page-flags.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * Macros for manipulating and testing page->flags
  3. */
  4. #ifndef PAGE_FLAGS_H
  5. #define PAGE_FLAGS_H
  6. #include <linux/types.h>
  7. #ifndef __GENERATING_BOUNDS_H
  8. #include <linux/mm_types.h>
  9. #include <linux/bounds.h>
  10. #endif /* !__GENERATING_BOUNDS_H */
  11. /*
  12. * Various page->flags bits:
  13. *
  14. * PG_reserved is set for special pages, which can never be swapped out. Some
  15. * of them might not even exist (eg empty_bad_page)...
  16. *
  17. * The PG_private bitflag is set on pagecache pages if they contain filesystem
  18. * specific data (which is normally at page->private). It can be used by
  19. * private allocations for its own usage.
  20. *
  21. * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  22. * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  23. * is set before writeback starts and cleared when it finishes.
  24. *
  25. * PG_locked also pins a page in pagecache, and blocks truncation of the file
  26. * while it is held.
  27. *
  28. * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  29. * to become unlocked.
  30. *
  31. * PG_uptodate tells whether the page's contents is valid. When a read
  32. * completes, the page becomes uptodate, unless a disk I/O error happened.
  33. *
  34. * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  35. * file-backed pagecache (see mm/vmscan.c).
  36. *
  37. * PG_error is set to indicate that an I/O error occurred on this page.
  38. *
  39. * PG_arch_1 is an architecture specific page state bit. The generic code
  40. * guarantees that this bit is cleared for a page when it first is entered into
  41. * the page cache.
  42. *
  43. * PG_highmem pages are not permanently mapped into the kernel virtual address
  44. * space, they need to be kmapped separately for doing IO on the pages. The
  45. * struct page (these bits with information) are always mapped into kernel
  46. * address space...
  47. *
  48. * PG_buddy is set to indicate that the page is free and in the buddy system
  49. * (see mm/page_alloc.c).
  50. *
  51. */
  52. /*
  53. * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
  54. * locked- and dirty-page accounting.
  55. *
  56. * The page flags field is split into two parts, the main flags area
  57. * which extends from the low bits upwards, and the fields area which
  58. * extends from the high bits downwards.
  59. *
  60. * | FIELD | ... | FLAGS |
  61. * N-1 ^ 0
  62. * (NR_PAGEFLAGS)
  63. *
  64. * The fields area is reserved for fields mapping zone, node (for NUMA) and
  65. * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  66. * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  67. */
  68. enum pageflags {
  69. PG_locked, /* Page is locked. Don't touch. */
  70. PG_error,
  71. PG_referenced,
  72. PG_uptodate,
  73. PG_dirty,
  74. PG_lru,
  75. PG_active,
  76. PG_slab,
  77. PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
  78. PG_arch_1,
  79. PG_reserved,
  80. PG_private, /* If pagecache, has fs-private data */
  81. PG_private_2, /* If pagecache, has fs aux data */
  82. PG_writeback, /* Page is under writeback */
  83. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  84. PG_head, /* A head page */
  85. PG_tail, /* A tail page */
  86. #else
  87. PG_compound, /* A compound page */
  88. #endif
  89. PG_swapcache, /* Swap page: swp_entry_t in private */
  90. PG_mappedtodisk, /* Has blocks allocated on-disk */
  91. PG_reclaim, /* To be reclaimed asap */
  92. PG_buddy, /* Page is free, on buddy lists */
  93. PG_swapbacked, /* Page is backed by RAM/swap */
  94. PG_unevictable, /* Page is "unevictable" */
  95. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  96. PG_mlocked, /* Page is vma mlocked */
  97. #endif
  98. #ifdef CONFIG_IA64_UNCACHED_ALLOCATOR
  99. PG_uncached, /* Page has been mapped as uncached */
  100. #endif
  101. __NR_PAGEFLAGS,
  102. /* Filesystems */
  103. PG_checked = PG_owner_priv_1,
  104. /* Two page bits are conscripted by FS-Cache to maintain local caching
  105. * state. These bits are set on pages belonging to the netfs's inodes
  106. * when those inodes are being locally cached.
  107. */
  108. PG_fscache = PG_private_2, /* page backed by cache */
  109. /* XEN */
  110. PG_pinned = PG_owner_priv_1,
  111. PG_savepinned = PG_dirty,
  112. /* SLOB */
  113. PG_slob_free = PG_private,
  114. /* SLUB */
  115. PG_slub_frozen = PG_active,
  116. PG_slub_debug = PG_error,
  117. };
  118. #ifndef __GENERATING_BOUNDS_H
  119. /*
  120. * Macros to create function definitions for page flags
  121. */
  122. #define TESTPAGEFLAG(uname, lname) \
  123. static inline int Page##uname(struct page *page) \
  124. { return test_bit(PG_##lname, &page->flags); }
  125. #define SETPAGEFLAG(uname, lname) \
  126. static inline void SetPage##uname(struct page *page) \
  127. { set_bit(PG_##lname, &page->flags); }
  128. #define CLEARPAGEFLAG(uname, lname) \
  129. static inline void ClearPage##uname(struct page *page) \
  130. { clear_bit(PG_##lname, &page->flags); }
  131. #define __SETPAGEFLAG(uname, lname) \
  132. static inline void __SetPage##uname(struct page *page) \
  133. { __set_bit(PG_##lname, &page->flags); }
  134. #define __CLEARPAGEFLAG(uname, lname) \
  135. static inline void __ClearPage##uname(struct page *page) \
  136. { __clear_bit(PG_##lname, &page->flags); }
  137. #define TESTSETFLAG(uname, lname) \
  138. static inline int TestSetPage##uname(struct page *page) \
  139. { return test_and_set_bit(PG_##lname, &page->flags); }
  140. #define TESTCLEARFLAG(uname, lname) \
  141. static inline int TestClearPage##uname(struct page *page) \
  142. { return test_and_clear_bit(PG_##lname, &page->flags); }
  143. #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
  144. SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
  145. #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
  146. __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
  147. #define PAGEFLAG_FALSE(uname) \
  148. static inline int Page##uname(struct page *page) \
  149. { return 0; }
  150. #define TESTSCFLAG(uname, lname) \
  151. TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
  152. #define SETPAGEFLAG_NOOP(uname) \
  153. static inline void SetPage##uname(struct page *page) { }
  154. #define CLEARPAGEFLAG_NOOP(uname) \
  155. static inline void ClearPage##uname(struct page *page) { }
  156. #define __CLEARPAGEFLAG_NOOP(uname) \
  157. static inline void __ClearPage##uname(struct page *page) { }
  158. #define TESTCLEARFLAG_FALSE(uname) \
  159. static inline int TestClearPage##uname(struct page *page) { return 0; }
  160. struct page; /* forward declaration */
  161. TESTPAGEFLAG(Locked, locked) TESTSETFLAG(Locked, locked)
  162. PAGEFLAG(Error, error)
  163. PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
  164. PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
  165. PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
  166. PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
  167. TESTCLEARFLAG(Active, active)
  168. __PAGEFLAG(Slab, slab)
  169. PAGEFLAG(Checked, checked) /* Used by some filesystems */
  170. PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
  171. PAGEFLAG(SavePinned, savepinned); /* Xen */
  172. PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
  173. PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
  174. __PAGEFLAG(SlobFree, slob_free)
  175. __PAGEFLAG(SlubFrozen, slub_frozen)
  176. __PAGEFLAG(SlubDebug, slub_debug)
  177. /*
  178. * Private page markings that may be used by the filesystem that owns the page
  179. * for its own purposes.
  180. * - PG_private and PG_private_2 cause releasepage() and co to be invoked
  181. */
  182. PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
  183. __CLEARPAGEFLAG(Private, private)
  184. PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
  185. PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
  186. /*
  187. * Only test-and-set exist for PG_writeback. The unconditional operators are
  188. * risky: they bypass page accounting.
  189. */
  190. TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
  191. __PAGEFLAG(Buddy, buddy)
  192. PAGEFLAG(MappedToDisk, mappedtodisk)
  193. /* PG_readahead is only used for file reads; PG_reclaim is only for writes */
  194. PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
  195. PAGEFLAG(Readahead, reclaim) /* Reminder to do async read-ahead */
  196. #ifdef CONFIG_HIGHMEM
  197. /*
  198. * Must use a macro here due to header dependency issues. page_zone() is not
  199. * available at this point.
  200. */
  201. #define PageHighMem(__p) is_highmem(page_zone(__p))
  202. #else
  203. PAGEFLAG_FALSE(HighMem)
  204. #endif
  205. #ifdef CONFIG_SWAP
  206. PAGEFLAG(SwapCache, swapcache)
  207. #else
  208. PAGEFLAG_FALSE(SwapCache)
  209. SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
  210. #endif
  211. PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
  212. TESTCLEARFLAG(Unevictable, unevictable)
  213. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  214. #define MLOCK_PAGES 1
  215. PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
  216. TESTSCFLAG(Mlocked, mlocked)
  217. #else
  218. #define MLOCK_PAGES 0
  219. PAGEFLAG_FALSE(Mlocked)
  220. SETPAGEFLAG_NOOP(Mlocked) TESTCLEARFLAG_FALSE(Mlocked)
  221. #endif
  222. #ifdef CONFIG_IA64_UNCACHED_ALLOCATOR
  223. PAGEFLAG(Uncached, uncached)
  224. #else
  225. PAGEFLAG_FALSE(Uncached)
  226. #endif
  227. static inline int PageUptodate(struct page *page)
  228. {
  229. int ret = test_bit(PG_uptodate, &(page)->flags);
  230. /*
  231. * Must ensure that the data we read out of the page is loaded
  232. * _after_ we've loaded page->flags to check for PageUptodate.
  233. * We can skip the barrier if the page is not uptodate, because
  234. * we wouldn't be reading anything from it.
  235. *
  236. * See SetPageUptodate() for the other side of the story.
  237. */
  238. if (ret)
  239. smp_rmb();
  240. return ret;
  241. }
  242. static inline void __SetPageUptodate(struct page *page)
  243. {
  244. smp_wmb();
  245. __set_bit(PG_uptodate, &(page)->flags);
  246. }
  247. static inline void SetPageUptodate(struct page *page)
  248. {
  249. #ifdef CONFIG_S390
  250. if (!test_and_set_bit(PG_uptodate, &page->flags))
  251. page_clear_dirty(page);
  252. #else
  253. /*
  254. * Memory barrier must be issued before setting the PG_uptodate bit,
  255. * so that all previous stores issued in order to bring the page
  256. * uptodate are actually visible before PageUptodate becomes true.
  257. *
  258. * s390 doesn't need an explicit smp_wmb here because the test and
  259. * set bit already provides full barriers.
  260. */
  261. smp_wmb();
  262. set_bit(PG_uptodate, &(page)->flags);
  263. #endif
  264. }
  265. CLEARPAGEFLAG(Uptodate, uptodate)
  266. extern void cancel_dirty_page(struct page *page, unsigned int account_size);
  267. int test_clear_page_writeback(struct page *page);
  268. int test_set_page_writeback(struct page *page);
  269. static inline void set_page_writeback(struct page *page)
  270. {
  271. test_set_page_writeback(page);
  272. }
  273. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  274. /*
  275. * System with lots of page flags available. This allows separate
  276. * flags for PageHead() and PageTail() checks of compound pages so that bit
  277. * tests can be used in performance sensitive paths. PageCompound is
  278. * generally not used in hot code paths.
  279. */
  280. __PAGEFLAG(Head, head)
  281. __PAGEFLAG(Tail, tail)
  282. static inline int PageCompound(struct page *page)
  283. {
  284. return page->flags & ((1L << PG_head) | (1L << PG_tail));
  285. }
  286. #else
  287. /*
  288. * Reduce page flag use as much as possible by overlapping
  289. * compound page flags with the flags used for page cache pages. Possible
  290. * because PageCompound is always set for compound pages and not for
  291. * pages on the LRU and/or pagecache.
  292. */
  293. TESTPAGEFLAG(Compound, compound)
  294. __PAGEFLAG(Head, compound)
  295. /*
  296. * PG_reclaim is used in combination with PG_compound to mark the
  297. * head and tail of a compound page. This saves one page flag
  298. * but makes it impossible to use compound pages for the page cache.
  299. * The PG_reclaim bit would have to be used for reclaim or readahead
  300. * if compound pages enter the page cache.
  301. *
  302. * PG_compound & PG_reclaim => Tail page
  303. * PG_compound & ~PG_reclaim => Head page
  304. */
  305. #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
  306. static inline int PageTail(struct page *page)
  307. {
  308. return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
  309. }
  310. static inline void __SetPageTail(struct page *page)
  311. {
  312. page->flags |= PG_head_tail_mask;
  313. }
  314. static inline void __ClearPageTail(struct page *page)
  315. {
  316. page->flags &= ~PG_head_tail_mask;
  317. }
  318. #endif /* !PAGEFLAGS_EXTENDED */
  319. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  320. #define __PG_MLOCKED (1 << PG_mlocked)
  321. #else
  322. #define __PG_MLOCKED 0
  323. #endif
  324. /*
  325. * Flags checked when a page is freed. Pages being freed should not have
  326. * these flags set. It they are, there is a problem.
  327. */
  328. #define PAGE_FLAGS_CHECK_AT_FREE \
  329. (1 << PG_lru | 1 << PG_locked | \
  330. 1 << PG_private | 1 << PG_private_2 | \
  331. 1 << PG_buddy | 1 << PG_writeback | 1 << PG_reserved | \
  332. 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
  333. 1 << PG_unevictable | __PG_MLOCKED)
  334. /*
  335. * Flags checked when a page is prepped for return by the page allocator.
  336. * Pages being prepped should not have any flags set. It they are set,
  337. * there has been a kernel bug or struct page corruption.
  338. */
  339. #define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1)
  340. #endif /* !__GENERATING_BOUNDS_H */
  341. /**
  342. * page_has_private - Determine if page has private stuff
  343. * @page: The page to be checked
  344. *
  345. * Determine if a page has private stuff, indicating that release routines
  346. * should be invoked upon it.
  347. */
  348. #define page_has_private(page) \
  349. ((page)->flags & ((1 << PG_private) | \
  350. (1 << PG_private_2)))
  351. #endif /* PAGE_FLAGS_H */