siena.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "mac.h"
  21. #include "spi.h"
  22. #include "regs.h"
  23. #include "io.h"
  24. #include "phy.h"
  25. #include "workarounds.h"
  26. #include "mcdi.h"
  27. #include "mcdi_pcol.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. efx_dword_t timer_cmd;
  33. if (channel->irq_moderation)
  34. EFX_POPULATE_DWORD_2(timer_cmd,
  35. FRF_CZ_TC_TIMER_MODE,
  36. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  37. FRF_CZ_TC_TIMER_VAL,
  38. channel->irq_moderation - 1);
  39. else
  40. EFX_POPULATE_DWORD_2(timer_cmd,
  41. FRF_CZ_TC_TIMER_MODE,
  42. FFE_CZ_TIMER_MODE_DIS,
  43. FRF_CZ_TC_TIMER_VAL, 0);
  44. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  45. channel->channel);
  46. }
  47. static void siena_push_multicast_hash(struct efx_nic *efx)
  48. {
  49. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  50. efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  51. efx->multicast_hash.byte, sizeof(efx->multicast_hash),
  52. NULL, 0, NULL);
  53. }
  54. static int siena_mdio_write(struct net_device *net_dev,
  55. int prtad, int devad, u16 addr, u16 value)
  56. {
  57. struct efx_nic *efx = netdev_priv(net_dev);
  58. uint32_t status;
  59. int rc;
  60. rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
  61. addr, value, &status);
  62. if (rc)
  63. return rc;
  64. if (status != MC_CMD_MDIO_STATUS_GOOD)
  65. return -EIO;
  66. return 0;
  67. }
  68. static int siena_mdio_read(struct net_device *net_dev,
  69. int prtad, int devad, u16 addr)
  70. {
  71. struct efx_nic *efx = netdev_priv(net_dev);
  72. uint16_t value;
  73. uint32_t status;
  74. int rc;
  75. rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
  76. addr, &value, &status);
  77. if (rc)
  78. return rc;
  79. if (status != MC_CMD_MDIO_STATUS_GOOD)
  80. return -EIO;
  81. return (int)value;
  82. }
  83. /* This call is responsible for hooking in the MAC and PHY operations */
  84. static int siena_probe_port(struct efx_nic *efx)
  85. {
  86. int rc;
  87. /* Hook in PHY operations table */
  88. efx->phy_op = &efx_mcdi_phy_ops;
  89. /* Set up MDIO structure for PHY */
  90. efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  91. efx->mdio.mdio_read = siena_mdio_read;
  92. efx->mdio.mdio_write = siena_mdio_write;
  93. /* Fill out MDIO structure, loopback modes, and initial link state */
  94. rc = efx->phy_op->probe(efx);
  95. if (rc != 0)
  96. return rc;
  97. /* Allocate buffer for stats */
  98. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  99. MC_CMD_MAC_NSTATS * sizeof(u64));
  100. if (rc)
  101. return rc;
  102. EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
  103. (u64)efx->stats_buffer.dma_addr,
  104. efx->stats_buffer.addr,
  105. (u64)virt_to_phys(efx->stats_buffer.addr));
  106. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
  107. return 0;
  108. }
  109. void siena_remove_port(struct efx_nic *efx)
  110. {
  111. efx->phy_op->remove(efx);
  112. efx_nic_free_buffer(efx, &efx->stats_buffer);
  113. }
  114. static const struct efx_nic_register_test siena_register_tests[] = {
  115. { FR_AZ_ADR_REGION,
  116. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  117. { FR_CZ_USR_EV_CFG,
  118. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  119. { FR_AZ_RX_CFG,
  120. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  121. { FR_AZ_TX_CFG,
  122. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  123. { FR_AZ_TX_RESERVED,
  124. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  125. { FR_AZ_SRM_TX_DC_CFG,
  126. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  127. { FR_AZ_RX_DC_CFG,
  128. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  129. { FR_AZ_RX_DC_PF_WM,
  130. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  131. { FR_BZ_DP_CTRL,
  132. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  133. { FR_BZ_RX_RSS_TKEY,
  134. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  135. { FR_CZ_RX_RSS_IPV6_REG1,
  136. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  137. { FR_CZ_RX_RSS_IPV6_REG2,
  138. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  139. { FR_CZ_RX_RSS_IPV6_REG3,
  140. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  141. };
  142. static int siena_test_registers(struct efx_nic *efx)
  143. {
  144. return efx_nic_test_registers(efx, siena_register_tests,
  145. ARRAY_SIZE(siena_register_tests));
  146. }
  147. /**************************************************************************
  148. *
  149. * Device reset
  150. *
  151. **************************************************************************
  152. */
  153. static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
  154. {
  155. int rc;
  156. /* Recover from a failed assertion pre-reset */
  157. rc = efx_mcdi_handle_assertion(efx);
  158. if (rc)
  159. return rc;
  160. if (method == RESET_TYPE_WORLD)
  161. return efx_mcdi_reset_mc(efx);
  162. else
  163. return efx_mcdi_reset_port(efx);
  164. }
  165. static int siena_probe_nvconfig(struct efx_nic *efx)
  166. {
  167. int rc;
  168. rc = efx_mcdi_get_board_cfg(efx, efx->mac_address, NULL);
  169. if (rc)
  170. return rc;
  171. return 0;
  172. }
  173. static int siena_probe_nic(struct efx_nic *efx)
  174. {
  175. struct siena_nic_data *nic_data;
  176. bool already_attached = 0;
  177. efx_oword_t reg;
  178. int rc;
  179. /* Allocate storage for hardware specific data */
  180. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  181. if (!nic_data)
  182. return -ENOMEM;
  183. efx->nic_data = nic_data;
  184. if (efx_nic_fpga_ver(efx) != 0) {
  185. EFX_ERR(efx, "Siena FPGA not supported\n");
  186. rc = -ENODEV;
  187. goto fail1;
  188. }
  189. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  190. efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  191. efx_mcdi_init(efx);
  192. /* Recover from a failed assertion before probing */
  193. rc = efx_mcdi_handle_assertion(efx);
  194. if (rc)
  195. goto fail1;
  196. rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
  197. if (rc) {
  198. EFX_ERR(efx, "Failed to read MCPU firmware version - "
  199. "rc %d\n", rc);
  200. goto fail1; /* MCPU absent? */
  201. }
  202. /* Let the BMC know that the driver is now in charge of link and
  203. * filter settings. We must do this before we reset the NIC */
  204. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  205. if (rc) {
  206. EFX_ERR(efx, "Unable to register driver with MCPU\n");
  207. goto fail2;
  208. }
  209. if (already_attached)
  210. /* Not a fatal error */
  211. EFX_ERR(efx, "Host already registered with MCPU\n");
  212. /* Now we can reset the NIC */
  213. rc = siena_reset_hw(efx, RESET_TYPE_ALL);
  214. if (rc) {
  215. EFX_ERR(efx, "failed to reset NIC\n");
  216. goto fail3;
  217. }
  218. siena_init_wol(efx);
  219. /* Allocate memory for INT_KER */
  220. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  221. if (rc)
  222. goto fail4;
  223. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  224. EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
  225. (unsigned long long)efx->irq_status.dma_addr,
  226. efx->irq_status.addr,
  227. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  228. /* Read in the non-volatile configuration */
  229. rc = siena_probe_nvconfig(efx);
  230. if (rc == -EINVAL) {
  231. EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
  232. efx->phy_type = PHY_TYPE_NONE;
  233. efx->mdio.prtad = MDIO_PRTAD_NONE;
  234. } else if (rc) {
  235. goto fail5;
  236. }
  237. get_random_bytes(&nic_data->ipv6_rss_key,
  238. sizeof(nic_data->ipv6_rss_key));
  239. return 0;
  240. fail5:
  241. efx_nic_free_buffer(efx, &efx->irq_status);
  242. fail4:
  243. fail3:
  244. efx_mcdi_drv_attach(efx, false, NULL);
  245. fail2:
  246. fail1:
  247. kfree(efx->nic_data);
  248. return rc;
  249. }
  250. /* This call performs hardware-specific global initialisation, such as
  251. * defining the descriptor cache sizes and number of RSS channels.
  252. * It does not set up any buffers, descriptor rings or event queues.
  253. */
  254. static int siena_init_nic(struct efx_nic *efx)
  255. {
  256. struct siena_nic_data *nic_data = efx->nic_data;
  257. efx_oword_t temp;
  258. int rc;
  259. /* Recover from a failed assertion post-reset */
  260. rc = efx_mcdi_handle_assertion(efx);
  261. if (rc)
  262. return rc;
  263. /* Squash TX of packets of 16 bytes or less */
  264. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  265. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  266. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  267. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  268. * descriptors (which is bad).
  269. */
  270. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  271. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  272. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  273. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  274. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  275. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  276. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  277. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  278. /* Enable IPv6 RSS */
  279. BUILD_BUG_ON(sizeof(nic_data->ipv6_rss_key) !=
  280. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  281. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  282. memcpy(&temp, nic_data->ipv6_rss_key, sizeof(temp));
  283. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  284. memcpy(&temp, nic_data->ipv6_rss_key + sizeof(temp), sizeof(temp));
  285. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  286. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  287. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  288. memcpy(&temp, nic_data->ipv6_rss_key + 2 * sizeof(temp),
  289. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  290. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  291. if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
  292. /* No MCDI operation has been defined to set thresholds */
  293. EFX_ERR(efx, "ignoring RX flow control thresholds\n");
  294. /* Enable event logging */
  295. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  296. if (rc)
  297. return rc;
  298. /* Set destination of both TX and RX Flush events */
  299. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  300. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  301. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  302. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  303. efx_nic_init_common(efx);
  304. return 0;
  305. }
  306. static void siena_remove_nic(struct efx_nic *efx)
  307. {
  308. efx_nic_free_buffer(efx, &efx->irq_status);
  309. siena_reset_hw(efx, RESET_TYPE_ALL);
  310. /* Relinquish the device back to the BMC */
  311. if (efx_nic_has_mc(efx))
  312. efx_mcdi_drv_attach(efx, false, NULL);
  313. /* Tear down the private nic state */
  314. kfree(efx->nic_data);
  315. efx->nic_data = NULL;
  316. }
  317. #define STATS_GENERATION_INVALID ((u64)(-1))
  318. static int siena_try_update_nic_stats(struct efx_nic *efx)
  319. {
  320. u64 *dma_stats;
  321. struct efx_mac_stats *mac_stats;
  322. u64 generation_start;
  323. u64 generation_end;
  324. mac_stats = &efx->mac_stats;
  325. dma_stats = (u64 *)efx->stats_buffer.addr;
  326. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  327. if (generation_end == STATS_GENERATION_INVALID)
  328. return 0;
  329. rmb();
  330. #define MAC_STAT(M, D) \
  331. mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
  332. MAC_STAT(tx_bytes, TX_BYTES);
  333. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  334. mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
  335. mac_stats->tx_bad_bytes);
  336. MAC_STAT(tx_packets, TX_PKTS);
  337. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  338. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  339. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  340. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  341. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  342. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  343. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  344. MAC_STAT(tx_64, TX_64_PKTS);
  345. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  346. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  347. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  348. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  349. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  350. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  351. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  352. mac_stats->tx_collision = 0;
  353. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  354. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  355. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  356. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  357. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  358. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  359. mac_stats->tx_multiple_collision +
  360. mac_stats->tx_excessive_collision +
  361. mac_stats->tx_late_collision);
  362. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  363. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  364. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  365. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  366. MAC_STAT(rx_bytes, RX_BYTES);
  367. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  368. mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
  369. mac_stats->rx_bad_bytes);
  370. MAC_STAT(rx_packets, RX_PKTS);
  371. MAC_STAT(rx_good, RX_GOOD_PKTS);
  372. mac_stats->rx_bad = mac_stats->rx_packets - mac_stats->rx_good;
  373. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  374. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  375. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  376. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  377. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  378. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  379. MAC_STAT(rx_64, RX_64_PKTS);
  380. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  381. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  382. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  383. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  384. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  385. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  386. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  387. mac_stats->rx_bad_lt64 = 0;
  388. mac_stats->rx_bad_64_to_15xx = 0;
  389. mac_stats->rx_bad_15xx_to_jumbo = 0;
  390. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  391. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  392. mac_stats->rx_missed = 0;
  393. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  394. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  395. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  396. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  397. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  398. mac_stats->rx_good_lt64 = 0;
  399. efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
  400. #undef MAC_STAT
  401. rmb();
  402. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  403. if (generation_end != generation_start)
  404. return -EAGAIN;
  405. return 0;
  406. }
  407. static void siena_update_nic_stats(struct efx_nic *efx)
  408. {
  409. int retry;
  410. /* If we're unlucky enough to read statistics wduring the DMA, wait
  411. * up to 10ms for it to finish (typically takes <500us) */
  412. for (retry = 0; retry < 100; ++retry) {
  413. if (siena_try_update_nic_stats(efx) == 0)
  414. return;
  415. udelay(100);
  416. }
  417. /* Use the old values instead */
  418. }
  419. static void siena_start_nic_stats(struct efx_nic *efx)
  420. {
  421. u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
  422. dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
  423. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
  424. MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
  425. }
  426. static void siena_stop_nic_stats(struct efx_nic *efx)
  427. {
  428. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
  429. }
  430. void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  431. {
  432. struct siena_nic_data *nic_data = efx->nic_data;
  433. snprintf(buf, len, "%u.%u.%u.%u",
  434. (unsigned int)(nic_data->fw_version >> 48),
  435. (unsigned int)(nic_data->fw_version >> 32 & 0xffff),
  436. (unsigned int)(nic_data->fw_version >> 16 & 0xffff),
  437. (unsigned int)(nic_data->fw_version & 0xffff));
  438. }
  439. /**************************************************************************
  440. *
  441. * Wake on LAN
  442. *
  443. **************************************************************************
  444. */
  445. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  446. {
  447. struct siena_nic_data *nic_data = efx->nic_data;
  448. wol->supported = WAKE_MAGIC;
  449. if (nic_data->wol_filter_id != -1)
  450. wol->wolopts = WAKE_MAGIC;
  451. else
  452. wol->wolopts = 0;
  453. memset(&wol->sopass, 0, sizeof(wol->sopass));
  454. }
  455. static int siena_set_wol(struct efx_nic *efx, u32 type)
  456. {
  457. struct siena_nic_data *nic_data = efx->nic_data;
  458. int rc;
  459. if (type & ~WAKE_MAGIC)
  460. return -EINVAL;
  461. if (type & WAKE_MAGIC) {
  462. if (nic_data->wol_filter_id != -1)
  463. efx_mcdi_wol_filter_remove(efx,
  464. nic_data->wol_filter_id);
  465. rc = efx_mcdi_wol_filter_set_magic(efx, efx->mac_address,
  466. &nic_data->wol_filter_id);
  467. if (rc)
  468. goto fail;
  469. pci_wake_from_d3(efx->pci_dev, true);
  470. } else {
  471. rc = efx_mcdi_wol_filter_reset(efx);
  472. nic_data->wol_filter_id = -1;
  473. pci_wake_from_d3(efx->pci_dev, false);
  474. if (rc)
  475. goto fail;
  476. }
  477. return 0;
  478. fail:
  479. EFX_ERR(efx, "%s failed: type=%d rc=%d\n", __func__, type, rc);
  480. return rc;
  481. }
  482. static void siena_init_wol(struct efx_nic *efx)
  483. {
  484. struct siena_nic_data *nic_data = efx->nic_data;
  485. int rc;
  486. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  487. if (rc != 0) {
  488. /* If it failed, attempt to get into a synchronised
  489. * state with MC by resetting any set WoL filters */
  490. efx_mcdi_wol_filter_reset(efx);
  491. nic_data->wol_filter_id = -1;
  492. } else if (nic_data->wol_filter_id != -1) {
  493. pci_wake_from_d3(efx->pci_dev, true);
  494. }
  495. }
  496. /**************************************************************************
  497. *
  498. * Revision-dependent attributes used by efx.c and nic.c
  499. *
  500. **************************************************************************
  501. */
  502. struct efx_nic_type siena_a0_nic_type = {
  503. .probe = siena_probe_nic,
  504. .remove = siena_remove_nic,
  505. .init = siena_init_nic,
  506. .fini = efx_port_dummy_op_void,
  507. .monitor = NULL,
  508. .reset = siena_reset_hw,
  509. .probe_port = siena_probe_port,
  510. .remove_port = siena_remove_port,
  511. .prepare_flush = efx_port_dummy_op_void,
  512. .update_stats = siena_update_nic_stats,
  513. .start_stats = siena_start_nic_stats,
  514. .stop_stats = siena_stop_nic_stats,
  515. .set_id_led = efx_mcdi_set_id_led,
  516. .push_irq_moderation = siena_push_irq_moderation,
  517. .push_multicast_hash = siena_push_multicast_hash,
  518. .reconfigure_port = efx_mcdi_phy_reconfigure,
  519. .get_wol = siena_get_wol,
  520. .set_wol = siena_set_wol,
  521. .resume_wol = siena_init_wol,
  522. .test_registers = siena_test_registers,
  523. .test_nvram = efx_mcdi_nvram_test_all,
  524. .default_mac_ops = &efx_mcdi_mac_operations,
  525. .revision = EFX_REV_SIENA_A0,
  526. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  527. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  528. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  529. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  530. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  531. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  532. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  533. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  534. .rx_buffer_padding = 0,
  535. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  536. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  537. * interrupt handler only supports 32
  538. * channels */
  539. .tx_dc_base = 0x88000,
  540. .rx_dc_base = 0x68000,
  541. .offload_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM,
  542. .reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,
  543. };