
  5676. }
  5677. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5678. }
  5679. sg = sg->next;
  5680. } while (sg != group_head);
  5681. }
  5682. #endif
  5683. #ifdef CONFIG_NUMA
  5684. /* Free memory allocated for various sched_group structures */
  5685. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5686. {
  5687. int cpu, i;
  5688. for_each_cpu_mask(cpu, *cpu_map) {
  5689. struct sched_group **sched_group_nodes
  5690. = sched_group_nodes_bycpu[cpu];
  5691. if (!sched_group_nodes)
  5692. continue;
  5693. for (i = 0; i < MAX_NUMNODES; i++) {
  5694. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5695. *nodemask = node_to_cpumask(i);
  5696. cpus_and(*nodemask, *nodemask, *cpu_map);
  5697. if (cpus_empty(*nodemask))
  5698. continue;
  5699. if (sg == NULL)
  5700. continue;
  5701. sg = sg->next;
  5702. next_sg:
  5703. oldsg = sg;
  5704. sg = sg->next;
  5705. kfree(oldsg);
  5706. if (oldsg != sched_group_nodes[i])
  5707. goto next_sg;
  5708. }
  5709. kfree(sched_group_nodes);
  5710. sched_group_nodes_bycpu[cpu] = NULL;
  5711. }
  5712. }
  5713. #else
  5714. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5715. {
  5716. }
  5717. #endif
  5718. /*
  5719. * Initialize sched groups cpu_power.
  5720. *
  5721. * cpu_power indicates the capacity of sched group, which is used while
  5722. * distributing the load between different sched groups in a sched domain.
  5723. * Typically cpu_power for all the groups in a sched domain will be same unless
  5724. * there are asymmetries in the topology. If there are asymmetries, group
  5725. * having more cpu_power will pickup more load compared to the group having
  5726. * less cpu_power.
  5727. *
  5728. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5729. * the maximum number of tasks a group can handle in the presence of other idle
  5730. * or lightly loaded groups in the same sched domain.
  5731. */
  5732. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5733. {
  5734. struct sched_domain *child;
  5735. struct sched_group *group;
  5736. WARN_ON(!sd || !sd->groups);
  5737. if (cpu != first_cpu(sd->groups->cpumask))
  5738. return;
  5739. child = sd->child;
  5740. sd->groups->__cpu_power = 0;
  5741. /*
  5742. * For perf policy, if the groups in child domain share resources
  5743. * (for example cores sharing some portions of the cache hierarchy
  5744. * or SMT), then set this domain groups cpu_power such that each group
  5745. * can handle only one task, when there are other idle groups in the
  5746. * same sched domain.
  5747. */
  5748. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5749. (child->flags &
  5750. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5751. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5752. return;
  5753. }
  5754. /*
  5755. * add cpu_power of each child group to this groups cpu_power
  5756. */
  5757. group = child->groups;
  5758. do {
  5759. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5760. group = group->next;
  5761. } while (group != child->groups);
  5762. }
  5763. /*
  5764. * Initializers for schedule domains
  5765. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5766. */
  5767. #define SD_INIT(sd, type) sd_init_##type(sd)
  5768. #define SD_INIT_FUNC(type) \
  5769. static noinline void sd_init_##type(struct sched_domain *sd) \
  5770. { \
  5771. memset(sd, 0, sizeof(*sd)); \
  5772. *sd = SD_##type##_INIT; \
  5773. }
  5774. SD_INIT_FUNC(CPU)
  5775. #ifdef CONFIG_NUMA
  5776. SD_INIT_FUNC(ALLNODES)
  5777. SD_INIT_FUNC(NODE)
  5778. #endif
  5779. #ifdef CONFIG_SCHED_SMT
  5780. SD_INIT_FUNC(SIBLING)
  5781. #endif
  5782. #ifdef CONFIG_SCHED_MC
  5783. SD_INIT_FUNC(MC)
  5784. #endif
  5785. /*
  5786. * To minimize stack usage kmalloc room for cpumasks and share the
  5787. * space as the usage in build_sched_domains() dictates. Used only
  5788. * if the amount of space is significant.
  5789. */
  5790. struct allmasks {
  5791. cpumask_t tmpmask; /* make this one first */
  5792. union {
  5793. cpumask_t nodemask;
  5794. cpumask_t this_sibling_map;
  5795. cpumask_t this_core_map;
  5796. };
  5797. cpumask_t send_covered;
  5798. #ifdef CONFIG_NUMA
  5799. cpumask_t domainspan;
  5800. cpumask_t covered;
  5801. cpumask_t notcovered;
  5802. #endif
  5803. };
  5804. #if NR_CPUS > 128
  5805. #define SCHED_CPUMASK_ALLOC 1
  5806. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5807. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5808. #else
  5809. #define SCHED_CPUMASK_ALLOC 0
  5810. #define SCHED_CPUMASK_FREE(v)
  5811. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5812. #endif
  5813. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5814. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5815. /*
  5816. * Build sched domains for a given set of cpus and attach the sched domains
  5817. * to the individual cpus
  5818. */
  5819. static int build_sched_domains(const cpumask_t *cpu_map)
  5820. {
  5821. int i;
  5822. struct root_domain *rd;
  5823. SCHED_CPUMASK_DECLARE(allmasks);
  5824. cpumask_t *tmpmask;
  5825. #ifdef CONFIG_NUMA
  5826. struct sched_group **sched_group_nodes = NULL;
  5827. int sd_allnodes = 0;
  5828. /*
  5829. * Allocate the per-node list of sched groups
  5830. */
  5831. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5832. GFP_KERNEL);
  5833. if (!sched_group_nodes) {
  5834. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5835. return -ENOMEM;
  5836. }
  5837. #endif
  5838. rd = alloc_rootdomain();
  5839. if (!rd) {
  5840. printk(KERN_WARNING "Cannot alloc root domain\n");
  5841. #ifdef CONFIG_NUMA
  5842. kfree(sched_group_nodes);
  5843. #endif
  5844. return -ENOMEM;
  5845. }
  5846. #if SCHED_CPUMASK_ALLOC
  5847. /* get space for all scratch cpumask variables */
  5848. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5849. if (!allmasks) {
  5850. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5851. kfree(rd);
  5852. #ifdef CONFIG_NUMA
  5853. kfree(sched_group_nodes);
  5854. #endif
  5855. return -ENOMEM;
  5856. }
  5857. #endif
  5858. tmpmask = (cpumask_t *)allmasks;
  5859. #ifdef CONFIG_NUMA
  5860. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5861. #endif
  5862. /*
  5863. * Set up domains for cpus specified by the cpu_map.
  5864. */
  5865. for_each_cpu_mask(i, *cpu_map) {
  5866. struct sched_domain *sd = NULL, *p;
  5867. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5868. *nodemask = node_to_cpumask(cpu_to_node(i));
  5869. cpus_and(*nodemask, *nodemask, *cpu_map);
  5870. #ifdef CONFIG_NUMA
  5871. if (cpus_weight(*cpu_map) >
  5872. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5873. sd = &per_cpu(allnodes_domains, i);
  5874. SD_INIT(sd, ALLNODES);
  5875. sd->span = *cpu_map;
  5876. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5877. p = sd;
  5878. sd_allnodes = 1;
  5879. } else
  5880. p = NULL;
  5881. sd = &per_cpu(node_domains, i);
  5882. SD_INIT(sd, NODE);
  5883. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5884. sd->parent = p;
  5885. if (p)
  5886. p->child = sd;
  5887. cpus_and(sd->span, sd->span, *cpu_map);
  5888. #endif
  5889. p = sd;
  5890. sd = &per_cpu(phys_domains, i);
  5891. SD_INIT(sd, CPU);
  5892. sd->span = *nodemask;
  5893. sd->parent = p;
  5894. if (p)
  5895. p->child = sd;
  5896. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5897. #ifdef CONFIG_SCHED_MC
  5898. p = sd;
  5899. sd = &per_cpu(core_domains, i);
  5900. SD_INIT(sd, MC);
  5901. sd->span = cpu_coregroup_map(i);
  5902. cpus_and(sd->span, sd->span, *cpu_map);
  5903. sd->parent = p;
  5904. p->child = sd;
  5905. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5906. #endif
  5907. #ifdef CONFIG_SCHED_SMT
  5908. p = sd;
  5909. sd = &per_cpu(cpu_domains, i);
  5910. SD_INIT(sd, SIBLING);
  5911. sd->span = per_cpu(cpu_sibling_map, i);
  5912. cpus_and(sd->span, sd->span, *cpu_map);
  5913. sd->parent = p;
  5914. p->child = sd;
  5915. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5916. #endif
  5917. }
  5918. #ifdef CONFIG_SCHED_SMT
  5919. /* Set up CPU (sibling) groups */
  5920. for_each_cpu_mask(i, *cpu_map) {
  5921. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5922. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5923. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5924. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5925. if (i != first_cpu(*this_sibling_map))
  5926. continue;
  5927. init_sched_build_groups(this_sibling_map, cpu_map,
  5928. &cpu_to_cpu_group,
  5929. send_covered, tmpmask);
  5930. }
  5931. #endif
  5932. #ifdef CONFIG_SCHED_MC
  5933. /* Set up multi-core groups */
  5934. for_each_cpu_mask(i, *cpu_map) {
  5935. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  5936. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5937. *this_core_map = cpu_coregroup_map(i);
  5938. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  5939. if (i != first_cpu(*this_core_map))
  5940. continue;
  5941. init_sched_build_groups(this_core_map, cpu_map,
  5942. &cpu_to_core_group,
  5943. send_covered, tmpmask);
  5944. }
  5945. #endif
  5946. /* Set up physical groups */
  5947. for (i = 0; i < MAX_NUMNODES; i++) {
  5948. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5949. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5950. *nodemask = node_to_cpumask(i);
  5951. cpus_and(*nodemask, *nodemask, *cpu_map);
  5952. if (cpus_empty(*nodemask))
  5953. continue;
  5954. init_sched_build_groups(nodemask, cpu_map,
  5955. &cpu_to_phys_group,
  5956. send_covered, tmpmask);
  5957. }
  5958. #ifdef CONFIG_NUMA
  5959. /* Set up node groups */
  5960. if (sd_allnodes) {
  5961. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5962. init_sched_build_groups(cpu_map, cpu_map,
  5963. &cpu_to_allnodes_group,
  5964. send_covered, tmpmask);
  5965. }
  5966. for (i = 0; i < MAX_NUMNODES; i++) {
  5967. /* Set up node groups */
  5968. struct sched_group *sg, *prev;
  5969. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5970. SCHED_CPUMASK_VAR(domainspan, allmasks);
  5971. SCHED_CPUMASK_VAR(covered, allmasks);
  5972. int j;
  5973. *nodemask = node_to_cpumask(i);
  5974. cpus_clear(*covered);
  5975. cpus_and(*nodemask, *nodemask, *cpu_map);
  5976. if (cpus_empty(*nodemask)) {
  5977. sched_group_nodes[i] = NULL;
  5978. continue;
  5979. }
  5980. sched_domain_node_span(i, domainspan);
  5981. cpus_and(*domainspan, *domainspan, *cpu_map);
  5982. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5983. if (!sg) {
  5984. printk(KERN_WARNING "Can not alloc domain group for "
  5985. "node %d\n", i);
  5986. goto error;
  5987. }
  5988. sched_group_nodes[i] = sg;
  5989. for_each_cpu_mask(j, *nodemask) {
  5990. struct sched_domain *sd;
  5991. sd = &per_cpu(node_domains, j);
  5992. sd->groups = sg;
  5993. }
  5994. sg->__cpu_power = 0;
  5995. sg->cpumask = *nodemask;
  5996. sg->next = sg;
  5997. cpus_or(*covered, *covered, *nodemask);
  5998. prev = sg;
  5999. for (j = 0; j < MAX_NUMNODES; j++) {
  6000. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6001. int n = (i + j) % MAX_NUMNODES;
  6002. node_to_cpumask_ptr(pnodemask, n);
  6003. cpus_complement(*notcovered, *covered);
  6004. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6005. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6006. if (cpus_empty(*tmpmask))
  6007. break;
  6008. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6009. if (cpus_empty(*tmpmask))
  6010. continue;
  6011. sg = kmalloc_node(sizeof(struct sched_group),
  6012. GFP_KERNEL, i);
  6013. if (!sg) {
  6014. printk(KERN_WARNING
  6015. "Can not alloc domain group for node %d\n", j);
  6016. goto error;
  6017. }
  6018. sg->__cpu_power = 0;
  6019. sg->cpumask = *tmpmask;
  6020. sg->next = prev->next;
  6021. cpus_or(*covered, *covered, *tmpmask);
  6022. prev->next = sg;
  6023. prev = sg;
  6024. }
  6025. }
  6026. #endif
  6027. /* Calculate CPU power for physical packages and nodes */
  6028. #ifdef CONFIG_SCHED_SMT
  6029. for_each_cpu_mask(i, *cpu_map) {
  6030. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6031. init_sched_groups_power(i, sd);
  6032. }
  6033. #endif
  6034. #ifdef CONFIG_SCHED_MC
  6035. for_each_cpu_mask(i, *cpu_map) {
  6036. struct sched_domain *sd = &per_cpu(core_domains, i);
  6037. init_sched_groups_power(i, sd);
  6038. }
  6039. #endif
  6040. for_each_cpu_mask(i, *cpu_map) {
  6041. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6042. init_sched_groups_power(i, sd);
  6043. }
  6044. #ifdef CONFIG_NUMA
  6045. for (i = 0; i < MAX_NUMNODES; i++)
  6046. init_numa_sched_groups_power(sched_group_nodes[i]);
  6047. if (sd_allnodes) {
  6048. struct sched_group *sg;
  6049. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6050. tmpmask);
  6051. init_numa_sched_groups_power(sg);
  6052. }
  6053. #endif
  6054. /* Attach the domains */
  6055. for_each_cpu_mask(i, *cpu_map) {
  6056. struct sched_domain *sd;
  6057. #ifdef CONFIG_SCHED_SMT
  6058. sd = &per_cpu(cpu_domains, i);
  6059. #elif defined(CONFIG_SCHED_MC)
  6060. sd = &per_cpu(core_domains, i);
  6061. #else
  6062. sd = &per_cpu(phys_domains, i);
  6063. #endif
  6064. cpu_attach_domain(sd, rd, i);
  6065. }
  6066. SCHED_CPUMASK_FREE((void *)allmasks);
  6067. return 0;
  6068. #ifdef CONFIG_NUMA
  6069. error:
  6070. free_sched_groups(cpu_map, tmpmask);
  6071. SCHED_CPUMASK_FREE((void *)allmasks);
  6072. return -ENOMEM;
  6073. #endif
  6074. }
  6075. static cpumask_t *doms_cur; /* current sched domains */
  6076. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6077. /*
  6078. * Special case: If a kmalloc of a doms_cur partition (array of
  6079. * cpumask_t) fails, then fallback to a single sched domain,
  6080. * as determined by the single cpumask_t fallback_doms.
  6081. */
  6082. static cpumask_t fallback_doms;
  6083. void __attribute__((weak)) arch_update_cpu_topology(void)
  6084. {
  6085. }
  6086. /*
  6087. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6088. * For now this just excludes isolated cpus, but could be used to
  6089. * exclude other special cases in the future.
  6090. */
  6091. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6092. {
  6093. int err;
  6094. arch_update_cpu_topology();
  6095. ndoms_cur = 1;
  6096. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6097. if (!doms_cur)
  6098. doms_cur = &fallback_doms;
  6099. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6100. err = build_sched_domains(doms_cur);
  6101. register_sched_domain_sysctl();
  6102. return err;
  6103. }
  6104. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6105. cpumask_t *tmpmask)
  6106. {
  6107. free_sched_groups(cpu_map, tmpmask);
  6108. }
  6109. /*
  6110. * Detach sched domains from a group of cpus specified in cpu_map
  6111. * These cpus will now be attached to the NULL domain
  6112. */
  6113. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6114. {
  6115. cpumask_t tmpmask;
  6116. int i;
  6117. unregister_sched_domain_sysctl();
  6118. for_each_cpu_mask(i, *cpu_map)
  6119. cpu_attach_domain(NULL, &def_root_domain, i);
  6120. synchronize_sched();
  6121. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6122. }
  6123. /*
  6124. * Partition sched domains as specified by the 'ndoms_new'
  6125. * cpumasks in the array doms_new[] of cpumasks. This compares
  6126. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6127. * It destroys each deleted domain and builds each new domain.
  6128. *
  6129. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6130. * The masks don't intersect (don't overlap.) We should setup one
  6131. * sched domain for each mask. CPUs not in any of the cpumasks will
  6132. * not be load balanced. If the same cpumask appears both in the
  6133. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6134. * it as it is.
  6135. *
  6136. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6137. * ownership of it and will kfree it when done with it. If the caller
  6138. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6139. * and partition_sched_domains() will fallback to the single partition
  6140. * 'fallback_doms'.
  6141. *
  6142. * Call with hotplug lock held
  6143. */
  6144. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6145. {
  6146. int i, j;
  6147. lock_doms_cur();
  6148. /* always unregister in case we don't destroy any domains */
  6149. unregister_sched_domain_sysctl();
  6150. if (doms_new == NULL) {
  6151. ndoms_new = 1;
  6152. doms_new = &fallback_doms;
  6153. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6154. }
  6155. /* Destroy deleted domains */
  6156. for (i = 0; i < ndoms_cur; i++) {
  6157. for (j = 0; j < ndoms_new; j++) {
  6158. if (cpus_equal(doms_cur[i], doms_new[j]))
  6159. goto match1;
  6160. }
  6161. /* no match - a current sched domain not in new doms_new[] */
  6162. detach_destroy_domains(doms_cur + i);
  6163. match1:
  6164. ;
  6165. }
  6166. /* Build new domains */
  6167. for (i = 0; i < ndoms_new; i++) {
  6168. for (j = 0; j < ndoms_cur; j++) {
  6169. if (cpus_equal(doms_new[i], doms_cur[j]))
  6170. goto match2;
  6171. }
  6172. /* no match - add a new doms_new */
  6173. build_sched_domains(doms_new + i);
  6174. match2:
  6175. ;
  6176. }
  6177. /* Remember the new sched domains */
  6178. if (doms_cur != &fallback_doms)
  6179. kfree(doms_cur);
  6180. doms_cur = doms_new;
  6181. ndoms_cur = ndoms_new;
  6182. register_sched_domain_sysctl();
  6183. unlock_doms_cur();
  6184. }
  6185. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6186. int arch_reinit_sched_domains(void)
  6187. {
  6188. int err;
  6189. get_online_cpus();
  6190. detach_destroy_domains(&cpu_online_map);
  6191. err = arch_init_sched_domains(&cpu_online_map);
  6192. put_online_cpus();
  6193. return err;
  6194. }
  6195. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6196. {
  6197. int ret;
  6198. if (buf[0] != '0' && buf[0] != '1')
  6199. return -EINVAL;
  6200. if (smt)
  6201. sched_smt_power_savings = (buf[0] == '1');
  6202. else
  6203. sched_mc_power_savings = (buf[0] == '1');
  6204. ret = arch_reinit_sched_domains();
  6205. return ret ? ret : count;
  6206. }
  6207. #ifdef CONFIG_SCHED_MC
  6208. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6209. {
  6210. return sprintf(page, "%u\n", sched_mc_power_savings);
  6211. }
  6212. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6213. const char *buf, size_t count)
  6214. {
  6215. return sched_power_savings_store(buf, count, 0);
  6216. }
  6217. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6218. sched_mc_power_savings_store);
  6219. #endif
  6220. #ifdef CONFIG_SCHED_SMT
  6221. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6222. {
  6223. return sprintf(page, "%u\n", sched_smt_power_savings);
  6224. }
  6225. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6226. const char *buf, size_t count)
  6227. {
  6228. return sched_power_savings_store(buf, count, 1);
  6229. }
  6230. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6231. sched_smt_power_savings_store);
  6232. #endif
  6233. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6234. {
  6235. int err = 0;
  6236. #ifdef CONFIG_SCHED_SMT
  6237. if (smt_capable())
  6238. err = sysfs_create_file(&cls->kset.kobj,
  6239. &attr_sched_smt_power_savings.attr);
  6240. #endif
  6241. #ifdef CONFIG_SCHED_MC
  6242. if (!err && mc_capable())
  6243. err = sysfs_create_file(&cls->kset.kobj,
  6244. &attr_sched_mc_power_savings.attr);
  6245. #endif
  6246. return err;
  6247. }
  6248. #endif
  6249. /*
  6250. * Force a reinitialization of the sched domains hierarchy. The domains
  6251. * and groups cannot be updated in place without racing with the balancing
  6252. * code, so we temporarily attach all running cpus to the NULL domain
  6253. * which will prevent rebalancing while the sched domains are recalculated.
  6254. */
  6255. static int update_sched_domains(struct notifier_block *nfb,
  6256. unsigned long action, void *hcpu)
  6257. {
  6258. switch (action) {
  6259. case CPU_UP_PREPARE:
  6260. case CPU_UP_PREPARE_FROZEN:
  6261. case CPU_DOWN_PREPARE:
  6262. case CPU_DOWN_PREPARE_FROZEN:
  6263. detach_destroy_domains(&cpu_online_map);
  6264. return NOTIFY_OK;
  6265. case CPU_UP_CANCELED:
  6266. case CPU_UP_CANCELED_FROZEN:
  6267. case CPU_DOWN_FAILED:
  6268. case CPU_DOWN_FAILED_FROZEN:
  6269. case CPU_ONLINE:
  6270. case CPU_ONLINE_FROZEN:
  6271. case CPU_DEAD:
  6272. case CPU_DEAD_FROZEN:
  6273. /*
  6274. * Fall through and re-initialise the domains.
  6275. */
  6276. break;
  6277. default:
  6278. return NOTIFY_DONE;
  6279. }
  6280. /* The hotplug lock is already held by cpu_up/cpu_down */
  6281. arch_init_sched_domains(&cpu_online_map);
  6282. return NOTIFY_OK;
  6283. }
  6284. void __init sched_init_smp(void)
  6285. {
  6286. cpumask_t non_isolated_cpus;
  6287. #if defined(CONFIG_NUMA)
  6288. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6289. GFP_KERNEL);
  6290. BUG_ON(sched_group_nodes_bycpu == NULL);
  6291. #endif
  6292. get_online_cpus();
  6293. arch_init_sched_domains(&cpu_online_map);
  6294. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6295. if (cpus_empty(non_isolated_cpus))
  6296. cpu_set(smp_processor_id(), non_isolated_cpus);
  6297. put_online_cpus();
  6298. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6299. hotcpu_notifier(update_sched_domains, 0);
  6300. /* Move init over to a non-isolated CPU */
  6301. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6302. BUG();
  6303. sched_init_granularity();
  6304. }
  6305. #else
  6306. void __init sched_init_smp(void)
  6307. {
  6308. #if defined(CONFIG_NUMA)
  6309. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6310. GFP_KERNEL);
  6311. BUG_ON(sched_group_nodes_bycpu == NULL);
  6312. #endif
  6313. sched_init_granularity();
  6314. }
  6315. #endif /* CONFIG_SMP */
  6316. int in_sched_functions(unsigned long addr)
  6317. {
  6318. return in_lock_functions(addr) ||
  6319. (addr >= (unsigned long)__sched_text_start
  6320. && addr < (unsigned long)__sched_text_end);
  6321. }
  6322. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6323. {
  6324. cfs_rq->tasks_timeline = RB_ROOT;
  6325. #ifdef CONFIG_FAIR_GROUP_SCHED
  6326. cfs_rq->rq = rq;
  6327. #endif
  6328. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6329. }
  6330. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6331. {
  6332. struct rt_prio_array *array;
  6333. int i;
  6334. array = &rt_rq->active;
  6335. for (i = 0; i < MAX_RT_PRIO; i++) {
  6336. INIT_LIST_HEAD(array->queue + i);
  6337. __clear_bit(i, array->bitmap);
  6338. }
  6339. /* delimiter for bitsearch: */
  6340. __set_bit(MAX_RT_PRIO, array->bitmap);
  6341. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6342. rt_rq->highest_prio = MAX_RT_PRIO;
  6343. #endif
  6344. #ifdef CONFIG_SMP
  6345. rt_rq->rt_nr_migratory = 0;
  6346. rt_rq->overloaded = 0;
  6347. #endif
  6348. rt_rq->rt_time = 0;
  6349. rt_rq->rt_throttled = 0;
  6350. rt_rq->rt_runtime = 0;
  6351. spin_lock_init(&rt_rq->rt_runtime_lock);
  6352. #ifdef CONFIG_RT_GROUP_SCHED
  6353. rt_rq->rt_nr_boosted = 0;
  6354. rt_rq->rq = rq;
  6355. #endif
  6356. }
  6357. #ifdef CONFIG_FAIR_GROUP_SCHED
  6358. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6359. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6360. int cpu, int add)
  6361. {
  6362. tg->cfs_rq[cpu] = cfs_rq;
  6363. init_cfs_rq(cfs_rq, rq);
  6364. cfs_rq->tg = tg;
  6365. if (add)
  6366. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6367. tg->se[cpu] = se;
  6368. se->cfs_rq = &rq->cfs;
  6369. se->my_q = cfs_rq;
  6370. se->load.weight = tg->shares;
  6371. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6372. se->parent = NULL;
  6373. }
  6374. #endif
  6375. #ifdef CONFIG_RT_GROUP_SCHED
  6376. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6377. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6378. int cpu, int add)
  6379. {
  6380. tg->rt_rq[cpu] = rt_rq;
  6381. init_rt_rq(rt_rq, rq);
  6382. rt_rq->tg = tg;
  6383. rt_rq->rt_se = rt_se;
  6384. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6385. if (add)
  6386. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6387. tg->rt_se[cpu] = rt_se;
  6388. rt_se->rt_rq = &rq->rt;
  6389. rt_se->my_q = rt_rq;
  6390. rt_se->parent = NULL;
  6391. INIT_LIST_HEAD(&rt_se->run_list);
  6392. }
  6393. #endif
  6394. void __init sched_init(void)
  6395. {
  6396. int i, j;
  6397. unsigned long alloc_size = 0, ptr;
  6398. #ifdef CONFIG_FAIR_GROUP_SCHED
  6399. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6400. #endif
  6401. #ifdef CONFIG_RT_GROUP_SCHED
  6402. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6403. #endif
  6404. /*
  6405. * As sched_init() is called before page_alloc is setup,
  6406. * we use alloc_bootmem().
  6407. */
  6408. if (alloc_size) {
  6409. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6410. #ifdef CONFIG_FAIR_GROUP_SCHED
  6411. init_task_group.se = (struct sched_entity **)ptr;
  6412. ptr += nr_cpu_ids * sizeof(void **);
  6413. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6414. ptr += nr_cpu_ids * sizeof(void **);
  6415. #endif
  6416. #ifdef CONFIG_RT_GROUP_SCHED
  6417. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6418. ptr += nr_cpu_ids * sizeof(void **);
  6419. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6420. #endif
  6421. }
  6422. #ifdef CONFIG_SMP
  6423. init_defrootdomain();
  6424. #endif
  6425. init_rt_bandwidth(&def_rt_bandwidth,
  6426. global_rt_period(), global_rt_runtime());
  6427. #ifdef CONFIG_RT_GROUP_SCHED
  6428. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6429. global_rt_period(), global_rt_runtime());
  6430. #endif
  6431. #ifdef CONFIG_GROUP_SCHED
  6432. list_add(&init_task_group.list, &task_groups);
  6433. #endif
  6434. for_each_possible_cpu(i) {
  6435. struct rq *rq;
  6436. rq = cpu_rq(i);
  6437. spin_lock_init(&rq->lock);
  6438. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6439. rq->nr_running = 0;
  6440. rq->clock = 1;
  6441. update_last_tick_seen(rq);
  6442. init_cfs_rq(&rq->cfs, rq);
  6443. init_rt_rq(&rq->rt, rq);
  6444. #ifdef CONFIG_FAIR_GROUP_SCHED
  6445. init_task_group.shares = init_task_group_load;
  6446. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6447. init_tg_cfs_entry(rq, &init_task_group,
  6448. &per_cpu(init_cfs_rq, i),
  6449. &per_cpu(init_sched_entity, i), i, 1);
  6450. #endif
  6451. #ifdef CONFIG_RT_GROUP_SCHED
  6452. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6453. init_tg_rt_entry(rq, &init_task_group,
  6454. &per_cpu(init_rt_rq, i),
  6455. &per_cpu(init_sched_rt_entity, i), i, 1);
  6456. #else
  6457. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6458. #endif
  6459. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6460. rq->cpu_load[j] = 0;
  6461. #ifdef CONFIG_SMP
  6462. rq->sd = NULL;
  6463. rq->rd = NULL;
  6464. rq->active_balance = 0;
  6465. rq->next_balance = jiffies;
  6466. rq->push_cpu = 0;
  6467. rq->cpu = i;
  6468. rq->migration_thread = NULL;
  6469. INIT_LIST_HEAD(&rq->migration_queue);
  6470. rq_attach_root(rq, &def_root_domain);
  6471. #endif
  6472. init_rq_hrtick(rq);
  6473. atomic_set(&rq->nr_iowait, 0);
  6474. }
  6475. set_load_weight(&init_task);
  6476. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6477. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6478. #endif
  6479. #ifdef CONFIG_SMP
  6480. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6481. #endif
  6482. #ifdef CONFIG_RT_MUTEXES
  6483. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6484. #endif
  6485. /*
  6486. * The boot idle thread does lazy MMU switching as well:
  6487. */
  6488. atomic_inc(&init_mm.mm_count);
  6489. enter_lazy_tlb(&init_mm, current);
  6490. /*
  6491. * Make us the idle thread. Technically, schedule() should not be
  6492. * called from this thread, however somewhere below it might be,
  6493. * but because we are the idle thread, we just pick up running again
  6494. * when this runqueue becomes "idle".
  6495. */
  6496. init_idle(current, smp_processor_id());
  6497. /*
  6498. * During early bootup we pretend to be a normal task:
  6499. */
  6500. current->sched_class = &fair_sched_class;
  6501. scheduler_running = 1;
  6502. }
  6503. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6504. void __might_sleep(char *file, int line)
  6505. {
  6506. #ifdef in_atomic
  6507. static unsigned long prev_jiffy; /* ratelimiting */
  6508. if ((in_atomic() || irqs_disabled()) &&
  6509. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6510. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6511. return;
  6512. prev_jiffy = jiffies;
  6513. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6514. " context at %s:%d\n", file, line);
  6515. printk("in_atomic():%d, irqs_disabled():%d\n",
  6516. in_atomic(), irqs_disabled());
  6517. debug_show_held_locks(current);
  6518. if (irqs_disabled())
  6519. print_irqtrace_events(current);
  6520. dump_stack();
  6521. }
  6522. #endif
  6523. }
  6524. EXPORT_SYMBOL(__might_sleep);
  6525. #endif
  6526. #ifdef CONFIG_MAGIC_SYSRQ
  6527. static void normalize_task(struct rq *rq, struct task_struct *p)
  6528. {
  6529. int on_rq;
  6530. update_rq_clock(rq);
  6531. on_rq = p->se.on_rq;
  6532. if (on_rq)
  6533. deactivate_task(rq, p, 0);
  6534. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6535. if (on_rq) {
  6536. activate_task(rq, p, 0);
  6537. resched_task(rq->curr);
  6538. }
  6539. }
  6540. void normalize_rt_tasks(void)
  6541. {
  6542. struct task_struct *g, *p;
  6543. unsigned long flags;
  6544. struct rq *rq;
  6545. read_lock_irqsave(&tasklist_lock, flags);
  6546. do_each_thread(g, p) {
  6547. /*
  6548. * Only normalize user tasks:
  6549. */
  6550. if (!p->mm)
  6551. continue;
  6552. p->se.exec_start = 0;
  6553. #ifdef CONFIG_SCHEDSTATS
  6554. p->se.wait_start = 0;
  6555. p->se.sleep_start = 0;
  6556. p->se.block_start = 0;
  6557. #endif
  6558. task_rq(p)->clock = 0;
  6559. if (!rt_task(p)) {
  6560. /*
  6561. * Renice negative nice level userspace
  6562. * tasks back to 0:
  6563. */
  6564. if (TASK_NICE(p) < 0 && p->mm)
  6565. set_user_nice(p, 0);
  6566. continue;
  6567. }
  6568. spin_lock(&p->pi_lock);
  6569. rq = __task_rq_lock(p);
  6570. normalize_task(rq, p);
  6571. __task_rq_unlock(rq);
  6572. spin_unlock(&p->pi_lock);
  6573. } while_each_thread(g, p);
  6574. read_unlock_irqrestore(&tasklist_lock, flags);
  6575. }
  6576. #endif /* CONFIG_MAGIC_SYSRQ */
  6577. #ifdef CONFIG_IA64
  6578. /*
  6579. * These functions are only useful for the IA64 MCA handling.
  6580. *
  6581. * They can only be called when the whole system has been
  6582. * stopped - every CPU needs to be quiescent, and no scheduling
  6583. * activity can take place. Using them for anything else would
  6584. * be a serious bug, and as a result, they aren't even visible
  6585. * under any other configuration.
  6586. */
  6587. /**
  6588. * curr_task - return the current task for a given cpu.
  6589. * @cpu: the processor in question.
  6590. *
  6591. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6592. */
  6593. struct task_struct *curr_task(int cpu)
  6594. {
  6595. return cpu_curr(cpu);
  6596. }
  6597. /**
  6598. * set_curr_task - set the current task for a given cpu.
  6599. * @cpu: the processor in question.
  6600. * @p: the task pointer to set.
  6601. *
  6602. * Description: This function must only be used when non-maskable interrupts
  6603. * are serviced on a separate stack. It allows the architecture to switch the
  6604. * notion of the current task on a cpu in a non-blocking manner. This function
  6605. * must be called with all CPU's synchronized, and interrupts disabled, the
  6606. * and caller must save the original value of the current task (see
  6607. * curr_task() above) and restore that value before reenabling interrupts and
  6608. * re-starting the system.
  6609. *
  6610. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6611. */
  6612. void set_curr_task(int cpu, struct task_struct *p)
  6613. {
  6614. cpu_curr(cpu) = p;
  6615. }
  6616. #endif
  6617. #ifdef CONFIG_FAIR_GROUP_SCHED
  6618. static void free_fair_sched_group(struct task_group *tg)
  6619. {
  6620. int i;
  6621. for_each_possible_cpu(i) {
  6622. if (tg->cfs_rq)
  6623. kfree(tg->cfs_rq[i]);
  6624. if (tg->se)
  6625. kfree(tg->se[i]);
  6626. }
  6627. kfree(tg->cfs_rq);
  6628. kfree(tg->se);
  6629. }
  6630. static int alloc_fair_sched_group(struct task_group *tg)
  6631. {
  6632. struct cfs_rq *cfs_rq;
  6633. struct sched_entity *se;
  6634. struct rq *rq;
  6635. int i;
  6636. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6637. if (!tg->cfs_rq)
  6638. goto err;
  6639. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6640. if (!tg->se)
  6641. goto err;
  6642. tg->shares = NICE_0_LOAD;
  6643. for_each_possible_cpu(i) {
  6644. rq = cpu_rq(i);
  6645. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6646. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6647. if (!cfs_rq)
  6648. goto err;
  6649. se = kmalloc_node(sizeof(struct sched_entity),
  6650. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6651. if (!se)
  6652. goto err;
  6653. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6654. }
  6655. return 1;
  6656. err:
  6657. return 0;
  6658. }
  6659. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6660. {
  6661. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6662. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6663. }
  6664. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6665. {
  6666. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6667. }
  6668. #else
  6669. static inline void free_fair_sched_group(struct task_group *tg)
  6670. {
  6671. }
  6672. static inline int alloc_fair_sched_group(struct task_group *tg)
  6673. {
  6674. return 1;
  6675. }
  6676. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6677. {
  6678. }
  6679. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6680. {
  6681. }
  6682. #endif
  6683. #ifdef CONFIG_RT_GROUP_SCHED
  6684. static void free_rt_sched_group(struct task_group *tg)
  6685. {
  6686. int i;
  6687. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6688. for_each_possible_cpu(i) {
  6689. if (tg->rt_rq)
  6690. kfree(tg->rt_rq[i]);
  6691. if (tg->rt_se)
  6692. kfree(tg->rt_se[i]);
  6693. }
  6694. kfree(tg->rt_rq);
  6695. kfree(tg->rt_se);
  6696. }
  6697. static int alloc_rt_sched_group(struct task_group *tg)
  6698. {
  6699. struct rt_rq *rt_rq;
  6700. struct sched_rt_entity *rt_se;
  6701. struct rq *rq;
  6702. int i;
  6703. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6704. if (!tg->rt_rq)
  6705. goto err;
  6706. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6707. if (!tg->rt_se)
  6708. goto err;
  6709. init_rt_bandwidth(&tg->rt_bandwidth,
  6710. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6711. for_each_possible_cpu(i) {
  6712. rq = cpu_rq(i);
  6713. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6714. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6715. if (!rt_rq)
  6716. goto err;
  6717. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6718. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6719. if (!rt_se)
  6720. goto err;
  6721. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6722. }
  6723. return 1;
  6724. err:
  6725. return 0;
  6726. }
  6727. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6728. {
  6729. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6730. &cpu_rq(cpu)->leaf_rt_rq_list);
  6731. }
  6732. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6733. {
  6734. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6735. }
  6736. #else
  6737. static inline void free_rt_sched_group(struct task_group *tg)
  6738. {
  6739. }
  6740. static inline int alloc_rt_sched_group(struct task_group *tg)
  6741. {
  6742. return 1;
  6743. }
  6744. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6745. {
  6746. }
  6747. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6748. {
  6749. }
  6750. #endif
  6751. #ifdef CONFIG_GROUP_SCHED
  6752. static void free_sched_group(struct task_group *tg)
  6753. {
  6754. free_fair_sched_group(tg);
  6755. free_rt_sched_group(tg);
  6756. kfree(tg);
  6757. }
  6758. /* allocate runqueue etc for a new task group */
  6759. struct task_group *sched_create_group(void)
  6760. {
  6761. struct task_group *tg;
  6762. unsigned long flags;
  6763. int i;
  6764. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6765. if (!tg)
  6766. return ERR_PTR(-ENOMEM);
  6767. if (!alloc_fair_sched_group(tg))
  6768. goto err;
  6769. if (!alloc_rt_sched_group(tg))
  6770. goto err;
  6771. spin_lock_irqsave(&task_group_lock, flags);
  6772. for_each_possible_cpu(i) {
  6773. register_fair_sched_group(tg, i);
  6774. register_rt_sched_group(tg, i);
  6775. }
  6776. list_add_rcu(&tg->list, &task_groups);
  6777. spin_unlock_irqrestore(&task_group_lock, flags);
  6778. return tg;
  6779. err:
  6780. free_sched_group(tg);
  6781. return ERR_PTR(-ENOMEM);
  6782. }
  6783. /* rcu callback to free various structures associated with a task group */
  6784. static void free_sched_group_rcu(struct rcu_head *rhp)
  6785. {
  6786. /* now it should be safe to free those cfs_rqs */
  6787. free_sched_group(container_of(rhp, struct task_group, rcu));
  6788. }
  6789. /* Destroy runqueue etc associated with a task group */
  6790. void sched_destroy_group(struct task_group *tg)
  6791. {
  6792. unsigned long flags;
  6793. int i;
  6794. spin_lock_irqsave(&task_group_lock, flags);
  6795. for_each_possible_cpu(i) {
  6796. unregister_fair_sched_group(tg, i);
  6797. unregister_rt_sched_group(tg, i);
  6798. }
  6799. list_del_rcu(&tg->list);
  6800. spin_unlock_irqrestore(&task_group_lock, flags);
  6801. /* wait for possible concurrent references to cfs_rqs complete */
  6802. call_rcu(&tg->rcu, free_sched_group_rcu);
  6803. }
  6804. /* change task's runqueue when it moves between groups.
  6805. * The caller of this function should have put the task in its new group
  6806. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6807. * reflect its new group.
  6808. */
  6809. void sched_move_task(struct task_struct *tsk)
  6810. {
  6811. int on_rq, running;
  6812. unsigned long flags;
  6813. struct rq *rq;
  6814. rq = task_rq_lock(tsk, &flags);
  6815. update_rq_clock(rq);
  6816. running = task_current(rq, tsk);
  6817. on_rq = tsk->se.on_rq;
  6818. if (on_rq)
  6819. dequeue_task(rq, tsk, 0);
  6820. if (unlikely(running))
  6821. tsk->sched_class->put_prev_task(rq, tsk);
  6822. set_task_rq(tsk, task_cpu(tsk));
  6823. #ifdef CONFIG_FAIR_GROUP_SCHED
  6824. if (tsk->sched_class->moved_group)
  6825. tsk->sched_class->moved_group(tsk);
  6826. #endif
  6827. if (unlikely(running))
  6828. tsk->sched_class->set_curr_task(rq);
  6829. if (on_rq)
  6830. enqueue_task(rq, tsk, 0);
  6831. task_rq_unlock(rq, &flags);
  6832. }
  6833. #endif
  6834. #ifdef CONFIG_FAIR_GROUP_SCHED
  6835. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6836. {
  6837. struct cfs_rq *cfs_rq = se->cfs_rq;
  6838. struct rq *rq = cfs_rq->rq;
  6839. int on_rq;
  6840. spin_lock_irq(&rq->lock);
  6841. on_rq = se->on_rq;
  6842. if (on_rq)
  6843. dequeue_entity(cfs_rq, se, 0);
  6844. se->load.weight = shares;
  6845. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6846. if (on_rq)
  6847. enqueue_entity(cfs_rq, se, 0);
  6848. spin_unlock_irq(&rq->lock);
  6849. }
  6850. static DEFINE_MUTEX(shares_mutex);
  6851. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6852. {
  6853. int i;
  6854. unsigned long flags;
  6855. /*
  6856. * A weight of 0 or 1 can cause arithmetics problems.
  6857. * (The default weight is 1024 - so there's no practical
  6858. * limitation from this.)
  6859. */
  6860. if (shares < 2)
  6861. shares = 2;
  6862. mutex_lock(&shares_mutex);
  6863. if (tg->shares == shares)
  6864. goto done;
  6865. spin_lock_irqsave(&task_group_lock, flags);
  6866. for_each_possible_cpu(i)
  6867. unregister_fair_sched_group(tg, i);
  6868. spin_unlock_irqrestore(&task_group_lock, flags);
  6869. /* wait for any ongoing reference to this group to finish */
  6870. synchronize_sched();
  6871. /*
  6872. * Now we are free to modify the group's share on each cpu
  6873. * w/o tripping rebalance_share or load_balance_fair.
  6874. */
  6875. tg->shares = shares;
  6876. for_each_possible_cpu(i)
  6877. set_se_shares(tg->se[i], shares);
  6878. /*
  6879. * Enable load balance activity on this group, by inserting it back on
  6880. * each cpu's rq->leaf_cfs_rq_list.
  6881. */
  6882. spin_lock_irqsave(&task_group_lock, flags);
  6883. for_each_possible_cpu(i)
  6884. register_fair_sched_group(tg, i);
  6885. spin_unlock_irqrestore(&task_group_lock, flags);
  6886. done:
  6887. mutex_unlock(&shares_mutex);
  6888. return 0;
  6889. }
  6890. unsigned long sched_group_shares(struct task_group *tg)
  6891. {
  6892. return tg->shares;
  6893. }
  6894. #endif
  6895. #ifdef CONFIG_RT_GROUP_SCHED
  6896. /*
  6897. * Ensure that the real time constraints are schedulable.
  6898. */
  6899. static DEFINE_MUTEX(rt_constraints_mutex);
  6900. static unsigned long to_ratio(u64 period, u64 runtime)
  6901. {
  6902. if (runtime == RUNTIME_INF)
  6903. return 1ULL << 16;
  6904. return div64_64(runtime << 16, period);
  6905. }
  6906. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6907. {
  6908. struct task_group *tgi;
  6909. unsigned long total = 0;
  6910. unsigned long global_ratio =
  6911. to_ratio(global_rt_period(), global_rt_runtime());
  6912. rcu_read_lock();
  6913. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6914. if (tgi == tg)
  6915. continue;
  6916. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6917. tgi->rt_bandwidth.rt_runtime);
  6918. }
  6919. rcu_read_unlock();
  6920. return total + to_ratio(period, runtime) < global_ratio;
  6921. }
  6922. /* Must be called with tasklist_lock held */
  6923. static inline int tg_has_rt_tasks(struct task_group *tg)
  6924. {
  6925. struct task_struct *g, *p;
  6926. do_each_thread(g, p) {
  6927. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6928. return 1;
  6929. } while_each_thread(g, p);
  6930. return 0;
  6931. }
  6932. static int tg_set_bandwidth(struct task_group *tg,
  6933. u64 rt_period, u64 rt_runtime)
  6934. {
  6935. int i, err = 0;
  6936. mutex_lock(&rt_constraints_mutex);
  6937. read_lock(&tasklist_lock);
  6938. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6939. err = -EBUSY;
  6940. goto unlock;
  6941. }
  6942. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6943. err = -EINVAL;
  6944. goto unlock;
  6945. }
  6946. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6947. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6948. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6949. for_each_possible_cpu(i) {
  6950. struct rt_rq *rt_rq = tg->rt_rq[i];
  6951. spin_lock(&rt_rq->rt_runtime_lock);
  6952. rt_rq->rt_runtime = rt_runtime;
  6953. spin_unlock(&rt_rq->rt_runtime_lock);
  6954. }
  6955. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6956. unlock:
  6957. read_unlock(&tasklist_lock);
  6958. mutex_unlock(&rt_constraints_mutex);
  6959. return err;
  6960. }
  6961. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6962. {
  6963. u64 rt_runtime, rt_period;
  6964. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6965. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6966. if (rt_runtime_us < 0)
  6967. rt_runtime = RUNTIME_INF;
  6968. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6969. }
  6970. long sched_group_rt_runtime(struct task_group *tg)
  6971. {
  6972. u64 rt_runtime_us;
  6973. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6974. return -1;
  6975. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6976. do_div(rt_runtime_us, NSEC_PER_USEC);
  6977. return rt_runtime_us;
  6978. }
  6979. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6980. {
  6981. u64 rt_runtime, rt_period;
  6982. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6983. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6984. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6985. }
  6986. long sched_group_rt_period(struct task_group *tg)
  6987. {
  6988. u64 rt_period_us;
  6989. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6990. do_div(rt_period_us, NSEC_PER_USEC);
  6991. return rt_period_us;
  6992. }
  6993. static int sched_rt_global_constraints(void)
  6994. {
  6995. int ret = 0;
  6996. mutex_lock(&rt_constraints_mutex);
  6997. if (!__rt_schedulable(NULL, 1, 0))
  6998. ret = -EINVAL;
  6999. mutex_unlock(&rt_constraints_mutex);
  7000. return ret;
  7001. }
  7002. #else
  7003. static int sched_rt_global_constraints(void)
  7004. {
  7005. unsigned long flags;
  7006. int i;
  7007. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7008. for_each_possible_cpu(i) {
  7009. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7010. spin_lock(&rt_rq->rt_runtime_lock);
  7011. rt_rq->rt_runtime = global_rt_runtime();
  7012. spin_unlock(&rt_rq->rt_runtime_lock);
  7013. }
  7014. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7015. return 0;
  7016. }
  7017. #endif
  7018. int sched_rt_handler(struct ctl_table *table, int write,
  7019. struct file *filp, void __user *buffer, size_t *lenp,
  7020. loff_t *ppos)
  7021. {
  7022. int ret;
  7023. int old_period, old_runtime;
  7024. static DEFINE_MUTEX(mutex);
  7025. mutex_lock(&mutex);
  7026. old_period = sysctl_sched_rt_period;
  7027. old_runtime = sysctl_sched_rt_runtime;
  7028. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7029. if (!ret && write) {
  7030. ret = sched_rt_global_constraints();
  7031. if (ret) {
  7032. sysctl_sched_rt_period = old_period;
  7033. sysctl_sched_rt_runtime = old_runtime;
  7034. } else {
  7035. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7036. def_rt_bandwidth.rt_period =
  7037. ns_to_ktime(global_rt_period());
  7038. }
  7039. }
  7040. mutex_unlock(&mutex);
  7041. return ret;
  7042. }
  7043. #ifdef CONFIG_CGROUP_SCHED
  7044. /* return corresponding task_group object of a cgroup */
  7045. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7046. {
  7047. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7048. struct task_group, css);
  7049. }
  7050. static struct cgroup_subsys_state *
  7051. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7052. {
  7053. struct task_group *tg;
  7054. if (!cgrp->parent) {
  7055. /* This is early initialization for the top cgroup */
  7056. init_task_group.css.cgroup = cgrp;
  7057. return &init_task_group.css;
  7058. }
  7059. /* we support only 1-level deep hierarchical scheduler atm */
  7060. if (cgrp->parent->parent)
  7061. return ERR_PTR(-EINVAL);
  7062. tg = sched_create_group();
  7063. if (IS_ERR(tg))
  7064. return ERR_PTR(-ENOMEM);
  7065. /* Bind the cgroup to task_group object we just created */
  7066. tg->css.cgroup = cgrp;
  7067. return &tg->css;
  7068. }
  7069. static void
  7070. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7071. {
  7072. struct task_group *tg = cgroup_tg(cgrp);
  7073. sched_destroy_group(tg);
  7074. }
  7075. static int
  7076. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7077. struct task_struct *tsk)
  7078. {
  7079. #ifdef CONFIG_RT_GROUP_SCHED
  7080. /* Don't accept realtime tasks when there is no way for them to run */
  7081. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7082. return -EINVAL;
  7083. #else
  7084. /* We don't support RT-tasks being in separate groups */
  7085. if (tsk->sched_class != &fair_sched_class)
  7086. return -EINVAL;
  7087. #endif
  7088. return 0;
  7089. }
  7090. static void
  7091. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7092. struct cgroup *old_cont, struct task_struct *tsk)
  7093. {
  7094. sched_move_task(tsk);
  7095. }
  7096. #ifdef CONFIG_FAIR_GROUP_SCHED
  7097. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7098. u64 shareval)
  7099. {
  7100. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7101. }
  7102. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7103. {
  7104. struct task_group *tg = cgroup_tg(cgrp);
  7105. return (u64) tg->shares;
  7106. }
  7107. #endif
  7108. #ifdef CONFIG_RT_GROUP_SCHED
  7109. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7110. struct file *file,
  7111. const char __user *userbuf,
  7112. size_t nbytes, loff_t *unused_ppos)
  7113. {
  7114. char buffer[64];
  7115. int retval = 0;
  7116. s64 val;
  7117. char *end;
  7118. if (!nbytes)
  7119. return -EINVAL;
  7120. if (nbytes >= sizeof(buffer))
  7121. return -E2BIG;
  7122. if (copy_from_user(buffer, userbuf, nbytes))
  7123. return -EFAULT;
  7124. buffer[nbytes] = 0; /* nul-terminate */
  7125. /* strip newline if necessary */
  7126. if (nbytes && (buffer[nbytes-1] == '\n'))
  7127. buffer[nbytes-1] = 0;
  7128. val = simple_strtoll(buffer, &end, 0);
  7129. if (*end)
  7130. return -EINVAL;
  7131. /* Pass to subsystem */
  7132. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7133. if (!retval)
  7134. retval = nbytes;
  7135. return retval;
  7136. }
  7137. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7138. struct file *file,
  7139. char __user *buf, size_t nbytes,
  7140. loff_t *ppos)
  7141. {
  7142. char tmp[64];
  7143. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7144. int len = sprintf(tmp, "%ld\n", val);
  7145. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7146. }
  7147. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7148. u64 rt_period_us)
  7149. {
  7150. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7151. }
  7152. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7153. {
  7154. return sched_group_rt_period(cgroup_tg(cgrp));
  7155. }
  7156. #endif
  7157. static struct cftype cpu_files[] = {
  7158. #ifdef CONFIG_FAIR_GROUP_SCHED
  7159. {
  7160. .name = "shares",
  7161. .read_uint = cpu_shares_read_uint,
  7162. .write_uint = cpu_shares_write_uint,
  7163. },
  7164. #endif
  7165. #ifdef CONFIG_RT_GROUP_SCHED
  7166. {
  7167. .name = "rt_runtime_us",
  7168. .read = cpu_rt_runtime_read,
  7169. .write = cpu_rt_runtime_write,
  7170. },
  7171. {
  7172. .name = "rt_period_us",
  7173. .read_uint = cpu_rt_period_read_uint,
  7174. .write_uint = cpu_rt_period_write_uint,
  7175. },
  7176. #endif
  7177. };
  7178. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7179. {
  7180. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7181. }
  7182. struct cgroup_subsys cpu_cgroup_subsys = {
  7183. .name = "cpu",
  7184. .create = cpu_cgroup_create,
  7185. .destroy = cpu_cgroup_destroy,
  7186. .can_attach = cpu_cgroup_can_attach,
  7187. .attach = cpu_cgroup_attach,
  7188. .populate = cpu_cgroup_populate,
  7189. .subsys_id = cpu_cgroup_subsys_id,
  7190. .early_init = 1,
  7191. };
  7192. #endif /* CONFIG_CGROUP_SCHED */
  7193. #ifdef CONFIG_CGROUP_CPUACCT
  7194. /*
  7195. * CPU accounting code for task groups.
  7196. *
  7197. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7198. * (balbir@in.ibm.com).
  7199. */
  7200. /* track cpu usage of a group of tasks */
  7201. struct cpuacct {
  7202. struct cgroup_subsys_state css;
  7203. /* cpuusage holds pointer to a u64-type object on every cpu */
  7204. u64 *cpuusage;
  7205. };
  7206. struct cgroup_subsys cpuacct_subsys;
  7207. /* return cpu accounting group corresponding to this container */
  7208. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7209. {
  7210. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7211. struct cpuacct, css);
  7212. }
  7213. /* return cpu accounting group to which this task belongs */
  7214. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7215. {
  7216. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7217. struct cpuacct, css);
  7218. }
  7219. /* create a new cpu accounting group */
  7220. static struct cgroup_subsys_state *cpuacct_create(
  7221. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7222. {
  7223. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7224. if (!ca)
  7225. return ERR_PTR(-ENOMEM);
  7226. ca->cpuusage = alloc_percpu(u64);
  7227. if (!ca->cpuusage) {
  7228. kfree(ca);
  7229. return ERR_PTR(-ENOMEM);
  7230. }
  7231. return &ca->css;
  7232. }
  7233. /* destroy an existing cpu accounting group */
  7234. static void
  7235. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7236. {
  7237. struct cpuacct *ca = cgroup_ca(cgrp);
  7238. free_percpu(ca->cpuusage);
  7239. kfree(ca);
  7240. }
  7241. /* return total cpu usage (in nanoseconds) of a group */
  7242. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7243. {
  7244. struct cpuacct *ca = cgroup_ca(cgrp);
  7245. u64 totalcpuusage = 0;
  7246. int i;
  7247. for_each_possible_cpu(i) {
  7248. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7249. /*
  7250. * Take rq->lock to make 64-bit addition safe on 32-bit
  7251. * platforms.
  7252. */
  7253. spin_lock_irq(&cpu_rq(i)->lock);
  7254. totalcpuusage += *cpuusage;
  7255. spin_unlock_irq(&cpu_rq(i)->lock);
  7256. }
  7257. return totalcpuusage;
  7258. }
  7259. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7260. u64 reset)
  7261. {
  7262. struct cpuacct *ca = cgroup_ca(cgrp);
  7263. int err = 0;
  7264. int i;
  7265. if (reset) {
  7266. err = -EINVAL;
  7267. goto out;
  7268. }
  7269. for_each_possible_cpu(i) {
  7270. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7271. spin_lock_irq(&cpu_rq(i)->lock);
  7272. *cpuusage = 0;
  7273. spin_unlock_irq(&cpu_rq(i)->lock);
  7274. }
  7275. out:
  7276. return err;
  7277. }
  7278. static struct cftype files[] = {
  7279. {
  7280. .name = "usage",
  7281. .read_uint = cpuusage_read,
  7282. .write_uint = cpuusage_write,
  7283. },
  7284. };
  7285. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7286. {
  7287. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7288. }
  7289. /*
  7290. * charge this task's execution time to its accounting group.
  7291. *
  7292. * called with rq->lock held.
  7293. */
  7294. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7295. {
  7296. struct cpuacct *ca;
  7297. if (!cpuacct_subsys.active)
  7298. return;
  7299. ca = task_ca(tsk);
  7300. if (ca) {
  7301. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7302. *cpuusage += cputime;
  7303. }
  7304. }
  7305. struct cgroup_subsys cpuacct_subsys = {
  7306. .name = "cpuacct",
  7307. .create = cpuacct_create,
  7308. .destroy = cpuacct_destroy,
  7309. .populate = cpuacct_populate,
  7310. .subsys_id = cpuacct_subsys_id,
  7311. };
  7312. #endif /* CONFIG_CGROUP_CPUACCT */