hw.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. #define ATH9K_CLOCK_RATE_CCK 22
  24. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  25. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  26. #define ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM 44
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
  52. {
  53. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  54. return priv_ops->macversion_supported(ah->hw_version.macVersion);
  55. }
  56. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  57. struct ath9k_channel *chan)
  58. {
  59. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  60. }
  61. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  62. {
  63. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  64. return;
  65. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  66. }
  67. /********************/
  68. /* Helper Functions */
  69. /********************/
  70. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  71. {
  72. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. return usecs *ATH9K_CLOCK_RATE_CCK;
  75. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. }
  82. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  83. {
  84. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  85. if (conf_is_ht40(conf))
  86. return ath9k_hw_mac_clks(ah, usecs) * 2;
  87. else
  88. return ath9k_hw_mac_clks(ah, usecs);
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  106. {
  107. u32 retval;
  108. int i;
  109. for (i = 0, retval = 0; i < n; i++) {
  110. retval = (retval << 1) | (val & 1);
  111. val >>= 1;
  112. }
  113. return retval;
  114. }
  115. bool ath9k_get_channel_edges(struct ath_hw *ah,
  116. u16 flags, u16 *low,
  117. u16 *high)
  118. {
  119. struct ath9k_hw_capabilities *pCap = &ah->caps;
  120. if (flags & CHANNEL_5GHZ) {
  121. *low = pCap->low_5ghz_chan;
  122. *high = pCap->high_5ghz_chan;
  123. return true;
  124. }
  125. if ((flags & CHANNEL_2GHZ)) {
  126. *low = pCap->low_2ghz_chan;
  127. *high = pCap->high_2ghz_chan;
  128. return true;
  129. }
  130. return false;
  131. }
  132. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  133. u8 phy, int kbps,
  134. u32 frameLen, u16 rateix,
  135. bool shortPreamble)
  136. {
  137. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  138. if (kbps == 0)
  139. return 0;
  140. switch (phy) {
  141. case WLAN_RC_PHY_CCK:
  142. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  143. if (shortPreamble)
  144. phyTime >>= 1;
  145. numBits = frameLen << 3;
  146. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  147. break;
  148. case WLAN_RC_PHY_OFDM:
  149. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_QUARTER
  154. + OFDM_PREAMBLE_TIME_QUARTER
  155. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  156. } else if (ah->curchan &&
  157. IS_CHAN_HALF_RATE(ah->curchan)) {
  158. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  159. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  160. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  161. txTime = OFDM_SIFS_TIME_HALF +
  162. OFDM_PREAMBLE_TIME_HALF
  163. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  164. } else {
  165. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  166. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  167. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  168. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  169. + (numSymbols * OFDM_SYMBOL_TIME);
  170. }
  171. break;
  172. default:
  173. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  174. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  175. txTime = 0;
  176. break;
  177. }
  178. return txTime;
  179. }
  180. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  181. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  182. struct ath9k_channel *chan,
  183. struct chan_centers *centers)
  184. {
  185. int8_t extoff;
  186. if (!IS_CHAN_HT40(chan)) {
  187. centers->ctl_center = centers->ext_center =
  188. centers->synth_center = chan->channel;
  189. return;
  190. }
  191. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  192. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  193. centers->synth_center =
  194. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  195. extoff = 1;
  196. } else {
  197. centers->synth_center =
  198. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  199. extoff = -1;
  200. }
  201. centers->ctl_center =
  202. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  203. /* 25 MHz spacing is supported by hw but not on upper layers */
  204. centers->ext_center =
  205. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. }
  207. /******************/
  208. /* Chip Revisions */
  209. /******************/
  210. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  211. {
  212. u32 val;
  213. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  214. if (val == 0xFF) {
  215. val = REG_READ(ah, AR_SREV);
  216. ah->hw_version.macVersion =
  217. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  220. } else {
  221. if (!AR_SREV_9100(ah))
  222. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  223. ah->hw_version.macRev = val & AR_SREV_REVISION;
  224. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  225. ah->is_pciexpress = true;
  226. }
  227. }
  228. /************************************/
  229. /* HW Attach, Detach, Init Routines */
  230. /************************************/
  231. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  232. {
  233. if (AR_SREV_9100(ah))
  234. return;
  235. ENABLE_REGWRITE_BUFFER(ah);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  245. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  246. REGWRITE_BUFFER_FLUSH(ah);
  247. DISABLE_REGWRITE_BUFFER(ah);
  248. }
  249. /* This should work for all families including legacy */
  250. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  251. {
  252. struct ath_common *common = ath9k_hw_common(ah);
  253. u32 regAddr[2] = { AR_STA_ID0 };
  254. u32 regHold[2];
  255. u32 patternData[4] = { 0x55555555,
  256. 0xaaaaaaaa,
  257. 0x66666666,
  258. 0x99999999 };
  259. int i, j, loop_max;
  260. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  261. loop_max = 2;
  262. regAddr[1] = AR_PHY_BASE + (8 << 2);
  263. } else
  264. loop_max = 1;
  265. for (i = 0; i < loop_max; i++) {
  266. u32 addr = regAddr[i];
  267. u32 wrData, rdData;
  268. regHold[i] = REG_READ(ah, addr);
  269. for (j = 0; j < 0x100; j++) {
  270. wrData = (j << 16) | j;
  271. REG_WRITE(ah, addr, wrData);
  272. rdData = REG_READ(ah, addr);
  273. if (rdData != wrData) {
  274. ath_print(common, ATH_DBG_FATAL,
  275. "address test failed "
  276. "addr: 0x%08x - wr:0x%08x != "
  277. "rd:0x%08x\n",
  278. addr, wrData, rdData);
  279. return false;
  280. }
  281. }
  282. for (j = 0; j < 4; j++) {
  283. wrData = patternData[j];
  284. REG_WRITE(ah, addr, wrData);
  285. rdData = REG_READ(ah, addr);
  286. if (wrData != rdData) {
  287. ath_print(common, ATH_DBG_FATAL,
  288. "address test failed "
  289. "addr: 0x%08x - wr:0x%08x != "
  290. "rd:0x%08x\n",
  291. addr, wrData, rdData);
  292. return false;
  293. }
  294. }
  295. REG_WRITE(ah, regAddr[i], regHold[i]);
  296. }
  297. udelay(100);
  298. return true;
  299. }
  300. static void ath9k_hw_init_config(struct ath_hw *ah)
  301. {
  302. int i;
  303. ah->config.dma_beacon_response_time = 2;
  304. ah->config.sw_beacon_response_time = 10;
  305. ah->config.additional_swba_backoff = 0;
  306. ah->config.ack_6mb = 0x0;
  307. ah->config.cwm_ignore_extcca = 0;
  308. ah->config.pcie_powersave_enable = 0;
  309. ah->config.pcie_clock_req = 0;
  310. ah->config.pcie_waen = 0;
  311. ah->config.analog_shiftreg = 1;
  312. ah->config.ofdm_trig_low = 200;
  313. ah->config.ofdm_trig_high = 500;
  314. ah->config.cck_trig_high = 200;
  315. ah->config.cck_trig_low = 100;
  316. /*
  317. * For now ANI is disabled for AR9003, it is still
  318. * being tested.
  319. */
  320. if (!AR_SREV_9300_20_OR_LATER(ah))
  321. ah->config.enable_ani = 1;
  322. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  323. ah->config.spurchans[i][0] = AR_NO_SPUR;
  324. ah->config.spurchans[i][1] = AR_NO_SPUR;
  325. }
  326. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  327. ah->config.ht_enable = 1;
  328. else
  329. ah->config.ht_enable = 0;
  330. ah->config.rx_intr_mitigation = true;
  331. /*
  332. * Tx IQ Calibration (ah->config.tx_iq_calibration) is only
  333. * used by AR9003, but it is showing reliability issues.
  334. * It will take a while to fix so this is currently disabled.
  335. */
  336. /*
  337. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  338. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  339. * This means we use it for all AR5416 devices, and the few
  340. * minor PCI AR9280 devices out there.
  341. *
  342. * Serialization is required because these devices do not handle
  343. * well the case of two concurrent reads/writes due to the latency
  344. * involved. During one read/write another read/write can be issued
  345. * on another CPU while the previous read/write may still be working
  346. * on our hardware, if we hit this case the hardware poops in a loop.
  347. * We prevent this by serializing reads and writes.
  348. *
  349. * This issue is not present on PCI-Express devices or pre-AR5416
  350. * devices (legacy, 802.11abg).
  351. */
  352. if (num_possible_cpus() > 1)
  353. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  354. }
  355. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  356. {
  357. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  358. regulatory->country_code = CTRY_DEFAULT;
  359. regulatory->power_limit = MAX_RATE_POWER;
  360. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  361. ah->hw_version.magic = AR5416_MAGIC;
  362. ah->hw_version.subvendorid = 0;
  363. ah->ah_flags = 0;
  364. if (!AR_SREV_9100(ah))
  365. ah->ah_flags = AH_USE_EEPROM;
  366. ah->atim_window = 0;
  367. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  368. ah->beacon_interval = 100;
  369. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  370. ah->slottime = (u32) -1;
  371. ah->globaltxtimeout = (u32) -1;
  372. ah->power_mode = ATH9K_PM_UNDEFINED;
  373. }
  374. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  375. {
  376. struct ath_common *common = ath9k_hw_common(ah);
  377. u32 sum;
  378. int i;
  379. u16 eeval;
  380. u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  381. sum = 0;
  382. for (i = 0; i < 3; i++) {
  383. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  384. sum += eeval;
  385. common->macaddr[2 * i] = eeval >> 8;
  386. common->macaddr[2 * i + 1] = eeval & 0xff;
  387. }
  388. if (sum == 0 || sum == 0xffff * 3)
  389. return -EADDRNOTAVAIL;
  390. return 0;
  391. }
  392. static int ath9k_hw_post_init(struct ath_hw *ah)
  393. {
  394. int ecode;
  395. if (!AR_SREV_9271(ah)) {
  396. if (!ath9k_hw_chip_test(ah))
  397. return -ENODEV;
  398. }
  399. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  400. ecode = ar9002_hw_rf_claim(ah);
  401. if (ecode != 0)
  402. return ecode;
  403. }
  404. ecode = ath9k_hw_eeprom_init(ah);
  405. if (ecode != 0)
  406. return ecode;
  407. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  408. "Eeprom VER: %d, REV: %d\n",
  409. ah->eep_ops->get_eeprom_ver(ah),
  410. ah->eep_ops->get_eeprom_rev(ah));
  411. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  412. if (ecode) {
  413. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  414. "Failed allocating banks for "
  415. "external radio\n");
  416. return ecode;
  417. }
  418. if (!AR_SREV_9100(ah)) {
  419. ath9k_hw_ani_setup(ah);
  420. ath9k_hw_ani_init(ah);
  421. }
  422. return 0;
  423. }
  424. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  425. {
  426. if (AR_SREV_9300_20_OR_LATER(ah))
  427. ar9003_hw_attach_ops(ah);
  428. else
  429. ar9002_hw_attach_ops(ah);
  430. }
  431. /* Called for all hardware families */
  432. static int __ath9k_hw_init(struct ath_hw *ah)
  433. {
  434. struct ath_common *common = ath9k_hw_common(ah);
  435. int r = 0;
  436. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  437. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  438. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  439. ath_print(common, ATH_DBG_FATAL,
  440. "Couldn't reset chip\n");
  441. return -EIO;
  442. }
  443. ath9k_hw_init_defaults(ah);
  444. ath9k_hw_init_config(ah);
  445. ath9k_hw_attach_ops(ah);
  446. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  447. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  448. return -EIO;
  449. }
  450. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  451. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  452. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  453. ah->config.serialize_regmode =
  454. SER_REG_MODE_ON;
  455. } else {
  456. ah->config.serialize_regmode =
  457. SER_REG_MODE_OFF;
  458. }
  459. }
  460. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  461. ah->config.serialize_regmode);
  462. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  463. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  464. else
  465. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  466. if (!ath9k_hw_macversion_supported(ah)) {
  467. ath_print(common, ATH_DBG_FATAL,
  468. "Mac Chip Rev 0x%02x.%x is not supported by "
  469. "this driver\n", ah->hw_version.macVersion,
  470. ah->hw_version.macRev);
  471. return -EOPNOTSUPP;
  472. }
  473. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  474. ah->is_pciexpress = false;
  475. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  476. ath9k_hw_init_cal_settings(ah);
  477. ah->ani_function = ATH9K_ANI_ALL;
  478. if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  479. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  480. ath9k_hw_init_mode_regs(ah);
  481. /*
  482. * Configire PCIE after Ini init. SERDES values now come from ini file
  483. * This enables PCIe low power mode.
  484. */
  485. if (AR_SREV_9300_20_OR_LATER(ah)) {
  486. u32 regval;
  487. unsigned int i;
  488. /* Set Bits 16 and 17 in the AR_WA register. */
  489. regval = REG_READ(ah, AR_WA);
  490. regval |= 0x00030000;
  491. REG_WRITE(ah, AR_WA, regval);
  492. for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) {
  493. REG_WRITE(ah,
  494. INI_RA(&ah->iniPcieSerdesLowPower, i, 0),
  495. INI_RA(&ah->iniPcieSerdesLowPower, i, 1));
  496. }
  497. }
  498. if (ah->is_pciexpress)
  499. ath9k_hw_configpcipowersave(ah, 0, 0);
  500. else
  501. ath9k_hw_disablepcie(ah);
  502. if (!AR_SREV_9300_20_OR_LATER(ah))
  503. ar9002_hw_cck_chan14_spread(ah);
  504. r = ath9k_hw_post_init(ah);
  505. if (r)
  506. return r;
  507. ath9k_hw_init_mode_gain_regs(ah);
  508. r = ath9k_hw_fill_cap_info(ah);
  509. if (r)
  510. return r;
  511. r = ath9k_hw_init_macaddr(ah);
  512. if (r) {
  513. ath_print(common, ATH_DBG_FATAL,
  514. "Failed to initialize MAC address\n");
  515. return r;
  516. }
  517. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  518. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  519. else
  520. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  521. if (AR_SREV_9300_20_OR_LATER(ah))
  522. ar9003_hw_set_nf_limits(ah);
  523. ath9k_init_nfcal_hist_buffer(ah);
  524. common->state = ATH_HW_INITIALIZED;
  525. return 0;
  526. }
  527. int ath9k_hw_init(struct ath_hw *ah)
  528. {
  529. int ret;
  530. struct ath_common *common = ath9k_hw_common(ah);
  531. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  532. switch (ah->hw_version.devid) {
  533. case AR5416_DEVID_PCI:
  534. case AR5416_DEVID_PCIE:
  535. case AR5416_AR9100_DEVID:
  536. case AR9160_DEVID_PCI:
  537. case AR9280_DEVID_PCI:
  538. case AR9280_DEVID_PCIE:
  539. case AR9285_DEVID_PCIE:
  540. case AR9287_DEVID_PCI:
  541. case AR9287_DEVID_PCIE:
  542. case AR2427_DEVID_PCIE:
  543. case AR9300_DEVID_PCIE:
  544. break;
  545. default:
  546. if (common->bus_ops->ath_bus_type == ATH_USB)
  547. break;
  548. ath_print(common, ATH_DBG_FATAL,
  549. "Hardware device ID 0x%04x not supported\n",
  550. ah->hw_version.devid);
  551. return -EOPNOTSUPP;
  552. }
  553. ret = __ath9k_hw_init(ah);
  554. if (ret) {
  555. ath_print(common, ATH_DBG_FATAL,
  556. "Unable to initialize hardware; "
  557. "initialization status: %d\n", ret);
  558. return ret;
  559. }
  560. return 0;
  561. }
  562. EXPORT_SYMBOL(ath9k_hw_init);
  563. static void ath9k_hw_init_qos(struct ath_hw *ah)
  564. {
  565. ENABLE_REGWRITE_BUFFER(ah);
  566. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  567. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  568. REG_WRITE(ah, AR_QOS_NO_ACK,
  569. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  570. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  571. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  572. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  573. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  574. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  575. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  576. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  577. REGWRITE_BUFFER_FLUSH(ah);
  578. DISABLE_REGWRITE_BUFFER(ah);
  579. }
  580. static void ath9k_hw_init_pll(struct ath_hw *ah,
  581. struct ath9k_channel *chan)
  582. {
  583. u32 pll = ath9k_hw_compute_pll_control(ah, chan);
  584. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  585. /* Switch the core clock for ar9271 to 117Mhz */
  586. if (AR_SREV_9271(ah)) {
  587. udelay(500);
  588. REG_WRITE(ah, 0x50040, 0x304);
  589. }
  590. udelay(RTC_PLL_SETTLE_DELAY);
  591. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  592. }
  593. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  594. enum nl80211_iftype opmode)
  595. {
  596. u32 imr_reg = AR_IMR_TXERR |
  597. AR_IMR_TXURN |
  598. AR_IMR_RXERR |
  599. AR_IMR_RXORN |
  600. AR_IMR_BCNMISC;
  601. if (AR_SREV_9300_20_OR_LATER(ah)) {
  602. imr_reg |= AR_IMR_RXOK_HP;
  603. if (ah->config.rx_intr_mitigation)
  604. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  605. else
  606. imr_reg |= AR_IMR_RXOK_LP;
  607. } else {
  608. if (ah->config.rx_intr_mitigation)
  609. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  610. else
  611. imr_reg |= AR_IMR_RXOK;
  612. }
  613. if (ah->config.tx_intr_mitigation)
  614. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  615. else
  616. imr_reg |= AR_IMR_TXOK;
  617. if (opmode == NL80211_IFTYPE_AP)
  618. imr_reg |= AR_IMR_MIB;
  619. ENABLE_REGWRITE_BUFFER(ah);
  620. REG_WRITE(ah, AR_IMR, imr_reg);
  621. ah->imrs2_reg |= AR_IMR_S2_GTT;
  622. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  623. if (!AR_SREV_9100(ah)) {
  624. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  625. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  626. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  627. }
  628. REGWRITE_BUFFER_FLUSH(ah);
  629. DISABLE_REGWRITE_BUFFER(ah);
  630. if (AR_SREV_9300_20_OR_LATER(ah)) {
  631. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  632. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  633. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  634. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  635. }
  636. }
  637. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  638. {
  639. u32 val = ath9k_hw_mac_to_clks(ah, us);
  640. val = min(val, (u32) 0xFFFF);
  641. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  642. }
  643. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  644. {
  645. u32 val = ath9k_hw_mac_to_clks(ah, us);
  646. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  647. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  648. }
  649. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  650. {
  651. u32 val = ath9k_hw_mac_to_clks(ah, us);
  652. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  653. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  654. }
  655. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  656. {
  657. if (tu > 0xFFFF) {
  658. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  659. "bad global tx timeout %u\n", tu);
  660. ah->globaltxtimeout = (u32) -1;
  661. return false;
  662. } else {
  663. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  664. ah->globaltxtimeout = tu;
  665. return true;
  666. }
  667. }
  668. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  669. {
  670. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  671. int acktimeout;
  672. int slottime;
  673. int sifstime;
  674. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  675. ah->misc_mode);
  676. if (ah->misc_mode != 0)
  677. REG_WRITE(ah, AR_PCU_MISC,
  678. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  679. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  680. sifstime = 16;
  681. else
  682. sifstime = 10;
  683. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  684. slottime = ah->slottime + 3 * ah->coverage_class;
  685. acktimeout = slottime + sifstime;
  686. /*
  687. * Workaround for early ACK timeouts, add an offset to match the
  688. * initval's 64us ack timeout value.
  689. * This was initially only meant to work around an issue with delayed
  690. * BA frames in some implementations, but it has been found to fix ACK
  691. * timeout issues in other cases as well.
  692. */
  693. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  694. acktimeout += 64 - sifstime - ah->slottime;
  695. ath9k_hw_setslottime(ah, slottime);
  696. ath9k_hw_set_ack_timeout(ah, acktimeout);
  697. ath9k_hw_set_cts_timeout(ah, acktimeout);
  698. if (ah->globaltxtimeout != (u32) -1)
  699. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  700. }
  701. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  702. void ath9k_hw_deinit(struct ath_hw *ah)
  703. {
  704. struct ath_common *common = ath9k_hw_common(ah);
  705. if (common->state < ATH_HW_INITIALIZED)
  706. goto free_hw;
  707. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  708. free_hw:
  709. ath9k_hw_rf_free_ext_banks(ah);
  710. }
  711. EXPORT_SYMBOL(ath9k_hw_deinit);
  712. /*******/
  713. /* INI */
  714. /*******/
  715. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  716. {
  717. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  718. if (IS_CHAN_B(chan))
  719. ctl |= CTL_11B;
  720. else if (IS_CHAN_G(chan))
  721. ctl |= CTL_11G;
  722. else
  723. ctl |= CTL_11A;
  724. return ctl;
  725. }
  726. /****************************************/
  727. /* Reset and Channel Switching Routines */
  728. /****************************************/
  729. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  730. {
  731. struct ath_common *common = ath9k_hw_common(ah);
  732. u32 regval;
  733. ENABLE_REGWRITE_BUFFER(ah);
  734. /*
  735. * set AHB_MODE not to do cacheline prefetches
  736. */
  737. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  738. regval = REG_READ(ah, AR_AHB_MODE);
  739. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  740. }
  741. /*
  742. * let mac dma reads be in 128 byte chunks
  743. */
  744. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  745. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  746. REGWRITE_BUFFER_FLUSH(ah);
  747. DISABLE_REGWRITE_BUFFER(ah);
  748. /*
  749. * Restore TX Trigger Level to its pre-reset value.
  750. * The initial value depends on whether aggregation is enabled, and is
  751. * adjusted whenever underruns are detected.
  752. */
  753. if (!AR_SREV_9300_20_OR_LATER(ah))
  754. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  755. ENABLE_REGWRITE_BUFFER(ah);
  756. /*
  757. * let mac dma writes be in 128 byte chunks
  758. */
  759. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  760. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  761. /*
  762. * Setup receive FIFO threshold to hold off TX activities
  763. */
  764. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  765. if (AR_SREV_9300_20_OR_LATER(ah)) {
  766. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  767. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  768. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  769. ah->caps.rx_status_len);
  770. }
  771. /*
  772. * reduce the number of usable entries in PCU TXBUF to avoid
  773. * wrap around issues.
  774. */
  775. if (AR_SREV_9285(ah)) {
  776. /* For AR9285 the number of Fifos are reduced to half.
  777. * So set the usable tx buf size also to half to
  778. * avoid data/delimiter underruns
  779. */
  780. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  781. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  782. } else if (!AR_SREV_9271(ah)) {
  783. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  784. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  785. }
  786. REGWRITE_BUFFER_FLUSH(ah);
  787. DISABLE_REGWRITE_BUFFER(ah);
  788. if (AR_SREV_9300_20_OR_LATER(ah))
  789. ath9k_hw_reset_txstatus_ring(ah);
  790. }
  791. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  792. {
  793. u32 val;
  794. val = REG_READ(ah, AR_STA_ID1);
  795. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  796. switch (opmode) {
  797. case NL80211_IFTYPE_AP:
  798. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  799. | AR_STA_ID1_KSRCH_MODE);
  800. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  801. break;
  802. case NL80211_IFTYPE_ADHOC:
  803. case NL80211_IFTYPE_MESH_POINT:
  804. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  805. | AR_STA_ID1_KSRCH_MODE);
  806. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  807. break;
  808. case NL80211_IFTYPE_STATION:
  809. case NL80211_IFTYPE_MONITOR:
  810. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  811. break;
  812. }
  813. }
  814. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  815. u32 *coef_mantissa, u32 *coef_exponent)
  816. {
  817. u32 coef_exp, coef_man;
  818. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  819. if ((coef_scaled >> coef_exp) & 0x1)
  820. break;
  821. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  822. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  823. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  824. *coef_exponent = coef_exp - 16;
  825. }
  826. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  827. {
  828. u32 rst_flags;
  829. u32 tmpReg;
  830. if (AR_SREV_9100(ah)) {
  831. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  832. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  833. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  834. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  835. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  836. }
  837. ENABLE_REGWRITE_BUFFER(ah);
  838. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  839. AR_RTC_FORCE_WAKE_ON_INT);
  840. if (AR_SREV_9100(ah)) {
  841. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  842. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  843. } else {
  844. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  845. if (tmpReg &
  846. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  847. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  848. u32 val;
  849. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  850. val = AR_RC_HOSTIF;
  851. if (!AR_SREV_9300_20_OR_LATER(ah))
  852. val |= AR_RC_AHB;
  853. REG_WRITE(ah, AR_RC, val);
  854. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  855. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  856. rst_flags = AR_RTC_RC_MAC_WARM;
  857. if (type == ATH9K_RESET_COLD)
  858. rst_flags |= AR_RTC_RC_MAC_COLD;
  859. }
  860. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  861. REGWRITE_BUFFER_FLUSH(ah);
  862. DISABLE_REGWRITE_BUFFER(ah);
  863. udelay(50);
  864. REG_WRITE(ah, AR_RTC_RC, 0);
  865. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  866. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  867. "RTC stuck in MAC reset\n");
  868. return false;
  869. }
  870. if (!AR_SREV_9100(ah))
  871. REG_WRITE(ah, AR_RC, 0);
  872. if (AR_SREV_9100(ah))
  873. udelay(50);
  874. return true;
  875. }
  876. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  877. {
  878. ENABLE_REGWRITE_BUFFER(ah);
  879. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  880. AR_RTC_FORCE_WAKE_ON_INT);
  881. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  882. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  883. REG_WRITE(ah, AR_RTC_RESET, 0);
  884. REGWRITE_BUFFER_FLUSH(ah);
  885. DISABLE_REGWRITE_BUFFER(ah);
  886. if (!AR_SREV_9300_20_OR_LATER(ah))
  887. udelay(2);
  888. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  889. REG_WRITE(ah, AR_RC, 0);
  890. REG_WRITE(ah, AR_RTC_RESET, 1);
  891. if (!ath9k_hw_wait(ah,
  892. AR_RTC_STATUS,
  893. AR_RTC_STATUS_M,
  894. AR_RTC_STATUS_ON,
  895. AH_WAIT_TIMEOUT)) {
  896. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  897. "RTC not waking up\n");
  898. return false;
  899. }
  900. ath9k_hw_read_revisions(ah);
  901. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  902. }
  903. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  904. {
  905. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  906. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  907. switch (type) {
  908. case ATH9K_RESET_POWER_ON:
  909. return ath9k_hw_set_reset_power_on(ah);
  910. case ATH9K_RESET_WARM:
  911. case ATH9K_RESET_COLD:
  912. return ath9k_hw_set_reset(ah, type);
  913. default:
  914. return false;
  915. }
  916. }
  917. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  918. struct ath9k_channel *chan)
  919. {
  920. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  921. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  922. return false;
  923. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  924. return false;
  925. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  926. return false;
  927. ah->chip_fullsleep = false;
  928. ath9k_hw_init_pll(ah, chan);
  929. ath9k_hw_set_rfmode(ah, chan);
  930. return true;
  931. }
  932. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  933. struct ath9k_channel *chan)
  934. {
  935. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  936. struct ath_common *common = ath9k_hw_common(ah);
  937. struct ieee80211_channel *channel = chan->chan;
  938. u32 qnum;
  939. int r;
  940. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  941. if (ath9k_hw_numtxpending(ah, qnum)) {
  942. ath_print(common, ATH_DBG_QUEUE,
  943. "Transmit frames pending on "
  944. "queue %d\n", qnum);
  945. return false;
  946. }
  947. }
  948. if (!ath9k_hw_rfbus_req(ah)) {
  949. ath_print(common, ATH_DBG_FATAL,
  950. "Could not kill baseband RX\n");
  951. return false;
  952. }
  953. ath9k_hw_set_channel_regs(ah, chan);
  954. r = ath9k_hw_rf_set_freq(ah, chan);
  955. if (r) {
  956. ath_print(common, ATH_DBG_FATAL,
  957. "Failed to set channel\n");
  958. return false;
  959. }
  960. ah->eep_ops->set_txpower(ah, chan,
  961. ath9k_regd_get_ctl(regulatory, chan),
  962. channel->max_antenna_gain * 2,
  963. channel->max_power * 2,
  964. min((u32) MAX_RATE_POWER,
  965. (u32) regulatory->power_limit));
  966. ath9k_hw_rfbus_done(ah);
  967. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  968. ath9k_hw_set_delta_slope(ah, chan);
  969. ath9k_hw_spur_mitigate_freq(ah, chan);
  970. if (!chan->oneTimeCalsDone)
  971. chan->oneTimeCalsDone = true;
  972. return true;
  973. }
  974. bool ath9k_hw_check_alive(struct ath_hw *ah)
  975. {
  976. int count = 50;
  977. u32 reg;
  978. if (AR_SREV_9285_10_OR_LATER(ah))
  979. return true;
  980. do {
  981. reg = REG_READ(ah, AR_OBS_BUS_1);
  982. if ((reg & 0x7E7FFFEF) == 0x00702400)
  983. continue;
  984. switch (reg & 0x7E000B00) {
  985. case 0x1E000000:
  986. case 0x52000B00:
  987. case 0x18000B00:
  988. continue;
  989. default:
  990. return true;
  991. }
  992. } while (count-- > 0);
  993. return false;
  994. }
  995. EXPORT_SYMBOL(ath9k_hw_check_alive);
  996. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  997. bool bChannelChange)
  998. {
  999. struct ath_common *common = ath9k_hw_common(ah);
  1000. u32 saveLedState;
  1001. struct ath9k_channel *curchan = ah->curchan;
  1002. u32 saveDefAntenna;
  1003. u32 macStaId1;
  1004. u64 tsf = 0;
  1005. int i, r;
  1006. ah->txchainmask = common->tx_chainmask;
  1007. ah->rxchainmask = common->rx_chainmask;
  1008. if (!ah->chip_fullsleep) {
  1009. ath9k_hw_abortpcurecv(ah);
  1010. if (!ath9k_hw_stopdmarecv(ah))
  1011. ath_print(common, ATH_DBG_XMIT,
  1012. "Failed to stop receive dma\n");
  1013. }
  1014. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1015. return -EIO;
  1016. if (curchan && !ah->chip_fullsleep)
  1017. ath9k_hw_getnf(ah, curchan);
  1018. if (bChannelChange &&
  1019. (ah->chip_fullsleep != true) &&
  1020. (ah->curchan != NULL) &&
  1021. (chan->channel != ah->curchan->channel) &&
  1022. ((chan->channelFlags & CHANNEL_ALL) ==
  1023. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1024. !AR_SREV_9280(ah)) {
  1025. if (ath9k_hw_channel_change(ah, chan)) {
  1026. ath9k_hw_loadnf(ah, ah->curchan);
  1027. ath9k_hw_start_nfcal(ah);
  1028. return 0;
  1029. }
  1030. }
  1031. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1032. if (saveDefAntenna == 0)
  1033. saveDefAntenna = 1;
  1034. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1035. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1036. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1037. tsf = ath9k_hw_gettsf64(ah);
  1038. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1039. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1040. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1041. ath9k_hw_mark_phy_inactive(ah);
  1042. /* Only required on the first reset */
  1043. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1044. REG_WRITE(ah,
  1045. AR9271_RESET_POWER_DOWN_CONTROL,
  1046. AR9271_RADIO_RF_RST);
  1047. udelay(50);
  1048. }
  1049. if (!ath9k_hw_chip_reset(ah, chan)) {
  1050. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1051. return -EINVAL;
  1052. }
  1053. /* Only required on the first reset */
  1054. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1055. ah->htc_reset_init = false;
  1056. REG_WRITE(ah,
  1057. AR9271_RESET_POWER_DOWN_CONTROL,
  1058. AR9271_GATE_MAC_CTL);
  1059. udelay(50);
  1060. }
  1061. /* Restore TSF */
  1062. if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1063. ath9k_hw_settsf64(ah, tsf);
  1064. if (AR_SREV_9280_10_OR_LATER(ah))
  1065. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1066. r = ath9k_hw_process_ini(ah, chan);
  1067. if (r)
  1068. return r;
  1069. /* Setup MFP options for CCMP */
  1070. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1071. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1072. * frames when constructing CCMP AAD. */
  1073. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1074. 0xc7ff);
  1075. ah->sw_mgmt_crypto = false;
  1076. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1077. /* Disable hardware crypto for management frames */
  1078. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1079. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1080. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1081. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1082. ah->sw_mgmt_crypto = true;
  1083. } else
  1084. ah->sw_mgmt_crypto = true;
  1085. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1086. ath9k_hw_set_delta_slope(ah, chan);
  1087. ath9k_hw_spur_mitigate_freq(ah, chan);
  1088. ah->eep_ops->set_board_values(ah, chan);
  1089. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1090. ENABLE_REGWRITE_BUFFER(ah);
  1091. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1092. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1093. | macStaId1
  1094. | AR_STA_ID1_RTS_USE_DEF
  1095. | (ah->config.
  1096. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1097. | ah->sta_id1_defaults);
  1098. ath_hw_setbssidmask(common);
  1099. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1100. ath9k_hw_write_associd(ah);
  1101. REG_WRITE(ah, AR_ISR, ~0);
  1102. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1103. REGWRITE_BUFFER_FLUSH(ah);
  1104. DISABLE_REGWRITE_BUFFER(ah);
  1105. r = ath9k_hw_rf_set_freq(ah, chan);
  1106. if (r)
  1107. return r;
  1108. ENABLE_REGWRITE_BUFFER(ah);
  1109. for (i = 0; i < AR_NUM_DCU; i++)
  1110. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1111. REGWRITE_BUFFER_FLUSH(ah);
  1112. DISABLE_REGWRITE_BUFFER(ah);
  1113. ah->intr_txqs = 0;
  1114. for (i = 0; i < ah->caps.total_queues; i++)
  1115. ath9k_hw_resettxqueue(ah, i);
  1116. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1117. ath9k_hw_init_qos(ah);
  1118. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1119. ath9k_enable_rfkill(ah);
  1120. ath9k_hw_init_global_settings(ah);
  1121. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1122. ar9002_hw_enable_async_fifo(ah);
  1123. ar9002_hw_enable_wep_aggregation(ah);
  1124. }
  1125. REG_WRITE(ah, AR_STA_ID1,
  1126. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1127. ath9k_hw_set_dma(ah);
  1128. REG_WRITE(ah, AR_OBS, 8);
  1129. if (ah->config.rx_intr_mitigation) {
  1130. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1131. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1132. }
  1133. if (ah->config.tx_intr_mitigation) {
  1134. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1135. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1136. }
  1137. ath9k_hw_init_bb(ah, chan);
  1138. if (!ath9k_hw_init_cal(ah, chan))
  1139. return -EIO;
  1140. ENABLE_REGWRITE_BUFFER(ah);
  1141. ath9k_hw_restore_chainmask(ah);
  1142. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1143. REGWRITE_BUFFER_FLUSH(ah);
  1144. DISABLE_REGWRITE_BUFFER(ah);
  1145. /*
  1146. * For big endian systems turn on swapping for descriptors
  1147. */
  1148. if (AR_SREV_9100(ah)) {
  1149. u32 mask;
  1150. mask = REG_READ(ah, AR_CFG);
  1151. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1152. ath_print(common, ATH_DBG_RESET,
  1153. "CFG Byte Swap Set 0x%x\n", mask);
  1154. } else {
  1155. mask =
  1156. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1157. REG_WRITE(ah, AR_CFG, mask);
  1158. ath_print(common, ATH_DBG_RESET,
  1159. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1160. }
  1161. } else {
  1162. /* Configure AR9271 target WLAN */
  1163. if (AR_SREV_9271(ah))
  1164. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1165. #ifdef __BIG_ENDIAN
  1166. else
  1167. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1168. #endif
  1169. }
  1170. if (ah->btcoex_hw.enabled)
  1171. ath9k_hw_btcoex_enable(ah);
  1172. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1173. ath9k_hw_loadnf(ah, curchan);
  1174. ath9k_hw_start_nfcal(ah);
  1175. }
  1176. return 0;
  1177. }
  1178. EXPORT_SYMBOL(ath9k_hw_reset);
  1179. /************************/
  1180. /* Key Cache Management */
  1181. /************************/
  1182. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1183. {
  1184. u32 keyType;
  1185. if (entry >= ah->caps.keycache_size) {
  1186. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1187. "keychache entry %u out of range\n", entry);
  1188. return false;
  1189. }
  1190. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  1191. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  1192. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  1193. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  1194. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  1195. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  1196. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  1197. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  1198. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  1199. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1200. u16 micentry = entry + 64;
  1201. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  1202. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1203. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  1204. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1205. }
  1206. return true;
  1207. }
  1208. EXPORT_SYMBOL(ath9k_hw_keyreset);
  1209. bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  1210. {
  1211. u32 macHi, macLo;
  1212. if (entry >= ah->caps.keycache_size) {
  1213. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1214. "keychache entry %u out of range\n", entry);
  1215. return false;
  1216. }
  1217. if (mac != NULL) {
  1218. macHi = (mac[5] << 8) | mac[4];
  1219. macLo = (mac[3] << 24) |
  1220. (mac[2] << 16) |
  1221. (mac[1] << 8) |
  1222. mac[0];
  1223. macLo >>= 1;
  1224. macLo |= (macHi & 1) << 31;
  1225. macHi >>= 1;
  1226. } else {
  1227. macLo = macHi = 0;
  1228. }
  1229. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  1230. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  1231. return true;
  1232. }
  1233. EXPORT_SYMBOL(ath9k_hw_keysetmac);
  1234. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  1235. const struct ath9k_keyval *k,
  1236. const u8 *mac)
  1237. {
  1238. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  1239. struct ath_common *common = ath9k_hw_common(ah);
  1240. u32 key0, key1, key2, key3, key4;
  1241. u32 keyType;
  1242. if (entry >= pCap->keycache_size) {
  1243. ath_print(common, ATH_DBG_FATAL,
  1244. "keycache entry %u out of range\n", entry);
  1245. return false;
  1246. }
  1247. switch (k->kv_type) {
  1248. case ATH9K_CIPHER_AES_OCB:
  1249. keyType = AR_KEYTABLE_TYPE_AES;
  1250. break;
  1251. case ATH9K_CIPHER_AES_CCM:
  1252. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  1253. ath_print(common, ATH_DBG_ANY,
  1254. "AES-CCM not supported by mac rev 0x%x\n",
  1255. ah->hw_version.macRev);
  1256. return false;
  1257. }
  1258. keyType = AR_KEYTABLE_TYPE_CCM;
  1259. break;
  1260. case ATH9K_CIPHER_TKIP:
  1261. keyType = AR_KEYTABLE_TYPE_TKIP;
  1262. if (ATH9K_IS_MIC_ENABLED(ah)
  1263. && entry + 64 >= pCap->keycache_size) {
  1264. ath_print(common, ATH_DBG_ANY,
  1265. "entry %u inappropriate for TKIP\n", entry);
  1266. return false;
  1267. }
  1268. break;
  1269. case ATH9K_CIPHER_WEP:
  1270. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  1271. ath_print(common, ATH_DBG_ANY,
  1272. "WEP key length %u too small\n", k->kv_len);
  1273. return false;
  1274. }
  1275. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  1276. keyType = AR_KEYTABLE_TYPE_40;
  1277. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1278. keyType = AR_KEYTABLE_TYPE_104;
  1279. else
  1280. keyType = AR_KEYTABLE_TYPE_128;
  1281. break;
  1282. case ATH9K_CIPHER_CLR:
  1283. keyType = AR_KEYTABLE_TYPE_CLR;
  1284. break;
  1285. default:
  1286. ath_print(common, ATH_DBG_FATAL,
  1287. "cipher %u not supported\n", k->kv_type);
  1288. return false;
  1289. }
  1290. key0 = get_unaligned_le32(k->kv_val + 0);
  1291. key1 = get_unaligned_le16(k->kv_val + 4);
  1292. key2 = get_unaligned_le32(k->kv_val + 6);
  1293. key3 = get_unaligned_le16(k->kv_val + 10);
  1294. key4 = get_unaligned_le32(k->kv_val + 12);
  1295. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1296. key4 &= 0xff;
  1297. /*
  1298. * Note: Key cache registers access special memory area that requires
  1299. * two 32-bit writes to actually update the values in the internal
  1300. * memory. Consequently, the exact order and pairs used here must be
  1301. * maintained.
  1302. */
  1303. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1304. u16 micentry = entry + 64;
  1305. /*
  1306. * Write inverted key[47:0] first to avoid Michael MIC errors
  1307. * on frames that could be sent or received at the same time.
  1308. * The correct key will be written in the end once everything
  1309. * else is ready.
  1310. */
  1311. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  1312. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  1313. /* Write key[95:48] */
  1314. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1315. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1316. /* Write key[127:96] and key type */
  1317. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1318. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1319. /* Write MAC address for the entry */
  1320. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1321. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  1322. /*
  1323. * TKIP uses two key cache entries:
  1324. * Michael MIC TX/RX keys in the same key cache entry
  1325. * (idx = main index + 64):
  1326. * key0 [31:0] = RX key [31:0]
  1327. * key1 [15:0] = TX key [31:16]
  1328. * key1 [31:16] = reserved
  1329. * key2 [31:0] = RX key [63:32]
  1330. * key3 [15:0] = TX key [15:0]
  1331. * key3 [31:16] = reserved
  1332. * key4 [31:0] = TX key [63:32]
  1333. */
  1334. u32 mic0, mic1, mic2, mic3, mic4;
  1335. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1336. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1337. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  1338. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  1339. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  1340. /* Write RX[31:0] and TX[31:16] */
  1341. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1342. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  1343. /* Write RX[63:32] and TX[15:0] */
  1344. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1345. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  1346. /* Write TX[63:32] and keyType(reserved) */
  1347. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  1348. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1349. AR_KEYTABLE_TYPE_CLR);
  1350. } else {
  1351. /*
  1352. * TKIP uses four key cache entries (two for group
  1353. * keys):
  1354. * Michael MIC TX/RX keys are in different key cache
  1355. * entries (idx = main index + 64 for TX and
  1356. * main index + 32 + 96 for RX):
  1357. * key0 [31:0] = TX/RX MIC key [31:0]
  1358. * key1 [31:0] = reserved
  1359. * key2 [31:0] = TX/RX MIC key [63:32]
  1360. * key3 [31:0] = reserved
  1361. * key4 [31:0] = reserved
  1362. *
  1363. * Upper layer code will call this function separately
  1364. * for TX and RX keys when these registers offsets are
  1365. * used.
  1366. */
  1367. u32 mic0, mic2;
  1368. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1369. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1370. /* Write MIC key[31:0] */
  1371. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1372. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1373. /* Write MIC key[63:32] */
  1374. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1375. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1376. /* Write TX[63:32] and keyType(reserved) */
  1377. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  1378. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1379. AR_KEYTABLE_TYPE_CLR);
  1380. }
  1381. /* MAC address registers are reserved for the MIC entry */
  1382. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  1383. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  1384. /*
  1385. * Write the correct (un-inverted) key[47:0] last to enable
  1386. * TKIP now that all other registers are set with correct
  1387. * values.
  1388. */
  1389. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1390. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1391. } else {
  1392. /* Write key[47:0] */
  1393. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1394. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1395. /* Write key[95:48] */
  1396. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1397. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1398. /* Write key[127:96] and key type */
  1399. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1400. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1401. /* Write MAC address for the entry */
  1402. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1403. }
  1404. return true;
  1405. }
  1406. EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
  1407. bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
  1408. {
  1409. if (entry < ah->caps.keycache_size) {
  1410. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  1411. if (val & AR_KEYTABLE_VALID)
  1412. return true;
  1413. }
  1414. return false;
  1415. }
  1416. EXPORT_SYMBOL(ath9k_hw_keyisvalid);
  1417. /******************************/
  1418. /* Power Management (Chipset) */
  1419. /******************************/
  1420. /*
  1421. * Notify Power Mgt is disabled in self-generated frames.
  1422. * If requested, force chip to sleep.
  1423. */
  1424. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1425. {
  1426. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1427. if (setChip) {
  1428. /*
  1429. * Clear the RTC force wake bit to allow the
  1430. * mac to go to sleep.
  1431. */
  1432. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1433. AR_RTC_FORCE_WAKE_EN);
  1434. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1435. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1436. /* Shutdown chip. Active low */
  1437. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1438. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1439. AR_RTC_RESET_EN);
  1440. }
  1441. }
  1442. /*
  1443. * Notify Power Management is enabled in self-generating
  1444. * frames. If request, set power mode of chip to
  1445. * auto/normal. Duration in units of 128us (1/8 TU).
  1446. */
  1447. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1448. {
  1449. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1450. if (setChip) {
  1451. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1452. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1453. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1454. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1455. AR_RTC_FORCE_WAKE_ON_INT);
  1456. } else {
  1457. /*
  1458. * Clear the RTC force wake bit to allow the
  1459. * mac to go to sleep.
  1460. */
  1461. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1462. AR_RTC_FORCE_WAKE_EN);
  1463. }
  1464. }
  1465. }
  1466. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1467. {
  1468. u32 val;
  1469. int i;
  1470. if (setChip) {
  1471. if ((REG_READ(ah, AR_RTC_STATUS) &
  1472. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1473. if (ath9k_hw_set_reset_reg(ah,
  1474. ATH9K_RESET_POWER_ON) != true) {
  1475. return false;
  1476. }
  1477. if (!AR_SREV_9300_20_OR_LATER(ah))
  1478. ath9k_hw_init_pll(ah, NULL);
  1479. }
  1480. if (AR_SREV_9100(ah))
  1481. REG_SET_BIT(ah, AR_RTC_RESET,
  1482. AR_RTC_RESET_EN);
  1483. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1484. AR_RTC_FORCE_WAKE_EN);
  1485. udelay(50);
  1486. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1487. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1488. if (val == AR_RTC_STATUS_ON)
  1489. break;
  1490. udelay(50);
  1491. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1492. AR_RTC_FORCE_WAKE_EN);
  1493. }
  1494. if (i == 0) {
  1495. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1496. "Failed to wakeup in %uus\n",
  1497. POWER_UP_TIME / 20);
  1498. return false;
  1499. }
  1500. }
  1501. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1502. return true;
  1503. }
  1504. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1505. {
  1506. struct ath_common *common = ath9k_hw_common(ah);
  1507. int status = true, setChip = true;
  1508. static const char *modes[] = {
  1509. "AWAKE",
  1510. "FULL-SLEEP",
  1511. "NETWORK SLEEP",
  1512. "UNDEFINED"
  1513. };
  1514. if (ah->power_mode == mode)
  1515. return status;
  1516. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  1517. modes[ah->power_mode], modes[mode]);
  1518. switch (mode) {
  1519. case ATH9K_PM_AWAKE:
  1520. status = ath9k_hw_set_power_awake(ah, setChip);
  1521. break;
  1522. case ATH9K_PM_FULL_SLEEP:
  1523. ath9k_set_power_sleep(ah, setChip);
  1524. ah->chip_fullsleep = true;
  1525. break;
  1526. case ATH9K_PM_NETWORK_SLEEP:
  1527. ath9k_set_power_network_sleep(ah, setChip);
  1528. break;
  1529. default:
  1530. ath_print(common, ATH_DBG_FATAL,
  1531. "Unknown power mode %u\n", mode);
  1532. return false;
  1533. }
  1534. ah->power_mode = mode;
  1535. return status;
  1536. }
  1537. EXPORT_SYMBOL(ath9k_hw_setpower);
  1538. /*******************/
  1539. /* Beacon Handling */
  1540. /*******************/
  1541. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1542. {
  1543. int flags = 0;
  1544. ah->beacon_interval = beacon_period;
  1545. ENABLE_REGWRITE_BUFFER(ah);
  1546. switch (ah->opmode) {
  1547. case NL80211_IFTYPE_STATION:
  1548. case NL80211_IFTYPE_MONITOR:
  1549. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1550. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1551. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1552. flags |= AR_TBTT_TIMER_EN;
  1553. break;
  1554. case NL80211_IFTYPE_ADHOC:
  1555. case NL80211_IFTYPE_MESH_POINT:
  1556. REG_SET_BIT(ah, AR_TXCFG,
  1557. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1558. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1559. TU_TO_USEC(next_beacon +
  1560. (ah->atim_window ? ah->
  1561. atim_window : 1)));
  1562. flags |= AR_NDP_TIMER_EN;
  1563. case NL80211_IFTYPE_AP:
  1564. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1565. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1566. TU_TO_USEC(next_beacon -
  1567. ah->config.
  1568. dma_beacon_response_time));
  1569. REG_WRITE(ah, AR_NEXT_SWBA,
  1570. TU_TO_USEC(next_beacon -
  1571. ah->config.
  1572. sw_beacon_response_time));
  1573. flags |=
  1574. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1575. break;
  1576. default:
  1577. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1578. "%s: unsupported opmode: %d\n",
  1579. __func__, ah->opmode);
  1580. return;
  1581. break;
  1582. }
  1583. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1584. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1585. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1586. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1587. REGWRITE_BUFFER_FLUSH(ah);
  1588. DISABLE_REGWRITE_BUFFER(ah);
  1589. beacon_period &= ~ATH9K_BEACON_ENA;
  1590. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1591. ath9k_hw_reset_tsf(ah);
  1592. }
  1593. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1594. }
  1595. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1596. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1597. const struct ath9k_beacon_state *bs)
  1598. {
  1599. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1600. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1601. struct ath_common *common = ath9k_hw_common(ah);
  1602. ENABLE_REGWRITE_BUFFER(ah);
  1603. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1604. REG_WRITE(ah, AR_BEACON_PERIOD,
  1605. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1606. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1607. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1608. REGWRITE_BUFFER_FLUSH(ah);
  1609. DISABLE_REGWRITE_BUFFER(ah);
  1610. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1611. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1612. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1613. if (bs->bs_sleepduration > beaconintval)
  1614. beaconintval = bs->bs_sleepduration;
  1615. dtimperiod = bs->bs_dtimperiod;
  1616. if (bs->bs_sleepduration > dtimperiod)
  1617. dtimperiod = bs->bs_sleepduration;
  1618. if (beaconintval == dtimperiod)
  1619. nextTbtt = bs->bs_nextdtim;
  1620. else
  1621. nextTbtt = bs->bs_nexttbtt;
  1622. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1623. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1624. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1625. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1626. ENABLE_REGWRITE_BUFFER(ah);
  1627. REG_WRITE(ah, AR_NEXT_DTIM,
  1628. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1629. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1630. REG_WRITE(ah, AR_SLEEP1,
  1631. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1632. | AR_SLEEP1_ASSUME_DTIM);
  1633. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1634. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1635. else
  1636. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1637. REG_WRITE(ah, AR_SLEEP2,
  1638. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1639. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1640. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1641. REGWRITE_BUFFER_FLUSH(ah);
  1642. DISABLE_REGWRITE_BUFFER(ah);
  1643. REG_SET_BIT(ah, AR_TIMER_MODE,
  1644. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1645. AR_DTIM_TIMER_EN);
  1646. /* TSF Out of Range Threshold */
  1647. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1648. }
  1649. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1650. /*******************/
  1651. /* HW Capabilities */
  1652. /*******************/
  1653. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1654. {
  1655. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1656. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1657. struct ath_common *common = ath9k_hw_common(ah);
  1658. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1659. u16 capField = 0, eeval;
  1660. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1661. regulatory->current_rd = eeval;
  1662. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1663. if (AR_SREV_9285_10_OR_LATER(ah))
  1664. eeval |= AR9285_RDEXT_DEFAULT;
  1665. regulatory->current_rd_ext = eeval;
  1666. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1667. if (ah->opmode != NL80211_IFTYPE_AP &&
  1668. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1669. if (regulatory->current_rd == 0x64 ||
  1670. regulatory->current_rd == 0x65)
  1671. regulatory->current_rd += 5;
  1672. else if (regulatory->current_rd == 0x41)
  1673. regulatory->current_rd = 0x43;
  1674. ath_print(common, ATH_DBG_REGULATORY,
  1675. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1676. }
  1677. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1678. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1679. ath_print(common, ATH_DBG_FATAL,
  1680. "no band has been marked as supported in EEPROM.\n");
  1681. return -EINVAL;
  1682. }
  1683. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  1684. if (eeval & AR5416_OPFLAGS_11A) {
  1685. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  1686. if (ah->config.ht_enable) {
  1687. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  1688. set_bit(ATH9K_MODE_11NA_HT20,
  1689. pCap->wireless_modes);
  1690. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  1691. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  1692. pCap->wireless_modes);
  1693. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  1694. pCap->wireless_modes);
  1695. }
  1696. }
  1697. }
  1698. if (eeval & AR5416_OPFLAGS_11G) {
  1699. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  1700. if (ah->config.ht_enable) {
  1701. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  1702. set_bit(ATH9K_MODE_11NG_HT20,
  1703. pCap->wireless_modes);
  1704. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  1705. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  1706. pCap->wireless_modes);
  1707. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  1708. pCap->wireless_modes);
  1709. }
  1710. }
  1711. }
  1712. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1713. /*
  1714. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1715. * the EEPROM.
  1716. */
  1717. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1718. !(eeval & AR5416_OPFLAGS_11A) &&
  1719. !(AR_SREV_9271(ah)))
  1720. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1721. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1722. else
  1723. /* Use rx_chainmask from EEPROM. */
  1724. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1725. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  1726. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1727. pCap->low_2ghz_chan = 2312;
  1728. pCap->high_2ghz_chan = 2732;
  1729. pCap->low_5ghz_chan = 4920;
  1730. pCap->high_5ghz_chan = 6100;
  1731. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  1732. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  1733. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  1734. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  1735. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  1736. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  1737. if (ah->config.ht_enable)
  1738. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1739. else
  1740. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1741. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  1742. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  1743. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  1744. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  1745. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1746. pCap->total_queues =
  1747. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1748. else
  1749. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1750. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1751. pCap->keycache_size =
  1752. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1753. else
  1754. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1755. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  1756. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1757. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1758. else
  1759. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1760. if (AR_SREV_9271(ah))
  1761. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1762. else if (AR_SREV_9285_10_OR_LATER(ah))
  1763. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1764. else if (AR_SREV_9280_10_OR_LATER(ah))
  1765. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1766. else
  1767. pCap->num_gpio_pins = AR_NUM_GPIO;
  1768. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1769. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1770. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1771. } else {
  1772. pCap->rts_aggr_limit = (8 * 1024);
  1773. }
  1774. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1775. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1776. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1777. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1778. ah->rfkill_gpio =
  1779. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1780. ah->rfkill_polarity =
  1781. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1782. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1783. }
  1784. #endif
  1785. if (AR_SREV_9271(ah))
  1786. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1787. else
  1788. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1789. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1790. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1791. else
  1792. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1793. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1794. pCap->reg_cap =
  1795. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1796. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1797. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1798. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1799. } else {
  1800. pCap->reg_cap =
  1801. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1802. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1803. }
  1804. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1805. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1806. AR_SREV_5416(ah))
  1807. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1808. pCap->num_antcfg_5ghz =
  1809. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  1810. pCap->num_antcfg_2ghz =
  1811. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  1812. if (AR_SREV_9280_10_OR_LATER(ah) &&
  1813. ath9k_hw_btcoex_supported(ah)) {
  1814. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1815. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1816. if (AR_SREV_9285(ah)) {
  1817. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1818. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1819. } else {
  1820. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1821. }
  1822. } else {
  1823. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1824. }
  1825. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1826. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
  1827. ATH9K_HW_CAP_FASTCLOCK;
  1828. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1829. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1830. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1831. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1832. pCap->txs_len = sizeof(struct ar9003_txs);
  1833. } else {
  1834. pCap->tx_desc_len = sizeof(struct ath_desc);
  1835. if (AR_SREV_9280_20(ah) &&
  1836. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1837. AR5416_EEP_MINOR_VER_16) ||
  1838. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1839. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1840. }
  1841. if (AR_SREV_9300_20_OR_LATER(ah))
  1842. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1843. return 0;
  1844. }
  1845. bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  1846. u32 capability, u32 *result)
  1847. {
  1848. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1849. switch (type) {
  1850. case ATH9K_CAP_CIPHER:
  1851. switch (capability) {
  1852. case ATH9K_CIPHER_AES_CCM:
  1853. case ATH9K_CIPHER_AES_OCB:
  1854. case ATH9K_CIPHER_TKIP:
  1855. case ATH9K_CIPHER_WEP:
  1856. case ATH9K_CIPHER_MIC:
  1857. case ATH9K_CIPHER_CLR:
  1858. return true;
  1859. default:
  1860. return false;
  1861. }
  1862. case ATH9K_CAP_TKIP_MIC:
  1863. switch (capability) {
  1864. case 0:
  1865. return true;
  1866. case 1:
  1867. return (ah->sta_id1_defaults &
  1868. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  1869. false;
  1870. }
  1871. case ATH9K_CAP_TKIP_SPLIT:
  1872. return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
  1873. false : true;
  1874. case ATH9K_CAP_MCAST_KEYSRCH:
  1875. switch (capability) {
  1876. case 0:
  1877. return true;
  1878. case 1:
  1879. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  1880. return false;
  1881. } else {
  1882. return (ah->sta_id1_defaults &
  1883. AR_STA_ID1_MCAST_KSRCH) ? true :
  1884. false;
  1885. }
  1886. }
  1887. return false;
  1888. case ATH9K_CAP_TXPOW:
  1889. switch (capability) {
  1890. case 0:
  1891. return 0;
  1892. case 1:
  1893. *result = regulatory->power_limit;
  1894. return 0;
  1895. case 2:
  1896. *result = regulatory->max_power_level;
  1897. return 0;
  1898. case 3:
  1899. *result = regulatory->tp_scale;
  1900. return 0;
  1901. }
  1902. return false;
  1903. case ATH9K_CAP_DS:
  1904. return (AR_SREV_9280_20_OR_LATER(ah) &&
  1905. (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
  1906. ? false : true;
  1907. default:
  1908. return false;
  1909. }
  1910. }
  1911. EXPORT_SYMBOL(ath9k_hw_getcapability);
  1912. bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  1913. u32 capability, u32 setting, int *status)
  1914. {
  1915. switch (type) {
  1916. case ATH9K_CAP_TKIP_MIC:
  1917. if (setting)
  1918. ah->sta_id1_defaults |=
  1919. AR_STA_ID1_CRPT_MIC_ENABLE;
  1920. else
  1921. ah->sta_id1_defaults &=
  1922. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  1923. return true;
  1924. case ATH9K_CAP_MCAST_KEYSRCH:
  1925. if (setting)
  1926. ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
  1927. else
  1928. ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  1929. return true;
  1930. default:
  1931. return false;
  1932. }
  1933. }
  1934. EXPORT_SYMBOL(ath9k_hw_setcapability);
  1935. /****************************/
  1936. /* GPIO / RFKILL / Antennae */
  1937. /****************************/
  1938. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1939. u32 gpio, u32 type)
  1940. {
  1941. int addr;
  1942. u32 gpio_shift, tmp;
  1943. if (gpio > 11)
  1944. addr = AR_GPIO_OUTPUT_MUX3;
  1945. else if (gpio > 5)
  1946. addr = AR_GPIO_OUTPUT_MUX2;
  1947. else
  1948. addr = AR_GPIO_OUTPUT_MUX1;
  1949. gpio_shift = (gpio % 6) * 5;
  1950. if (AR_SREV_9280_20_OR_LATER(ah)
  1951. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1952. REG_RMW(ah, addr, (type << gpio_shift),
  1953. (0x1f << gpio_shift));
  1954. } else {
  1955. tmp = REG_READ(ah, addr);
  1956. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1957. tmp &= ~(0x1f << gpio_shift);
  1958. tmp |= (type << gpio_shift);
  1959. REG_WRITE(ah, addr, tmp);
  1960. }
  1961. }
  1962. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1963. {
  1964. u32 gpio_shift;
  1965. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1966. gpio_shift = gpio << 1;
  1967. REG_RMW(ah,
  1968. AR_GPIO_OE_OUT,
  1969. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1970. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1971. }
  1972. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1973. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1974. {
  1975. #define MS_REG_READ(x, y) \
  1976. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1977. if (gpio >= ah->caps.num_gpio_pins)
  1978. return 0xffffffff;
  1979. if (AR_SREV_9300_20_OR_LATER(ah))
  1980. return MS_REG_READ(AR9300, gpio) != 0;
  1981. else if (AR_SREV_9271(ah))
  1982. return MS_REG_READ(AR9271, gpio) != 0;
  1983. else if (AR_SREV_9287_10_OR_LATER(ah))
  1984. return MS_REG_READ(AR9287, gpio) != 0;
  1985. else if (AR_SREV_9285_10_OR_LATER(ah))
  1986. return MS_REG_READ(AR9285, gpio) != 0;
  1987. else if (AR_SREV_9280_10_OR_LATER(ah))
  1988. return MS_REG_READ(AR928X, gpio) != 0;
  1989. else
  1990. return MS_REG_READ(AR, gpio) != 0;
  1991. }
  1992. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1993. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1994. u32 ah_signal_type)
  1995. {
  1996. u32 gpio_shift;
  1997. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1998. gpio_shift = 2 * gpio;
  1999. REG_RMW(ah,
  2000. AR_GPIO_OE_OUT,
  2001. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2002. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2003. }
  2004. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2005. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2006. {
  2007. if (AR_SREV_9271(ah))
  2008. val = ~val;
  2009. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2010. AR_GPIO_BIT(gpio));
  2011. }
  2012. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2013. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  2014. {
  2015. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  2016. }
  2017. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  2018. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2019. {
  2020. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2021. }
  2022. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2023. /*********************/
  2024. /* General Operation */
  2025. /*********************/
  2026. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2027. {
  2028. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2029. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2030. if (phybits & AR_PHY_ERR_RADAR)
  2031. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2032. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2033. bits |= ATH9K_RX_FILTER_PHYERR;
  2034. return bits;
  2035. }
  2036. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2037. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2038. {
  2039. u32 phybits;
  2040. ENABLE_REGWRITE_BUFFER(ah);
  2041. REG_WRITE(ah, AR_RX_FILTER, bits);
  2042. phybits = 0;
  2043. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2044. phybits |= AR_PHY_ERR_RADAR;
  2045. if (bits & ATH9K_RX_FILTER_PHYERR)
  2046. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2047. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2048. if (phybits)
  2049. REG_WRITE(ah, AR_RXCFG,
  2050. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  2051. else
  2052. REG_WRITE(ah, AR_RXCFG,
  2053. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  2054. REGWRITE_BUFFER_FLUSH(ah);
  2055. DISABLE_REGWRITE_BUFFER(ah);
  2056. }
  2057. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2058. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2059. {
  2060. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2061. return false;
  2062. ath9k_hw_init_pll(ah, NULL);
  2063. return true;
  2064. }
  2065. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2066. bool ath9k_hw_disable(struct ath_hw *ah)
  2067. {
  2068. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2069. return false;
  2070. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2071. return false;
  2072. ath9k_hw_init_pll(ah, NULL);
  2073. return true;
  2074. }
  2075. EXPORT_SYMBOL(ath9k_hw_disable);
  2076. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  2077. {
  2078. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2079. struct ath9k_channel *chan = ah->curchan;
  2080. struct ieee80211_channel *channel = chan->chan;
  2081. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  2082. ah->eep_ops->set_txpower(ah, chan,
  2083. ath9k_regd_get_ctl(regulatory, chan),
  2084. channel->max_antenna_gain * 2,
  2085. channel->max_power * 2,
  2086. min((u32) MAX_RATE_POWER,
  2087. (u32) regulatory->power_limit));
  2088. }
  2089. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2090. void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
  2091. {
  2092. memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
  2093. }
  2094. EXPORT_SYMBOL(ath9k_hw_setmac);
  2095. void ath9k_hw_setopmode(struct ath_hw *ah)
  2096. {
  2097. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2098. }
  2099. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2100. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2101. {
  2102. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2103. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2104. }
  2105. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2106. void ath9k_hw_write_associd(struct ath_hw *ah)
  2107. {
  2108. struct ath_common *common = ath9k_hw_common(ah);
  2109. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2110. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2111. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2112. }
  2113. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2114. #define ATH9K_MAX_TSF_READ 10
  2115. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2116. {
  2117. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2118. int i;
  2119. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2120. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2121. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2122. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2123. if (tsf_upper2 == tsf_upper1)
  2124. break;
  2125. tsf_upper1 = tsf_upper2;
  2126. }
  2127. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2128. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2129. }
  2130. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2131. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2132. {
  2133. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2134. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2135. }
  2136. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2137. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2138. {
  2139. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2140. AH_TSF_WRITE_TIMEOUT))
  2141. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  2142. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2143. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2144. }
  2145. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2146. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2147. {
  2148. if (setting)
  2149. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2150. else
  2151. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2152. }
  2153. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2154. /*
  2155. * Extend 15-bit time stamp from rx descriptor to
  2156. * a full 64-bit TSF using the current h/w TSF.
  2157. */
  2158. u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
  2159. {
  2160. u64 tsf;
  2161. tsf = ath9k_hw_gettsf64(ah);
  2162. if ((tsf & 0x7fff) < rstamp)
  2163. tsf -= 0x8000;
  2164. return (tsf & ~0x7fff) | rstamp;
  2165. }
  2166. EXPORT_SYMBOL(ath9k_hw_extend_tsf);
  2167. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2168. {
  2169. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2170. u32 macmode;
  2171. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2172. macmode = AR_2040_JOINED_RX_CLEAR;
  2173. else
  2174. macmode = 0;
  2175. REG_WRITE(ah, AR_2040_MODE, macmode);
  2176. }
  2177. /* HW Generic timers configuration */
  2178. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2179. {
  2180. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2181. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2182. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2183. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2184. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2185. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2186. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2187. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2188. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2189. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2190. AR_NDP2_TIMER_MODE, 0x0002},
  2191. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2192. AR_NDP2_TIMER_MODE, 0x0004},
  2193. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2194. AR_NDP2_TIMER_MODE, 0x0008},
  2195. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2196. AR_NDP2_TIMER_MODE, 0x0010},
  2197. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2198. AR_NDP2_TIMER_MODE, 0x0020},
  2199. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2200. AR_NDP2_TIMER_MODE, 0x0040},
  2201. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2202. AR_NDP2_TIMER_MODE, 0x0080}
  2203. };
  2204. /* HW generic timer primitives */
  2205. /* compute and clear index of rightmost 1 */
  2206. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2207. {
  2208. u32 b;
  2209. b = *mask;
  2210. b &= (0-b);
  2211. *mask &= ~b;
  2212. b *= debruijn32;
  2213. b >>= 27;
  2214. return timer_table->gen_timer_index[b];
  2215. }
  2216. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2217. {
  2218. return REG_READ(ah, AR_TSF_L32);
  2219. }
  2220. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2221. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2222. void (*trigger)(void *),
  2223. void (*overflow)(void *),
  2224. void *arg,
  2225. u8 timer_index)
  2226. {
  2227. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2228. struct ath_gen_timer *timer;
  2229. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2230. if (timer == NULL) {
  2231. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  2232. "Failed to allocate memory"
  2233. "for hw timer[%d]\n", timer_index);
  2234. return NULL;
  2235. }
  2236. /* allocate a hardware generic timer slot */
  2237. timer_table->timers[timer_index] = timer;
  2238. timer->index = timer_index;
  2239. timer->trigger = trigger;
  2240. timer->overflow = overflow;
  2241. timer->arg = arg;
  2242. return timer;
  2243. }
  2244. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2245. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2246. struct ath_gen_timer *timer,
  2247. u32 timer_next,
  2248. u32 timer_period)
  2249. {
  2250. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2251. u32 tsf;
  2252. BUG_ON(!timer_period);
  2253. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2254. tsf = ath9k_hw_gettsf32(ah);
  2255. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  2256. "curent tsf %x period %x"
  2257. "timer_next %x\n", tsf, timer_period, timer_next);
  2258. /*
  2259. * Pull timer_next forward if the current TSF already passed it
  2260. * because of software latency
  2261. */
  2262. if (timer_next < tsf)
  2263. timer_next = tsf + timer_period;
  2264. /*
  2265. * Program generic timer registers
  2266. */
  2267. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2268. timer_next);
  2269. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2270. timer_period);
  2271. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2272. gen_tmr_configuration[timer->index].mode_mask);
  2273. /* Enable both trigger and thresh interrupt masks */
  2274. REG_SET_BIT(ah, AR_IMR_S5,
  2275. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2276. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2277. }
  2278. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2279. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2280. {
  2281. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2282. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2283. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2284. return;
  2285. }
  2286. /* Clear generic timer enable bits. */
  2287. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2288. gen_tmr_configuration[timer->index].mode_mask);
  2289. /* Disable both trigger and thresh interrupt masks */
  2290. REG_CLR_BIT(ah, AR_IMR_S5,
  2291. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2292. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2293. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2294. }
  2295. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2296. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2297. {
  2298. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2299. /* free the hardware generic timer slot */
  2300. timer_table->timers[timer->index] = NULL;
  2301. kfree(timer);
  2302. }
  2303. EXPORT_SYMBOL(ath_gen_timer_free);
  2304. /*
  2305. * Generic Timer Interrupts handling
  2306. */
  2307. void ath_gen_timer_isr(struct ath_hw *ah)
  2308. {
  2309. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2310. struct ath_gen_timer *timer;
  2311. struct ath_common *common = ath9k_hw_common(ah);
  2312. u32 trigger_mask, thresh_mask, index;
  2313. /* get hardware generic timer interrupt status */
  2314. trigger_mask = ah->intr_gen_timer_trigger;
  2315. thresh_mask = ah->intr_gen_timer_thresh;
  2316. trigger_mask &= timer_table->timer_mask.val;
  2317. thresh_mask &= timer_table->timer_mask.val;
  2318. trigger_mask &= ~thresh_mask;
  2319. while (thresh_mask) {
  2320. index = rightmost_index(timer_table, &thresh_mask);
  2321. timer = timer_table->timers[index];
  2322. BUG_ON(!timer);
  2323. ath_print(common, ATH_DBG_HWTIMER,
  2324. "TSF overflow for Gen timer %d\n", index);
  2325. timer->overflow(timer->arg);
  2326. }
  2327. while (trigger_mask) {
  2328. index = rightmost_index(timer_table, &trigger_mask);
  2329. timer = timer_table->timers[index];
  2330. BUG_ON(!timer);
  2331. ath_print(common, ATH_DBG_HWTIMER,
  2332. "Gen timer[%d] trigger\n", index);
  2333. timer->trigger(timer->arg);
  2334. }
  2335. }
  2336. EXPORT_SYMBOL(ath_gen_timer_isr);
  2337. /********/
  2338. /* HTC */
  2339. /********/
  2340. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2341. {
  2342. ah->htc_reset_init = true;
  2343. }
  2344. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2345. static struct {
  2346. u32 version;
  2347. const char * name;
  2348. } ath_mac_bb_names[] = {
  2349. /* Devices with external radios */
  2350. { AR_SREV_VERSION_5416_PCI, "5416" },
  2351. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2352. { AR_SREV_VERSION_9100, "9100" },
  2353. { AR_SREV_VERSION_9160, "9160" },
  2354. /* Single-chip solutions */
  2355. { AR_SREV_VERSION_9280, "9280" },
  2356. { AR_SREV_VERSION_9285, "9285" },
  2357. { AR_SREV_VERSION_9287, "9287" },
  2358. { AR_SREV_VERSION_9271, "9271" },
  2359. { AR_SREV_VERSION_9300, "9300" },
  2360. };
  2361. /* For devices with external radios */
  2362. static struct {
  2363. u16 version;
  2364. const char * name;
  2365. } ath_rf_names[] = {
  2366. { 0, "5133" },
  2367. { AR_RAD5133_SREV_MAJOR, "5133" },
  2368. { AR_RAD5122_SREV_MAJOR, "5122" },
  2369. { AR_RAD2133_SREV_MAJOR, "2133" },
  2370. { AR_RAD2122_SREV_MAJOR, "2122" }
  2371. };
  2372. /*
  2373. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2374. */
  2375. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2376. {
  2377. int i;
  2378. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2379. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2380. return ath_mac_bb_names[i].name;
  2381. }
  2382. }
  2383. return "????";
  2384. }
  2385. /*
  2386. * Return the RF name. "????" is returned if the RF is unknown.
  2387. * Used for devices with external radios.
  2388. */
  2389. static const char *ath9k_hw_rf_name(u16 rf_version)
  2390. {
  2391. int i;
  2392. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2393. if (ath_rf_names[i].version == rf_version) {
  2394. return ath_rf_names[i].name;
  2395. }
  2396. }
  2397. return "????";
  2398. }
  2399. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2400. {
  2401. int used;
  2402. /* chipsets >= AR9280 are single-chip */
  2403. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2404. used = snprintf(hw_name, len,
  2405. "Atheros AR%s Rev:%x",
  2406. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2407. ah->hw_version.macRev);
  2408. }
  2409. else {
  2410. used = snprintf(hw_name, len,
  2411. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2412. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2413. ah->hw_version.macRev,
  2414. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2415. AR_RADIO_SREV_MAJOR)),
  2416. ah->hw_version.phyRev);
  2417. }
  2418. hw_name[used] = '\0';
  2419. }
  2420. EXPORT_SYMBOL(ath9k_hw_name);