kvm_main.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_exits", &kvm_stat.irq_exits },
  56. { 0, 0 }
  57. };
  58. static struct dentry *debugfs_dir;
  59. #define MAX_IO_MSRS 256
  60. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  61. #define LMSW_GUEST_MASK 0x0eULL
  62. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  63. #define CR8_RESEVED_BITS (~0x0fULL)
  64. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  65. #ifdef CONFIG_X86_64
  66. // LDT or TSS descriptor in the GDT. 16 bytes.
  67. struct segment_descriptor_64 {
  68. struct segment_descriptor s;
  69. u32 base_higher;
  70. u32 pad_zero;
  71. };
  72. #endif
  73. unsigned long segment_base(u16 selector)
  74. {
  75. struct descriptor_table gdt;
  76. struct segment_descriptor *d;
  77. unsigned long table_base;
  78. typedef unsigned long ul;
  79. unsigned long v;
  80. if (selector == 0)
  81. return 0;
  82. asm ("sgdt %0" : "=m"(gdt));
  83. table_base = gdt.base;
  84. if (selector & 4) { /* from ldt */
  85. u16 ldt_selector;
  86. asm ("sldt %0" : "=g"(ldt_selector));
  87. table_base = segment_base(ldt_selector);
  88. }
  89. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  90. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  91. #ifdef CONFIG_X86_64
  92. if (d->system == 0
  93. && (d->type == 2 || d->type == 9 || d->type == 11))
  94. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  95. #endif
  96. return v;
  97. }
  98. EXPORT_SYMBOL_GPL(segment_base);
  99. static inline int valid_vcpu(int n)
  100. {
  101. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  102. }
  103. int kvm_read_guest(struct kvm_vcpu *vcpu,
  104. gva_t addr,
  105. unsigned long size,
  106. void *dest)
  107. {
  108. unsigned char *host_buf = dest;
  109. unsigned long req_size = size;
  110. while (size) {
  111. hpa_t paddr;
  112. unsigned now;
  113. unsigned offset;
  114. hva_t guest_buf;
  115. paddr = gva_to_hpa(vcpu, addr);
  116. if (is_error_hpa(paddr))
  117. break;
  118. guest_buf = (hva_t)kmap_atomic(
  119. pfn_to_page(paddr >> PAGE_SHIFT),
  120. KM_USER0);
  121. offset = addr & ~PAGE_MASK;
  122. guest_buf |= offset;
  123. now = min(size, PAGE_SIZE - offset);
  124. memcpy(host_buf, (void*)guest_buf, now);
  125. host_buf += now;
  126. addr += now;
  127. size -= now;
  128. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  129. }
  130. return req_size - size;
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_read_guest);
  133. int kvm_write_guest(struct kvm_vcpu *vcpu,
  134. gva_t addr,
  135. unsigned long size,
  136. void *data)
  137. {
  138. unsigned char *host_buf = data;
  139. unsigned long req_size = size;
  140. while (size) {
  141. hpa_t paddr;
  142. unsigned now;
  143. unsigned offset;
  144. hva_t guest_buf;
  145. paddr = gva_to_hpa(vcpu, addr);
  146. if (is_error_hpa(paddr))
  147. break;
  148. guest_buf = (hva_t)kmap_atomic(
  149. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  150. offset = addr & ~PAGE_MASK;
  151. guest_buf |= offset;
  152. now = min(size, PAGE_SIZE - offset);
  153. memcpy((void*)guest_buf, host_buf, now);
  154. host_buf += now;
  155. addr += now;
  156. size -= now;
  157. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  158. }
  159. return req_size - size;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_write_guest);
  162. static int vcpu_slot(struct kvm_vcpu *vcpu)
  163. {
  164. return vcpu - vcpu->kvm->vcpus;
  165. }
  166. /*
  167. * Switches to specified vcpu, until a matching vcpu_put()
  168. */
  169. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  170. {
  171. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  172. mutex_lock(&vcpu->mutex);
  173. if (unlikely(!vcpu->vmcs)) {
  174. mutex_unlock(&vcpu->mutex);
  175. return 0;
  176. }
  177. return kvm_arch_ops->vcpu_load(vcpu);
  178. }
  179. static void vcpu_put(struct kvm_vcpu *vcpu)
  180. {
  181. kvm_arch_ops->vcpu_put(vcpu);
  182. mutex_unlock(&vcpu->mutex);
  183. }
  184. static int kvm_dev_open(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  187. int i;
  188. if (!kvm)
  189. return -ENOMEM;
  190. spin_lock_init(&kvm->lock);
  191. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  192. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  193. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  194. mutex_init(&vcpu->mutex);
  195. vcpu->mmu.root_hpa = INVALID_PAGE;
  196. INIT_LIST_HEAD(&vcpu->free_pages);
  197. }
  198. filp->private_data = kvm;
  199. return 0;
  200. }
  201. /*
  202. * Free any memory in @free but not in @dont.
  203. */
  204. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  205. struct kvm_memory_slot *dont)
  206. {
  207. int i;
  208. if (!dont || free->phys_mem != dont->phys_mem)
  209. if (free->phys_mem) {
  210. for (i = 0; i < free->npages; ++i)
  211. if (free->phys_mem[i])
  212. __free_page(free->phys_mem[i]);
  213. vfree(free->phys_mem);
  214. }
  215. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  216. vfree(free->dirty_bitmap);
  217. free->phys_mem = 0;
  218. free->npages = 0;
  219. free->dirty_bitmap = 0;
  220. }
  221. static void kvm_free_physmem(struct kvm *kvm)
  222. {
  223. int i;
  224. for (i = 0; i < kvm->nmemslots; ++i)
  225. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  226. }
  227. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  228. {
  229. kvm_arch_ops->vcpu_free(vcpu);
  230. kvm_mmu_destroy(vcpu);
  231. }
  232. static void kvm_free_vcpus(struct kvm *kvm)
  233. {
  234. unsigned int i;
  235. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  236. kvm_free_vcpu(&kvm->vcpus[i]);
  237. }
  238. static int kvm_dev_release(struct inode *inode, struct file *filp)
  239. {
  240. struct kvm *kvm = filp->private_data;
  241. kvm_free_vcpus(kvm);
  242. kvm_free_physmem(kvm);
  243. kfree(kvm);
  244. return 0;
  245. }
  246. static void inject_gp(struct kvm_vcpu *vcpu)
  247. {
  248. kvm_arch_ops->inject_gp(vcpu, 0);
  249. }
  250. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  251. unsigned long cr3)
  252. {
  253. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  254. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  255. int i;
  256. u64 pdpte;
  257. u64 *pdpt;
  258. struct kvm_memory_slot *memslot;
  259. spin_lock(&vcpu->kvm->lock);
  260. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  261. /* FIXME: !memslot - emulate? 0xff? */
  262. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  263. for (i = 0; i < 4; ++i) {
  264. pdpte = pdpt[offset + i];
  265. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  266. break;
  267. }
  268. kunmap_atomic(pdpt, KM_USER0);
  269. spin_unlock(&vcpu->kvm->lock);
  270. return i != 4;
  271. }
  272. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  273. {
  274. if (cr0 & CR0_RESEVED_BITS) {
  275. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  276. cr0, vcpu->cr0);
  277. inject_gp(vcpu);
  278. return;
  279. }
  280. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  282. inject_gp(vcpu);
  283. return;
  284. }
  285. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  287. "and a clear PE flag\n");
  288. inject_gp(vcpu);
  289. return;
  290. }
  291. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  292. #ifdef CONFIG_X86_64
  293. if ((vcpu->shadow_efer & EFER_LME)) {
  294. int cs_db, cs_l;
  295. if (!is_pae(vcpu)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  297. "in long mode while PAE is disabled\n");
  298. inject_gp(vcpu);
  299. return;
  300. }
  301. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  302. if (cs_l) {
  303. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  304. "in long mode while CS.L == 1\n");
  305. inject_gp(vcpu);
  306. return;
  307. }
  308. } else
  309. #endif
  310. if (is_pae(vcpu) &&
  311. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  312. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  313. "reserved bits\n");
  314. inject_gp(vcpu);
  315. return;
  316. }
  317. }
  318. kvm_arch_ops->set_cr0(vcpu, cr0);
  319. vcpu->cr0 = cr0;
  320. spin_lock(&vcpu->kvm->lock);
  321. kvm_mmu_reset_context(vcpu);
  322. spin_unlock(&vcpu->kvm->lock);
  323. return;
  324. }
  325. EXPORT_SYMBOL_GPL(set_cr0);
  326. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  327. {
  328. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  329. }
  330. EXPORT_SYMBOL_GPL(lmsw);
  331. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  332. {
  333. if (cr4 & CR4_RESEVED_BITS) {
  334. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  335. inject_gp(vcpu);
  336. return;
  337. }
  338. if (is_long_mode(vcpu)) {
  339. if (!(cr4 & CR4_PAE_MASK)) {
  340. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  341. "in long mode\n");
  342. inject_gp(vcpu);
  343. return;
  344. }
  345. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  346. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  347. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  348. inject_gp(vcpu);
  349. }
  350. if (cr4 & CR4_VMXE_MASK) {
  351. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  352. inject_gp(vcpu);
  353. return;
  354. }
  355. kvm_arch_ops->set_cr4(vcpu, cr4);
  356. spin_lock(&vcpu->kvm->lock);
  357. kvm_mmu_reset_context(vcpu);
  358. spin_unlock(&vcpu->kvm->lock);
  359. }
  360. EXPORT_SYMBOL_GPL(set_cr4);
  361. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  362. {
  363. if (is_long_mode(vcpu)) {
  364. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  365. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  366. inject_gp(vcpu);
  367. return;
  368. }
  369. } else {
  370. if (cr3 & CR3_RESEVED_BITS) {
  371. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if (is_paging(vcpu) && is_pae(vcpu) &&
  376. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  377. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  378. "reserved bits\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. }
  383. vcpu->cr3 = cr3;
  384. spin_lock(&vcpu->kvm->lock);
  385. vcpu->mmu.new_cr3(vcpu);
  386. spin_unlock(&vcpu->kvm->lock);
  387. }
  388. EXPORT_SYMBOL_GPL(set_cr3);
  389. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  390. {
  391. if ( cr8 & CR8_RESEVED_BITS) {
  392. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. vcpu->cr8 = cr8;
  397. }
  398. EXPORT_SYMBOL_GPL(set_cr8);
  399. void fx_init(struct kvm_vcpu *vcpu)
  400. {
  401. struct __attribute__ ((__packed__)) fx_image_s {
  402. u16 control; //fcw
  403. u16 status; //fsw
  404. u16 tag; // ftw
  405. u16 opcode; //fop
  406. u64 ip; // fpu ip
  407. u64 operand;// fpu dp
  408. u32 mxcsr;
  409. u32 mxcsr_mask;
  410. } *fx_image;
  411. fx_save(vcpu->host_fx_image);
  412. fpu_init();
  413. fx_save(vcpu->guest_fx_image);
  414. fx_restore(vcpu->host_fx_image);
  415. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  416. fx_image->mxcsr = 0x1f80;
  417. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  418. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  419. }
  420. EXPORT_SYMBOL_GPL(fx_init);
  421. /*
  422. * Creates some virtual cpus. Good luck creating more than one.
  423. */
  424. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  425. {
  426. int r;
  427. struct kvm_vcpu *vcpu;
  428. r = -EINVAL;
  429. if (!valid_vcpu(n))
  430. goto out;
  431. vcpu = &kvm->vcpus[n];
  432. mutex_lock(&vcpu->mutex);
  433. if (vcpu->vmcs) {
  434. mutex_unlock(&vcpu->mutex);
  435. return -EEXIST;
  436. }
  437. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  438. FX_IMAGE_ALIGN);
  439. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  440. vcpu->cpu = -1; /* First load will set up TR */
  441. vcpu->kvm = kvm;
  442. r = kvm_arch_ops->vcpu_create(vcpu);
  443. if (r < 0)
  444. goto out_free_vcpus;
  445. r = kvm_mmu_create(vcpu);
  446. if (r < 0)
  447. goto out_free_vcpus;
  448. kvm_arch_ops->vcpu_load(vcpu);
  449. r = kvm_mmu_setup(vcpu);
  450. if (r >= 0)
  451. r = kvm_arch_ops->vcpu_setup(vcpu);
  452. vcpu_put(vcpu);
  453. if (r < 0)
  454. goto out_free_vcpus;
  455. return 0;
  456. out_free_vcpus:
  457. kvm_free_vcpu(vcpu);
  458. mutex_unlock(&vcpu->mutex);
  459. out:
  460. return r;
  461. }
  462. /*
  463. * Allocate some memory and give it an address in the guest physical address
  464. * space.
  465. *
  466. * Discontiguous memory is allowed, mostly for framebuffers.
  467. */
  468. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  469. struct kvm_memory_region *mem)
  470. {
  471. int r;
  472. gfn_t base_gfn;
  473. unsigned long npages;
  474. unsigned long i;
  475. struct kvm_memory_slot *memslot;
  476. struct kvm_memory_slot old, new;
  477. int memory_config_version;
  478. r = -EINVAL;
  479. /* General sanity checks */
  480. if (mem->memory_size & (PAGE_SIZE - 1))
  481. goto out;
  482. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  483. goto out;
  484. if (mem->slot >= KVM_MEMORY_SLOTS)
  485. goto out;
  486. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  487. goto out;
  488. memslot = &kvm->memslots[mem->slot];
  489. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  490. npages = mem->memory_size >> PAGE_SHIFT;
  491. if (!npages)
  492. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  493. raced:
  494. spin_lock(&kvm->lock);
  495. memory_config_version = kvm->memory_config_version;
  496. new = old = *memslot;
  497. new.base_gfn = base_gfn;
  498. new.npages = npages;
  499. new.flags = mem->flags;
  500. /* Disallow changing a memory slot's size. */
  501. r = -EINVAL;
  502. if (npages && old.npages && npages != old.npages)
  503. goto out_unlock;
  504. /* Check for overlaps */
  505. r = -EEXIST;
  506. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  507. struct kvm_memory_slot *s = &kvm->memslots[i];
  508. if (s == memslot)
  509. continue;
  510. if (!((base_gfn + npages <= s->base_gfn) ||
  511. (base_gfn >= s->base_gfn + s->npages)))
  512. goto out_unlock;
  513. }
  514. /*
  515. * Do memory allocations outside lock. memory_config_version will
  516. * detect any races.
  517. */
  518. spin_unlock(&kvm->lock);
  519. /* Deallocate if slot is being removed */
  520. if (!npages)
  521. new.phys_mem = 0;
  522. /* Free page dirty bitmap if unneeded */
  523. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  524. new.dirty_bitmap = 0;
  525. r = -ENOMEM;
  526. /* Allocate if a slot is being created */
  527. if (npages && !new.phys_mem) {
  528. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  529. if (!new.phys_mem)
  530. goto out_free;
  531. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  532. for (i = 0; i < npages; ++i) {
  533. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  534. | __GFP_ZERO);
  535. if (!new.phys_mem[i])
  536. goto out_free;
  537. }
  538. }
  539. /* Allocate page dirty bitmap if needed */
  540. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  541. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  542. new.dirty_bitmap = vmalloc(dirty_bytes);
  543. if (!new.dirty_bitmap)
  544. goto out_free;
  545. memset(new.dirty_bitmap, 0, dirty_bytes);
  546. }
  547. spin_lock(&kvm->lock);
  548. if (memory_config_version != kvm->memory_config_version) {
  549. spin_unlock(&kvm->lock);
  550. kvm_free_physmem_slot(&new, &old);
  551. goto raced;
  552. }
  553. r = -EAGAIN;
  554. if (kvm->busy)
  555. goto out_unlock;
  556. if (mem->slot >= kvm->nmemslots)
  557. kvm->nmemslots = mem->slot + 1;
  558. *memslot = new;
  559. ++kvm->memory_config_version;
  560. spin_unlock(&kvm->lock);
  561. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  562. struct kvm_vcpu *vcpu;
  563. vcpu = vcpu_load(kvm, i);
  564. if (!vcpu)
  565. continue;
  566. kvm_mmu_reset_context(vcpu);
  567. vcpu_put(vcpu);
  568. }
  569. kvm_free_physmem_slot(&old, &new);
  570. return 0;
  571. out_unlock:
  572. spin_unlock(&kvm->lock);
  573. out_free:
  574. kvm_free_physmem_slot(&new, &old);
  575. out:
  576. return r;
  577. }
  578. /*
  579. * Get (and clear) the dirty memory log for a memory slot.
  580. */
  581. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  582. struct kvm_dirty_log *log)
  583. {
  584. struct kvm_memory_slot *memslot;
  585. int r, i;
  586. int n;
  587. unsigned long any = 0;
  588. spin_lock(&kvm->lock);
  589. /*
  590. * Prevent changes to guest memory configuration even while the lock
  591. * is not taken.
  592. */
  593. ++kvm->busy;
  594. spin_unlock(&kvm->lock);
  595. r = -EINVAL;
  596. if (log->slot >= KVM_MEMORY_SLOTS)
  597. goto out;
  598. memslot = &kvm->memslots[log->slot];
  599. r = -ENOENT;
  600. if (!memslot->dirty_bitmap)
  601. goto out;
  602. n = ALIGN(memslot->npages, 8) / 8;
  603. for (i = 0; !any && i < n; ++i)
  604. any = memslot->dirty_bitmap[i];
  605. r = -EFAULT;
  606. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  607. goto out;
  608. if (any) {
  609. spin_lock(&kvm->lock);
  610. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  611. spin_unlock(&kvm->lock);
  612. memset(memslot->dirty_bitmap, 0, n);
  613. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  614. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  615. if (!vcpu)
  616. continue;
  617. kvm_arch_ops->tlb_flush(vcpu);
  618. vcpu_put(vcpu);
  619. }
  620. }
  621. r = 0;
  622. out:
  623. spin_lock(&kvm->lock);
  624. --kvm->busy;
  625. spin_unlock(&kvm->lock);
  626. return r;
  627. }
  628. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  629. {
  630. int i;
  631. for (i = 0; i < kvm->nmemslots; ++i) {
  632. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  633. if (gfn >= memslot->base_gfn
  634. && gfn < memslot->base_gfn + memslot->npages)
  635. return memslot;
  636. }
  637. return 0;
  638. }
  639. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  640. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  641. {
  642. int i;
  643. struct kvm_memory_slot *memslot = 0;
  644. unsigned long rel_gfn;
  645. for (i = 0; i < kvm->nmemslots; ++i) {
  646. memslot = &kvm->memslots[i];
  647. if (gfn >= memslot->base_gfn
  648. && gfn < memslot->base_gfn + memslot->npages) {
  649. if (!memslot || !memslot->dirty_bitmap)
  650. return;
  651. rel_gfn = gfn - memslot->base_gfn;
  652. /* avoid RMW */
  653. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  654. set_bit(rel_gfn, memslot->dirty_bitmap);
  655. return;
  656. }
  657. }
  658. }
  659. static int emulator_read_std(unsigned long addr,
  660. unsigned long *val,
  661. unsigned int bytes,
  662. struct x86_emulate_ctxt *ctxt)
  663. {
  664. struct kvm_vcpu *vcpu = ctxt->vcpu;
  665. void *data = val;
  666. while (bytes) {
  667. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  668. unsigned offset = addr & (PAGE_SIZE-1);
  669. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  670. unsigned long pfn;
  671. struct kvm_memory_slot *memslot;
  672. void *page;
  673. if (gpa == UNMAPPED_GVA)
  674. return X86EMUL_PROPAGATE_FAULT;
  675. pfn = gpa >> PAGE_SHIFT;
  676. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  677. if (!memslot)
  678. return X86EMUL_UNHANDLEABLE;
  679. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  680. memcpy(data, page + offset, tocopy);
  681. kunmap_atomic(page, KM_USER0);
  682. bytes -= tocopy;
  683. data += tocopy;
  684. addr += tocopy;
  685. }
  686. return X86EMUL_CONTINUE;
  687. }
  688. static int emulator_write_std(unsigned long addr,
  689. unsigned long val,
  690. unsigned int bytes,
  691. struct x86_emulate_ctxt *ctxt)
  692. {
  693. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  694. addr, bytes);
  695. return X86EMUL_UNHANDLEABLE;
  696. }
  697. static int emulator_read_emulated(unsigned long addr,
  698. unsigned long *val,
  699. unsigned int bytes,
  700. struct x86_emulate_ctxt *ctxt)
  701. {
  702. struct kvm_vcpu *vcpu = ctxt->vcpu;
  703. if (vcpu->mmio_read_completed) {
  704. memcpy(val, vcpu->mmio_data, bytes);
  705. vcpu->mmio_read_completed = 0;
  706. return X86EMUL_CONTINUE;
  707. } else if (emulator_read_std(addr, val, bytes, ctxt)
  708. == X86EMUL_CONTINUE)
  709. return X86EMUL_CONTINUE;
  710. else {
  711. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  712. if (gpa == UNMAPPED_GVA)
  713. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  714. vcpu->mmio_needed = 1;
  715. vcpu->mmio_phys_addr = gpa;
  716. vcpu->mmio_size = bytes;
  717. vcpu->mmio_is_write = 0;
  718. return X86EMUL_UNHANDLEABLE;
  719. }
  720. }
  721. static int emulator_write_emulated(unsigned long addr,
  722. unsigned long val,
  723. unsigned int bytes,
  724. struct x86_emulate_ctxt *ctxt)
  725. {
  726. struct kvm_vcpu *vcpu = ctxt->vcpu;
  727. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  728. if (gpa == UNMAPPED_GVA)
  729. return X86EMUL_PROPAGATE_FAULT;
  730. vcpu->mmio_needed = 1;
  731. vcpu->mmio_phys_addr = gpa;
  732. vcpu->mmio_size = bytes;
  733. vcpu->mmio_is_write = 1;
  734. memcpy(vcpu->mmio_data, &val, bytes);
  735. return X86EMUL_CONTINUE;
  736. }
  737. static int emulator_cmpxchg_emulated(unsigned long addr,
  738. unsigned long old,
  739. unsigned long new,
  740. unsigned int bytes,
  741. struct x86_emulate_ctxt *ctxt)
  742. {
  743. static int reported;
  744. if (!reported) {
  745. reported = 1;
  746. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  747. }
  748. return emulator_write_emulated(addr, new, bytes, ctxt);
  749. }
  750. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  751. {
  752. return kvm_arch_ops->get_segment_base(vcpu, seg);
  753. }
  754. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  755. {
  756. spin_lock(&vcpu->kvm->lock);
  757. vcpu->mmu.inval_page(vcpu, address);
  758. spin_unlock(&vcpu->kvm->lock);
  759. kvm_arch_ops->invlpg(vcpu, address);
  760. return X86EMUL_CONTINUE;
  761. }
  762. int emulate_clts(struct kvm_vcpu *vcpu)
  763. {
  764. unsigned long cr0 = vcpu->cr0;
  765. cr0 &= ~CR0_TS_MASK;
  766. kvm_arch_ops->set_cr0(vcpu, cr0);
  767. return X86EMUL_CONTINUE;
  768. }
  769. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  770. {
  771. struct kvm_vcpu *vcpu = ctxt->vcpu;
  772. switch (dr) {
  773. case 0 ... 3:
  774. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  775. return X86EMUL_CONTINUE;
  776. default:
  777. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  778. __FUNCTION__, dr);
  779. return X86EMUL_UNHANDLEABLE;
  780. }
  781. }
  782. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  783. {
  784. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  785. int exception;
  786. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  787. if (exception) {
  788. /* FIXME: better handling */
  789. return X86EMUL_UNHANDLEABLE;
  790. }
  791. return X86EMUL_CONTINUE;
  792. }
  793. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  794. {
  795. static int reported;
  796. u8 opcodes[4];
  797. unsigned long rip = ctxt->vcpu->rip;
  798. unsigned long rip_linear;
  799. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  800. if (reported)
  801. return;
  802. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  803. printk(KERN_ERR "emulation failed but !mmio_needed?"
  804. " rip %lx %02x %02x %02x %02x\n",
  805. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  806. reported = 1;
  807. }
  808. struct x86_emulate_ops emulate_ops = {
  809. .read_std = emulator_read_std,
  810. .write_std = emulator_write_std,
  811. .read_emulated = emulator_read_emulated,
  812. .write_emulated = emulator_write_emulated,
  813. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  814. };
  815. int emulate_instruction(struct kvm_vcpu *vcpu,
  816. struct kvm_run *run,
  817. unsigned long cr2,
  818. u16 error_code)
  819. {
  820. struct x86_emulate_ctxt emulate_ctxt;
  821. int r;
  822. int cs_db, cs_l;
  823. kvm_arch_ops->cache_regs(vcpu);
  824. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  825. emulate_ctxt.vcpu = vcpu;
  826. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  827. emulate_ctxt.cr2 = cr2;
  828. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  829. ? X86EMUL_MODE_REAL : cs_l
  830. ? X86EMUL_MODE_PROT64 : cs_db
  831. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  832. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  833. emulate_ctxt.cs_base = 0;
  834. emulate_ctxt.ds_base = 0;
  835. emulate_ctxt.es_base = 0;
  836. emulate_ctxt.ss_base = 0;
  837. } else {
  838. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  839. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  840. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  841. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  842. }
  843. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  844. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  845. vcpu->mmio_is_write = 0;
  846. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  847. if ((r || vcpu->mmio_is_write) && run) {
  848. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  849. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  850. run->mmio.len = vcpu->mmio_size;
  851. run->mmio.is_write = vcpu->mmio_is_write;
  852. }
  853. if (r) {
  854. if (!vcpu->mmio_needed) {
  855. report_emulation_failure(&emulate_ctxt);
  856. return EMULATE_FAIL;
  857. }
  858. return EMULATE_DO_MMIO;
  859. }
  860. kvm_arch_ops->decache_regs(vcpu);
  861. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  862. if (vcpu->mmio_is_write)
  863. return EMULATE_DO_MMIO;
  864. return EMULATE_DONE;
  865. }
  866. EXPORT_SYMBOL_GPL(emulate_instruction);
  867. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  868. {
  869. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  870. }
  871. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  872. {
  873. struct descriptor_table dt = { limit, base };
  874. kvm_arch_ops->set_gdt(vcpu, &dt);
  875. }
  876. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  877. {
  878. struct descriptor_table dt = { limit, base };
  879. kvm_arch_ops->set_idt(vcpu, &dt);
  880. }
  881. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  882. unsigned long *rflags)
  883. {
  884. lmsw(vcpu, msw);
  885. *rflags = kvm_arch_ops->get_rflags(vcpu);
  886. }
  887. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  888. {
  889. switch (cr) {
  890. case 0:
  891. return vcpu->cr0;
  892. case 2:
  893. return vcpu->cr2;
  894. case 3:
  895. return vcpu->cr3;
  896. case 4:
  897. return vcpu->cr4;
  898. default:
  899. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  900. return 0;
  901. }
  902. }
  903. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  904. unsigned long *rflags)
  905. {
  906. switch (cr) {
  907. case 0:
  908. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  909. *rflags = kvm_arch_ops->get_rflags(vcpu);
  910. break;
  911. case 2:
  912. vcpu->cr2 = val;
  913. break;
  914. case 3:
  915. set_cr3(vcpu, val);
  916. break;
  917. case 4:
  918. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  919. break;
  920. default:
  921. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  922. }
  923. }
  924. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  925. {
  926. u64 data;
  927. switch (msr) {
  928. case 0xc0010010: /* SYSCFG */
  929. case 0xc0010015: /* HWCR */
  930. case MSR_IA32_PLATFORM_ID:
  931. case MSR_IA32_P5_MC_ADDR:
  932. case MSR_IA32_P5_MC_TYPE:
  933. case MSR_IA32_MC0_CTL:
  934. case MSR_IA32_MCG_STATUS:
  935. case MSR_IA32_MCG_CAP:
  936. case MSR_IA32_MC0_MISC:
  937. case MSR_IA32_MC0_MISC+4:
  938. case MSR_IA32_MC0_MISC+8:
  939. case MSR_IA32_MC0_MISC+12:
  940. case MSR_IA32_MC0_MISC+16:
  941. case MSR_IA32_UCODE_REV:
  942. case MSR_IA32_PERF_STATUS:
  943. /* MTRR registers */
  944. case 0xfe:
  945. case 0x200 ... 0x2ff:
  946. data = 0;
  947. break;
  948. case 0xcd: /* fsb frequency */
  949. data = 3;
  950. break;
  951. case MSR_IA32_APICBASE:
  952. data = vcpu->apic_base;
  953. break;
  954. #ifdef CONFIG_X86_64
  955. case MSR_EFER:
  956. data = vcpu->shadow_efer;
  957. break;
  958. #endif
  959. default:
  960. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  961. return 1;
  962. }
  963. *pdata = data;
  964. return 0;
  965. }
  966. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  967. /*
  968. * Reads an msr value (of 'msr_index') into 'pdata'.
  969. * Returns 0 on success, non-0 otherwise.
  970. * Assumes vcpu_load() was already called.
  971. */
  972. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  973. {
  974. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  975. }
  976. #ifdef CONFIG_X86_64
  977. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  978. {
  979. if (efer & EFER_RESERVED_BITS) {
  980. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  981. efer);
  982. inject_gp(vcpu);
  983. return;
  984. }
  985. if (is_paging(vcpu)
  986. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  987. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  988. inject_gp(vcpu);
  989. return;
  990. }
  991. kvm_arch_ops->set_efer(vcpu, efer);
  992. efer &= ~EFER_LMA;
  993. efer |= vcpu->shadow_efer & EFER_LMA;
  994. vcpu->shadow_efer = efer;
  995. }
  996. #endif
  997. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  998. {
  999. switch (msr) {
  1000. #ifdef CONFIG_X86_64
  1001. case MSR_EFER:
  1002. set_efer(vcpu, data);
  1003. break;
  1004. #endif
  1005. case MSR_IA32_MC0_STATUS:
  1006. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1007. __FUNCTION__, data);
  1008. break;
  1009. case MSR_IA32_UCODE_REV:
  1010. case MSR_IA32_UCODE_WRITE:
  1011. case 0x200 ... 0x2ff: /* MTRRs */
  1012. break;
  1013. case MSR_IA32_APICBASE:
  1014. vcpu->apic_base = data;
  1015. break;
  1016. default:
  1017. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1018. return 1;
  1019. }
  1020. return 0;
  1021. }
  1022. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1023. /*
  1024. * Writes msr value into into the appropriate "register".
  1025. * Returns 0 on success, non-0 otherwise.
  1026. * Assumes vcpu_load() was already called.
  1027. */
  1028. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1029. {
  1030. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1031. }
  1032. void kvm_resched(struct kvm_vcpu *vcpu)
  1033. {
  1034. vcpu_put(vcpu);
  1035. cond_resched();
  1036. /* Cannot fail - no vcpu unplug yet. */
  1037. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_resched);
  1040. void load_msrs(struct vmx_msr_entry *e, int n)
  1041. {
  1042. int i;
  1043. for (i = 0; i < n; ++i)
  1044. wrmsrl(e[i].index, e[i].data);
  1045. }
  1046. EXPORT_SYMBOL_GPL(load_msrs);
  1047. void save_msrs(struct vmx_msr_entry *e, int n)
  1048. {
  1049. int i;
  1050. for (i = 0; i < n; ++i)
  1051. rdmsrl(e[i].index, e[i].data);
  1052. }
  1053. EXPORT_SYMBOL_GPL(save_msrs);
  1054. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1055. {
  1056. struct kvm_vcpu *vcpu;
  1057. int r;
  1058. if (!valid_vcpu(kvm_run->vcpu))
  1059. return -EINVAL;
  1060. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1061. if (!vcpu)
  1062. return -ENOENT;
  1063. if (kvm_run->emulated) {
  1064. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1065. kvm_run->emulated = 0;
  1066. }
  1067. if (kvm_run->mmio_completed) {
  1068. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1069. vcpu->mmio_read_completed = 1;
  1070. }
  1071. vcpu->mmio_needed = 0;
  1072. r = kvm_arch_ops->run(vcpu, kvm_run);
  1073. vcpu_put(vcpu);
  1074. return r;
  1075. }
  1076. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1077. {
  1078. struct kvm_vcpu *vcpu;
  1079. if (!valid_vcpu(regs->vcpu))
  1080. return -EINVAL;
  1081. vcpu = vcpu_load(kvm, regs->vcpu);
  1082. if (!vcpu)
  1083. return -ENOENT;
  1084. kvm_arch_ops->cache_regs(vcpu);
  1085. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1086. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1087. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1088. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1089. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1090. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1091. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1092. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1093. #ifdef CONFIG_X86_64
  1094. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1095. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1096. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1097. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1098. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1099. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1100. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1101. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1102. #endif
  1103. regs->rip = vcpu->rip;
  1104. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1105. /*
  1106. * Don't leak debug flags in case they were set for guest debugging
  1107. */
  1108. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1109. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1110. vcpu_put(vcpu);
  1111. return 0;
  1112. }
  1113. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1114. {
  1115. struct kvm_vcpu *vcpu;
  1116. if (!valid_vcpu(regs->vcpu))
  1117. return -EINVAL;
  1118. vcpu = vcpu_load(kvm, regs->vcpu);
  1119. if (!vcpu)
  1120. return -ENOENT;
  1121. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1122. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1123. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1124. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1125. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1126. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1127. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1128. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1129. #ifdef CONFIG_X86_64
  1130. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1131. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1132. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1133. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1134. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1135. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1136. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1137. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1138. #endif
  1139. vcpu->rip = regs->rip;
  1140. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1141. kvm_arch_ops->decache_regs(vcpu);
  1142. vcpu_put(vcpu);
  1143. return 0;
  1144. }
  1145. static void get_segment(struct kvm_vcpu *vcpu,
  1146. struct kvm_segment *var, int seg)
  1147. {
  1148. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1149. }
  1150. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1151. {
  1152. struct kvm_vcpu *vcpu;
  1153. struct descriptor_table dt;
  1154. if (!valid_vcpu(sregs->vcpu))
  1155. return -EINVAL;
  1156. vcpu = vcpu_load(kvm, sregs->vcpu);
  1157. if (!vcpu)
  1158. return -ENOENT;
  1159. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1160. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1161. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1162. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1163. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1164. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1165. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1166. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1167. kvm_arch_ops->get_idt(vcpu, &dt);
  1168. sregs->idt.limit = dt.limit;
  1169. sregs->idt.base = dt.base;
  1170. kvm_arch_ops->get_gdt(vcpu, &dt);
  1171. sregs->gdt.limit = dt.limit;
  1172. sregs->gdt.base = dt.base;
  1173. sregs->cr0 = vcpu->cr0;
  1174. sregs->cr2 = vcpu->cr2;
  1175. sregs->cr3 = vcpu->cr3;
  1176. sregs->cr4 = vcpu->cr4;
  1177. sregs->cr8 = vcpu->cr8;
  1178. sregs->efer = vcpu->shadow_efer;
  1179. sregs->apic_base = vcpu->apic_base;
  1180. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1181. sizeof sregs->interrupt_bitmap);
  1182. vcpu_put(vcpu);
  1183. return 0;
  1184. }
  1185. static void set_segment(struct kvm_vcpu *vcpu,
  1186. struct kvm_segment *var, int seg)
  1187. {
  1188. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1189. }
  1190. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1191. {
  1192. struct kvm_vcpu *vcpu;
  1193. int mmu_reset_needed = 0;
  1194. int i;
  1195. struct descriptor_table dt;
  1196. if (!valid_vcpu(sregs->vcpu))
  1197. return -EINVAL;
  1198. vcpu = vcpu_load(kvm, sregs->vcpu);
  1199. if (!vcpu)
  1200. return -ENOENT;
  1201. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1202. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1203. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1204. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1205. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1206. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1207. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1208. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1209. dt.limit = sregs->idt.limit;
  1210. dt.base = sregs->idt.base;
  1211. kvm_arch_ops->set_idt(vcpu, &dt);
  1212. dt.limit = sregs->gdt.limit;
  1213. dt.base = sregs->gdt.base;
  1214. kvm_arch_ops->set_gdt(vcpu, &dt);
  1215. vcpu->cr2 = sregs->cr2;
  1216. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1217. vcpu->cr3 = sregs->cr3;
  1218. vcpu->cr8 = sregs->cr8;
  1219. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1220. #ifdef CONFIG_X86_64
  1221. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1222. #endif
  1223. vcpu->apic_base = sregs->apic_base;
  1224. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1225. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1226. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1227. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1228. if (mmu_reset_needed)
  1229. kvm_mmu_reset_context(vcpu);
  1230. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1231. sizeof vcpu->irq_pending);
  1232. vcpu->irq_summary = 0;
  1233. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1234. if (vcpu->irq_pending[i])
  1235. __set_bit(i, &vcpu->irq_summary);
  1236. vcpu_put(vcpu);
  1237. return 0;
  1238. }
  1239. /*
  1240. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1241. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1242. *
  1243. * This list is modified at module load time to reflect the
  1244. * capabilities of the host cpu.
  1245. */
  1246. static u32 msrs_to_save[] = {
  1247. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1248. MSR_K6_STAR,
  1249. #ifdef CONFIG_X86_64
  1250. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1251. #endif
  1252. MSR_IA32_TIME_STAMP_COUNTER,
  1253. };
  1254. static unsigned num_msrs_to_save;
  1255. static __init void kvm_init_msr_list(void)
  1256. {
  1257. u32 dummy[2];
  1258. unsigned i, j;
  1259. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1260. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1261. continue;
  1262. if (j < i)
  1263. msrs_to_save[j] = msrs_to_save[i];
  1264. j++;
  1265. }
  1266. num_msrs_to_save = j;
  1267. }
  1268. /*
  1269. * Adapt set_msr() to msr_io()'s calling convention
  1270. */
  1271. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1272. {
  1273. return set_msr(vcpu, index, *data);
  1274. }
  1275. /*
  1276. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1277. *
  1278. * @return number of msrs set successfully.
  1279. */
  1280. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1281. struct kvm_msr_entry *entries,
  1282. int (*do_msr)(struct kvm_vcpu *vcpu,
  1283. unsigned index, u64 *data))
  1284. {
  1285. struct kvm_vcpu *vcpu;
  1286. int i;
  1287. if (!valid_vcpu(msrs->vcpu))
  1288. return -EINVAL;
  1289. vcpu = vcpu_load(kvm, msrs->vcpu);
  1290. if (!vcpu)
  1291. return -ENOENT;
  1292. for (i = 0; i < msrs->nmsrs; ++i)
  1293. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1294. break;
  1295. vcpu_put(vcpu);
  1296. return i;
  1297. }
  1298. /*
  1299. * Read or write a bunch of msrs. Parameters are user addresses.
  1300. *
  1301. * @return number of msrs set successfully.
  1302. */
  1303. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1304. int (*do_msr)(struct kvm_vcpu *vcpu,
  1305. unsigned index, u64 *data),
  1306. int writeback)
  1307. {
  1308. struct kvm_msrs msrs;
  1309. struct kvm_msr_entry *entries;
  1310. int r, n;
  1311. unsigned size;
  1312. r = -EFAULT;
  1313. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1314. goto out;
  1315. r = -E2BIG;
  1316. if (msrs.nmsrs >= MAX_IO_MSRS)
  1317. goto out;
  1318. r = -ENOMEM;
  1319. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1320. entries = vmalloc(size);
  1321. if (!entries)
  1322. goto out;
  1323. r = -EFAULT;
  1324. if (copy_from_user(entries, user_msrs->entries, size))
  1325. goto out_free;
  1326. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1327. if (r < 0)
  1328. goto out_free;
  1329. r = -EFAULT;
  1330. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1331. goto out_free;
  1332. r = n;
  1333. out_free:
  1334. vfree(entries);
  1335. out:
  1336. return r;
  1337. }
  1338. /*
  1339. * Translate a guest virtual address to a guest physical address.
  1340. */
  1341. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1342. {
  1343. unsigned long vaddr = tr->linear_address;
  1344. struct kvm_vcpu *vcpu;
  1345. gpa_t gpa;
  1346. vcpu = vcpu_load(kvm, tr->vcpu);
  1347. if (!vcpu)
  1348. return -ENOENT;
  1349. spin_lock(&kvm->lock);
  1350. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1351. tr->physical_address = gpa;
  1352. tr->valid = gpa != UNMAPPED_GVA;
  1353. tr->writeable = 1;
  1354. tr->usermode = 0;
  1355. spin_unlock(&kvm->lock);
  1356. vcpu_put(vcpu);
  1357. return 0;
  1358. }
  1359. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1360. {
  1361. struct kvm_vcpu *vcpu;
  1362. if (!valid_vcpu(irq->vcpu))
  1363. return -EINVAL;
  1364. if (irq->irq < 0 || irq->irq >= 256)
  1365. return -EINVAL;
  1366. vcpu = vcpu_load(kvm, irq->vcpu);
  1367. if (!vcpu)
  1368. return -ENOENT;
  1369. set_bit(irq->irq, vcpu->irq_pending);
  1370. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1371. vcpu_put(vcpu);
  1372. return 0;
  1373. }
  1374. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1375. struct kvm_debug_guest *dbg)
  1376. {
  1377. struct kvm_vcpu *vcpu;
  1378. int r;
  1379. if (!valid_vcpu(dbg->vcpu))
  1380. return -EINVAL;
  1381. vcpu = vcpu_load(kvm, dbg->vcpu);
  1382. if (!vcpu)
  1383. return -ENOENT;
  1384. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1385. vcpu_put(vcpu);
  1386. return r;
  1387. }
  1388. static long kvm_dev_ioctl(struct file *filp,
  1389. unsigned int ioctl, unsigned long arg)
  1390. {
  1391. struct kvm *kvm = filp->private_data;
  1392. int r = -EINVAL;
  1393. switch (ioctl) {
  1394. case KVM_GET_API_VERSION:
  1395. r = KVM_API_VERSION;
  1396. break;
  1397. case KVM_CREATE_VCPU: {
  1398. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1399. if (r)
  1400. goto out;
  1401. break;
  1402. }
  1403. case KVM_RUN: {
  1404. struct kvm_run kvm_run;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1407. goto out;
  1408. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1409. if (r < 0)
  1410. goto out;
  1411. r = -EFAULT;
  1412. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
  1413. goto out;
  1414. r = 0;
  1415. break;
  1416. }
  1417. case KVM_GET_REGS: {
  1418. struct kvm_regs kvm_regs;
  1419. r = -EFAULT;
  1420. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1421. goto out;
  1422. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1423. if (r)
  1424. goto out;
  1425. r = -EFAULT;
  1426. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1427. goto out;
  1428. r = 0;
  1429. break;
  1430. }
  1431. case KVM_SET_REGS: {
  1432. struct kvm_regs kvm_regs;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1435. goto out;
  1436. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1437. if (r)
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. case KVM_GET_SREGS: {
  1443. struct kvm_sregs kvm_sregs;
  1444. r = -EFAULT;
  1445. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1446. goto out;
  1447. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1448. if (r)
  1449. goto out;
  1450. r = -EFAULT;
  1451. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1452. goto out;
  1453. r = 0;
  1454. break;
  1455. }
  1456. case KVM_SET_SREGS: {
  1457. struct kvm_sregs kvm_sregs;
  1458. r = -EFAULT;
  1459. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1460. goto out;
  1461. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1462. if (r)
  1463. goto out;
  1464. r = 0;
  1465. break;
  1466. }
  1467. case KVM_TRANSLATE: {
  1468. struct kvm_translation tr;
  1469. r = -EFAULT;
  1470. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1471. goto out;
  1472. r = kvm_dev_ioctl_translate(kvm, &tr);
  1473. if (r)
  1474. goto out;
  1475. r = -EFAULT;
  1476. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1477. goto out;
  1478. r = 0;
  1479. break;
  1480. }
  1481. case KVM_INTERRUPT: {
  1482. struct kvm_interrupt irq;
  1483. r = -EFAULT;
  1484. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1485. goto out;
  1486. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1487. if (r)
  1488. goto out;
  1489. r = 0;
  1490. break;
  1491. }
  1492. case KVM_DEBUG_GUEST: {
  1493. struct kvm_debug_guest dbg;
  1494. r = -EFAULT;
  1495. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1496. goto out;
  1497. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1498. if (r)
  1499. goto out;
  1500. r = 0;
  1501. break;
  1502. }
  1503. case KVM_SET_MEMORY_REGION: {
  1504. struct kvm_memory_region kvm_mem;
  1505. r = -EFAULT;
  1506. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1507. goto out;
  1508. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1509. if (r)
  1510. goto out;
  1511. break;
  1512. }
  1513. case KVM_GET_DIRTY_LOG: {
  1514. struct kvm_dirty_log log;
  1515. r = -EFAULT;
  1516. if (copy_from_user(&log, (void *)arg, sizeof log))
  1517. goto out;
  1518. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1519. if (r)
  1520. goto out;
  1521. break;
  1522. }
  1523. case KVM_GET_MSRS:
  1524. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1525. break;
  1526. case KVM_SET_MSRS:
  1527. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1528. break;
  1529. case KVM_GET_MSR_INDEX_LIST: {
  1530. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1531. struct kvm_msr_list msr_list;
  1532. unsigned n;
  1533. r = -EFAULT;
  1534. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1535. goto out;
  1536. n = msr_list.nmsrs;
  1537. msr_list.nmsrs = num_msrs_to_save;
  1538. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1539. goto out;
  1540. r = -E2BIG;
  1541. if (n < num_msrs_to_save)
  1542. goto out;
  1543. r = -EFAULT;
  1544. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1545. num_msrs_to_save * sizeof(u32)))
  1546. goto out;
  1547. r = 0;
  1548. }
  1549. default:
  1550. ;
  1551. }
  1552. out:
  1553. return r;
  1554. }
  1555. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1556. unsigned long address,
  1557. int *type)
  1558. {
  1559. struct kvm *kvm = vma->vm_file->private_data;
  1560. unsigned long pgoff;
  1561. struct kvm_memory_slot *slot;
  1562. struct page *page;
  1563. *type = VM_FAULT_MINOR;
  1564. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1565. slot = gfn_to_memslot(kvm, pgoff);
  1566. if (!slot)
  1567. return NOPAGE_SIGBUS;
  1568. page = gfn_to_page(slot, pgoff);
  1569. if (!page)
  1570. return NOPAGE_SIGBUS;
  1571. get_page(page);
  1572. return page;
  1573. }
  1574. static struct vm_operations_struct kvm_dev_vm_ops = {
  1575. .nopage = kvm_dev_nopage,
  1576. };
  1577. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1578. {
  1579. vma->vm_ops = &kvm_dev_vm_ops;
  1580. return 0;
  1581. }
  1582. static struct file_operations kvm_chardev_ops = {
  1583. .open = kvm_dev_open,
  1584. .release = kvm_dev_release,
  1585. .unlocked_ioctl = kvm_dev_ioctl,
  1586. .compat_ioctl = kvm_dev_ioctl,
  1587. .mmap = kvm_dev_mmap,
  1588. };
  1589. static struct miscdevice kvm_dev = {
  1590. MISC_DYNAMIC_MINOR,
  1591. "kvm",
  1592. &kvm_chardev_ops,
  1593. };
  1594. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1595. void *v)
  1596. {
  1597. if (val == SYS_RESTART) {
  1598. /*
  1599. * Some (well, at least mine) BIOSes hang on reboot if
  1600. * in vmx root mode.
  1601. */
  1602. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1603. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1604. }
  1605. return NOTIFY_OK;
  1606. }
  1607. static struct notifier_block kvm_reboot_notifier = {
  1608. .notifier_call = kvm_reboot,
  1609. .priority = 0,
  1610. };
  1611. static __init void kvm_init_debug(void)
  1612. {
  1613. struct kvm_stats_debugfs_item *p;
  1614. debugfs_dir = debugfs_create_dir("kvm", 0);
  1615. for (p = debugfs_entries; p->name; ++p)
  1616. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1617. p->data);
  1618. }
  1619. static void kvm_exit_debug(void)
  1620. {
  1621. struct kvm_stats_debugfs_item *p;
  1622. for (p = debugfs_entries; p->name; ++p)
  1623. debugfs_remove(p->dentry);
  1624. debugfs_remove(debugfs_dir);
  1625. }
  1626. hpa_t bad_page_address;
  1627. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1628. {
  1629. int r;
  1630. if (kvm_arch_ops) {
  1631. printk(KERN_ERR "kvm: already loaded the other module\n");
  1632. return -EEXIST;
  1633. }
  1634. if (!ops->cpu_has_kvm_support()) {
  1635. printk(KERN_ERR "kvm: no hardware support\n");
  1636. return -EOPNOTSUPP;
  1637. }
  1638. if (ops->disabled_by_bios()) {
  1639. printk(KERN_ERR "kvm: disabled by bios\n");
  1640. return -EOPNOTSUPP;
  1641. }
  1642. kvm_arch_ops = ops;
  1643. r = kvm_arch_ops->hardware_setup();
  1644. if (r < 0)
  1645. return r;
  1646. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1647. register_reboot_notifier(&kvm_reboot_notifier);
  1648. kvm_chardev_ops.owner = module;
  1649. r = misc_register(&kvm_dev);
  1650. if (r) {
  1651. printk (KERN_ERR "kvm: misc device register failed\n");
  1652. goto out_free;
  1653. }
  1654. return r;
  1655. out_free:
  1656. unregister_reboot_notifier(&kvm_reboot_notifier);
  1657. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1658. kvm_arch_ops->hardware_unsetup();
  1659. return r;
  1660. }
  1661. void kvm_exit_arch(void)
  1662. {
  1663. misc_deregister(&kvm_dev);
  1664. unregister_reboot_notifier(&kvm_reboot_notifier);
  1665. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1666. kvm_arch_ops->hardware_unsetup();
  1667. kvm_arch_ops = NULL;
  1668. }
  1669. static __init int kvm_init(void)
  1670. {
  1671. static struct page *bad_page;
  1672. int r = 0;
  1673. kvm_init_debug();
  1674. kvm_init_msr_list();
  1675. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1676. r = -ENOMEM;
  1677. goto out;
  1678. }
  1679. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1680. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1681. return r;
  1682. out:
  1683. kvm_exit_debug();
  1684. return r;
  1685. }
  1686. static __exit void kvm_exit(void)
  1687. {
  1688. kvm_exit_debug();
  1689. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1690. }
  1691. module_init(kvm_init)
  1692. module_exit(kvm_exit)
  1693. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1694. EXPORT_SYMBOL_GPL(kvm_exit_arch);