node.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763
  1. /**
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. static struct kmem_cache *nat_entry_slab;
  22. static struct kmem_cache *free_nid_slab;
  23. static void clear_node_page_dirty(struct page *page)
  24. {
  25. struct address_space *mapping = page->mapping;
  26. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  27. unsigned int long flags;
  28. if (PageDirty(page)) {
  29. spin_lock_irqsave(&mapping->tree_lock, flags);
  30. radix_tree_tag_clear(&mapping->page_tree,
  31. page_index(page),
  32. PAGECACHE_TAG_DIRTY);
  33. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  34. clear_page_dirty_for_io(page);
  35. dec_page_count(sbi, F2FS_DIRTY_NODES);
  36. }
  37. ClearPageUptodate(page);
  38. }
  39. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  40. {
  41. pgoff_t index = current_nat_addr(sbi, nid);
  42. return get_meta_page(sbi, index);
  43. }
  44. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  45. {
  46. struct page *src_page;
  47. struct page *dst_page;
  48. pgoff_t src_off;
  49. pgoff_t dst_off;
  50. void *src_addr;
  51. void *dst_addr;
  52. struct f2fs_nm_info *nm_i = NM_I(sbi);
  53. src_off = current_nat_addr(sbi, nid);
  54. dst_off = next_nat_addr(sbi, src_off);
  55. /* get current nat block page with lock */
  56. src_page = get_meta_page(sbi, src_off);
  57. /* Dirty src_page means that it is already the new target NAT page. */
  58. if (PageDirty(src_page))
  59. return src_page;
  60. dst_page = grab_meta_page(sbi, dst_off);
  61. src_addr = page_address(src_page);
  62. dst_addr = page_address(dst_page);
  63. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  64. set_page_dirty(dst_page);
  65. f2fs_put_page(src_page, 1);
  66. set_to_next_nat(nm_i, nid);
  67. return dst_page;
  68. }
  69. /**
  70. * Readahead NAT pages
  71. */
  72. static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
  73. {
  74. struct address_space *mapping = sbi->meta_inode->i_mapping;
  75. struct f2fs_nm_info *nm_i = NM_I(sbi);
  76. struct page *page;
  77. pgoff_t index;
  78. int i;
  79. for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
  80. if (nid >= nm_i->max_nid)
  81. nid = 0;
  82. index = current_nat_addr(sbi, nid);
  83. page = grab_cache_page(mapping, index);
  84. if (!page)
  85. continue;
  86. if (f2fs_readpage(sbi, page, index, READ)) {
  87. f2fs_put_page(page, 1);
  88. continue;
  89. }
  90. page_cache_release(page);
  91. }
  92. }
  93. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  94. {
  95. return radix_tree_lookup(&nm_i->nat_root, n);
  96. }
  97. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  98. nid_t start, unsigned int nr, struct nat_entry **ep)
  99. {
  100. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  101. }
  102. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  103. {
  104. list_del(&e->list);
  105. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  106. nm_i->nat_cnt--;
  107. kmem_cache_free(nat_entry_slab, e);
  108. }
  109. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  110. {
  111. struct f2fs_nm_info *nm_i = NM_I(sbi);
  112. struct nat_entry *e;
  113. int is_cp = 1;
  114. read_lock(&nm_i->nat_tree_lock);
  115. e = __lookup_nat_cache(nm_i, nid);
  116. if (e && !e->checkpointed)
  117. is_cp = 0;
  118. read_unlock(&nm_i->nat_tree_lock);
  119. return is_cp;
  120. }
  121. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  122. {
  123. struct nat_entry *new;
  124. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  125. if (!new)
  126. return NULL;
  127. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  128. kmem_cache_free(nat_entry_slab, new);
  129. return NULL;
  130. }
  131. memset(new, 0, sizeof(struct nat_entry));
  132. nat_set_nid(new, nid);
  133. list_add_tail(&new->list, &nm_i->nat_entries);
  134. nm_i->nat_cnt++;
  135. return new;
  136. }
  137. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  138. struct f2fs_nat_entry *ne)
  139. {
  140. struct nat_entry *e;
  141. retry:
  142. write_lock(&nm_i->nat_tree_lock);
  143. e = __lookup_nat_cache(nm_i, nid);
  144. if (!e) {
  145. e = grab_nat_entry(nm_i, nid);
  146. if (!e) {
  147. write_unlock(&nm_i->nat_tree_lock);
  148. goto retry;
  149. }
  150. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  151. nat_set_ino(e, le32_to_cpu(ne->ino));
  152. nat_set_version(e, ne->version);
  153. e->checkpointed = true;
  154. }
  155. write_unlock(&nm_i->nat_tree_lock);
  156. }
  157. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  158. block_t new_blkaddr)
  159. {
  160. struct f2fs_nm_info *nm_i = NM_I(sbi);
  161. struct nat_entry *e;
  162. retry:
  163. write_lock(&nm_i->nat_tree_lock);
  164. e = __lookup_nat_cache(nm_i, ni->nid);
  165. if (!e) {
  166. e = grab_nat_entry(nm_i, ni->nid);
  167. if (!e) {
  168. write_unlock(&nm_i->nat_tree_lock);
  169. goto retry;
  170. }
  171. e->ni = *ni;
  172. e->checkpointed = true;
  173. BUG_ON(ni->blk_addr == NEW_ADDR);
  174. } else if (new_blkaddr == NEW_ADDR) {
  175. /*
  176. * when nid is reallocated,
  177. * previous nat entry can be remained in nat cache.
  178. * So, reinitialize it with new information.
  179. */
  180. e->ni = *ni;
  181. BUG_ON(ni->blk_addr != NULL_ADDR);
  182. }
  183. if (new_blkaddr == NEW_ADDR)
  184. e->checkpointed = false;
  185. /* sanity check */
  186. BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
  187. BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
  188. new_blkaddr == NULL_ADDR);
  189. BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
  190. new_blkaddr == NEW_ADDR);
  191. BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
  192. nat_get_blkaddr(e) != NULL_ADDR &&
  193. new_blkaddr == NEW_ADDR);
  194. /* increament version no as node is removed */
  195. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  196. unsigned char version = nat_get_version(e);
  197. nat_set_version(e, inc_node_version(version));
  198. }
  199. /* change address */
  200. nat_set_blkaddr(e, new_blkaddr);
  201. __set_nat_cache_dirty(nm_i, e);
  202. write_unlock(&nm_i->nat_tree_lock);
  203. }
  204. static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  205. {
  206. struct f2fs_nm_info *nm_i = NM_I(sbi);
  207. if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
  208. return 0;
  209. write_lock(&nm_i->nat_tree_lock);
  210. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  211. struct nat_entry *ne;
  212. ne = list_first_entry(&nm_i->nat_entries,
  213. struct nat_entry, list);
  214. __del_from_nat_cache(nm_i, ne);
  215. nr_shrink--;
  216. }
  217. write_unlock(&nm_i->nat_tree_lock);
  218. return nr_shrink;
  219. }
  220. /**
  221. * This function returns always success
  222. */
  223. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  224. {
  225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  226. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  227. struct f2fs_summary_block *sum = curseg->sum_blk;
  228. nid_t start_nid = START_NID(nid);
  229. struct f2fs_nat_block *nat_blk;
  230. struct page *page = NULL;
  231. struct f2fs_nat_entry ne;
  232. struct nat_entry *e;
  233. int i;
  234. ni->nid = nid;
  235. /* Check nat cache */
  236. read_lock(&nm_i->nat_tree_lock);
  237. e = __lookup_nat_cache(nm_i, nid);
  238. if (e) {
  239. ni->ino = nat_get_ino(e);
  240. ni->blk_addr = nat_get_blkaddr(e);
  241. ni->version = nat_get_version(e);
  242. }
  243. read_unlock(&nm_i->nat_tree_lock);
  244. if (e)
  245. return;
  246. /* Check current segment summary */
  247. mutex_lock(&curseg->curseg_mutex);
  248. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  249. if (i >= 0) {
  250. ne = nat_in_journal(sum, i);
  251. node_info_from_raw_nat(ni, &ne);
  252. }
  253. mutex_unlock(&curseg->curseg_mutex);
  254. if (i >= 0)
  255. goto cache;
  256. /* Fill node_info from nat page */
  257. page = get_current_nat_page(sbi, start_nid);
  258. nat_blk = (struct f2fs_nat_block *)page_address(page);
  259. ne = nat_blk->entries[nid - start_nid];
  260. node_info_from_raw_nat(ni, &ne);
  261. f2fs_put_page(page, 1);
  262. cache:
  263. /* cache nat entry */
  264. cache_nat_entry(NM_I(sbi), nid, &ne);
  265. }
  266. /**
  267. * The maximum depth is four.
  268. * Offset[0] will have raw inode offset.
  269. */
  270. static int get_node_path(long block, int offset[4], unsigned int noffset[4])
  271. {
  272. const long direct_index = ADDRS_PER_INODE;
  273. const long direct_blks = ADDRS_PER_BLOCK;
  274. const long dptrs_per_blk = NIDS_PER_BLOCK;
  275. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  276. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  277. int n = 0;
  278. int level = 0;
  279. noffset[0] = 0;
  280. if (block < direct_index) {
  281. offset[n++] = block;
  282. level = 0;
  283. goto got;
  284. }
  285. block -= direct_index;
  286. if (block < direct_blks) {
  287. offset[n++] = NODE_DIR1_BLOCK;
  288. noffset[n] = 1;
  289. offset[n++] = block;
  290. level = 1;
  291. goto got;
  292. }
  293. block -= direct_blks;
  294. if (block < direct_blks) {
  295. offset[n++] = NODE_DIR2_BLOCK;
  296. noffset[n] = 2;
  297. offset[n++] = block;
  298. level = 1;
  299. goto got;
  300. }
  301. block -= direct_blks;
  302. if (block < indirect_blks) {
  303. offset[n++] = NODE_IND1_BLOCK;
  304. noffset[n] = 3;
  305. offset[n++] = block / direct_blks;
  306. noffset[n] = 4 + offset[n - 1];
  307. offset[n++] = block % direct_blks;
  308. level = 2;
  309. goto got;
  310. }
  311. block -= indirect_blks;
  312. if (block < indirect_blks) {
  313. offset[n++] = NODE_IND2_BLOCK;
  314. noffset[n] = 4 + dptrs_per_blk;
  315. offset[n++] = block / direct_blks;
  316. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  317. offset[n++] = block % direct_blks;
  318. level = 2;
  319. goto got;
  320. }
  321. block -= indirect_blks;
  322. if (block < dindirect_blks) {
  323. offset[n++] = NODE_DIND_BLOCK;
  324. noffset[n] = 5 + (dptrs_per_blk * 2);
  325. offset[n++] = block / indirect_blks;
  326. noffset[n] = 6 + (dptrs_per_blk * 2) +
  327. offset[n - 1] * (dptrs_per_blk + 1);
  328. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  329. noffset[n] = 7 + (dptrs_per_blk * 2) +
  330. offset[n - 2] * (dptrs_per_blk + 1) +
  331. offset[n - 1];
  332. offset[n++] = block % direct_blks;
  333. level = 3;
  334. goto got;
  335. } else {
  336. BUG();
  337. }
  338. got:
  339. return level;
  340. }
  341. /*
  342. * Caller should call f2fs_put_dnode(dn).
  343. */
  344. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
  345. {
  346. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  347. struct page *npage[4];
  348. struct page *parent;
  349. int offset[4];
  350. unsigned int noffset[4];
  351. nid_t nids[4];
  352. int level, i;
  353. int err = 0;
  354. level = get_node_path(index, offset, noffset);
  355. nids[0] = dn->inode->i_ino;
  356. npage[0] = get_node_page(sbi, nids[0]);
  357. if (IS_ERR(npage[0]))
  358. return PTR_ERR(npage[0]);
  359. parent = npage[0];
  360. nids[1] = get_nid(parent, offset[0], true);
  361. dn->inode_page = npage[0];
  362. dn->inode_page_locked = true;
  363. /* get indirect or direct nodes */
  364. for (i = 1; i <= level; i++) {
  365. bool done = false;
  366. if (!nids[i] && !ro) {
  367. mutex_lock_op(sbi, NODE_NEW);
  368. /* alloc new node */
  369. if (!alloc_nid(sbi, &(nids[i]))) {
  370. mutex_unlock_op(sbi, NODE_NEW);
  371. err = -ENOSPC;
  372. goto release_pages;
  373. }
  374. dn->nid = nids[i];
  375. npage[i] = new_node_page(dn, noffset[i]);
  376. if (IS_ERR(npage[i])) {
  377. alloc_nid_failed(sbi, nids[i]);
  378. mutex_unlock_op(sbi, NODE_NEW);
  379. err = PTR_ERR(npage[i]);
  380. goto release_pages;
  381. }
  382. set_nid(parent, offset[i - 1], nids[i], i == 1);
  383. alloc_nid_done(sbi, nids[i]);
  384. mutex_unlock_op(sbi, NODE_NEW);
  385. done = true;
  386. } else if (ro && i == level && level > 1) {
  387. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  388. if (IS_ERR(npage[i])) {
  389. err = PTR_ERR(npage[i]);
  390. goto release_pages;
  391. }
  392. done = true;
  393. }
  394. if (i == 1) {
  395. dn->inode_page_locked = false;
  396. unlock_page(parent);
  397. } else {
  398. f2fs_put_page(parent, 1);
  399. }
  400. if (!done) {
  401. npage[i] = get_node_page(sbi, nids[i]);
  402. if (IS_ERR(npage[i])) {
  403. err = PTR_ERR(npage[i]);
  404. f2fs_put_page(npage[0], 0);
  405. goto release_out;
  406. }
  407. }
  408. if (i < level) {
  409. parent = npage[i];
  410. nids[i + 1] = get_nid(parent, offset[i], false);
  411. }
  412. }
  413. dn->nid = nids[level];
  414. dn->ofs_in_node = offset[level];
  415. dn->node_page = npage[level];
  416. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  417. return 0;
  418. release_pages:
  419. f2fs_put_page(parent, 1);
  420. if (i > 1)
  421. f2fs_put_page(npage[0], 0);
  422. release_out:
  423. dn->inode_page = NULL;
  424. dn->node_page = NULL;
  425. return err;
  426. }
  427. static void truncate_node(struct dnode_of_data *dn)
  428. {
  429. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  430. struct node_info ni;
  431. get_node_info(sbi, dn->nid, &ni);
  432. BUG_ON(ni.blk_addr == NULL_ADDR);
  433. if (ni.blk_addr != NULL_ADDR)
  434. invalidate_blocks(sbi, ni.blk_addr);
  435. /* Deallocate node address */
  436. dec_valid_node_count(sbi, dn->inode, 1);
  437. set_node_addr(sbi, &ni, NULL_ADDR);
  438. if (dn->nid == dn->inode->i_ino) {
  439. remove_orphan_inode(sbi, dn->nid);
  440. dec_valid_inode_count(sbi);
  441. } else {
  442. sync_inode_page(dn);
  443. }
  444. clear_node_page_dirty(dn->node_page);
  445. F2FS_SET_SB_DIRT(sbi);
  446. f2fs_put_page(dn->node_page, 1);
  447. dn->node_page = NULL;
  448. }
  449. static int truncate_dnode(struct dnode_of_data *dn)
  450. {
  451. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  452. struct page *page;
  453. if (dn->nid == 0)
  454. return 1;
  455. /* get direct node */
  456. page = get_node_page(sbi, dn->nid);
  457. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  458. return 1;
  459. else if (IS_ERR(page))
  460. return PTR_ERR(page);
  461. /* Make dnode_of_data for parameter */
  462. dn->node_page = page;
  463. dn->ofs_in_node = 0;
  464. truncate_data_blocks(dn);
  465. truncate_node(dn);
  466. return 1;
  467. }
  468. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  469. int ofs, int depth)
  470. {
  471. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  472. struct dnode_of_data rdn = *dn;
  473. struct page *page;
  474. struct f2fs_node *rn;
  475. nid_t child_nid;
  476. unsigned int child_nofs;
  477. int freed = 0;
  478. int i, ret;
  479. if (dn->nid == 0)
  480. return NIDS_PER_BLOCK + 1;
  481. page = get_node_page(sbi, dn->nid);
  482. if (IS_ERR(page))
  483. return PTR_ERR(page);
  484. rn = (struct f2fs_node *)page_address(page);
  485. if (depth < 3) {
  486. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  487. child_nid = le32_to_cpu(rn->in.nid[i]);
  488. if (child_nid == 0)
  489. continue;
  490. rdn.nid = child_nid;
  491. ret = truncate_dnode(&rdn);
  492. if (ret < 0)
  493. goto out_err;
  494. set_nid(page, i, 0, false);
  495. }
  496. } else {
  497. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  498. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  499. child_nid = le32_to_cpu(rn->in.nid[i]);
  500. if (child_nid == 0) {
  501. child_nofs += NIDS_PER_BLOCK + 1;
  502. continue;
  503. }
  504. rdn.nid = child_nid;
  505. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  506. if (ret == (NIDS_PER_BLOCK + 1)) {
  507. set_nid(page, i, 0, false);
  508. child_nofs += ret;
  509. } else if (ret < 0 && ret != -ENOENT) {
  510. goto out_err;
  511. }
  512. }
  513. freed = child_nofs;
  514. }
  515. if (!ofs) {
  516. /* remove current indirect node */
  517. dn->node_page = page;
  518. truncate_node(dn);
  519. freed++;
  520. } else {
  521. f2fs_put_page(page, 1);
  522. }
  523. return freed;
  524. out_err:
  525. f2fs_put_page(page, 1);
  526. return ret;
  527. }
  528. static int truncate_partial_nodes(struct dnode_of_data *dn,
  529. struct f2fs_inode *ri, int *offset, int depth)
  530. {
  531. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  532. struct page *pages[2];
  533. nid_t nid[3];
  534. nid_t child_nid;
  535. int err = 0;
  536. int i;
  537. int idx = depth - 2;
  538. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  539. if (!nid[0])
  540. return 0;
  541. /* get indirect nodes in the path */
  542. for (i = 0; i < depth - 1; i++) {
  543. /* refernece count'll be increased */
  544. pages[i] = get_node_page(sbi, nid[i]);
  545. if (IS_ERR(pages[i])) {
  546. depth = i + 1;
  547. err = PTR_ERR(pages[i]);
  548. goto fail;
  549. }
  550. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  551. }
  552. /* free direct nodes linked to a partial indirect node */
  553. for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
  554. child_nid = get_nid(pages[idx], i, false);
  555. if (!child_nid)
  556. continue;
  557. dn->nid = child_nid;
  558. err = truncate_dnode(dn);
  559. if (err < 0)
  560. goto fail;
  561. set_nid(pages[idx], i, 0, false);
  562. }
  563. if (offset[depth - 1] == 0) {
  564. dn->node_page = pages[idx];
  565. dn->nid = nid[idx];
  566. truncate_node(dn);
  567. } else {
  568. f2fs_put_page(pages[idx], 1);
  569. }
  570. offset[idx]++;
  571. offset[depth - 1] = 0;
  572. fail:
  573. for (i = depth - 3; i >= 0; i--)
  574. f2fs_put_page(pages[i], 1);
  575. return err;
  576. }
  577. /**
  578. * All the block addresses of data and nodes should be nullified.
  579. */
  580. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  581. {
  582. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  583. int err = 0, cont = 1;
  584. int level, offset[4], noffset[4];
  585. unsigned int nofs;
  586. struct f2fs_node *rn;
  587. struct dnode_of_data dn;
  588. struct page *page;
  589. level = get_node_path(from, offset, noffset);
  590. page = get_node_page(sbi, inode->i_ino);
  591. if (IS_ERR(page))
  592. return PTR_ERR(page);
  593. set_new_dnode(&dn, inode, page, NULL, 0);
  594. unlock_page(page);
  595. rn = page_address(page);
  596. switch (level) {
  597. case 0:
  598. case 1:
  599. nofs = noffset[1];
  600. break;
  601. case 2:
  602. nofs = noffset[1];
  603. if (!offset[level - 1])
  604. goto skip_partial;
  605. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  606. if (err < 0 && err != -ENOENT)
  607. goto fail;
  608. nofs += 1 + NIDS_PER_BLOCK;
  609. break;
  610. case 3:
  611. nofs = 5 + 2 * NIDS_PER_BLOCK;
  612. if (!offset[level - 1])
  613. goto skip_partial;
  614. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  615. if (err < 0 && err != -ENOENT)
  616. goto fail;
  617. break;
  618. default:
  619. BUG();
  620. }
  621. skip_partial:
  622. while (cont) {
  623. dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
  624. switch (offset[0]) {
  625. case NODE_DIR1_BLOCK:
  626. case NODE_DIR2_BLOCK:
  627. err = truncate_dnode(&dn);
  628. break;
  629. case NODE_IND1_BLOCK:
  630. case NODE_IND2_BLOCK:
  631. err = truncate_nodes(&dn, nofs, offset[1], 2);
  632. break;
  633. case NODE_DIND_BLOCK:
  634. err = truncate_nodes(&dn, nofs, offset[1], 3);
  635. cont = 0;
  636. break;
  637. default:
  638. BUG();
  639. }
  640. if (err < 0 && err != -ENOENT)
  641. goto fail;
  642. if (offset[1] == 0 &&
  643. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  644. lock_page(page);
  645. wait_on_page_writeback(page);
  646. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  647. set_page_dirty(page);
  648. unlock_page(page);
  649. }
  650. offset[1] = 0;
  651. offset[0]++;
  652. nofs += err;
  653. }
  654. fail:
  655. f2fs_put_page(page, 0);
  656. return err > 0 ? 0 : err;
  657. }
  658. int remove_inode_page(struct inode *inode)
  659. {
  660. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  661. struct page *page;
  662. nid_t ino = inode->i_ino;
  663. struct dnode_of_data dn;
  664. mutex_lock_op(sbi, NODE_TRUNC);
  665. page = get_node_page(sbi, ino);
  666. if (IS_ERR(page)) {
  667. mutex_unlock_op(sbi, NODE_TRUNC);
  668. return PTR_ERR(page);
  669. }
  670. if (F2FS_I(inode)->i_xattr_nid) {
  671. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  672. struct page *npage = get_node_page(sbi, nid);
  673. if (IS_ERR(npage)) {
  674. mutex_unlock_op(sbi, NODE_TRUNC);
  675. return PTR_ERR(npage);
  676. }
  677. F2FS_I(inode)->i_xattr_nid = 0;
  678. set_new_dnode(&dn, inode, page, npage, nid);
  679. dn.inode_page_locked = 1;
  680. truncate_node(&dn);
  681. }
  682. if (inode->i_blocks == 1) {
  683. /* inernally call f2fs_put_page() */
  684. set_new_dnode(&dn, inode, page, page, ino);
  685. truncate_node(&dn);
  686. } else if (inode->i_blocks == 0) {
  687. struct node_info ni;
  688. get_node_info(sbi, inode->i_ino, &ni);
  689. /* called after f2fs_new_inode() is failed */
  690. BUG_ON(ni.blk_addr != NULL_ADDR);
  691. f2fs_put_page(page, 1);
  692. } else {
  693. BUG();
  694. }
  695. mutex_unlock_op(sbi, NODE_TRUNC);
  696. return 0;
  697. }
  698. int new_inode_page(struct inode *inode, struct dentry *dentry)
  699. {
  700. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  701. struct page *page;
  702. struct dnode_of_data dn;
  703. /* allocate inode page for new inode */
  704. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  705. mutex_lock_op(sbi, NODE_NEW);
  706. page = new_node_page(&dn, 0);
  707. init_dent_inode(dentry, page);
  708. mutex_unlock_op(sbi, NODE_NEW);
  709. if (IS_ERR(page))
  710. return PTR_ERR(page);
  711. f2fs_put_page(page, 1);
  712. return 0;
  713. }
  714. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  715. {
  716. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  717. struct address_space *mapping = sbi->node_inode->i_mapping;
  718. struct node_info old_ni, new_ni;
  719. struct page *page;
  720. int err;
  721. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  722. return ERR_PTR(-EPERM);
  723. page = grab_cache_page(mapping, dn->nid);
  724. if (!page)
  725. return ERR_PTR(-ENOMEM);
  726. get_node_info(sbi, dn->nid, &old_ni);
  727. SetPageUptodate(page);
  728. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  729. /* Reinitialize old_ni with new node page */
  730. BUG_ON(old_ni.blk_addr != NULL_ADDR);
  731. new_ni = old_ni;
  732. new_ni.ino = dn->inode->i_ino;
  733. if (!inc_valid_node_count(sbi, dn->inode, 1)) {
  734. err = -ENOSPC;
  735. goto fail;
  736. }
  737. set_node_addr(sbi, &new_ni, NEW_ADDR);
  738. dn->node_page = page;
  739. sync_inode_page(dn);
  740. set_page_dirty(page);
  741. set_cold_node(dn->inode, page);
  742. if (ofs == 0)
  743. inc_valid_inode_count(sbi);
  744. return page;
  745. fail:
  746. f2fs_put_page(page, 1);
  747. return ERR_PTR(err);
  748. }
  749. static int read_node_page(struct page *page, int type)
  750. {
  751. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  752. struct node_info ni;
  753. get_node_info(sbi, page->index, &ni);
  754. if (ni.blk_addr == NULL_ADDR)
  755. return -ENOENT;
  756. return f2fs_readpage(sbi, page, ni.blk_addr, type);
  757. }
  758. /**
  759. * Readahead a node page
  760. */
  761. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  762. {
  763. struct address_space *mapping = sbi->node_inode->i_mapping;
  764. struct page *apage;
  765. apage = find_get_page(mapping, nid);
  766. if (apage && PageUptodate(apage))
  767. goto release_out;
  768. f2fs_put_page(apage, 0);
  769. apage = grab_cache_page(mapping, nid);
  770. if (!apage)
  771. return;
  772. if (read_node_page(apage, READA))
  773. goto unlock_out;
  774. page_cache_release(apage);
  775. return;
  776. unlock_out:
  777. unlock_page(apage);
  778. release_out:
  779. page_cache_release(apage);
  780. }
  781. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  782. {
  783. int err;
  784. struct page *page;
  785. struct address_space *mapping = sbi->node_inode->i_mapping;
  786. page = grab_cache_page(mapping, nid);
  787. if (!page)
  788. return ERR_PTR(-ENOMEM);
  789. err = read_node_page(page, READ_SYNC);
  790. if (err) {
  791. f2fs_put_page(page, 1);
  792. return ERR_PTR(err);
  793. }
  794. BUG_ON(nid != nid_of_node(page));
  795. mark_page_accessed(page);
  796. return page;
  797. }
  798. /**
  799. * Return a locked page for the desired node page.
  800. * And, readahead MAX_RA_NODE number of node pages.
  801. */
  802. struct page *get_node_page_ra(struct page *parent, int start)
  803. {
  804. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  805. struct address_space *mapping = sbi->node_inode->i_mapping;
  806. int i, end;
  807. int err = 0;
  808. nid_t nid;
  809. struct page *page;
  810. /* First, try getting the desired direct node. */
  811. nid = get_nid(parent, start, false);
  812. if (!nid)
  813. return ERR_PTR(-ENOENT);
  814. page = find_get_page(mapping, nid);
  815. if (page && PageUptodate(page))
  816. goto page_hit;
  817. f2fs_put_page(page, 0);
  818. repeat:
  819. page = grab_cache_page(mapping, nid);
  820. if (!page)
  821. return ERR_PTR(-ENOMEM);
  822. err = read_node_page(page, READA);
  823. if (err) {
  824. f2fs_put_page(page, 1);
  825. return ERR_PTR(err);
  826. }
  827. /* Then, try readahead for siblings of the desired node */
  828. end = start + MAX_RA_NODE;
  829. end = min(end, NIDS_PER_BLOCK);
  830. for (i = start + 1; i < end; i++) {
  831. nid = get_nid(parent, i, false);
  832. if (!nid)
  833. continue;
  834. ra_node_page(sbi, nid);
  835. }
  836. page_hit:
  837. lock_page(page);
  838. if (PageError(page)) {
  839. f2fs_put_page(page, 1);
  840. return ERR_PTR(-EIO);
  841. }
  842. /* Has the page been truncated? */
  843. if (page->mapping != mapping) {
  844. f2fs_put_page(page, 1);
  845. goto repeat;
  846. }
  847. return page;
  848. }
  849. void sync_inode_page(struct dnode_of_data *dn)
  850. {
  851. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  852. update_inode(dn->inode, dn->node_page);
  853. } else if (dn->inode_page) {
  854. if (!dn->inode_page_locked)
  855. lock_page(dn->inode_page);
  856. update_inode(dn->inode, dn->inode_page);
  857. if (!dn->inode_page_locked)
  858. unlock_page(dn->inode_page);
  859. } else {
  860. f2fs_write_inode(dn->inode, NULL);
  861. }
  862. }
  863. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  864. struct writeback_control *wbc)
  865. {
  866. struct address_space *mapping = sbi->node_inode->i_mapping;
  867. pgoff_t index, end;
  868. struct pagevec pvec;
  869. int step = ino ? 2 : 0;
  870. int nwritten = 0, wrote = 0;
  871. pagevec_init(&pvec, 0);
  872. next_step:
  873. index = 0;
  874. end = LONG_MAX;
  875. while (index <= end) {
  876. int i, nr_pages;
  877. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  878. PAGECACHE_TAG_DIRTY,
  879. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  880. if (nr_pages == 0)
  881. break;
  882. for (i = 0; i < nr_pages; i++) {
  883. struct page *page = pvec.pages[i];
  884. /*
  885. * flushing sequence with step:
  886. * 0. indirect nodes
  887. * 1. dentry dnodes
  888. * 2. file dnodes
  889. */
  890. if (step == 0 && IS_DNODE(page))
  891. continue;
  892. if (step == 1 && (!IS_DNODE(page) ||
  893. is_cold_node(page)))
  894. continue;
  895. if (step == 2 && (!IS_DNODE(page) ||
  896. !is_cold_node(page)))
  897. continue;
  898. /*
  899. * If an fsync mode,
  900. * we should not skip writing node pages.
  901. */
  902. if (ino && ino_of_node(page) == ino)
  903. lock_page(page);
  904. else if (!trylock_page(page))
  905. continue;
  906. if (unlikely(page->mapping != mapping)) {
  907. continue_unlock:
  908. unlock_page(page);
  909. continue;
  910. }
  911. if (ino && ino_of_node(page) != ino)
  912. goto continue_unlock;
  913. if (!PageDirty(page)) {
  914. /* someone wrote it for us */
  915. goto continue_unlock;
  916. }
  917. if (!clear_page_dirty_for_io(page))
  918. goto continue_unlock;
  919. /* called by fsync() */
  920. if (ino && IS_DNODE(page)) {
  921. int mark = !is_checkpointed_node(sbi, ino);
  922. set_fsync_mark(page, 1);
  923. if (IS_INODE(page))
  924. set_dentry_mark(page, mark);
  925. nwritten++;
  926. } else {
  927. set_fsync_mark(page, 0);
  928. set_dentry_mark(page, 0);
  929. }
  930. mapping->a_ops->writepage(page, wbc);
  931. wrote++;
  932. if (--wbc->nr_to_write == 0)
  933. break;
  934. }
  935. pagevec_release(&pvec);
  936. cond_resched();
  937. if (wbc->nr_to_write == 0) {
  938. step = 2;
  939. break;
  940. }
  941. }
  942. if (step < 2) {
  943. step++;
  944. goto next_step;
  945. }
  946. if (wrote)
  947. f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
  948. return nwritten;
  949. }
  950. static int f2fs_write_node_page(struct page *page,
  951. struct writeback_control *wbc)
  952. {
  953. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  954. nid_t nid;
  955. unsigned int nofs;
  956. block_t new_addr;
  957. struct node_info ni;
  958. if (wbc->for_reclaim) {
  959. dec_page_count(sbi, F2FS_DIRTY_NODES);
  960. wbc->pages_skipped++;
  961. set_page_dirty(page);
  962. return AOP_WRITEPAGE_ACTIVATE;
  963. }
  964. wait_on_page_writeback(page);
  965. mutex_lock_op(sbi, NODE_WRITE);
  966. /* get old block addr of this node page */
  967. nid = nid_of_node(page);
  968. nofs = ofs_of_node(page);
  969. BUG_ON(page->index != nid);
  970. get_node_info(sbi, nid, &ni);
  971. /* This page is already truncated */
  972. if (ni.blk_addr == NULL_ADDR)
  973. return 0;
  974. set_page_writeback(page);
  975. /* insert node offset */
  976. write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
  977. set_node_addr(sbi, &ni, new_addr);
  978. dec_page_count(sbi, F2FS_DIRTY_NODES);
  979. mutex_unlock_op(sbi, NODE_WRITE);
  980. unlock_page(page);
  981. return 0;
  982. }
  983. static int f2fs_write_node_pages(struct address_space *mapping,
  984. struct writeback_control *wbc)
  985. {
  986. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  987. struct block_device *bdev = sbi->sb->s_bdev;
  988. long nr_to_write = wbc->nr_to_write;
  989. if (wbc->for_kupdate)
  990. return 0;
  991. if (get_pages(sbi, F2FS_DIRTY_NODES) == 0)
  992. return 0;
  993. if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
  994. write_checkpoint(sbi, false, false);
  995. return 0;
  996. }
  997. /* if mounting is failed, skip writing node pages */
  998. wbc->nr_to_write = bio_get_nr_vecs(bdev);
  999. sync_node_pages(sbi, 0, wbc);
  1000. wbc->nr_to_write = nr_to_write -
  1001. (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
  1002. return 0;
  1003. }
  1004. static int f2fs_set_node_page_dirty(struct page *page)
  1005. {
  1006. struct address_space *mapping = page->mapping;
  1007. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1008. SetPageUptodate(page);
  1009. if (!PageDirty(page)) {
  1010. __set_page_dirty_nobuffers(page);
  1011. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1012. SetPagePrivate(page);
  1013. return 1;
  1014. }
  1015. return 0;
  1016. }
  1017. static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
  1018. {
  1019. struct inode *inode = page->mapping->host;
  1020. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1021. if (PageDirty(page))
  1022. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1023. ClearPagePrivate(page);
  1024. }
  1025. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1026. {
  1027. ClearPagePrivate(page);
  1028. return 0;
  1029. }
  1030. /**
  1031. * Structure of the f2fs node operations
  1032. */
  1033. const struct address_space_operations f2fs_node_aops = {
  1034. .writepage = f2fs_write_node_page,
  1035. .writepages = f2fs_write_node_pages,
  1036. .set_page_dirty = f2fs_set_node_page_dirty,
  1037. .invalidatepage = f2fs_invalidate_node_page,
  1038. .releasepage = f2fs_release_node_page,
  1039. };
  1040. static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
  1041. {
  1042. struct list_head *this;
  1043. struct free_nid *i = NULL;
  1044. list_for_each(this, head) {
  1045. i = list_entry(this, struct free_nid, list);
  1046. if (i->nid == n)
  1047. break;
  1048. i = NULL;
  1049. }
  1050. return i;
  1051. }
  1052. static void __del_from_free_nid_list(struct free_nid *i)
  1053. {
  1054. list_del(&i->list);
  1055. kmem_cache_free(free_nid_slab, i);
  1056. }
  1057. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1058. {
  1059. struct free_nid *i;
  1060. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1061. return 0;
  1062. retry:
  1063. i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1064. if (!i) {
  1065. cond_resched();
  1066. goto retry;
  1067. }
  1068. i->nid = nid;
  1069. i->state = NID_NEW;
  1070. spin_lock(&nm_i->free_nid_list_lock);
  1071. if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
  1072. spin_unlock(&nm_i->free_nid_list_lock);
  1073. kmem_cache_free(free_nid_slab, i);
  1074. return 0;
  1075. }
  1076. list_add_tail(&i->list, &nm_i->free_nid_list);
  1077. nm_i->fcnt++;
  1078. spin_unlock(&nm_i->free_nid_list_lock);
  1079. return 1;
  1080. }
  1081. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1082. {
  1083. struct free_nid *i;
  1084. spin_lock(&nm_i->free_nid_list_lock);
  1085. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1086. if (i && i->state == NID_NEW) {
  1087. __del_from_free_nid_list(i);
  1088. nm_i->fcnt--;
  1089. }
  1090. spin_unlock(&nm_i->free_nid_list_lock);
  1091. }
  1092. static int scan_nat_page(struct f2fs_nm_info *nm_i,
  1093. struct page *nat_page, nid_t start_nid)
  1094. {
  1095. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1096. block_t blk_addr;
  1097. int fcnt = 0;
  1098. int i;
  1099. /* 0 nid should not be used */
  1100. if (start_nid == 0)
  1101. ++start_nid;
  1102. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1103. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1104. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1105. BUG_ON(blk_addr == NEW_ADDR);
  1106. if (blk_addr == NULL_ADDR)
  1107. fcnt += add_free_nid(nm_i, start_nid);
  1108. }
  1109. return fcnt;
  1110. }
  1111. static void build_free_nids(struct f2fs_sb_info *sbi)
  1112. {
  1113. struct free_nid *fnid, *next_fnid;
  1114. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1115. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1116. struct f2fs_summary_block *sum = curseg->sum_blk;
  1117. nid_t nid = 0;
  1118. bool is_cycled = false;
  1119. int fcnt = 0;
  1120. int i;
  1121. nid = nm_i->next_scan_nid;
  1122. nm_i->init_scan_nid = nid;
  1123. ra_nat_pages(sbi, nid);
  1124. while (1) {
  1125. struct page *page = get_current_nat_page(sbi, nid);
  1126. fcnt += scan_nat_page(nm_i, page, nid);
  1127. f2fs_put_page(page, 1);
  1128. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1129. if (nid >= nm_i->max_nid) {
  1130. nid = 0;
  1131. is_cycled = true;
  1132. }
  1133. if (fcnt > MAX_FREE_NIDS)
  1134. break;
  1135. if (is_cycled && nm_i->init_scan_nid <= nid)
  1136. break;
  1137. }
  1138. nm_i->next_scan_nid = nid;
  1139. /* find free nids from current sum_pages */
  1140. mutex_lock(&curseg->curseg_mutex);
  1141. for (i = 0; i < nats_in_cursum(sum); i++) {
  1142. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1143. nid = le32_to_cpu(nid_in_journal(sum, i));
  1144. if (addr == NULL_ADDR)
  1145. add_free_nid(nm_i, nid);
  1146. else
  1147. remove_free_nid(nm_i, nid);
  1148. }
  1149. mutex_unlock(&curseg->curseg_mutex);
  1150. /* remove the free nids from current allocated nids */
  1151. list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
  1152. struct nat_entry *ne;
  1153. read_lock(&nm_i->nat_tree_lock);
  1154. ne = __lookup_nat_cache(nm_i, fnid->nid);
  1155. if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
  1156. remove_free_nid(nm_i, fnid->nid);
  1157. read_unlock(&nm_i->nat_tree_lock);
  1158. }
  1159. }
  1160. /*
  1161. * If this function returns success, caller can obtain a new nid
  1162. * from second parameter of this function.
  1163. * The returned nid could be used ino as well as nid when inode is created.
  1164. */
  1165. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1166. {
  1167. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1168. struct free_nid *i = NULL;
  1169. struct list_head *this;
  1170. retry:
  1171. mutex_lock(&nm_i->build_lock);
  1172. if (!nm_i->fcnt) {
  1173. /* scan NAT in order to build free nid list */
  1174. build_free_nids(sbi);
  1175. if (!nm_i->fcnt) {
  1176. mutex_unlock(&nm_i->build_lock);
  1177. return false;
  1178. }
  1179. }
  1180. mutex_unlock(&nm_i->build_lock);
  1181. /*
  1182. * We check fcnt again since previous check is racy as
  1183. * we didn't hold free_nid_list_lock. So other thread
  1184. * could consume all of free nids.
  1185. */
  1186. spin_lock(&nm_i->free_nid_list_lock);
  1187. if (!nm_i->fcnt) {
  1188. spin_unlock(&nm_i->free_nid_list_lock);
  1189. goto retry;
  1190. }
  1191. BUG_ON(list_empty(&nm_i->free_nid_list));
  1192. list_for_each(this, &nm_i->free_nid_list) {
  1193. i = list_entry(this, struct free_nid, list);
  1194. if (i->state == NID_NEW)
  1195. break;
  1196. }
  1197. BUG_ON(i->state != NID_NEW);
  1198. *nid = i->nid;
  1199. i->state = NID_ALLOC;
  1200. nm_i->fcnt--;
  1201. spin_unlock(&nm_i->free_nid_list_lock);
  1202. return true;
  1203. }
  1204. /**
  1205. * alloc_nid() should be called prior to this function.
  1206. */
  1207. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1208. {
  1209. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1210. struct free_nid *i;
  1211. spin_lock(&nm_i->free_nid_list_lock);
  1212. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1213. if (i) {
  1214. BUG_ON(i->state != NID_ALLOC);
  1215. __del_from_free_nid_list(i);
  1216. }
  1217. spin_unlock(&nm_i->free_nid_list_lock);
  1218. }
  1219. /**
  1220. * alloc_nid() should be called prior to this function.
  1221. */
  1222. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1223. {
  1224. alloc_nid_done(sbi, nid);
  1225. add_free_nid(NM_I(sbi), nid);
  1226. }
  1227. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1228. struct f2fs_summary *sum, struct node_info *ni,
  1229. block_t new_blkaddr)
  1230. {
  1231. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1232. set_node_addr(sbi, ni, new_blkaddr);
  1233. clear_node_page_dirty(page);
  1234. }
  1235. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1236. {
  1237. struct address_space *mapping = sbi->node_inode->i_mapping;
  1238. struct f2fs_node *src, *dst;
  1239. nid_t ino = ino_of_node(page);
  1240. struct node_info old_ni, new_ni;
  1241. struct page *ipage;
  1242. ipage = grab_cache_page(mapping, ino);
  1243. if (!ipage)
  1244. return -ENOMEM;
  1245. /* Should not use this inode from free nid list */
  1246. remove_free_nid(NM_I(sbi), ino);
  1247. get_node_info(sbi, ino, &old_ni);
  1248. SetPageUptodate(ipage);
  1249. fill_node_footer(ipage, ino, ino, 0, true);
  1250. src = (struct f2fs_node *)page_address(page);
  1251. dst = (struct f2fs_node *)page_address(ipage);
  1252. memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
  1253. dst->i.i_size = 0;
  1254. dst->i.i_blocks = 1;
  1255. dst->i.i_links = 1;
  1256. dst->i.i_xattr_nid = 0;
  1257. new_ni = old_ni;
  1258. new_ni.ino = ino;
  1259. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1260. inc_valid_inode_count(sbi);
  1261. f2fs_put_page(ipage, 1);
  1262. return 0;
  1263. }
  1264. int restore_node_summary(struct f2fs_sb_info *sbi,
  1265. unsigned int segno, struct f2fs_summary_block *sum)
  1266. {
  1267. struct f2fs_node *rn;
  1268. struct f2fs_summary *sum_entry;
  1269. struct page *page;
  1270. block_t addr;
  1271. int i, last_offset;
  1272. /* alloc temporal page for read node */
  1273. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  1274. if (IS_ERR(page))
  1275. return PTR_ERR(page);
  1276. lock_page(page);
  1277. /* scan the node segment */
  1278. last_offset = sbi->blocks_per_seg;
  1279. addr = START_BLOCK(sbi, segno);
  1280. sum_entry = &sum->entries[0];
  1281. for (i = 0; i < last_offset; i++, sum_entry++) {
  1282. if (f2fs_readpage(sbi, page, addr, READ_SYNC))
  1283. goto out;
  1284. rn = (struct f2fs_node *)page_address(page);
  1285. sum_entry->nid = rn->footer.nid;
  1286. sum_entry->version = 0;
  1287. sum_entry->ofs_in_node = 0;
  1288. addr++;
  1289. /*
  1290. * In order to read next node page,
  1291. * we must clear PageUptodate flag.
  1292. */
  1293. ClearPageUptodate(page);
  1294. }
  1295. out:
  1296. unlock_page(page);
  1297. __free_pages(page, 0);
  1298. return 0;
  1299. }
  1300. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1301. {
  1302. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1303. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1304. struct f2fs_summary_block *sum = curseg->sum_blk;
  1305. int i;
  1306. mutex_lock(&curseg->curseg_mutex);
  1307. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1308. mutex_unlock(&curseg->curseg_mutex);
  1309. return false;
  1310. }
  1311. for (i = 0; i < nats_in_cursum(sum); i++) {
  1312. struct nat_entry *ne;
  1313. struct f2fs_nat_entry raw_ne;
  1314. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1315. raw_ne = nat_in_journal(sum, i);
  1316. retry:
  1317. write_lock(&nm_i->nat_tree_lock);
  1318. ne = __lookup_nat_cache(nm_i, nid);
  1319. if (ne) {
  1320. __set_nat_cache_dirty(nm_i, ne);
  1321. write_unlock(&nm_i->nat_tree_lock);
  1322. continue;
  1323. }
  1324. ne = grab_nat_entry(nm_i, nid);
  1325. if (!ne) {
  1326. write_unlock(&nm_i->nat_tree_lock);
  1327. goto retry;
  1328. }
  1329. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1330. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1331. nat_set_version(ne, raw_ne.version);
  1332. __set_nat_cache_dirty(nm_i, ne);
  1333. write_unlock(&nm_i->nat_tree_lock);
  1334. }
  1335. update_nats_in_cursum(sum, -i);
  1336. mutex_unlock(&curseg->curseg_mutex);
  1337. return true;
  1338. }
  1339. /**
  1340. * This function is called during the checkpointing process.
  1341. */
  1342. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1343. {
  1344. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1345. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1346. struct f2fs_summary_block *sum = curseg->sum_blk;
  1347. struct list_head *cur, *n;
  1348. struct page *page = NULL;
  1349. struct f2fs_nat_block *nat_blk = NULL;
  1350. nid_t start_nid = 0, end_nid = 0;
  1351. bool flushed;
  1352. flushed = flush_nats_in_journal(sbi);
  1353. if (!flushed)
  1354. mutex_lock(&curseg->curseg_mutex);
  1355. /* 1) flush dirty nat caches */
  1356. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1357. struct nat_entry *ne;
  1358. nid_t nid;
  1359. struct f2fs_nat_entry raw_ne;
  1360. int offset = -1;
  1361. block_t old_blkaddr, new_blkaddr;
  1362. ne = list_entry(cur, struct nat_entry, list);
  1363. nid = nat_get_nid(ne);
  1364. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1365. continue;
  1366. if (flushed)
  1367. goto to_nat_page;
  1368. /* if there is room for nat enries in curseg->sumpage */
  1369. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1370. if (offset >= 0) {
  1371. raw_ne = nat_in_journal(sum, offset);
  1372. old_blkaddr = le32_to_cpu(raw_ne.block_addr);
  1373. goto flush_now;
  1374. }
  1375. to_nat_page:
  1376. if (!page || (start_nid > nid || nid > end_nid)) {
  1377. if (page) {
  1378. f2fs_put_page(page, 1);
  1379. page = NULL;
  1380. }
  1381. start_nid = START_NID(nid);
  1382. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1383. /*
  1384. * get nat block with dirty flag, increased reference
  1385. * count, mapped and lock
  1386. */
  1387. page = get_next_nat_page(sbi, start_nid);
  1388. nat_blk = page_address(page);
  1389. }
  1390. BUG_ON(!nat_blk);
  1391. raw_ne = nat_blk->entries[nid - start_nid];
  1392. old_blkaddr = le32_to_cpu(raw_ne.block_addr);
  1393. flush_now:
  1394. new_blkaddr = nat_get_blkaddr(ne);
  1395. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1396. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1397. raw_ne.version = nat_get_version(ne);
  1398. if (offset < 0) {
  1399. nat_blk->entries[nid - start_nid] = raw_ne;
  1400. } else {
  1401. nat_in_journal(sum, offset) = raw_ne;
  1402. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1403. }
  1404. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  1405. write_lock(&nm_i->nat_tree_lock);
  1406. __del_from_nat_cache(nm_i, ne);
  1407. write_unlock(&nm_i->nat_tree_lock);
  1408. /* We can reuse this freed nid at this point */
  1409. add_free_nid(NM_I(sbi), nid);
  1410. } else {
  1411. write_lock(&nm_i->nat_tree_lock);
  1412. __clear_nat_cache_dirty(nm_i, ne);
  1413. ne->checkpointed = true;
  1414. write_unlock(&nm_i->nat_tree_lock);
  1415. }
  1416. }
  1417. if (!flushed)
  1418. mutex_unlock(&curseg->curseg_mutex);
  1419. f2fs_put_page(page, 1);
  1420. /* 2) shrink nat caches if necessary */
  1421. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1422. }
  1423. static int init_node_manager(struct f2fs_sb_info *sbi)
  1424. {
  1425. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1426. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1427. unsigned char *version_bitmap;
  1428. unsigned int nat_segs, nat_blocks;
  1429. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1430. /* segment_count_nat includes pair segment so divide to 2. */
  1431. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1432. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1433. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1434. nm_i->fcnt = 0;
  1435. nm_i->nat_cnt = 0;
  1436. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1437. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1438. INIT_LIST_HEAD(&nm_i->nat_entries);
  1439. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1440. mutex_init(&nm_i->build_lock);
  1441. spin_lock_init(&nm_i->free_nid_list_lock);
  1442. rwlock_init(&nm_i->nat_tree_lock);
  1443. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1444. nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1445. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1446. nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
  1447. if (!nm_i->nat_bitmap)
  1448. return -ENOMEM;
  1449. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1450. if (!version_bitmap)
  1451. return -EFAULT;
  1452. /* copy version bitmap */
  1453. memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
  1454. return 0;
  1455. }
  1456. int build_node_manager(struct f2fs_sb_info *sbi)
  1457. {
  1458. int err;
  1459. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1460. if (!sbi->nm_info)
  1461. return -ENOMEM;
  1462. err = init_node_manager(sbi);
  1463. if (err)
  1464. return err;
  1465. build_free_nids(sbi);
  1466. return 0;
  1467. }
  1468. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1469. {
  1470. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1471. struct free_nid *i, *next_i;
  1472. struct nat_entry *natvec[NATVEC_SIZE];
  1473. nid_t nid = 0;
  1474. unsigned int found;
  1475. if (!nm_i)
  1476. return;
  1477. /* destroy free nid list */
  1478. spin_lock(&nm_i->free_nid_list_lock);
  1479. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1480. BUG_ON(i->state == NID_ALLOC);
  1481. __del_from_free_nid_list(i);
  1482. nm_i->fcnt--;
  1483. }
  1484. BUG_ON(nm_i->fcnt);
  1485. spin_unlock(&nm_i->free_nid_list_lock);
  1486. /* destroy nat cache */
  1487. write_lock(&nm_i->nat_tree_lock);
  1488. while ((found = __gang_lookup_nat_cache(nm_i,
  1489. nid, NATVEC_SIZE, natvec))) {
  1490. unsigned idx;
  1491. for (idx = 0; idx < found; idx++) {
  1492. struct nat_entry *e = natvec[idx];
  1493. nid = nat_get_nid(e) + 1;
  1494. __del_from_nat_cache(nm_i, e);
  1495. }
  1496. }
  1497. BUG_ON(nm_i->nat_cnt);
  1498. write_unlock(&nm_i->nat_tree_lock);
  1499. kfree(nm_i->nat_bitmap);
  1500. sbi->nm_info = NULL;
  1501. kfree(nm_i);
  1502. }
  1503. int create_node_manager_caches(void)
  1504. {
  1505. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1506. sizeof(struct nat_entry), NULL);
  1507. if (!nat_entry_slab)
  1508. return -ENOMEM;
  1509. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1510. sizeof(struct free_nid), NULL);
  1511. if (!free_nid_slab) {
  1512. kmem_cache_destroy(nat_entry_slab);
  1513. return -ENOMEM;
  1514. }
  1515. return 0;
  1516. }
  1517. void destroy_node_manager_caches(void)
  1518. {
  1519. kmem_cache_destroy(free_nid_slab);
  1520. kmem_cache_destroy(nat_entry_slab);
  1521. }