main.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <m@bues.ch>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/ssb/ssb.h>
  16. #include <linux/ssb/ssb_regs.h>
  17. #include <linux/ssb/ssb_driver_gige.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/pci.h>
  20. #include <linux/mmc/sdio_func.h>
  21. #include <linux/slab.h>
  22. #include <pcmcia/cistpl.h>
  23. #include <pcmcia/ds.h>
  24. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  25. MODULE_LICENSE("GPL");
  26. /* Temporary list of yet-to-be-attached buses */
  27. static LIST_HEAD(attach_queue);
  28. /* List if running buses */
  29. static LIST_HEAD(buses);
  30. /* Software ID counter */
  31. static unsigned int next_busnumber;
  32. /* buses_mutes locks the two buslists and the next_busnumber.
  33. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  34. static DEFINE_MUTEX(buses_mutex);
  35. /* There are differences in the codeflow, if the bus is
  36. * initialized from early boot, as various needed services
  37. * are not available early. This is a mechanism to delay
  38. * these initializations to after early boot has finished.
  39. * It's also used to avoid mutex locking, as that's not
  40. * available and needed early. */
  41. static bool ssb_is_early_boot = 1;
  42. static void ssb_buses_lock(void);
  43. static void ssb_buses_unlock(void);
  44. #ifdef CONFIG_SSB_PCIHOST
  45. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  46. {
  47. struct ssb_bus *bus;
  48. ssb_buses_lock();
  49. list_for_each_entry(bus, &buses, list) {
  50. if (bus->bustype == SSB_BUSTYPE_PCI &&
  51. bus->host_pci == pdev)
  52. goto found;
  53. }
  54. bus = NULL;
  55. found:
  56. ssb_buses_unlock();
  57. return bus;
  58. }
  59. #endif /* CONFIG_SSB_PCIHOST */
  60. #ifdef CONFIG_SSB_PCMCIAHOST
  61. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  62. {
  63. struct ssb_bus *bus;
  64. ssb_buses_lock();
  65. list_for_each_entry(bus, &buses, list) {
  66. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  67. bus->host_pcmcia == pdev)
  68. goto found;
  69. }
  70. bus = NULL;
  71. found:
  72. ssb_buses_unlock();
  73. return bus;
  74. }
  75. #endif /* CONFIG_SSB_PCMCIAHOST */
  76. #ifdef CONFIG_SSB_SDIOHOST
  77. struct ssb_bus *ssb_sdio_func_to_bus(struct sdio_func *func)
  78. {
  79. struct ssb_bus *bus;
  80. ssb_buses_lock();
  81. list_for_each_entry(bus, &buses, list) {
  82. if (bus->bustype == SSB_BUSTYPE_SDIO &&
  83. bus->host_sdio == func)
  84. goto found;
  85. }
  86. bus = NULL;
  87. found:
  88. ssb_buses_unlock();
  89. return bus;
  90. }
  91. #endif /* CONFIG_SSB_SDIOHOST */
  92. int ssb_for_each_bus_call(unsigned long data,
  93. int (*func)(struct ssb_bus *bus, unsigned long data))
  94. {
  95. struct ssb_bus *bus;
  96. int res;
  97. ssb_buses_lock();
  98. list_for_each_entry(bus, &buses, list) {
  99. res = func(bus, data);
  100. if (res >= 0) {
  101. ssb_buses_unlock();
  102. return res;
  103. }
  104. }
  105. ssb_buses_unlock();
  106. return -ENODEV;
  107. }
  108. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  109. {
  110. if (dev)
  111. get_device(dev->dev);
  112. return dev;
  113. }
  114. static void ssb_device_put(struct ssb_device *dev)
  115. {
  116. if (dev)
  117. put_device(dev->dev);
  118. }
  119. static int ssb_device_resume(struct device *dev)
  120. {
  121. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  122. struct ssb_driver *ssb_drv;
  123. int err = 0;
  124. if (dev->driver) {
  125. ssb_drv = drv_to_ssb_drv(dev->driver);
  126. if (ssb_drv && ssb_drv->resume)
  127. err = ssb_drv->resume(ssb_dev);
  128. if (err)
  129. goto out;
  130. }
  131. out:
  132. return err;
  133. }
  134. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  135. {
  136. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  137. struct ssb_driver *ssb_drv;
  138. int err = 0;
  139. if (dev->driver) {
  140. ssb_drv = drv_to_ssb_drv(dev->driver);
  141. if (ssb_drv && ssb_drv->suspend)
  142. err = ssb_drv->suspend(ssb_dev, state);
  143. if (err)
  144. goto out;
  145. }
  146. out:
  147. return err;
  148. }
  149. int ssb_bus_resume(struct ssb_bus *bus)
  150. {
  151. int err;
  152. /* Reset HW state information in memory, so that HW is
  153. * completely reinitialized. */
  154. bus->mapped_device = NULL;
  155. #ifdef CONFIG_SSB_DRIVER_PCICORE
  156. bus->pcicore.setup_done = 0;
  157. #endif
  158. err = ssb_bus_powerup(bus, 0);
  159. if (err)
  160. return err;
  161. err = ssb_pcmcia_hardware_setup(bus);
  162. if (err) {
  163. ssb_bus_may_powerdown(bus);
  164. return err;
  165. }
  166. ssb_chipco_resume(&bus->chipco);
  167. ssb_bus_may_powerdown(bus);
  168. return 0;
  169. }
  170. EXPORT_SYMBOL(ssb_bus_resume);
  171. int ssb_bus_suspend(struct ssb_bus *bus)
  172. {
  173. ssb_chipco_suspend(&bus->chipco);
  174. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  175. return 0;
  176. }
  177. EXPORT_SYMBOL(ssb_bus_suspend);
  178. #ifdef CONFIG_SSB_SPROM
  179. /** ssb_devices_freeze - Freeze all devices on the bus.
  180. *
  181. * After freezing no device driver will be handling a device
  182. * on this bus anymore. ssb_devices_thaw() must be called after
  183. * a successful freeze to reactivate the devices.
  184. *
  185. * @bus: The bus.
  186. * @ctx: Context structure. Pass this to ssb_devices_thaw().
  187. */
  188. int ssb_devices_freeze(struct ssb_bus *bus, struct ssb_freeze_context *ctx)
  189. {
  190. struct ssb_device *sdev;
  191. struct ssb_driver *sdrv;
  192. unsigned int i;
  193. memset(ctx, 0, sizeof(*ctx));
  194. ctx->bus = bus;
  195. SSB_WARN_ON(bus->nr_devices > ARRAY_SIZE(ctx->device_frozen));
  196. for (i = 0; i < bus->nr_devices; i++) {
  197. sdev = ssb_device_get(&bus->devices[i]);
  198. if (!sdev->dev || !sdev->dev->driver ||
  199. !device_is_registered(sdev->dev)) {
  200. ssb_device_put(sdev);
  201. continue;
  202. }
  203. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  204. if (SSB_WARN_ON(!sdrv->remove))
  205. continue;
  206. sdrv->remove(sdev);
  207. ctx->device_frozen[i] = 1;
  208. }
  209. return 0;
  210. }
  211. /** ssb_devices_thaw - Unfreeze all devices on the bus.
  212. *
  213. * This will re-attach the device drivers and re-init the devices.
  214. *
  215. * @ctx: The context structure from ssb_devices_freeze()
  216. */
  217. int ssb_devices_thaw(struct ssb_freeze_context *ctx)
  218. {
  219. struct ssb_bus *bus = ctx->bus;
  220. struct ssb_device *sdev;
  221. struct ssb_driver *sdrv;
  222. unsigned int i;
  223. int err, result = 0;
  224. for (i = 0; i < bus->nr_devices; i++) {
  225. if (!ctx->device_frozen[i])
  226. continue;
  227. sdev = &bus->devices[i];
  228. if (SSB_WARN_ON(!sdev->dev || !sdev->dev->driver))
  229. continue;
  230. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  231. if (SSB_WARN_ON(!sdrv || !sdrv->probe))
  232. continue;
  233. err = sdrv->probe(sdev, &sdev->id);
  234. if (err) {
  235. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  236. dev_name(sdev->dev));
  237. result = err;
  238. }
  239. ssb_device_put(sdev);
  240. }
  241. return result;
  242. }
  243. #endif /* CONFIG_SSB_SPROM */
  244. static void ssb_device_shutdown(struct device *dev)
  245. {
  246. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  247. struct ssb_driver *ssb_drv;
  248. if (!dev->driver)
  249. return;
  250. ssb_drv = drv_to_ssb_drv(dev->driver);
  251. if (ssb_drv && ssb_drv->shutdown)
  252. ssb_drv->shutdown(ssb_dev);
  253. }
  254. static int ssb_device_remove(struct device *dev)
  255. {
  256. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  257. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  258. if (ssb_drv && ssb_drv->remove)
  259. ssb_drv->remove(ssb_dev);
  260. ssb_device_put(ssb_dev);
  261. return 0;
  262. }
  263. static int ssb_device_probe(struct device *dev)
  264. {
  265. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  266. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  267. int err = 0;
  268. ssb_device_get(ssb_dev);
  269. if (ssb_drv && ssb_drv->probe)
  270. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  271. if (err)
  272. ssb_device_put(ssb_dev);
  273. return err;
  274. }
  275. static int ssb_match_devid(const struct ssb_device_id *tabid,
  276. const struct ssb_device_id *devid)
  277. {
  278. if ((tabid->vendor != devid->vendor) &&
  279. tabid->vendor != SSB_ANY_VENDOR)
  280. return 0;
  281. if ((tabid->coreid != devid->coreid) &&
  282. tabid->coreid != SSB_ANY_ID)
  283. return 0;
  284. if ((tabid->revision != devid->revision) &&
  285. tabid->revision != SSB_ANY_REV)
  286. return 0;
  287. return 1;
  288. }
  289. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  290. {
  291. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  292. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  293. const struct ssb_device_id *id;
  294. for (id = ssb_drv->id_table;
  295. id->vendor || id->coreid || id->revision;
  296. id++) {
  297. if (ssb_match_devid(id, &ssb_dev->id))
  298. return 1; /* found */
  299. }
  300. return 0;
  301. }
  302. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  303. {
  304. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  305. if (!dev)
  306. return -ENODEV;
  307. return add_uevent_var(env,
  308. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  309. ssb_dev->id.vendor, ssb_dev->id.coreid,
  310. ssb_dev->id.revision);
  311. }
  312. #define ssb_config_attr(attrib, field, format_string) \
  313. static ssize_t \
  314. attrib##_show(struct device *dev, struct device_attribute *attr, char *buf) \
  315. { \
  316. return sprintf(buf, format_string, dev_to_ssb_dev(dev)->field); \
  317. }
  318. ssb_config_attr(core_num, core_index, "%u\n")
  319. ssb_config_attr(coreid, id.coreid, "0x%04x\n")
  320. ssb_config_attr(vendor, id.vendor, "0x%04x\n")
  321. ssb_config_attr(revision, id.revision, "%u\n")
  322. ssb_config_attr(irq, irq, "%u\n")
  323. static ssize_t
  324. name_show(struct device *dev, struct device_attribute *attr, char *buf)
  325. {
  326. return sprintf(buf, "%s\n",
  327. ssb_core_name(dev_to_ssb_dev(dev)->id.coreid));
  328. }
  329. static struct device_attribute ssb_device_attrs[] = {
  330. __ATTR_RO(name),
  331. __ATTR_RO(core_num),
  332. __ATTR_RO(coreid),
  333. __ATTR_RO(vendor),
  334. __ATTR_RO(revision),
  335. __ATTR_RO(irq),
  336. __ATTR_NULL,
  337. };
  338. static struct bus_type ssb_bustype = {
  339. .name = "ssb",
  340. .match = ssb_bus_match,
  341. .probe = ssb_device_probe,
  342. .remove = ssb_device_remove,
  343. .shutdown = ssb_device_shutdown,
  344. .suspend = ssb_device_suspend,
  345. .resume = ssb_device_resume,
  346. .uevent = ssb_device_uevent,
  347. .dev_attrs = ssb_device_attrs,
  348. };
  349. static void ssb_buses_lock(void)
  350. {
  351. /* See the comment at the ssb_is_early_boot definition */
  352. if (!ssb_is_early_boot)
  353. mutex_lock(&buses_mutex);
  354. }
  355. static void ssb_buses_unlock(void)
  356. {
  357. /* See the comment at the ssb_is_early_boot definition */
  358. if (!ssb_is_early_boot)
  359. mutex_unlock(&buses_mutex);
  360. }
  361. static void ssb_devices_unregister(struct ssb_bus *bus)
  362. {
  363. struct ssb_device *sdev;
  364. int i;
  365. for (i = bus->nr_devices - 1; i >= 0; i--) {
  366. sdev = &(bus->devices[i]);
  367. if (sdev->dev)
  368. device_unregister(sdev->dev);
  369. }
  370. #ifdef CONFIG_SSB_EMBEDDED
  371. if (bus->bustype == SSB_BUSTYPE_SSB)
  372. platform_device_unregister(bus->watchdog);
  373. #endif
  374. }
  375. void ssb_bus_unregister(struct ssb_bus *bus)
  376. {
  377. int err;
  378. err = ssb_gpio_unregister(bus);
  379. if (err == -EBUSY)
  380. ssb_dprintk(KERN_ERR PFX "Some GPIOs are still in use.\n");
  381. else if (err)
  382. ssb_dprintk(KERN_ERR PFX
  383. "Can not unregister GPIO driver: %i\n", err);
  384. ssb_buses_lock();
  385. ssb_devices_unregister(bus);
  386. list_del(&bus->list);
  387. ssb_buses_unlock();
  388. ssb_pcmcia_exit(bus);
  389. ssb_pci_exit(bus);
  390. ssb_iounmap(bus);
  391. }
  392. EXPORT_SYMBOL(ssb_bus_unregister);
  393. static void ssb_release_dev(struct device *dev)
  394. {
  395. struct __ssb_dev_wrapper *devwrap;
  396. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  397. kfree(devwrap);
  398. }
  399. static int ssb_devices_register(struct ssb_bus *bus)
  400. {
  401. struct ssb_device *sdev;
  402. struct device *dev;
  403. struct __ssb_dev_wrapper *devwrap;
  404. int i, err = 0;
  405. int dev_idx = 0;
  406. for (i = 0; i < bus->nr_devices; i++) {
  407. sdev = &(bus->devices[i]);
  408. /* We don't register SSB-system devices to the kernel,
  409. * as the drivers for them are built into SSB. */
  410. switch (sdev->id.coreid) {
  411. case SSB_DEV_CHIPCOMMON:
  412. case SSB_DEV_PCI:
  413. case SSB_DEV_PCIE:
  414. case SSB_DEV_PCMCIA:
  415. case SSB_DEV_MIPS:
  416. case SSB_DEV_MIPS_3302:
  417. case SSB_DEV_EXTIF:
  418. continue;
  419. }
  420. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  421. if (!devwrap) {
  422. ssb_printk(KERN_ERR PFX
  423. "Could not allocate device\n");
  424. err = -ENOMEM;
  425. goto error;
  426. }
  427. dev = &devwrap->dev;
  428. devwrap->sdev = sdev;
  429. dev->release = ssb_release_dev;
  430. dev->bus = &ssb_bustype;
  431. dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
  432. switch (bus->bustype) {
  433. case SSB_BUSTYPE_PCI:
  434. #ifdef CONFIG_SSB_PCIHOST
  435. sdev->irq = bus->host_pci->irq;
  436. dev->parent = &bus->host_pci->dev;
  437. sdev->dma_dev = dev->parent;
  438. #endif
  439. break;
  440. case SSB_BUSTYPE_PCMCIA:
  441. #ifdef CONFIG_SSB_PCMCIAHOST
  442. sdev->irq = bus->host_pcmcia->irq;
  443. dev->parent = &bus->host_pcmcia->dev;
  444. #endif
  445. break;
  446. case SSB_BUSTYPE_SDIO:
  447. #ifdef CONFIG_SSB_SDIOHOST
  448. dev->parent = &bus->host_sdio->dev;
  449. #endif
  450. break;
  451. case SSB_BUSTYPE_SSB:
  452. dev->dma_mask = &dev->coherent_dma_mask;
  453. sdev->dma_dev = dev;
  454. break;
  455. }
  456. sdev->dev = dev;
  457. err = device_register(dev);
  458. if (err) {
  459. ssb_printk(KERN_ERR PFX
  460. "Could not register %s\n",
  461. dev_name(dev));
  462. /* Set dev to NULL to not unregister
  463. * dev on error unwinding. */
  464. sdev->dev = NULL;
  465. kfree(devwrap);
  466. goto error;
  467. }
  468. dev_idx++;
  469. }
  470. return 0;
  471. error:
  472. /* Unwind the already registered devices. */
  473. ssb_devices_unregister(bus);
  474. return err;
  475. }
  476. /* Needs ssb_buses_lock() */
  477. static int ssb_attach_queued_buses(void)
  478. {
  479. struct ssb_bus *bus, *n;
  480. int err = 0;
  481. int drop_them_all = 0;
  482. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  483. if (drop_them_all) {
  484. list_del(&bus->list);
  485. continue;
  486. }
  487. /* Can't init the PCIcore in ssb_bus_register(), as that
  488. * is too early in boot for embedded systems
  489. * (no udelay() available). So do it here in attach stage.
  490. */
  491. err = ssb_bus_powerup(bus, 0);
  492. if (err)
  493. goto error;
  494. ssb_pcicore_init(&bus->pcicore);
  495. if (bus->bustype == SSB_BUSTYPE_SSB)
  496. ssb_watchdog_register(bus);
  497. ssb_bus_may_powerdown(bus);
  498. err = ssb_devices_register(bus);
  499. error:
  500. if (err) {
  501. drop_them_all = 1;
  502. list_del(&bus->list);
  503. continue;
  504. }
  505. list_move_tail(&bus->list, &buses);
  506. }
  507. return err;
  508. }
  509. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  510. {
  511. struct ssb_bus *bus = dev->bus;
  512. offset += dev->core_index * SSB_CORE_SIZE;
  513. return readb(bus->mmio + offset);
  514. }
  515. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  516. {
  517. struct ssb_bus *bus = dev->bus;
  518. offset += dev->core_index * SSB_CORE_SIZE;
  519. return readw(bus->mmio + offset);
  520. }
  521. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  522. {
  523. struct ssb_bus *bus = dev->bus;
  524. offset += dev->core_index * SSB_CORE_SIZE;
  525. return readl(bus->mmio + offset);
  526. }
  527. #ifdef CONFIG_SSB_BLOCKIO
  528. static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
  529. size_t count, u16 offset, u8 reg_width)
  530. {
  531. struct ssb_bus *bus = dev->bus;
  532. void __iomem *addr;
  533. offset += dev->core_index * SSB_CORE_SIZE;
  534. addr = bus->mmio + offset;
  535. switch (reg_width) {
  536. case sizeof(u8): {
  537. u8 *buf = buffer;
  538. while (count) {
  539. *buf = __raw_readb(addr);
  540. buf++;
  541. count--;
  542. }
  543. break;
  544. }
  545. case sizeof(u16): {
  546. __le16 *buf = buffer;
  547. SSB_WARN_ON(count & 1);
  548. while (count) {
  549. *buf = (__force __le16)__raw_readw(addr);
  550. buf++;
  551. count -= 2;
  552. }
  553. break;
  554. }
  555. case sizeof(u32): {
  556. __le32 *buf = buffer;
  557. SSB_WARN_ON(count & 3);
  558. while (count) {
  559. *buf = (__force __le32)__raw_readl(addr);
  560. buf++;
  561. count -= 4;
  562. }
  563. break;
  564. }
  565. default:
  566. SSB_WARN_ON(1);
  567. }
  568. }
  569. #endif /* CONFIG_SSB_BLOCKIO */
  570. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  571. {
  572. struct ssb_bus *bus = dev->bus;
  573. offset += dev->core_index * SSB_CORE_SIZE;
  574. writeb(value, bus->mmio + offset);
  575. }
  576. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  577. {
  578. struct ssb_bus *bus = dev->bus;
  579. offset += dev->core_index * SSB_CORE_SIZE;
  580. writew(value, bus->mmio + offset);
  581. }
  582. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  583. {
  584. struct ssb_bus *bus = dev->bus;
  585. offset += dev->core_index * SSB_CORE_SIZE;
  586. writel(value, bus->mmio + offset);
  587. }
  588. #ifdef CONFIG_SSB_BLOCKIO
  589. static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
  590. size_t count, u16 offset, u8 reg_width)
  591. {
  592. struct ssb_bus *bus = dev->bus;
  593. void __iomem *addr;
  594. offset += dev->core_index * SSB_CORE_SIZE;
  595. addr = bus->mmio + offset;
  596. switch (reg_width) {
  597. case sizeof(u8): {
  598. const u8 *buf = buffer;
  599. while (count) {
  600. __raw_writeb(*buf, addr);
  601. buf++;
  602. count--;
  603. }
  604. break;
  605. }
  606. case sizeof(u16): {
  607. const __le16 *buf = buffer;
  608. SSB_WARN_ON(count & 1);
  609. while (count) {
  610. __raw_writew((__force u16)(*buf), addr);
  611. buf++;
  612. count -= 2;
  613. }
  614. break;
  615. }
  616. case sizeof(u32): {
  617. const __le32 *buf = buffer;
  618. SSB_WARN_ON(count & 3);
  619. while (count) {
  620. __raw_writel((__force u32)(*buf), addr);
  621. buf++;
  622. count -= 4;
  623. }
  624. break;
  625. }
  626. default:
  627. SSB_WARN_ON(1);
  628. }
  629. }
  630. #endif /* CONFIG_SSB_BLOCKIO */
  631. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  632. static const struct ssb_bus_ops ssb_ssb_ops = {
  633. .read8 = ssb_ssb_read8,
  634. .read16 = ssb_ssb_read16,
  635. .read32 = ssb_ssb_read32,
  636. .write8 = ssb_ssb_write8,
  637. .write16 = ssb_ssb_write16,
  638. .write32 = ssb_ssb_write32,
  639. #ifdef CONFIG_SSB_BLOCKIO
  640. .block_read = ssb_ssb_block_read,
  641. .block_write = ssb_ssb_block_write,
  642. #endif
  643. };
  644. static int ssb_fetch_invariants(struct ssb_bus *bus,
  645. ssb_invariants_func_t get_invariants)
  646. {
  647. struct ssb_init_invariants iv;
  648. int err;
  649. memset(&iv, 0, sizeof(iv));
  650. err = get_invariants(bus, &iv);
  651. if (err)
  652. goto out;
  653. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  654. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  655. bus->has_cardbus_slot = iv.has_cardbus_slot;
  656. out:
  657. return err;
  658. }
  659. static int ssb_bus_register(struct ssb_bus *bus,
  660. ssb_invariants_func_t get_invariants,
  661. unsigned long baseaddr)
  662. {
  663. int err;
  664. spin_lock_init(&bus->bar_lock);
  665. INIT_LIST_HEAD(&bus->list);
  666. #ifdef CONFIG_SSB_EMBEDDED
  667. spin_lock_init(&bus->gpio_lock);
  668. #endif
  669. /* Powerup the bus */
  670. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  671. if (err)
  672. goto out;
  673. /* Init SDIO-host device (if any), before the scan */
  674. err = ssb_sdio_init(bus);
  675. if (err)
  676. goto err_disable_xtal;
  677. ssb_buses_lock();
  678. bus->busnumber = next_busnumber;
  679. /* Scan for devices (cores) */
  680. err = ssb_bus_scan(bus, baseaddr);
  681. if (err)
  682. goto err_sdio_exit;
  683. /* Init PCI-host device (if any) */
  684. err = ssb_pci_init(bus);
  685. if (err)
  686. goto err_unmap;
  687. /* Init PCMCIA-host device (if any) */
  688. err = ssb_pcmcia_init(bus);
  689. if (err)
  690. goto err_pci_exit;
  691. /* Initialize basic system devices (if available) */
  692. err = ssb_bus_powerup(bus, 0);
  693. if (err)
  694. goto err_pcmcia_exit;
  695. ssb_chipcommon_init(&bus->chipco);
  696. ssb_extif_init(&bus->extif);
  697. ssb_mipscore_init(&bus->mipscore);
  698. err = ssb_gpio_init(bus);
  699. if (err == -ENOTSUPP)
  700. ssb_dprintk(KERN_DEBUG PFX "GPIO driver not activated\n");
  701. else if (err)
  702. ssb_dprintk(KERN_ERR PFX
  703. "Error registering GPIO driver: %i\n", err);
  704. err = ssb_fetch_invariants(bus, get_invariants);
  705. if (err) {
  706. ssb_bus_may_powerdown(bus);
  707. goto err_pcmcia_exit;
  708. }
  709. ssb_bus_may_powerdown(bus);
  710. /* Queue it for attach.
  711. * See the comment at the ssb_is_early_boot definition. */
  712. list_add_tail(&bus->list, &attach_queue);
  713. if (!ssb_is_early_boot) {
  714. /* This is not early boot, so we must attach the bus now */
  715. err = ssb_attach_queued_buses();
  716. if (err)
  717. goto err_dequeue;
  718. }
  719. next_busnumber++;
  720. ssb_buses_unlock();
  721. out:
  722. return err;
  723. err_dequeue:
  724. list_del(&bus->list);
  725. err_pcmcia_exit:
  726. ssb_pcmcia_exit(bus);
  727. err_pci_exit:
  728. ssb_pci_exit(bus);
  729. err_unmap:
  730. ssb_iounmap(bus);
  731. err_sdio_exit:
  732. ssb_sdio_exit(bus);
  733. err_disable_xtal:
  734. ssb_buses_unlock();
  735. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  736. return err;
  737. }
  738. #ifdef CONFIG_SSB_PCIHOST
  739. int ssb_bus_pcibus_register(struct ssb_bus *bus, struct pci_dev *host_pci)
  740. {
  741. int err;
  742. bus->bustype = SSB_BUSTYPE_PCI;
  743. bus->host_pci = host_pci;
  744. bus->ops = &ssb_pci_ops;
  745. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  746. if (!err) {
  747. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  748. "PCI device %s\n", dev_name(&host_pci->dev));
  749. } else {
  750. ssb_printk(KERN_ERR PFX "Failed to register PCI version"
  751. " of SSB with error %d\n", err);
  752. }
  753. return err;
  754. }
  755. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  756. #endif /* CONFIG_SSB_PCIHOST */
  757. #ifdef CONFIG_SSB_PCMCIAHOST
  758. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  759. struct pcmcia_device *pcmcia_dev,
  760. unsigned long baseaddr)
  761. {
  762. int err;
  763. bus->bustype = SSB_BUSTYPE_PCMCIA;
  764. bus->host_pcmcia = pcmcia_dev;
  765. bus->ops = &ssb_pcmcia_ops;
  766. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  767. if (!err) {
  768. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  769. "PCMCIA device %s\n", pcmcia_dev->devname);
  770. }
  771. return err;
  772. }
  773. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  774. #endif /* CONFIG_SSB_PCMCIAHOST */
  775. #ifdef CONFIG_SSB_SDIOHOST
  776. int ssb_bus_sdiobus_register(struct ssb_bus *bus, struct sdio_func *func,
  777. unsigned int quirks)
  778. {
  779. int err;
  780. bus->bustype = SSB_BUSTYPE_SDIO;
  781. bus->host_sdio = func;
  782. bus->ops = &ssb_sdio_ops;
  783. bus->quirks = quirks;
  784. err = ssb_bus_register(bus, ssb_sdio_get_invariants, ~0);
  785. if (!err) {
  786. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  787. "SDIO device %s\n", sdio_func_id(func));
  788. }
  789. return err;
  790. }
  791. EXPORT_SYMBOL(ssb_bus_sdiobus_register);
  792. #endif /* CONFIG_SSB_PCMCIAHOST */
  793. int ssb_bus_ssbbus_register(struct ssb_bus *bus, unsigned long baseaddr,
  794. ssb_invariants_func_t get_invariants)
  795. {
  796. int err;
  797. bus->bustype = SSB_BUSTYPE_SSB;
  798. bus->ops = &ssb_ssb_ops;
  799. err = ssb_bus_register(bus, get_invariants, baseaddr);
  800. if (!err) {
  801. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  802. "address 0x%08lX\n", baseaddr);
  803. }
  804. return err;
  805. }
  806. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  807. {
  808. drv->drv.name = drv->name;
  809. drv->drv.bus = &ssb_bustype;
  810. drv->drv.owner = owner;
  811. return driver_register(&drv->drv);
  812. }
  813. EXPORT_SYMBOL(__ssb_driver_register);
  814. void ssb_driver_unregister(struct ssb_driver *drv)
  815. {
  816. driver_unregister(&drv->drv);
  817. }
  818. EXPORT_SYMBOL(ssb_driver_unregister);
  819. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  820. {
  821. struct ssb_bus *bus = dev->bus;
  822. struct ssb_device *ent;
  823. int i;
  824. for (i = 0; i < bus->nr_devices; i++) {
  825. ent = &(bus->devices[i]);
  826. if (ent->id.vendor != dev->id.vendor)
  827. continue;
  828. if (ent->id.coreid != dev->id.coreid)
  829. continue;
  830. ent->devtypedata = data;
  831. }
  832. }
  833. EXPORT_SYMBOL(ssb_set_devtypedata);
  834. static u32 clkfactor_f6_resolve(u32 v)
  835. {
  836. /* map the magic values */
  837. switch (v) {
  838. case SSB_CHIPCO_CLK_F6_2:
  839. return 2;
  840. case SSB_CHIPCO_CLK_F6_3:
  841. return 3;
  842. case SSB_CHIPCO_CLK_F6_4:
  843. return 4;
  844. case SSB_CHIPCO_CLK_F6_5:
  845. return 5;
  846. case SSB_CHIPCO_CLK_F6_6:
  847. return 6;
  848. case SSB_CHIPCO_CLK_F6_7:
  849. return 7;
  850. }
  851. return 0;
  852. }
  853. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  854. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  855. {
  856. u32 n1, n2, clock, m1, m2, m3, mc;
  857. n1 = (n & SSB_CHIPCO_CLK_N1);
  858. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  859. switch (plltype) {
  860. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  861. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  862. return SSB_CHIPCO_CLK_T6_M1;
  863. return SSB_CHIPCO_CLK_T6_M0;
  864. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  865. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  866. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  867. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  868. n1 = clkfactor_f6_resolve(n1);
  869. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  870. break;
  871. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  872. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  873. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  874. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  875. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  876. break;
  877. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  878. return 100000000;
  879. default:
  880. SSB_WARN_ON(1);
  881. }
  882. switch (plltype) {
  883. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  884. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  885. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  886. break;
  887. default:
  888. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  889. }
  890. if (!clock)
  891. return 0;
  892. m1 = (m & SSB_CHIPCO_CLK_M1);
  893. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  894. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  895. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  896. switch (plltype) {
  897. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  898. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  899. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  900. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  901. m1 = clkfactor_f6_resolve(m1);
  902. if ((plltype == SSB_PLLTYPE_1) ||
  903. (plltype == SSB_PLLTYPE_3))
  904. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  905. else
  906. m2 = clkfactor_f6_resolve(m2);
  907. m3 = clkfactor_f6_resolve(m3);
  908. switch (mc) {
  909. case SSB_CHIPCO_CLK_MC_BYPASS:
  910. return clock;
  911. case SSB_CHIPCO_CLK_MC_M1:
  912. return (clock / m1);
  913. case SSB_CHIPCO_CLK_MC_M1M2:
  914. return (clock / (m1 * m2));
  915. case SSB_CHIPCO_CLK_MC_M1M2M3:
  916. return (clock / (m1 * m2 * m3));
  917. case SSB_CHIPCO_CLK_MC_M1M3:
  918. return (clock / (m1 * m3));
  919. }
  920. return 0;
  921. case SSB_PLLTYPE_2:
  922. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  923. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  924. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  925. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  926. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  927. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  928. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  929. clock /= m1;
  930. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  931. clock /= m2;
  932. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  933. clock /= m3;
  934. return clock;
  935. default:
  936. SSB_WARN_ON(1);
  937. }
  938. return 0;
  939. }
  940. /* Get the current speed the backplane is running at */
  941. u32 ssb_clockspeed(struct ssb_bus *bus)
  942. {
  943. u32 rate;
  944. u32 plltype;
  945. u32 clkctl_n, clkctl_m;
  946. if (bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU)
  947. return ssb_pmu_get_controlclock(&bus->chipco);
  948. if (ssb_extif_available(&bus->extif))
  949. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  950. &clkctl_n, &clkctl_m);
  951. else if (bus->chipco.dev)
  952. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  953. &clkctl_n, &clkctl_m);
  954. else
  955. return 0;
  956. if (bus->chip_id == 0x5365) {
  957. rate = 100000000;
  958. } else {
  959. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  960. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  961. rate /= 2;
  962. }
  963. return rate;
  964. }
  965. EXPORT_SYMBOL(ssb_clockspeed);
  966. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  967. {
  968. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  969. /* The REJECT bit seems to be different for Backplane rev 2.3 */
  970. switch (rev) {
  971. case SSB_IDLOW_SSBREV_22:
  972. case SSB_IDLOW_SSBREV_24:
  973. case SSB_IDLOW_SSBREV_26:
  974. return SSB_TMSLOW_REJECT;
  975. case SSB_IDLOW_SSBREV_23:
  976. return SSB_TMSLOW_REJECT_23;
  977. case SSB_IDLOW_SSBREV_25: /* TODO - find the proper REJECT bit */
  978. case SSB_IDLOW_SSBREV_27: /* same here */
  979. return SSB_TMSLOW_REJECT; /* this is a guess */
  980. default:
  981. WARN(1, KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  982. }
  983. return (SSB_TMSLOW_REJECT | SSB_TMSLOW_REJECT_23);
  984. }
  985. int ssb_device_is_enabled(struct ssb_device *dev)
  986. {
  987. u32 val;
  988. u32 reject;
  989. reject = ssb_tmslow_reject_bitmask(dev);
  990. val = ssb_read32(dev, SSB_TMSLOW);
  991. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  992. return (val == SSB_TMSLOW_CLOCK);
  993. }
  994. EXPORT_SYMBOL(ssb_device_is_enabled);
  995. static void ssb_flush_tmslow(struct ssb_device *dev)
  996. {
  997. /* Make _really_ sure the device has finished the TMSLOW
  998. * register write transaction, as we risk running into
  999. * a machine check exception otherwise.
  1000. * Do this by reading the register back to commit the
  1001. * PCI write and delay an additional usec for the device
  1002. * to react to the change. */
  1003. ssb_read32(dev, SSB_TMSLOW);
  1004. udelay(1);
  1005. }
  1006. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  1007. {
  1008. u32 val;
  1009. ssb_device_disable(dev, core_specific_flags);
  1010. ssb_write32(dev, SSB_TMSLOW,
  1011. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  1012. SSB_TMSLOW_FGC | core_specific_flags);
  1013. ssb_flush_tmslow(dev);
  1014. /* Clear SERR if set. This is a hw bug workaround. */
  1015. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  1016. ssb_write32(dev, SSB_TMSHIGH, 0);
  1017. val = ssb_read32(dev, SSB_IMSTATE);
  1018. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  1019. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  1020. ssb_write32(dev, SSB_IMSTATE, val);
  1021. }
  1022. ssb_write32(dev, SSB_TMSLOW,
  1023. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  1024. core_specific_flags);
  1025. ssb_flush_tmslow(dev);
  1026. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  1027. core_specific_flags);
  1028. ssb_flush_tmslow(dev);
  1029. }
  1030. EXPORT_SYMBOL(ssb_device_enable);
  1031. /* Wait for bitmask in a register to get set or cleared.
  1032. * timeout is in units of ten-microseconds */
  1033. static int ssb_wait_bits(struct ssb_device *dev, u16 reg, u32 bitmask,
  1034. int timeout, int set)
  1035. {
  1036. int i;
  1037. u32 val;
  1038. for (i = 0; i < timeout; i++) {
  1039. val = ssb_read32(dev, reg);
  1040. if (set) {
  1041. if ((val & bitmask) == bitmask)
  1042. return 0;
  1043. } else {
  1044. if (!(val & bitmask))
  1045. return 0;
  1046. }
  1047. udelay(10);
  1048. }
  1049. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  1050. "register %04X to %s.\n",
  1051. bitmask, reg, (set ? "set" : "clear"));
  1052. return -ETIMEDOUT;
  1053. }
  1054. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  1055. {
  1056. u32 reject, val;
  1057. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  1058. return;
  1059. reject = ssb_tmslow_reject_bitmask(dev);
  1060. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_CLOCK) {
  1061. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  1062. ssb_wait_bits(dev, SSB_TMSLOW, reject, 1000, 1);
  1063. ssb_wait_bits(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  1064. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1065. val = ssb_read32(dev, SSB_IMSTATE);
  1066. val |= SSB_IMSTATE_REJECT;
  1067. ssb_write32(dev, SSB_IMSTATE, val);
  1068. ssb_wait_bits(dev, SSB_IMSTATE, SSB_IMSTATE_BUSY, 1000,
  1069. 0);
  1070. }
  1071. ssb_write32(dev, SSB_TMSLOW,
  1072. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  1073. reject | SSB_TMSLOW_RESET |
  1074. core_specific_flags);
  1075. ssb_flush_tmslow(dev);
  1076. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1077. val = ssb_read32(dev, SSB_IMSTATE);
  1078. val &= ~SSB_IMSTATE_REJECT;
  1079. ssb_write32(dev, SSB_IMSTATE, val);
  1080. }
  1081. }
  1082. ssb_write32(dev, SSB_TMSLOW,
  1083. reject | SSB_TMSLOW_RESET |
  1084. core_specific_flags);
  1085. ssb_flush_tmslow(dev);
  1086. }
  1087. EXPORT_SYMBOL(ssb_device_disable);
  1088. /* Some chipsets need routing known for PCIe and 64-bit DMA */
  1089. static bool ssb_dma_translation_special_bit(struct ssb_device *dev)
  1090. {
  1091. u16 chip_id = dev->bus->chip_id;
  1092. if (dev->id.coreid == SSB_DEV_80211) {
  1093. return (chip_id == 0x4322 || chip_id == 43221 ||
  1094. chip_id == 43231 || chip_id == 43222);
  1095. }
  1096. return 0;
  1097. }
  1098. u32 ssb_dma_translation(struct ssb_device *dev)
  1099. {
  1100. switch (dev->bus->bustype) {
  1101. case SSB_BUSTYPE_SSB:
  1102. return 0;
  1103. case SSB_BUSTYPE_PCI:
  1104. if (pci_is_pcie(dev->bus->host_pci) &&
  1105. ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64) {
  1106. return SSB_PCIE_DMA_H32;
  1107. } else {
  1108. if (ssb_dma_translation_special_bit(dev))
  1109. return SSB_PCIE_DMA_H32;
  1110. else
  1111. return SSB_PCI_DMA;
  1112. }
  1113. default:
  1114. __ssb_dma_not_implemented(dev);
  1115. }
  1116. return 0;
  1117. }
  1118. EXPORT_SYMBOL(ssb_dma_translation);
  1119. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  1120. {
  1121. struct ssb_chipcommon *cc;
  1122. int err = 0;
  1123. /* On buses where more than one core may be working
  1124. * at a time, we must not powerdown stuff if there are
  1125. * still cores that may want to run. */
  1126. if (bus->bustype == SSB_BUSTYPE_SSB)
  1127. goto out;
  1128. cc = &bus->chipco;
  1129. if (!cc->dev)
  1130. goto out;
  1131. if (cc->dev->id.revision < 5)
  1132. goto out;
  1133. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  1134. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  1135. if (err)
  1136. goto error;
  1137. out:
  1138. #ifdef CONFIG_SSB_DEBUG
  1139. bus->powered_up = 0;
  1140. #endif
  1141. return err;
  1142. error:
  1143. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  1144. goto out;
  1145. }
  1146. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  1147. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  1148. {
  1149. int err;
  1150. enum ssb_clkmode mode;
  1151. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  1152. if (err)
  1153. goto error;
  1154. #ifdef CONFIG_SSB_DEBUG
  1155. bus->powered_up = 1;
  1156. #endif
  1157. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  1158. ssb_chipco_set_clockmode(&bus->chipco, mode);
  1159. return 0;
  1160. error:
  1161. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  1162. return err;
  1163. }
  1164. EXPORT_SYMBOL(ssb_bus_powerup);
  1165. static void ssb_broadcast_value(struct ssb_device *dev,
  1166. u32 address, u32 data)
  1167. {
  1168. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1169. /* This is used for both, PCI and ChipCommon core, so be careful. */
  1170. BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
  1171. BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
  1172. #endif
  1173. ssb_write32(dev, SSB_CHIPCO_BCAST_ADDR, address);
  1174. ssb_read32(dev, SSB_CHIPCO_BCAST_ADDR); /* flush */
  1175. ssb_write32(dev, SSB_CHIPCO_BCAST_DATA, data);
  1176. ssb_read32(dev, SSB_CHIPCO_BCAST_DATA); /* flush */
  1177. }
  1178. void ssb_commit_settings(struct ssb_bus *bus)
  1179. {
  1180. struct ssb_device *dev;
  1181. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1182. dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
  1183. #else
  1184. dev = bus->chipco.dev;
  1185. #endif
  1186. if (WARN_ON(!dev))
  1187. return;
  1188. /* This forces an update of the cached registers. */
  1189. ssb_broadcast_value(dev, 0xFD8, 0);
  1190. }
  1191. EXPORT_SYMBOL(ssb_commit_settings);
  1192. u32 ssb_admatch_base(u32 adm)
  1193. {
  1194. u32 base = 0;
  1195. switch (adm & SSB_ADM_TYPE) {
  1196. case SSB_ADM_TYPE0:
  1197. base = (adm & SSB_ADM_BASE0);
  1198. break;
  1199. case SSB_ADM_TYPE1:
  1200. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1201. base = (adm & SSB_ADM_BASE1);
  1202. break;
  1203. case SSB_ADM_TYPE2:
  1204. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1205. base = (adm & SSB_ADM_BASE2);
  1206. break;
  1207. default:
  1208. SSB_WARN_ON(1);
  1209. }
  1210. return base;
  1211. }
  1212. EXPORT_SYMBOL(ssb_admatch_base);
  1213. u32 ssb_admatch_size(u32 adm)
  1214. {
  1215. u32 size = 0;
  1216. switch (adm & SSB_ADM_TYPE) {
  1217. case SSB_ADM_TYPE0:
  1218. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1219. break;
  1220. case SSB_ADM_TYPE1:
  1221. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1222. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1223. break;
  1224. case SSB_ADM_TYPE2:
  1225. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1226. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1227. break;
  1228. default:
  1229. SSB_WARN_ON(1);
  1230. }
  1231. size = (1 << (size + 1));
  1232. return size;
  1233. }
  1234. EXPORT_SYMBOL(ssb_admatch_size);
  1235. static int __init ssb_modinit(void)
  1236. {
  1237. int err;
  1238. /* See the comment at the ssb_is_early_boot definition */
  1239. ssb_is_early_boot = 0;
  1240. err = bus_register(&ssb_bustype);
  1241. if (err)
  1242. return err;
  1243. /* Maybe we already registered some buses at early boot.
  1244. * Check for this and attach them
  1245. */
  1246. ssb_buses_lock();
  1247. err = ssb_attach_queued_buses();
  1248. ssb_buses_unlock();
  1249. if (err) {
  1250. bus_unregister(&ssb_bustype);
  1251. goto out;
  1252. }
  1253. err = b43_pci_ssb_bridge_init();
  1254. if (err) {
  1255. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1256. "initialization failed\n");
  1257. /* don't fail SSB init because of this */
  1258. err = 0;
  1259. }
  1260. err = ssb_gige_init();
  1261. if (err) {
  1262. ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
  1263. "driver initialization failed\n");
  1264. /* don't fail SSB init because of this */
  1265. err = 0;
  1266. }
  1267. out:
  1268. return err;
  1269. }
  1270. /* ssb must be initialized after PCI but before the ssb drivers.
  1271. * That means we must use some initcall between subsys_initcall
  1272. * and device_initcall. */
  1273. fs_initcall(ssb_modinit);
  1274. static void __exit ssb_modexit(void)
  1275. {
  1276. ssb_gige_exit();
  1277. b43_pci_ssb_bridge_exit();
  1278. bus_unregister(&ssb_bustype);
  1279. }
  1280. module_exit(ssb_modexit)