paging_tmpl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  29. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  30. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  56. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  76. gfn_t table_gfn, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. pt_element_t ret;
  80. pt_element_t *table;
  81. struct page *page;
  82. page = gfn_to_page(kvm, table_gfn);
  83. table = kmap_atomic(page, KM_USER0);
  84. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  85. kunmap_atomic(table, KM_USER0);
  86. kvm_release_page_dirty(page);
  87. return (ret != orig_pte);
  88. }
  89. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  90. {
  91. unsigned access;
  92. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  93. #if PTTYPE == 64
  94. if (is_nx(vcpu))
  95. access &= ~(gpte >> PT64_NX_SHIFT);
  96. #endif
  97. return access;
  98. }
  99. /*
  100. * Fetch a guest pte for a guest virtual address
  101. */
  102. static int FNAME(walk_addr)(struct guest_walker *walker,
  103. struct kvm_vcpu *vcpu, gva_t addr,
  104. int write_fault, int user_fault, int fetch_fault)
  105. {
  106. pt_element_t pte;
  107. gfn_t table_gfn;
  108. unsigned index, pt_access, pte_access;
  109. gpa_t pte_gpa;
  110. int rsvd_fault = 0;
  111. trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
  112. fetch_fault);
  113. walk:
  114. walker->level = vcpu->arch.mmu.root_level;
  115. pte = vcpu->arch.cr3;
  116. #if PTTYPE == 64
  117. if (!is_long_mode(vcpu)) {
  118. pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
  119. trace_kvm_mmu_paging_element(pte, walker->level);
  120. if (!is_present_gpte(pte))
  121. goto not_present;
  122. --walker->level;
  123. }
  124. #endif
  125. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  126. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  127. pt_access = ACC_ALL;
  128. for (;;) {
  129. index = PT_INDEX(addr, walker->level);
  130. table_gfn = gpte_to_gfn(pte);
  131. pte_gpa = gfn_to_gpa(table_gfn);
  132. pte_gpa += index * sizeof(pt_element_t);
  133. walker->table_gfn[walker->level - 1] = table_gfn;
  134. walker->pte_gpa[walker->level - 1] = pte_gpa;
  135. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  136. trace_kvm_mmu_paging_element(pte, walker->level);
  137. if (!is_present_gpte(pte))
  138. goto not_present;
  139. rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
  140. if (rsvd_fault)
  141. goto access_error;
  142. if (write_fault && !is_writeble_pte(pte))
  143. if (user_fault || is_write_protection(vcpu))
  144. goto access_error;
  145. if (user_fault && !(pte & PT_USER_MASK))
  146. goto access_error;
  147. #if PTTYPE == 64
  148. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  149. goto access_error;
  150. #endif
  151. if (!(pte & PT_ACCESSED_MASK)) {
  152. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  153. sizeof(pte));
  154. mark_page_dirty(vcpu->kvm, table_gfn);
  155. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  156. index, pte, pte|PT_ACCESSED_MASK))
  157. goto walk;
  158. pte |= PT_ACCESSED_MASK;
  159. }
  160. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  161. walker->ptes[walker->level - 1] = pte;
  162. if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
  163. ((walker->level == PT_DIRECTORY_LEVEL) &&
  164. (pte & PT_PAGE_SIZE_MASK) &&
  165. (PTTYPE == 64 || is_pse(vcpu))) ||
  166. ((walker->level == PT_PDPE_LEVEL) &&
  167. (pte & PT_PAGE_SIZE_MASK) &&
  168. is_long_mode(vcpu))) {
  169. int lvl = walker->level;
  170. walker->gfn = gpte_to_gfn_lvl(pte, lvl);
  171. walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
  172. >> PAGE_SHIFT;
  173. if (PTTYPE == 32 &&
  174. walker->level == PT_DIRECTORY_LEVEL &&
  175. is_cpuid_PSE36())
  176. walker->gfn += pse36_gfn_delta(pte);
  177. break;
  178. }
  179. pt_access = pte_access;
  180. --walker->level;
  181. }
  182. if (write_fault && !is_dirty_gpte(pte)) {
  183. bool ret;
  184. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  185. mark_page_dirty(vcpu->kvm, table_gfn);
  186. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  187. pte|PT_DIRTY_MASK);
  188. if (ret)
  189. goto walk;
  190. pte |= PT_DIRTY_MASK;
  191. walker->ptes[walker->level - 1] = pte;
  192. }
  193. walker->pt_access = pt_access;
  194. walker->pte_access = pte_access;
  195. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  196. __func__, (u64)pte, pt_access, pte_access);
  197. return 1;
  198. not_present:
  199. walker->error_code = 0;
  200. goto err;
  201. access_error:
  202. walker->error_code = PFERR_PRESENT_MASK;
  203. err:
  204. if (write_fault)
  205. walker->error_code |= PFERR_WRITE_MASK;
  206. if (user_fault)
  207. walker->error_code |= PFERR_USER_MASK;
  208. if (fetch_fault)
  209. walker->error_code |= PFERR_FETCH_MASK;
  210. if (rsvd_fault)
  211. walker->error_code |= PFERR_RSVD_MASK;
  212. trace_kvm_mmu_walker_error(walker->error_code);
  213. return 0;
  214. }
  215. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  216. u64 *spte, const void *pte)
  217. {
  218. pt_element_t gpte;
  219. unsigned pte_access;
  220. pfn_t pfn;
  221. int level = vcpu->arch.update_pte.level;
  222. gpte = *(const pt_element_t *)pte;
  223. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  224. if (!is_present_gpte(gpte))
  225. __set_spte(spte, shadow_notrap_nonpresent_pte);
  226. return;
  227. }
  228. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  229. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  230. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  231. return;
  232. pfn = vcpu->arch.update_pte.pfn;
  233. if (is_error_pfn(pfn))
  234. return;
  235. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  236. return;
  237. kvm_get_pfn(pfn);
  238. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  239. gpte & PT_DIRTY_MASK, NULL, level,
  240. gpte_to_gfn(gpte), pfn, true);
  241. }
  242. /*
  243. * Fetch a shadow pte for a specific level in the paging hierarchy.
  244. */
  245. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  246. struct guest_walker *gw,
  247. int user_fault, int write_fault, int largepage,
  248. int *ptwrite, pfn_t pfn)
  249. {
  250. unsigned access = gw->pt_access;
  251. struct kvm_mmu_page *shadow_page;
  252. u64 spte, *sptep = NULL;
  253. int direct;
  254. gfn_t table_gfn;
  255. int r;
  256. int level;
  257. pt_element_t curr_pte;
  258. struct kvm_shadow_walk_iterator iterator;
  259. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  260. return NULL;
  261. for_each_shadow_entry(vcpu, addr, iterator) {
  262. level = iterator.level;
  263. sptep = iterator.sptep;
  264. if (level == PT_PAGE_TABLE_LEVEL
  265. || (largepage && level == PT_DIRECTORY_LEVEL)) {
  266. mmu_set_spte(vcpu, sptep, access,
  267. gw->pte_access & access,
  268. user_fault, write_fault,
  269. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  270. ptwrite, level,
  271. gw->gfn, pfn, false);
  272. break;
  273. }
  274. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  275. continue;
  276. if (is_large_pte(*sptep)) {
  277. rmap_remove(vcpu->kvm, sptep);
  278. __set_spte(sptep, shadow_trap_nonpresent_pte);
  279. kvm_flush_remote_tlbs(vcpu->kvm);
  280. }
  281. if (level == PT_DIRECTORY_LEVEL
  282. && gw->level == PT_DIRECTORY_LEVEL) {
  283. direct = 1;
  284. if (!is_dirty_gpte(gw->ptes[level - 1]))
  285. access &= ~ACC_WRITE_MASK;
  286. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  287. } else {
  288. direct = 0;
  289. table_gfn = gw->table_gfn[level - 2];
  290. }
  291. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  292. direct, access, sptep);
  293. if (!direct) {
  294. r = kvm_read_guest_atomic(vcpu->kvm,
  295. gw->pte_gpa[level - 2],
  296. &curr_pte, sizeof(curr_pte));
  297. if (r || curr_pte != gw->ptes[level - 2]) {
  298. kvm_mmu_put_page(shadow_page, sptep);
  299. kvm_release_pfn_clean(pfn);
  300. sptep = NULL;
  301. break;
  302. }
  303. }
  304. spte = __pa(shadow_page->spt)
  305. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  306. | PT_WRITABLE_MASK | PT_USER_MASK;
  307. *sptep = spte;
  308. }
  309. return sptep;
  310. }
  311. /*
  312. * Page fault handler. There are several causes for a page fault:
  313. * - there is no shadow pte for the guest pte
  314. * - write access through a shadow pte marked read only so that we can set
  315. * the dirty bit
  316. * - write access to a shadow pte marked read only so we can update the page
  317. * dirty bitmap, when userspace requests it
  318. * - mmio access; in this case we will never install a present shadow pte
  319. * - normal guest page fault due to the guest pte marked not present, not
  320. * writable, or not executable
  321. *
  322. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  323. * a negative value on error.
  324. */
  325. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  326. u32 error_code)
  327. {
  328. int write_fault = error_code & PFERR_WRITE_MASK;
  329. int user_fault = error_code & PFERR_USER_MASK;
  330. int fetch_fault = error_code & PFERR_FETCH_MASK;
  331. struct guest_walker walker;
  332. u64 *sptep;
  333. int write_pt = 0;
  334. int r;
  335. pfn_t pfn;
  336. int largepage = 0;
  337. unsigned long mmu_seq;
  338. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  339. kvm_mmu_audit(vcpu, "pre page fault");
  340. r = mmu_topup_memory_caches(vcpu);
  341. if (r)
  342. return r;
  343. /*
  344. * Look up the guest pte for the faulting address.
  345. */
  346. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  347. fetch_fault);
  348. /*
  349. * The page is not mapped by the guest. Let the guest handle it.
  350. */
  351. if (!r) {
  352. pgprintk("%s: guest page fault\n", __func__);
  353. inject_page_fault(vcpu, addr, walker.error_code);
  354. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  355. return 0;
  356. }
  357. if (walker.level == PT_DIRECTORY_LEVEL) {
  358. gfn_t large_gfn;
  359. large_gfn = walker.gfn &
  360. ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
  361. if (mapping_level(vcpu, large_gfn) == PT_DIRECTORY_LEVEL) {
  362. walker.gfn = large_gfn;
  363. largepage = 1;
  364. }
  365. }
  366. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  367. smp_rmb();
  368. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  369. /* mmio */
  370. if (is_error_pfn(pfn)) {
  371. pgprintk("gfn %lx is mmio\n", walker.gfn);
  372. kvm_release_pfn_clean(pfn);
  373. return 1;
  374. }
  375. spin_lock(&vcpu->kvm->mmu_lock);
  376. if (mmu_notifier_retry(vcpu, mmu_seq))
  377. goto out_unlock;
  378. kvm_mmu_free_some_pages(vcpu);
  379. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  380. largepage, &write_pt, pfn);
  381. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  382. sptep, *sptep, write_pt);
  383. if (!write_pt)
  384. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  385. ++vcpu->stat.pf_fixed;
  386. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  387. spin_unlock(&vcpu->kvm->mmu_lock);
  388. return write_pt;
  389. out_unlock:
  390. spin_unlock(&vcpu->kvm->mmu_lock);
  391. kvm_release_pfn_clean(pfn);
  392. return 0;
  393. }
  394. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  395. {
  396. struct kvm_shadow_walk_iterator iterator;
  397. pt_element_t gpte;
  398. gpa_t pte_gpa = -1;
  399. int level;
  400. u64 *sptep;
  401. int need_flush = 0;
  402. spin_lock(&vcpu->kvm->mmu_lock);
  403. for_each_shadow_entry(vcpu, gva, iterator) {
  404. level = iterator.level;
  405. sptep = iterator.sptep;
  406. /* FIXME: properly handle invlpg on large guest pages */
  407. if (level == PT_PAGE_TABLE_LEVEL ||
  408. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  409. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  410. pte_gpa = (sp->gfn << PAGE_SHIFT);
  411. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  412. if (is_shadow_present_pte(*sptep)) {
  413. rmap_remove(vcpu->kvm, sptep);
  414. if (is_large_pte(*sptep))
  415. --vcpu->kvm->stat.lpages;
  416. need_flush = 1;
  417. }
  418. __set_spte(sptep, shadow_trap_nonpresent_pte);
  419. break;
  420. }
  421. if (!is_shadow_present_pte(*sptep))
  422. break;
  423. }
  424. if (need_flush)
  425. kvm_flush_remote_tlbs(vcpu->kvm);
  426. spin_unlock(&vcpu->kvm->mmu_lock);
  427. if (pte_gpa == -1)
  428. return;
  429. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  430. sizeof(pt_element_t)))
  431. return;
  432. if (is_present_gpte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  433. if (mmu_topup_memory_caches(vcpu))
  434. return;
  435. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  436. sizeof(pt_element_t), 0);
  437. }
  438. }
  439. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  440. {
  441. struct guest_walker walker;
  442. gpa_t gpa = UNMAPPED_GVA;
  443. int r;
  444. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  445. if (r) {
  446. gpa = gfn_to_gpa(walker.gfn);
  447. gpa |= vaddr & ~PAGE_MASK;
  448. }
  449. return gpa;
  450. }
  451. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  452. struct kvm_mmu_page *sp)
  453. {
  454. int i, j, offset, r;
  455. pt_element_t pt[256 / sizeof(pt_element_t)];
  456. gpa_t pte_gpa;
  457. if (sp->role.direct
  458. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  459. nonpaging_prefetch_page(vcpu, sp);
  460. return;
  461. }
  462. pte_gpa = gfn_to_gpa(sp->gfn);
  463. if (PTTYPE == 32) {
  464. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  465. pte_gpa += offset * sizeof(pt_element_t);
  466. }
  467. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  468. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  469. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  470. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  471. if (r || is_present_gpte(pt[j]))
  472. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  473. else
  474. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  475. }
  476. }
  477. /*
  478. * Using the cached information from sp->gfns is safe because:
  479. * - The spte has a reference to the struct page, so the pfn for a given gfn
  480. * can't change unless all sptes pointing to it are nuked first.
  481. * - Alias changes zap the entire shadow cache.
  482. */
  483. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  484. {
  485. int i, offset, nr_present;
  486. offset = nr_present = 0;
  487. if (PTTYPE == 32)
  488. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  489. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  490. unsigned pte_access;
  491. pt_element_t gpte;
  492. gpa_t pte_gpa;
  493. gfn_t gfn = sp->gfns[i];
  494. if (!is_shadow_present_pte(sp->spt[i]))
  495. continue;
  496. pte_gpa = gfn_to_gpa(sp->gfn);
  497. pte_gpa += (i+offset) * sizeof(pt_element_t);
  498. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  499. sizeof(pt_element_t)))
  500. return -EINVAL;
  501. if (gpte_to_gfn(gpte) != gfn || !is_present_gpte(gpte) ||
  502. !(gpte & PT_ACCESSED_MASK)) {
  503. u64 nonpresent;
  504. rmap_remove(vcpu->kvm, &sp->spt[i]);
  505. if (is_present_gpte(gpte))
  506. nonpresent = shadow_trap_nonpresent_pte;
  507. else
  508. nonpresent = shadow_notrap_nonpresent_pte;
  509. __set_spte(&sp->spt[i], nonpresent);
  510. continue;
  511. }
  512. nr_present++;
  513. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  514. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  515. is_dirty_gpte(gpte), 0, gfn,
  516. spte_to_pfn(sp->spt[i]), true, false);
  517. }
  518. return !nr_present;
  519. }
  520. #undef pt_element_t
  521. #undef guest_walker
  522. #undef FNAME
  523. #undef PT_BASE_ADDR_MASK
  524. #undef PT_INDEX
  525. #undef PT_LEVEL_MASK
  526. #undef PT_LVL_ADDR_MASK
  527. #undef PT_LVL_OFFSET_MASK
  528. #undef PT_LEVEL_BITS
  529. #undef PT_MAX_FULL_LEVELS
  530. #undef gpte_to_gfn
  531. #undef gpte_to_gfn_lvl
  532. #undef CMPXCHG