rt2800pci.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static int modparam_nohwcrypt = 1;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  51. {
  52. unsigned int i;
  53. u32 reg;
  54. /*
  55. * SOC devices don't support MCU requests.
  56. */
  57. if (rt2x00_is_soc(rt2x00dev))
  58. return;
  59. for (i = 0; i < 200; i++) {
  60. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  61. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  65. break;
  66. udelay(REGISTER_BUSY_DELAY);
  67. }
  68. if (i == 200)
  69. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  72. }
  73. #ifdef CONFIG_RT2800PCI_SOC
  74. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  77. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RT2800PCI_SOC */
  84. #ifdef CONFIG_RT2800PCI_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  118. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  119. eeprom.reg_data_in = 0;
  120. eeprom.reg_data_out = 0;
  121. eeprom.reg_data_clock = 0;
  122. eeprom.reg_chip_select = 0;
  123. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  124. EEPROM_SIZE / sizeof(u16));
  125. }
  126. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  127. {
  128. return rt2800_efuse_detect(rt2x00dev);
  129. }
  130. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  131. {
  132. rt2800_read_eeprom_efuse(rt2x00dev);
  133. }
  134. #else
  135. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  136. {
  137. }
  138. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  139. {
  140. return 0;
  141. }
  142. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  143. {
  144. }
  145. #endif /* CONFIG_RT2800PCI_PCI */
  146. /*
  147. * Firmware functions
  148. */
  149. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  150. {
  151. return FIRMWARE_RT2860;
  152. }
  153. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  154. const u8 *data, const size_t len)
  155. {
  156. u16 fw_crc;
  157. u16 crc;
  158. /*
  159. * Only support 8kb firmware files.
  160. */
  161. if (len != 8192)
  162. return FW_BAD_LENGTH;
  163. /*
  164. * The last 2 bytes in the firmware array are the crc checksum itself,
  165. * this means that we should never pass those 2 bytes to the crc
  166. * algorithm.
  167. */
  168. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  169. /*
  170. * Use the crc ccitt algorithm.
  171. * This will return the same value as the legacy driver which
  172. * used bit ordering reversion on the both the firmware bytes
  173. * before input input as well as on the final output.
  174. * Obviously using crc ccitt directly is much more efficient.
  175. */
  176. crc = crc_ccitt(~0, data, len - 2);
  177. /*
  178. * There is a small difference between the crc-itu-t + bitrev and
  179. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  180. * will be swapped, use swab16 to convert the crc to the correct
  181. * value.
  182. */
  183. crc = swab16(crc);
  184. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  185. }
  186. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  187. const u8 *data, const size_t len)
  188. {
  189. unsigned int i;
  190. u32 reg;
  191. /*
  192. * Wait for stable hardware.
  193. */
  194. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  195. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  196. if (reg && reg != ~0)
  197. break;
  198. msleep(1);
  199. }
  200. if (i == REGISTER_BUSY_COUNT) {
  201. ERROR(rt2x00dev, "Unstable hardware.\n");
  202. return -EBUSY;
  203. }
  204. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  205. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  206. /*
  207. * Disable DMA, will be reenabled later when enabling
  208. * the radio.
  209. */
  210. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  211. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  212. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  213. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  214. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  215. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  216. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  217. /*
  218. * enable Host program ram write selection
  219. */
  220. reg = 0;
  221. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  222. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  223. /*
  224. * Write firmware to device.
  225. */
  226. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  227. data, len);
  228. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  229. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  230. /*
  231. * Wait for device to stabilize.
  232. */
  233. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  234. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  235. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  236. break;
  237. msleep(1);
  238. }
  239. if (i == REGISTER_BUSY_COUNT) {
  240. ERROR(rt2x00dev, "PBF system register not ready.\n");
  241. return -EBUSY;
  242. }
  243. /*
  244. * Disable interrupts
  245. */
  246. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  247. /*
  248. * Initialize BBP R/W access agent
  249. */
  250. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  251. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  252. return 0;
  253. }
  254. /*
  255. * Initialization functions.
  256. */
  257. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  258. {
  259. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  260. u32 word;
  261. if (entry->queue->qid == QID_RX) {
  262. rt2x00_desc_read(entry_priv->desc, 1, &word);
  263. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  264. } else {
  265. rt2x00_desc_read(entry_priv->desc, 1, &word);
  266. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  267. }
  268. }
  269. static void rt2800pci_clear_entry(struct queue_entry *entry)
  270. {
  271. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  272. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  273. u32 word;
  274. if (entry->queue->qid == QID_RX) {
  275. rt2x00_desc_read(entry_priv->desc, 0, &word);
  276. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  277. rt2x00_desc_write(entry_priv->desc, 0, word);
  278. rt2x00_desc_read(entry_priv->desc, 1, &word);
  279. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  280. rt2x00_desc_write(entry_priv->desc, 1, word);
  281. } else {
  282. rt2x00_desc_read(entry_priv->desc, 1, &word);
  283. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  284. rt2x00_desc_write(entry_priv->desc, 1, word);
  285. }
  286. }
  287. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  288. {
  289. struct queue_entry_priv_pci *entry_priv;
  290. u32 reg;
  291. /*
  292. * Initialize registers.
  293. */
  294. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  295. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  296. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  297. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  298. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  299. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  300. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  301. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  302. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  303. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  304. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  305. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  306. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  307. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  308. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  309. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  310. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  311. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  312. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  313. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  314. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  317. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  318. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  319. /*
  320. * Enable global DMA configuration
  321. */
  322. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  323. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  324. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  325. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  326. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  327. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  328. return 0;
  329. }
  330. /*
  331. * Device state switch handlers.
  332. */
  333. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  334. enum dev_state state)
  335. {
  336. u32 reg;
  337. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  338. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  339. (state == STATE_RADIO_RX_ON) ||
  340. (state == STATE_RADIO_RX_ON_LINK));
  341. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  342. }
  343. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  344. enum dev_state state)
  345. {
  346. int mask = (state == STATE_RADIO_IRQ_ON);
  347. u32 reg;
  348. /*
  349. * When interrupts are being enabled, the interrupt registers
  350. * should clear the register to assure a clean state.
  351. */
  352. if (state == STATE_RADIO_IRQ_ON) {
  353. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  354. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  355. }
  356. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  357. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  358. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  359. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  360. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  361. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  362. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  363. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  364. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  365. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  366. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  367. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  375. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  376. }
  377. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  378. {
  379. u32 reg;
  380. u16 word;
  381. /*
  382. * Initialize all registers.
  383. */
  384. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  385. rt2800pci_init_queues(rt2x00dev) ||
  386. rt2800_init_registers(rt2x00dev) ||
  387. rt2800_wait_wpdma_ready(rt2x00dev) ||
  388. rt2800_init_bbp(rt2x00dev) ||
  389. rt2800_init_rfcsr(rt2x00dev)))
  390. return -EIO;
  391. /*
  392. * Send signal to firmware during boot time.
  393. */
  394. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  395. /*
  396. * Enable RX.
  397. */
  398. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  399. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  400. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  401. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  402. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  403. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  404. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  405. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  406. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  407. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  408. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  409. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  410. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  411. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  412. /*
  413. * Initialize LED control
  414. */
  415. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  416. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  417. word & 0xff, (word >> 8) & 0xff);
  418. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  419. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  420. word & 0xff, (word >> 8) & 0xff);
  421. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  422. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  423. word & 0xff, (word >> 8) & 0xff);
  424. return 0;
  425. }
  426. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  427. {
  428. u32 reg;
  429. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  430. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  431. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  432. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  433. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  434. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  435. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  436. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  437. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  438. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  439. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  440. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  441. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  442. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  443. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  444. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  445. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  446. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  447. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  448. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  449. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  450. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  451. /* Wait for DMA, ignore error */
  452. rt2800_wait_wpdma_ready(rt2x00dev);
  453. }
  454. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  455. enum dev_state state)
  456. {
  457. /*
  458. * Always put the device to sleep (even when we intend to wakeup!)
  459. * if the device is booting and wasn't asleep it will return
  460. * failure when attempting to wakeup.
  461. */
  462. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  463. if (state == STATE_AWAKE) {
  464. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  465. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  466. }
  467. return 0;
  468. }
  469. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  470. enum dev_state state)
  471. {
  472. int retval = 0;
  473. switch (state) {
  474. case STATE_RADIO_ON:
  475. /*
  476. * Before the radio can be enabled, the device first has
  477. * to be woken up. After that it needs a bit of time
  478. * to be fully awake and then the radio can be enabled.
  479. */
  480. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  481. msleep(1);
  482. retval = rt2800pci_enable_radio(rt2x00dev);
  483. break;
  484. case STATE_RADIO_OFF:
  485. /*
  486. * After the radio has been disabled, the device should
  487. * be put to sleep for powersaving.
  488. */
  489. rt2800pci_disable_radio(rt2x00dev);
  490. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  491. break;
  492. case STATE_RADIO_RX_ON:
  493. case STATE_RADIO_RX_ON_LINK:
  494. case STATE_RADIO_RX_OFF:
  495. case STATE_RADIO_RX_OFF_LINK:
  496. rt2800pci_toggle_rx(rt2x00dev, state);
  497. break;
  498. case STATE_RADIO_IRQ_ON:
  499. case STATE_RADIO_IRQ_OFF:
  500. rt2800pci_toggle_irq(rt2x00dev, state);
  501. break;
  502. case STATE_DEEP_SLEEP:
  503. case STATE_SLEEP:
  504. case STATE_STANDBY:
  505. case STATE_AWAKE:
  506. retval = rt2800pci_set_state(rt2x00dev, state);
  507. break;
  508. default:
  509. retval = -ENOTSUPP;
  510. break;
  511. }
  512. if (unlikely(retval))
  513. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  514. state, retval);
  515. return retval;
  516. }
  517. /*
  518. * TX descriptor initialization
  519. */
  520. static int rt2800pci_write_tx_data(struct queue_entry* entry,
  521. struct txentry_desc *txdesc)
  522. {
  523. int ret;
  524. ret = rt2x00pci_write_tx_data(entry, txdesc);
  525. if (ret)
  526. return ret;
  527. rt2800_write_txwi(entry->skb, txdesc);
  528. return 0;
  529. }
  530. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  531. struct sk_buff *skb,
  532. struct txentry_desc *txdesc)
  533. {
  534. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  535. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  536. __le32 *txd = entry_priv->desc;
  537. u32 word;
  538. /*
  539. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  540. * must contains a TXWI structure + 802.11 header + padding + 802.11
  541. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  542. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  543. * data. It means that LAST_SEC0 is always 0.
  544. */
  545. /*
  546. * Initialize TX descriptor
  547. */
  548. rt2x00_desc_read(txd, 0, &word);
  549. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  550. rt2x00_desc_write(txd, 0, word);
  551. rt2x00_desc_read(txd, 1, &word);
  552. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  553. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  554. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  555. rt2x00_set_field32(&word, TXD_W1_BURST,
  556. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  557. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  558. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  559. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  560. rt2x00_desc_write(txd, 1, word);
  561. rt2x00_desc_read(txd, 2, &word);
  562. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  563. skbdesc->skb_dma + TXWI_DESC_SIZE);
  564. rt2x00_desc_write(txd, 2, word);
  565. rt2x00_desc_read(txd, 3, &word);
  566. rt2x00_set_field32(&word, TXD_W3_WIV,
  567. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  568. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  569. rt2x00_desc_write(txd, 3, word);
  570. /*
  571. * Register descriptor details in skb frame descriptor.
  572. */
  573. skbdesc->desc = txd;
  574. skbdesc->desc_len = TXD_DESC_SIZE;
  575. }
  576. /*
  577. * TX data initialization
  578. */
  579. static void rt2800pci_write_beacon(struct queue_entry *entry,
  580. struct txentry_desc *txdesc)
  581. {
  582. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  583. unsigned int beacon_base;
  584. u32 reg;
  585. /*
  586. * Disable beaconing while we are reloading the beacon data,
  587. * otherwise we might be sending out invalid data.
  588. */
  589. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  590. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  591. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  592. /*
  593. * Add the TXWI for the beacon to the skb.
  594. */
  595. rt2800_write_txwi(entry->skb, txdesc);
  596. skb_push(entry->skb, TXWI_DESC_SIZE);
  597. /*
  598. * Write entire beacon with TXWI to register.
  599. */
  600. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  601. rt2800_register_multiwrite(rt2x00dev, beacon_base,
  602. entry->skb->data, entry->skb->len);
  603. /*
  604. * Enable beaconing again.
  605. */
  606. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  607. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  608. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  609. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  610. /*
  611. * Clean up beacon skb.
  612. */
  613. dev_kfree_skb_any(entry->skb);
  614. entry->skb = NULL;
  615. }
  616. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  617. const enum data_queue_qid queue_idx)
  618. {
  619. struct data_queue *queue;
  620. unsigned int idx, qidx = 0;
  621. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  622. return;
  623. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  624. idx = queue->index[Q_INDEX];
  625. if (queue_idx == QID_MGMT)
  626. qidx = 5;
  627. else
  628. qidx = queue_idx;
  629. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  630. }
  631. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  632. const enum data_queue_qid qid)
  633. {
  634. u32 reg;
  635. if (qid == QID_BEACON) {
  636. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  637. return;
  638. }
  639. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  640. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  641. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  642. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  643. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  644. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  645. }
  646. /*
  647. * RX control handlers
  648. */
  649. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  650. struct rxdone_entry_desc *rxdesc)
  651. {
  652. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  653. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  654. __le32 *rxd = entry_priv->desc;
  655. u32 word;
  656. rt2x00_desc_read(rxd, 3, &word);
  657. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  658. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  659. /*
  660. * Unfortunately we don't know the cipher type used during
  661. * decryption. This prevents us from correct providing
  662. * correct statistics through debugfs.
  663. */
  664. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  665. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  666. /*
  667. * Hardware has stripped IV/EIV data from 802.11 frame during
  668. * decryption. Unfortunately the descriptor doesn't contain
  669. * any fields with the EIV/IV data either, so they can't
  670. * be restored by rt2x00lib.
  671. */
  672. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  673. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  674. rxdesc->flags |= RX_FLAG_DECRYPTED;
  675. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  676. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  677. }
  678. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  679. rxdesc->dev_flags |= RXDONE_MY_BSS;
  680. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  681. rxdesc->dev_flags |= RXDONE_L2PAD;
  682. /*
  683. * Process the RXWI structure that is at the start of the buffer.
  684. */
  685. rt2800_process_rxwi(entry->skb, rxdesc);
  686. /*
  687. * Set RX IDX in register to inform hardware that we have handled
  688. * this entry and it is available for reuse again.
  689. */
  690. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  691. }
  692. /*
  693. * Interrupt functions.
  694. */
  695. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  696. {
  697. struct data_queue *queue;
  698. struct queue_entry *entry;
  699. __le32 *txwi;
  700. struct txdone_entry_desc txdesc;
  701. u32 word;
  702. u32 reg;
  703. u32 old_reg;
  704. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  705. u16 mcs, real_mcs;
  706. /*
  707. * During each loop we will compare the freshly read
  708. * TX_STA_FIFO register value with the value read from
  709. * the previous loop. If the 2 values are equal then
  710. * we should stop processing because the chance it
  711. * quite big that the device has been unplugged and
  712. * we risk going into an endless loop.
  713. */
  714. old_reg = 0;
  715. while (1) {
  716. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  717. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  718. break;
  719. if (old_reg == reg)
  720. break;
  721. old_reg = reg;
  722. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  723. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  724. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  725. /*
  726. * Skip this entry when it contains an invalid
  727. * queue identication number.
  728. */
  729. if (pid <= 0 || pid > QID_RX)
  730. continue;
  731. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  732. if (unlikely(!queue))
  733. continue;
  734. /*
  735. * Inside each queue, we process each entry in a chronological
  736. * order. We first check that the queue is not empty.
  737. */
  738. if (rt2x00queue_empty(queue))
  739. continue;
  740. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  741. /* Check if we got a match by looking at WCID/ACK/PID
  742. * fields */
  743. txwi = (__le32 *)(entry->skb->data -
  744. rt2x00dev->ops->extra_tx_headroom);
  745. rt2x00_desc_read(txwi, 1, &word);
  746. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  747. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  748. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  749. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  750. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  751. /*
  752. * Obtain the status about this packet.
  753. */
  754. txdesc.flags = 0;
  755. rt2x00_desc_read(txwi, 0, &word);
  756. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  757. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  758. /*
  759. * Ralink has a retry mechanism using a global fallback
  760. * table. We setup this fallback table to try the immediate
  761. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  762. * always contains the MCS used for the last transmission, be
  763. * it successful or not.
  764. */
  765. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  766. /*
  767. * Transmission succeeded. The number of retries is
  768. * mcs - real_mcs
  769. */
  770. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  771. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  772. } else {
  773. /*
  774. * Transmission failed. The number of retries is
  775. * always 7 in this case (for a total number of 8
  776. * frames sent).
  777. */
  778. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  779. txdesc.retry = 7;
  780. }
  781. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  782. rt2x00lib_txdone(entry, &txdesc);
  783. }
  784. }
  785. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  786. {
  787. struct ieee80211_conf conf = { .flags = 0 };
  788. struct rt2x00lib_conf libconf = { .conf = &conf };
  789. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  790. }
  791. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  792. {
  793. struct rt2x00_dev *rt2x00dev = dev_instance;
  794. u32 reg;
  795. /* Read status and ACK all interrupts */
  796. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  797. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  798. if (!reg)
  799. return IRQ_NONE;
  800. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  801. return IRQ_HANDLED;
  802. /*
  803. * 1 - Rx ring done interrupt.
  804. */
  805. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  806. rt2x00pci_rxdone(rt2x00dev);
  807. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  808. rt2800pci_txdone(rt2x00dev);
  809. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  810. rt2800pci_wakeup(rt2x00dev);
  811. return IRQ_HANDLED;
  812. }
  813. /*
  814. * Device probe functions.
  815. */
  816. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  817. {
  818. /*
  819. * Read EEPROM into buffer
  820. */
  821. if (rt2x00_is_soc(rt2x00dev))
  822. rt2800pci_read_eeprom_soc(rt2x00dev);
  823. else if (rt2800pci_efuse_detect(rt2x00dev))
  824. rt2800pci_read_eeprom_efuse(rt2x00dev);
  825. else
  826. rt2800pci_read_eeprom_pci(rt2x00dev);
  827. return rt2800_validate_eeprom(rt2x00dev);
  828. }
  829. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  830. .register_read = rt2x00pci_register_read,
  831. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  832. .register_write = rt2x00pci_register_write,
  833. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  834. .register_multiread = rt2x00pci_register_multiread,
  835. .register_multiwrite = rt2x00pci_register_multiwrite,
  836. .regbusy_read = rt2x00pci_regbusy_read,
  837. };
  838. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  839. {
  840. int retval;
  841. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  842. /*
  843. * Allocate eeprom data.
  844. */
  845. retval = rt2800pci_validate_eeprom(rt2x00dev);
  846. if (retval)
  847. return retval;
  848. retval = rt2800_init_eeprom(rt2x00dev);
  849. if (retval)
  850. return retval;
  851. /*
  852. * Initialize hw specifications.
  853. */
  854. retval = rt2800_probe_hw_mode(rt2x00dev);
  855. if (retval)
  856. return retval;
  857. /*
  858. * This device has multiple filters for control frames
  859. * and has a separate filter for PS Poll frames.
  860. */
  861. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  862. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  863. /*
  864. * This device requires firmware.
  865. */
  866. if (!rt2x00_is_soc(rt2x00dev))
  867. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  868. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  869. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  870. if (!modparam_nohwcrypt)
  871. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  872. /*
  873. * Set the rssi offset.
  874. */
  875. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  876. return 0;
  877. }
  878. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  879. .irq_handler = rt2800pci_interrupt,
  880. .probe_hw = rt2800pci_probe_hw,
  881. .get_firmware_name = rt2800pci_get_firmware_name,
  882. .check_firmware = rt2800pci_check_firmware,
  883. .load_firmware = rt2800pci_load_firmware,
  884. .initialize = rt2x00pci_initialize,
  885. .uninitialize = rt2x00pci_uninitialize,
  886. .get_entry_state = rt2800pci_get_entry_state,
  887. .clear_entry = rt2800pci_clear_entry,
  888. .set_device_state = rt2800pci_set_device_state,
  889. .rfkill_poll = rt2800_rfkill_poll,
  890. .link_stats = rt2800_link_stats,
  891. .reset_tuner = rt2800_reset_tuner,
  892. .link_tuner = rt2800_link_tuner,
  893. .write_tx_desc = rt2800pci_write_tx_desc,
  894. .write_tx_data = rt2800pci_write_tx_data,
  895. .write_beacon = rt2800pci_write_beacon,
  896. .kick_tx_queue = rt2800pci_kick_tx_queue,
  897. .kill_tx_queue = rt2800pci_kill_tx_queue,
  898. .fill_rxdone = rt2800pci_fill_rxdone,
  899. .config_shared_key = rt2800_config_shared_key,
  900. .config_pairwise_key = rt2800_config_pairwise_key,
  901. .config_filter = rt2800_config_filter,
  902. .config_intf = rt2800_config_intf,
  903. .config_erp = rt2800_config_erp,
  904. .config_ant = rt2800_config_ant,
  905. .config = rt2800_config,
  906. };
  907. static const struct data_queue_desc rt2800pci_queue_rx = {
  908. .entry_num = RX_ENTRIES,
  909. .data_size = AGGREGATION_SIZE,
  910. .desc_size = RXD_DESC_SIZE,
  911. .priv_size = sizeof(struct queue_entry_priv_pci),
  912. };
  913. static const struct data_queue_desc rt2800pci_queue_tx = {
  914. .entry_num = TX_ENTRIES,
  915. .data_size = AGGREGATION_SIZE,
  916. .desc_size = TXD_DESC_SIZE,
  917. .priv_size = sizeof(struct queue_entry_priv_pci),
  918. };
  919. static const struct data_queue_desc rt2800pci_queue_bcn = {
  920. .entry_num = 8 * BEACON_ENTRIES,
  921. .data_size = 0, /* No DMA required for beacons */
  922. .desc_size = TXWI_DESC_SIZE,
  923. .priv_size = sizeof(struct queue_entry_priv_pci),
  924. };
  925. static const struct rt2x00_ops rt2800pci_ops = {
  926. .name = KBUILD_MODNAME,
  927. .max_sta_intf = 1,
  928. .max_ap_intf = 8,
  929. .eeprom_size = EEPROM_SIZE,
  930. .rf_size = RF_SIZE,
  931. .tx_queues = NUM_TX_QUEUES,
  932. .extra_tx_headroom = TXWI_DESC_SIZE,
  933. .rx = &rt2800pci_queue_rx,
  934. .tx = &rt2800pci_queue_tx,
  935. .bcn = &rt2800pci_queue_bcn,
  936. .lib = &rt2800pci_rt2x00_ops,
  937. .hw = &rt2800_mac80211_ops,
  938. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  939. .debugfs = &rt2800_rt2x00debug,
  940. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  941. };
  942. /*
  943. * RT2800pci module information.
  944. */
  945. #ifdef CONFIG_RT2800PCI_PCI
  946. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  947. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  948. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  949. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  950. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  951. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  952. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  953. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  954. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  955. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  956. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  957. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  958. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  959. #ifdef CONFIG_RT2800PCI_RT30XX
  960. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  961. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  962. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  963. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  964. #endif
  965. #ifdef CONFIG_RT2800PCI_RT35XX
  966. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  967. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  968. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  969. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  970. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  971. #endif
  972. { 0, }
  973. };
  974. #endif /* CONFIG_RT2800PCI_PCI */
  975. MODULE_AUTHOR(DRV_PROJECT);
  976. MODULE_VERSION(DRV_VERSION);
  977. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  978. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  979. #ifdef CONFIG_RT2800PCI_PCI
  980. MODULE_FIRMWARE(FIRMWARE_RT2860);
  981. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  982. #endif /* CONFIG_RT2800PCI_PCI */
  983. MODULE_LICENSE("GPL");
  984. #ifdef CONFIG_RT2800PCI_SOC
  985. static int rt2800soc_probe(struct platform_device *pdev)
  986. {
  987. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  988. }
  989. static struct platform_driver rt2800soc_driver = {
  990. .driver = {
  991. .name = "rt2800_wmac",
  992. .owner = THIS_MODULE,
  993. .mod_name = KBUILD_MODNAME,
  994. },
  995. .probe = rt2800soc_probe,
  996. .remove = __devexit_p(rt2x00soc_remove),
  997. .suspend = rt2x00soc_suspend,
  998. .resume = rt2x00soc_resume,
  999. };
  1000. #endif /* CONFIG_RT2800PCI_SOC */
  1001. #ifdef CONFIG_RT2800PCI_PCI
  1002. static struct pci_driver rt2800pci_driver = {
  1003. .name = KBUILD_MODNAME,
  1004. .id_table = rt2800pci_device_table,
  1005. .probe = rt2x00pci_probe,
  1006. .remove = __devexit_p(rt2x00pci_remove),
  1007. .suspend = rt2x00pci_suspend,
  1008. .resume = rt2x00pci_resume,
  1009. };
  1010. #endif /* CONFIG_RT2800PCI_PCI */
  1011. static int __init rt2800pci_init(void)
  1012. {
  1013. int ret = 0;
  1014. #ifdef CONFIG_RT2800PCI_SOC
  1015. ret = platform_driver_register(&rt2800soc_driver);
  1016. if (ret)
  1017. return ret;
  1018. #endif
  1019. #ifdef CONFIG_RT2800PCI_PCI
  1020. ret = pci_register_driver(&rt2800pci_driver);
  1021. if (ret) {
  1022. #ifdef CONFIG_RT2800PCI_SOC
  1023. platform_driver_unregister(&rt2800soc_driver);
  1024. #endif
  1025. return ret;
  1026. }
  1027. #endif
  1028. return ret;
  1029. }
  1030. static void __exit rt2800pci_exit(void)
  1031. {
  1032. #ifdef CONFIG_RT2800PCI_PCI
  1033. pci_unregister_driver(&rt2800pci_driver);
  1034. #endif
  1035. #ifdef CONFIG_RT2800PCI_SOC
  1036. platform_driver_unregister(&rt2800soc_driver);
  1037. #endif
  1038. }
  1039. module_init(rt2800pci_init);
  1040. module_exit(rt2800pci_exit);