qla3xxx.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.03.00-k5"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  58. /* required last entry */
  59. {0,}
  60. };
  61. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  62. /*
  63. * These are the known PHY's which are used
  64. */
  65. typedef enum {
  66. PHY_TYPE_UNKNOWN = 0,
  67. PHY_VITESSE_VSC8211,
  68. PHY_AGERE_ET1011C,
  69. MAX_PHY_DEV_TYPES
  70. } PHY_DEVICE_et;
  71. typedef struct {
  72. PHY_DEVICE_et phyDevice;
  73. u32 phyIdOUI;
  74. u16 phyIdModel;
  75. char *name;
  76. } PHY_DEVICE_INFO_t;
  77. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  78. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  79. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  80. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  81. };
  82. /*
  83. * Caller must take hw_lock.
  84. */
  85. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  86. u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. unsigned int seconds = 3;
  91. do {
  92. writel((sem_mask | sem_bits),
  93. &port_regs->CommonRegs.semaphoreReg);
  94. value = readl(&port_regs->CommonRegs.semaphoreReg);
  95. if ((value & (sem_mask >> 16)) == sem_bits)
  96. return 0;
  97. ssleep(1);
  98. } while(--seconds);
  99. return -1;
  100. }
  101. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  102. {
  103. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  104. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  105. readl(&port_regs->CommonRegs.semaphoreReg);
  106. }
  107. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  108. {
  109. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  110. u32 value;
  111. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  112. value = readl(&port_regs->CommonRegs.semaphoreReg);
  113. return ((value & (sem_mask >> 16)) == sem_bits);
  114. }
  115. /*
  116. * Caller holds hw_lock.
  117. */
  118. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  119. {
  120. int i = 0;
  121. while (1) {
  122. if (!ql_sem_lock(qdev,
  123. QL_DRVR_SEM_MASK,
  124. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  125. * 2) << 1)) {
  126. if (i < 10) {
  127. ssleep(1);
  128. i++;
  129. } else {
  130. printk(KERN_ERR PFX "%s: Timed out waiting for "
  131. "driver lock...\n",
  132. qdev->ndev->name);
  133. return 0;
  134. }
  135. } else {
  136. printk(KERN_DEBUG PFX
  137. "%s: driver lock acquired.\n",
  138. qdev->ndev->name);
  139. return 1;
  140. }
  141. }
  142. }
  143. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  144. {
  145. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  152. u32 __iomem * reg)
  153. {
  154. u32 value;
  155. unsigned long hw_flags;
  156. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  157. value = readl(reg);
  158. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  159. return value;
  160. }
  161. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  162. u32 __iomem * reg)
  163. {
  164. return readl(reg);
  165. }
  166. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  167. {
  168. u32 value;
  169. unsigned long hw_flags;
  170. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  171. if (qdev->current_page != 0)
  172. ql_set_register_page(qdev,0);
  173. value = readl(reg);
  174. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  175. return value;
  176. }
  177. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  178. {
  179. if (qdev->current_page != 0)
  180. ql_set_register_page(qdev,0);
  181. return readl(reg);
  182. }
  183. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  184. u32 __iomem *reg, u32 value)
  185. {
  186. unsigned long hw_flags;
  187. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  188. writel(value, reg);
  189. readl(reg);
  190. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  191. }
  192. static void ql_write_common_reg(struct ql3_adapter *qdev,
  193. u32 __iomem *reg, u32 value)
  194. {
  195. writel(value, reg);
  196. readl(reg);
  197. }
  198. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  199. u32 __iomem *reg, u32 value)
  200. {
  201. writel(value, reg);
  202. readl(reg);
  203. udelay(1);
  204. }
  205. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  206. u32 __iomem *reg, u32 value)
  207. {
  208. if (qdev->current_page != 0)
  209. ql_set_register_page(qdev,0);
  210. writel(value, reg);
  211. readl(reg);
  212. }
  213. /*
  214. * Caller holds hw_lock. Only called during init.
  215. */
  216. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  217. u32 __iomem *reg, u32 value)
  218. {
  219. if (qdev->current_page != 1)
  220. ql_set_register_page(qdev,1);
  221. writel(value, reg);
  222. readl(reg);
  223. }
  224. /*
  225. * Caller holds hw_lock. Only called during init.
  226. */
  227. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  228. u32 __iomem *reg, u32 value)
  229. {
  230. if (qdev->current_page != 2)
  231. ql_set_register_page(qdev,2);
  232. writel(value, reg);
  233. readl(reg);
  234. }
  235. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  236. {
  237. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  238. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  239. (ISP_IMR_ENABLE_INT << 16));
  240. }
  241. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  242. {
  243. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  246. }
  247. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  248. struct ql_rcv_buf_cb *lrg_buf_cb)
  249. {
  250. dma_addr_t map;
  251. int err;
  252. lrg_buf_cb->next = NULL;
  253. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  254. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  255. } else {
  256. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  257. qdev->lrg_buf_free_tail = lrg_buf_cb;
  258. }
  259. if (!lrg_buf_cb->skb) {
  260. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  261. qdev->lrg_buffer_len);
  262. if (unlikely(!lrg_buf_cb->skb)) {
  263. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  264. qdev->ndev->name);
  265. qdev->lrg_buf_skb_check++;
  266. } else {
  267. /*
  268. * We save some space to copy the ethhdr from first
  269. * buffer
  270. */
  271. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  272. map = pci_map_single(qdev->pdev,
  273. lrg_buf_cb->skb->data,
  274. qdev->lrg_buffer_len -
  275. QL_HEADER_SPACE,
  276. PCI_DMA_FROMDEVICE);
  277. err = pci_dma_mapping_error(qdev->pdev, map);
  278. if(err) {
  279. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  280. qdev->ndev->name, err);
  281. dev_kfree_skb(lrg_buf_cb->skb);
  282. lrg_buf_cb->skb = NULL;
  283. qdev->lrg_buf_skb_check++;
  284. return;
  285. }
  286. lrg_buf_cb->buf_phy_addr_low =
  287. cpu_to_le32(LS_64BITS(map));
  288. lrg_buf_cb->buf_phy_addr_high =
  289. cpu_to_le32(MS_64BITS(map));
  290. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  291. dma_unmap_len_set(lrg_buf_cb, maplen,
  292. qdev->lrg_buffer_len -
  293. QL_HEADER_SPACE);
  294. }
  295. }
  296. qdev->lrg_buf_free_count++;
  297. }
  298. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  299. *qdev)
  300. {
  301. struct ql_rcv_buf_cb *lrg_buf_cb;
  302. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  303. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  304. qdev->lrg_buf_free_tail = NULL;
  305. qdev->lrg_buf_free_count--;
  306. }
  307. return lrg_buf_cb;
  308. }
  309. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  310. static u32 dataBits = EEPROM_NO_DATA_BITS;
  311. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  312. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  313. unsigned short *value);
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_select(struct ql3_adapter *qdev)
  318. {
  319. struct ql3xxx_port_registers __iomem *port_regs =
  320. qdev->mem_map_registers;
  321. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  322. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  323. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  324. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  325. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  326. }
  327. /*
  328. * Caller holds hw_lock.
  329. */
  330. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  331. {
  332. int i;
  333. u32 mask;
  334. u32 dataBit;
  335. u32 previousBit;
  336. struct ql3xxx_port_registers __iomem *port_regs =
  337. qdev->mem_map_registers;
  338. /* Clock in a zero, then do the start bit */
  339. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  340. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  341. AUBURN_EEPROM_DO_1);
  342. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  343. ISP_NVRAM_MASK | qdev->
  344. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  345. AUBURN_EEPROM_CLK_RISE);
  346. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  347. ISP_NVRAM_MASK | qdev->
  348. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  349. AUBURN_EEPROM_CLK_FALL);
  350. mask = 1 << (FM93C56A_CMD_BITS - 1);
  351. /* Force the previous data bit to be different */
  352. previousBit = 0xffff;
  353. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  354. dataBit =
  355. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  356. if (previousBit != dataBit) {
  357. /*
  358. * If the bit changed, then change the DO state to
  359. * match
  360. */
  361. ql_write_nvram_reg(qdev,
  362. &port_regs->CommonRegs.
  363. serialPortInterfaceReg,
  364. ISP_NVRAM_MASK | qdev->
  365. eeprom_cmd_data | dataBit);
  366. previousBit = dataBit;
  367. }
  368. ql_write_nvram_reg(qdev,
  369. &port_regs->CommonRegs.
  370. serialPortInterfaceReg,
  371. ISP_NVRAM_MASK | qdev->
  372. eeprom_cmd_data | dataBit |
  373. AUBURN_EEPROM_CLK_RISE);
  374. ql_write_nvram_reg(qdev,
  375. &port_regs->CommonRegs.
  376. serialPortInterfaceReg,
  377. ISP_NVRAM_MASK | qdev->
  378. eeprom_cmd_data | dataBit |
  379. AUBURN_EEPROM_CLK_FALL);
  380. cmd = cmd << 1;
  381. }
  382. mask = 1 << (addrBits - 1);
  383. /* Force the previous data bit to be different */
  384. previousBit = 0xffff;
  385. for (i = 0; i < addrBits; i++) {
  386. dataBit =
  387. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  388. AUBURN_EEPROM_DO_0;
  389. if (previousBit != dataBit) {
  390. /*
  391. * If the bit changed, then change the DO state to
  392. * match
  393. */
  394. ql_write_nvram_reg(qdev,
  395. &port_regs->CommonRegs.
  396. serialPortInterfaceReg,
  397. ISP_NVRAM_MASK | qdev->
  398. eeprom_cmd_data | dataBit);
  399. previousBit = dataBit;
  400. }
  401. ql_write_nvram_reg(qdev,
  402. &port_regs->CommonRegs.
  403. serialPortInterfaceReg,
  404. ISP_NVRAM_MASK | qdev->
  405. eeprom_cmd_data | dataBit |
  406. AUBURN_EEPROM_CLK_RISE);
  407. ql_write_nvram_reg(qdev,
  408. &port_regs->CommonRegs.
  409. serialPortInterfaceReg,
  410. ISP_NVRAM_MASK | qdev->
  411. eeprom_cmd_data | dataBit |
  412. AUBURN_EEPROM_CLK_FALL);
  413. eepromAddr = eepromAddr << 1;
  414. }
  415. }
  416. /*
  417. * Caller holds hw_lock.
  418. */
  419. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  420. {
  421. struct ql3xxx_port_registers __iomem *port_regs =
  422. qdev->mem_map_registers;
  423. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  424. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  425. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  426. }
  427. /*
  428. * Caller holds hw_lock.
  429. */
  430. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  431. {
  432. int i;
  433. u32 data = 0;
  434. u32 dataBit;
  435. struct ql3xxx_port_registers __iomem *port_regs =
  436. qdev->mem_map_registers;
  437. /* Read the data bits */
  438. /* The first bit is a dummy. Clock right over it. */
  439. for (i = 0; i < dataBits; i++) {
  440. ql_write_nvram_reg(qdev,
  441. &port_regs->CommonRegs.
  442. serialPortInterfaceReg,
  443. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  444. AUBURN_EEPROM_CLK_RISE);
  445. ql_write_nvram_reg(qdev,
  446. &port_regs->CommonRegs.
  447. serialPortInterfaceReg,
  448. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  449. AUBURN_EEPROM_CLK_FALL);
  450. dataBit =
  451. (ql_read_common_reg
  452. (qdev,
  453. &port_regs->CommonRegs.
  454. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  455. data = (data << 1) | dataBit;
  456. }
  457. *value = (u16) data;
  458. }
  459. /*
  460. * Caller holds hw_lock.
  461. */
  462. static void eeprom_readword(struct ql3_adapter *qdev,
  463. u32 eepromAddr, unsigned short *value)
  464. {
  465. fm93c56a_select(qdev);
  466. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  467. fm93c56a_datain(qdev, value);
  468. fm93c56a_deselect(qdev);
  469. }
  470. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  471. {
  472. __le16 *p = (__le16 *)ndev->dev_addr;
  473. p[0] = cpu_to_le16(addr[0]);
  474. p[1] = cpu_to_le16(addr[1]);
  475. p[2] = cpu_to_le16(addr[2]);
  476. }
  477. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  478. {
  479. u16 *pEEPROMData;
  480. u16 checksum = 0;
  481. u32 index;
  482. unsigned long hw_flags;
  483. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  484. pEEPROMData = (u16 *) & qdev->nvram_data;
  485. qdev->eeprom_cmd_data = 0;
  486. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  487. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  488. 2) << 10)) {
  489. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  490. __func__);
  491. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  492. return -1;
  493. }
  494. for (index = 0; index < EEPROM_SIZE; index++) {
  495. eeprom_readword(qdev, index, pEEPROMData);
  496. checksum += *pEEPROMData;
  497. pEEPROMData++;
  498. }
  499. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  500. if (checksum != 0) {
  501. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  502. qdev->ndev->name, checksum);
  503. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  504. return -1;
  505. }
  506. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  507. return checksum;
  508. }
  509. static const u32 PHYAddr[2] = {
  510. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  511. };
  512. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  513. {
  514. struct ql3xxx_port_registers __iomem *port_regs =
  515. qdev->mem_map_registers;
  516. u32 temp;
  517. int count = 1000;
  518. while (count) {
  519. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  520. if (!(temp & MAC_MII_STATUS_BSY))
  521. return 0;
  522. udelay(10);
  523. count--;
  524. }
  525. return -1;
  526. }
  527. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  528. {
  529. struct ql3xxx_port_registers __iomem *port_regs =
  530. qdev->mem_map_registers;
  531. u32 scanControl;
  532. if (qdev->numPorts > 1) {
  533. /* Auto scan will cycle through multiple ports */
  534. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  535. } else {
  536. scanControl = MAC_MII_CONTROL_SC;
  537. }
  538. /*
  539. * Scan register 1 of PHY/PETBI,
  540. * Set up to scan both devices
  541. * The autoscan starts from the first register, completes
  542. * the last one before rolling over to the first
  543. */
  544. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  545. PHYAddr[0] | MII_SCAN_REGISTER);
  546. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  547. (scanControl) |
  548. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  549. }
  550. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  551. {
  552. u8 ret;
  553. struct ql3xxx_port_registers __iomem *port_regs =
  554. qdev->mem_map_registers;
  555. /* See if scan mode is enabled before we turn it off */
  556. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  557. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  558. /* Scan is enabled */
  559. ret = 1;
  560. } else {
  561. /* Scan is disabled */
  562. ret = 0;
  563. }
  564. /*
  565. * When disabling scan mode you must first change the MII register
  566. * address
  567. */
  568. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  569. PHYAddr[0] | MII_SCAN_REGISTER);
  570. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  571. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  572. MAC_MII_CONTROL_RC) << 16));
  573. return ret;
  574. }
  575. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  576. u16 regAddr, u16 value, u32 phyAddr)
  577. {
  578. struct ql3xxx_port_registers __iomem *port_regs =
  579. qdev->mem_map_registers;
  580. u8 scanWasEnabled;
  581. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  582. if (ql_wait_for_mii_ready(qdev)) {
  583. if (netif_msg_link(qdev))
  584. printk(KERN_WARNING PFX
  585. "%s Timed out waiting for management port to "
  586. "get free before issuing command.\n",
  587. qdev->ndev->name);
  588. return -1;
  589. }
  590. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  591. phyAddr | regAddr);
  592. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  593. /* Wait for write to complete 9/10/04 SJP */
  594. if (ql_wait_for_mii_ready(qdev)) {
  595. if (netif_msg_link(qdev))
  596. printk(KERN_WARNING PFX
  597. "%s: Timed out waiting for management port to "
  598. "get free before issuing command.\n",
  599. qdev->ndev->name);
  600. return -1;
  601. }
  602. if (scanWasEnabled)
  603. ql_mii_enable_scan_mode(qdev);
  604. return 0;
  605. }
  606. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  607. u16 * value, u32 phyAddr)
  608. {
  609. struct ql3xxx_port_registers __iomem *port_regs =
  610. qdev->mem_map_registers;
  611. u8 scanWasEnabled;
  612. u32 temp;
  613. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  614. if (ql_wait_for_mii_ready(qdev)) {
  615. if (netif_msg_link(qdev))
  616. printk(KERN_WARNING PFX
  617. "%s: Timed out waiting for management port to "
  618. "get free before issuing command.\n",
  619. qdev->ndev->name);
  620. return -1;
  621. }
  622. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  623. phyAddr | regAddr);
  624. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  625. (MAC_MII_CONTROL_RC << 16));
  626. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  627. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  628. /* Wait for the read to complete */
  629. if (ql_wait_for_mii_ready(qdev)) {
  630. if (netif_msg_link(qdev))
  631. printk(KERN_WARNING PFX
  632. "%s: Timed out waiting for management port to "
  633. "get free after issuing command.\n",
  634. qdev->ndev->name);
  635. return -1;
  636. }
  637. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  638. *value = (u16) temp;
  639. if (scanWasEnabled)
  640. ql_mii_enable_scan_mode(qdev);
  641. return 0;
  642. }
  643. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  644. {
  645. struct ql3xxx_port_registers __iomem *port_regs =
  646. qdev->mem_map_registers;
  647. ql_mii_disable_scan_mode(qdev);
  648. if (ql_wait_for_mii_ready(qdev)) {
  649. if (netif_msg_link(qdev))
  650. printk(KERN_WARNING PFX
  651. "%s: Timed out waiting for management port to "
  652. "get free before issuing command.\n",
  653. qdev->ndev->name);
  654. return -1;
  655. }
  656. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  657. qdev->PHYAddr | regAddr);
  658. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  659. /* Wait for write to complete. */
  660. if (ql_wait_for_mii_ready(qdev)) {
  661. if (netif_msg_link(qdev))
  662. printk(KERN_WARNING PFX
  663. "%s: Timed out waiting for management port to "
  664. "get free before issuing command.\n",
  665. qdev->ndev->name);
  666. return -1;
  667. }
  668. ql_mii_enable_scan_mode(qdev);
  669. return 0;
  670. }
  671. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  672. {
  673. u32 temp;
  674. struct ql3xxx_port_registers __iomem *port_regs =
  675. qdev->mem_map_registers;
  676. ql_mii_disable_scan_mode(qdev);
  677. if (ql_wait_for_mii_ready(qdev)) {
  678. if (netif_msg_link(qdev))
  679. printk(KERN_WARNING PFX
  680. "%s: Timed out waiting for management port to "
  681. "get free before issuing command.\n",
  682. qdev->ndev->name);
  683. return -1;
  684. }
  685. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  686. qdev->PHYAddr | regAddr);
  687. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  688. (MAC_MII_CONTROL_RC << 16));
  689. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  690. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  691. /* Wait for the read to complete */
  692. if (ql_wait_for_mii_ready(qdev)) {
  693. if (netif_msg_link(qdev))
  694. printk(KERN_WARNING PFX
  695. "%s: Timed out waiting for management port to "
  696. "get free before issuing command.\n",
  697. qdev->ndev->name);
  698. return -1;
  699. }
  700. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  701. *value = (u16) temp;
  702. ql_mii_enable_scan_mode(qdev);
  703. return 0;
  704. }
  705. static void ql_petbi_reset(struct ql3_adapter *qdev)
  706. {
  707. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  708. }
  709. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  710. {
  711. u16 reg;
  712. /* Enable Auto-negotiation sense */
  713. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  714. reg |= PETBI_TBI_AUTO_SENSE;
  715. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  716. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  717. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  718. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  719. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  720. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  721. }
  722. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  723. {
  724. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  725. PHYAddr[qdev->mac_index]);
  726. }
  727. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  728. {
  729. u16 reg;
  730. /* Enable Auto-negotiation sense */
  731. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  732. PHYAddr[qdev->mac_index]);
  733. reg |= PETBI_TBI_AUTO_SENSE;
  734. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  735. PHYAddr[qdev->mac_index]);
  736. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  737. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  738. PHYAddr[qdev->mac_index]);
  739. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  740. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  741. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  742. PHYAddr[qdev->mac_index]);
  743. }
  744. static void ql_petbi_init(struct ql3_adapter *qdev)
  745. {
  746. ql_petbi_reset(qdev);
  747. ql_petbi_start_neg(qdev);
  748. }
  749. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  750. {
  751. ql_petbi_reset_ex(qdev);
  752. ql_petbi_start_neg_ex(qdev);
  753. }
  754. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  755. {
  756. u16 reg;
  757. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  758. return 0;
  759. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  760. }
  761. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  762. {
  763. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  764. /* power down device bit 11 = 1 */
  765. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  766. /* enable diagnostic mode bit 2 = 1 */
  767. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  768. /* 1000MB amplitude adjust (see Agere errata) */
  769. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  770. /* 1000MB amplitude adjust (see Agere errata) */
  771. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  772. /* 100MB amplitude adjust (see Agere errata) */
  773. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  774. /* 100MB amplitude adjust (see Agere errata) */
  775. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  776. /* 10MB amplitude adjust (see Agere errata) */
  777. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  778. /* 10MB amplitude adjust (see Agere errata) */
  779. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  780. /* point to hidden reg 0x2806 */
  781. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  782. /* Write new PHYAD w/bit 5 set */
  783. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  784. /*
  785. * Disable diagnostic mode bit 2 = 0
  786. * Power up device bit 11 = 0
  787. * Link up (on) and activity (blink)
  788. */
  789. ql_mii_write_reg(qdev, 0x12, 0x840a);
  790. ql_mii_write_reg(qdev, 0x00, 0x1140);
  791. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  792. }
  793. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  794. u16 phyIdReg0, u16 phyIdReg1)
  795. {
  796. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  797. u32 oui;
  798. u16 model;
  799. int i;
  800. if (phyIdReg0 == 0xffff) {
  801. return result;
  802. }
  803. if (phyIdReg1 == 0xffff) {
  804. return result;
  805. }
  806. /* oui is split between two registers */
  807. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  808. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  809. /* Scan table for this PHY */
  810. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  811. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  812. {
  813. result = PHY_DEVICES[i].phyDevice;
  814. printk(KERN_INFO "%s: Phy: %s\n",
  815. qdev->ndev->name, PHY_DEVICES[i].name);
  816. break;
  817. }
  818. }
  819. return result;
  820. }
  821. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  822. {
  823. u16 reg;
  824. switch(qdev->phyType) {
  825. case PHY_AGERE_ET1011C:
  826. {
  827. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  828. return 0;
  829. reg = (reg >> 8) & 3;
  830. break;
  831. }
  832. default:
  833. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  834. return 0;
  835. reg = (((reg & 0x18) >> 3) & 3);
  836. }
  837. switch(reg) {
  838. case 2:
  839. return SPEED_1000;
  840. case 1:
  841. return SPEED_100;
  842. case 0:
  843. return SPEED_10;
  844. default:
  845. return -1;
  846. }
  847. }
  848. static int ql_is_full_dup(struct ql3_adapter *qdev)
  849. {
  850. u16 reg;
  851. switch(qdev->phyType) {
  852. case PHY_AGERE_ET1011C:
  853. {
  854. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  855. return 0;
  856. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  857. }
  858. case PHY_VITESSE_VSC8211:
  859. default:
  860. {
  861. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  862. return 0;
  863. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  864. }
  865. }
  866. }
  867. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  868. {
  869. u16 reg;
  870. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  871. return 0;
  872. return (reg & PHY_NEG_PAUSE) != 0;
  873. }
  874. static int PHY_Setup(struct ql3_adapter *qdev)
  875. {
  876. u16 reg1;
  877. u16 reg2;
  878. bool agereAddrChangeNeeded = false;
  879. u32 miiAddr = 0;
  880. int err;
  881. /* Determine the PHY we are using by reading the ID's */
  882. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  883. if(err != 0) {
  884. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  885. qdev->ndev->name);
  886. return err;
  887. }
  888. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  889. if(err != 0) {
  890. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  891. qdev->ndev->name);
  892. return err;
  893. }
  894. /* Check if we have a Agere PHY */
  895. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  896. /* Determine which MII address we should be using
  897. determined by the index of the card */
  898. if (qdev->mac_index == 0) {
  899. miiAddr = MII_AGERE_ADDR_1;
  900. } else {
  901. miiAddr = MII_AGERE_ADDR_2;
  902. }
  903. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  904. if(err != 0) {
  905. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  906. qdev->ndev->name);
  907. return err;
  908. }
  909. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  910. if(err != 0) {
  911. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  912. qdev->ndev->name);
  913. return err;
  914. }
  915. /* We need to remember to initialize the Agere PHY */
  916. agereAddrChangeNeeded = true;
  917. }
  918. /* Determine the particular PHY we have on board to apply
  919. PHY specific initializations */
  920. qdev->phyType = getPhyType(qdev, reg1, reg2);
  921. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  922. /* need this here so address gets changed */
  923. phyAgereSpecificInit(qdev, miiAddr);
  924. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  925. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  926. return -EIO;
  927. }
  928. return 0;
  929. }
  930. /*
  931. * Caller holds hw_lock.
  932. */
  933. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  934. {
  935. struct ql3xxx_port_registers __iomem *port_regs =
  936. qdev->mem_map_registers;
  937. u32 value;
  938. if (enable)
  939. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  940. else
  941. value = (MAC_CONFIG_REG_PE << 16);
  942. if (qdev->mac_index)
  943. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  944. else
  945. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  946. }
  947. /*
  948. * Caller holds hw_lock.
  949. */
  950. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  951. {
  952. struct ql3xxx_port_registers __iomem *port_regs =
  953. qdev->mem_map_registers;
  954. u32 value;
  955. if (enable)
  956. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  957. else
  958. value = (MAC_CONFIG_REG_SR << 16);
  959. if (qdev->mac_index)
  960. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  961. else
  962. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  963. }
  964. /*
  965. * Caller holds hw_lock.
  966. */
  967. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  968. {
  969. struct ql3xxx_port_registers __iomem *port_regs =
  970. qdev->mem_map_registers;
  971. u32 value;
  972. if (enable)
  973. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  974. else
  975. value = (MAC_CONFIG_REG_GM << 16);
  976. if (qdev->mac_index)
  977. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  978. else
  979. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  980. }
  981. /*
  982. * Caller holds hw_lock.
  983. */
  984. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  985. {
  986. struct ql3xxx_port_registers __iomem *port_regs =
  987. qdev->mem_map_registers;
  988. u32 value;
  989. if (enable)
  990. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  991. else
  992. value = (MAC_CONFIG_REG_FD << 16);
  993. if (qdev->mac_index)
  994. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  995. else
  996. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  997. }
  998. /*
  999. * Caller holds hw_lock.
  1000. */
  1001. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1002. {
  1003. struct ql3xxx_port_registers __iomem *port_regs =
  1004. qdev->mem_map_registers;
  1005. u32 value;
  1006. if (enable)
  1007. value =
  1008. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1009. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1010. else
  1011. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1012. if (qdev->mac_index)
  1013. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1014. else
  1015. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1016. }
  1017. /*
  1018. * Caller holds hw_lock.
  1019. */
  1020. static int ql_is_fiber(struct ql3_adapter *qdev)
  1021. {
  1022. struct ql3xxx_port_registers __iomem *port_regs =
  1023. qdev->mem_map_registers;
  1024. u32 bitToCheck = 0;
  1025. u32 temp;
  1026. switch (qdev->mac_index) {
  1027. case 0:
  1028. bitToCheck = PORT_STATUS_SM0;
  1029. break;
  1030. case 1:
  1031. bitToCheck = PORT_STATUS_SM1;
  1032. break;
  1033. }
  1034. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1035. return (temp & bitToCheck) != 0;
  1036. }
  1037. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1038. {
  1039. u16 reg;
  1040. ql_mii_read_reg(qdev, 0x00, &reg);
  1041. return (reg & 0x1000) != 0;
  1042. }
  1043. /*
  1044. * Caller holds hw_lock.
  1045. */
  1046. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1047. {
  1048. struct ql3xxx_port_registers __iomem *port_regs =
  1049. qdev->mem_map_registers;
  1050. u32 bitToCheck = 0;
  1051. u32 temp;
  1052. switch (qdev->mac_index) {
  1053. case 0:
  1054. bitToCheck = PORT_STATUS_AC0;
  1055. break;
  1056. case 1:
  1057. bitToCheck = PORT_STATUS_AC1;
  1058. break;
  1059. }
  1060. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1061. if (temp & bitToCheck) {
  1062. if (netif_msg_link(qdev))
  1063. printk(KERN_INFO PFX
  1064. "%s: Auto-Negotiate complete.\n",
  1065. qdev->ndev->name);
  1066. return 1;
  1067. } else {
  1068. if (netif_msg_link(qdev))
  1069. printk(KERN_WARNING PFX
  1070. "%s: Auto-Negotiate incomplete.\n",
  1071. qdev->ndev->name);
  1072. return 0;
  1073. }
  1074. }
  1075. /*
  1076. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1077. */
  1078. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1079. {
  1080. if (ql_is_fiber(qdev))
  1081. return ql_is_petbi_neg_pause(qdev);
  1082. else
  1083. return ql_is_phy_neg_pause(qdev);
  1084. }
  1085. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1086. {
  1087. struct ql3xxx_port_registers __iomem *port_regs =
  1088. qdev->mem_map_registers;
  1089. u32 bitToCheck = 0;
  1090. u32 temp;
  1091. switch (qdev->mac_index) {
  1092. case 0:
  1093. bitToCheck = PORT_STATUS_AE0;
  1094. break;
  1095. case 1:
  1096. bitToCheck = PORT_STATUS_AE1;
  1097. break;
  1098. }
  1099. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1100. return (temp & bitToCheck) != 0;
  1101. }
  1102. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1103. {
  1104. if (ql_is_fiber(qdev))
  1105. return SPEED_1000;
  1106. else
  1107. return ql_phy_get_speed(qdev);
  1108. }
  1109. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1110. {
  1111. if (ql_is_fiber(qdev))
  1112. return 1;
  1113. else
  1114. return ql_is_full_dup(qdev);
  1115. }
  1116. /*
  1117. * Caller holds hw_lock.
  1118. */
  1119. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1120. {
  1121. struct ql3xxx_port_registers __iomem *port_regs =
  1122. qdev->mem_map_registers;
  1123. u32 bitToCheck = 0;
  1124. u32 temp;
  1125. switch (qdev->mac_index) {
  1126. case 0:
  1127. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1128. break;
  1129. case 1:
  1130. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1131. break;
  1132. }
  1133. temp =
  1134. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1135. return (temp & bitToCheck) != 0;
  1136. }
  1137. /*
  1138. * Caller holds hw_lock.
  1139. */
  1140. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1141. {
  1142. struct ql3xxx_port_registers __iomem *port_regs =
  1143. qdev->mem_map_registers;
  1144. switch (qdev->mac_index) {
  1145. case 0:
  1146. ql_write_common_reg(qdev,
  1147. &port_regs->CommonRegs.ispControlStatus,
  1148. (ISP_CONTROL_LINK_DN_0) |
  1149. (ISP_CONTROL_LINK_DN_0 << 16));
  1150. break;
  1151. case 1:
  1152. ql_write_common_reg(qdev,
  1153. &port_regs->CommonRegs.ispControlStatus,
  1154. (ISP_CONTROL_LINK_DN_1) |
  1155. (ISP_CONTROL_LINK_DN_1 << 16));
  1156. break;
  1157. default:
  1158. return 1;
  1159. }
  1160. return 0;
  1161. }
  1162. /*
  1163. * Caller holds hw_lock.
  1164. */
  1165. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1166. {
  1167. struct ql3xxx_port_registers __iomem *port_regs =
  1168. qdev->mem_map_registers;
  1169. u32 bitToCheck = 0;
  1170. u32 temp;
  1171. switch (qdev->mac_index) {
  1172. case 0:
  1173. bitToCheck = PORT_STATUS_F1_ENABLED;
  1174. break;
  1175. case 1:
  1176. bitToCheck = PORT_STATUS_F3_ENABLED;
  1177. break;
  1178. default:
  1179. break;
  1180. }
  1181. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1182. if (temp & bitToCheck) {
  1183. if (netif_msg_link(qdev))
  1184. printk(KERN_DEBUG PFX
  1185. "%s: is not link master.\n", qdev->ndev->name);
  1186. return 0;
  1187. } else {
  1188. if (netif_msg_link(qdev))
  1189. printk(KERN_DEBUG PFX
  1190. "%s: is link master.\n", qdev->ndev->name);
  1191. return 1;
  1192. }
  1193. }
  1194. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1195. {
  1196. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1197. PHYAddr[qdev->mac_index]);
  1198. }
  1199. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1200. {
  1201. u16 reg;
  1202. u16 portConfiguration;
  1203. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1204. /* turn off external loopback */
  1205. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1206. }
  1207. if(qdev->mac_index == 0)
  1208. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1209. else
  1210. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1211. /* Some HBA's in the field are set to 0 and they need to
  1212. be reinterpreted with a default value */
  1213. if(portConfiguration == 0)
  1214. portConfiguration = PORT_CONFIG_DEFAULT;
  1215. /* Set the 1000 advertisements */
  1216. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1217. PHYAddr[qdev->mac_index]);
  1218. reg &= ~PHY_GIG_ALL_PARAMS;
  1219. if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1220. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1221. reg |= PHY_GIG_ADV_1000F;
  1222. else
  1223. reg |= PHY_GIG_ADV_1000H;
  1224. }
  1225. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1226. PHYAddr[qdev->mac_index]);
  1227. /* Set the 10/100 & pause negotiation advertisements */
  1228. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1229. PHYAddr[qdev->mac_index]);
  1230. reg &= ~PHY_NEG_ALL_PARAMS;
  1231. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1232. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1233. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1234. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1235. reg |= PHY_NEG_ADV_100F;
  1236. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1237. reg |= PHY_NEG_ADV_10F;
  1238. }
  1239. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1240. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1241. reg |= PHY_NEG_ADV_100H;
  1242. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1243. reg |= PHY_NEG_ADV_10H;
  1244. }
  1245. if(portConfiguration &
  1246. PORT_CONFIG_1000MB_SPEED) {
  1247. reg |= 1;
  1248. }
  1249. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1250. PHYAddr[qdev->mac_index]);
  1251. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1252. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1253. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1254. PHYAddr[qdev->mac_index]);
  1255. }
  1256. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1257. {
  1258. ql_phy_reset_ex(qdev);
  1259. PHY_Setup(qdev);
  1260. ql_phy_start_neg_ex(qdev);
  1261. }
  1262. /*
  1263. * Caller holds hw_lock.
  1264. */
  1265. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1266. {
  1267. struct ql3xxx_port_registers __iomem *port_regs =
  1268. qdev->mem_map_registers;
  1269. u32 bitToCheck = 0;
  1270. u32 temp, linkState;
  1271. switch (qdev->mac_index) {
  1272. case 0:
  1273. bitToCheck = PORT_STATUS_UP0;
  1274. break;
  1275. case 1:
  1276. bitToCheck = PORT_STATUS_UP1;
  1277. break;
  1278. }
  1279. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1280. if (temp & bitToCheck) {
  1281. linkState = LS_UP;
  1282. } else {
  1283. linkState = LS_DOWN;
  1284. }
  1285. return linkState;
  1286. }
  1287. static int ql_port_start(struct ql3_adapter *qdev)
  1288. {
  1289. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1290. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1291. 2) << 7)) {
  1292. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1293. qdev->ndev->name);
  1294. return -1;
  1295. }
  1296. if (ql_is_fiber(qdev)) {
  1297. ql_petbi_init(qdev);
  1298. } else {
  1299. /* Copper port */
  1300. ql_phy_init_ex(qdev);
  1301. }
  1302. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1303. return 0;
  1304. }
  1305. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1306. {
  1307. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1308. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1309. 2) << 7))
  1310. return -1;
  1311. if (!ql_auto_neg_error(qdev)) {
  1312. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1313. /* configure the MAC */
  1314. if (netif_msg_link(qdev))
  1315. printk(KERN_DEBUG PFX
  1316. "%s: Configuring link.\n",
  1317. qdev->ndev->
  1318. name);
  1319. ql_mac_cfg_soft_reset(qdev, 1);
  1320. ql_mac_cfg_gig(qdev,
  1321. (ql_get_link_speed
  1322. (qdev) ==
  1323. SPEED_1000));
  1324. ql_mac_cfg_full_dup(qdev,
  1325. ql_is_link_full_dup
  1326. (qdev));
  1327. ql_mac_cfg_pause(qdev,
  1328. ql_is_neg_pause
  1329. (qdev));
  1330. ql_mac_cfg_soft_reset(qdev, 0);
  1331. /* enable the MAC */
  1332. if (netif_msg_link(qdev))
  1333. printk(KERN_DEBUG PFX
  1334. "%s: Enabling mac.\n",
  1335. qdev->ndev->
  1336. name);
  1337. ql_mac_enable(qdev, 1);
  1338. }
  1339. qdev->port_link_state = LS_UP;
  1340. netif_start_queue(qdev->ndev);
  1341. netif_carrier_on(qdev->ndev);
  1342. if (netif_msg_link(qdev))
  1343. printk(KERN_INFO PFX
  1344. "%s: Link is up at %d Mbps, %s duplex.\n",
  1345. qdev->ndev->name,
  1346. ql_get_link_speed(qdev),
  1347. ql_is_link_full_dup(qdev)
  1348. ? "full" : "half");
  1349. } else { /* Remote error detected */
  1350. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1351. if (netif_msg_link(qdev))
  1352. printk(KERN_DEBUG PFX
  1353. "%s: Remote error detected. "
  1354. "Calling ql_port_start().\n",
  1355. qdev->ndev->
  1356. name);
  1357. /*
  1358. * ql_port_start() is shared code and needs
  1359. * to lock the PHY on it's own.
  1360. */
  1361. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1362. if(ql_port_start(qdev)) {/* Restart port */
  1363. return -1;
  1364. } else
  1365. return 0;
  1366. }
  1367. }
  1368. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1369. return 0;
  1370. }
  1371. static void ql_link_state_machine_work(struct work_struct *work)
  1372. {
  1373. struct ql3_adapter *qdev =
  1374. container_of(work, struct ql3_adapter, link_state_work.work);
  1375. u32 curr_link_state;
  1376. unsigned long hw_flags;
  1377. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1378. curr_link_state = ql_get_link_state(qdev);
  1379. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1380. if (netif_msg_link(qdev))
  1381. printk(KERN_INFO PFX
  1382. "%s: Reset in progress, skip processing link "
  1383. "state.\n", qdev->ndev->name);
  1384. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1385. /* Restart timer on 2 second interval. */
  1386. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
  1387. return;
  1388. }
  1389. switch (qdev->port_link_state) {
  1390. default:
  1391. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1392. ql_port_start(qdev);
  1393. }
  1394. qdev->port_link_state = LS_DOWN;
  1395. /* Fall Through */
  1396. case LS_DOWN:
  1397. if (curr_link_state == LS_UP) {
  1398. if (netif_msg_link(qdev))
  1399. printk(KERN_INFO PFX "%s: Link is up.\n",
  1400. qdev->ndev->name);
  1401. if (ql_is_auto_neg_complete(qdev))
  1402. ql_finish_auto_neg(qdev);
  1403. if (qdev->port_link_state == LS_UP)
  1404. ql_link_down_detect_clear(qdev);
  1405. qdev->port_link_state = LS_UP;
  1406. }
  1407. break;
  1408. case LS_UP:
  1409. /*
  1410. * See if the link is currently down or went down and came
  1411. * back up
  1412. */
  1413. if (curr_link_state == LS_DOWN) {
  1414. if (netif_msg_link(qdev))
  1415. printk(KERN_INFO PFX "%s: Link is down.\n",
  1416. qdev->ndev->name);
  1417. qdev->port_link_state = LS_DOWN;
  1418. }
  1419. if (ql_link_down_detect(qdev))
  1420. qdev->port_link_state = LS_DOWN;
  1421. break;
  1422. }
  1423. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1424. /* Restart timer on 2 second interval. */
  1425. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1426. }
  1427. /*
  1428. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1429. */
  1430. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1431. {
  1432. if (ql_this_adapter_controls_port(qdev))
  1433. set_bit(QL_LINK_MASTER,&qdev->flags);
  1434. else
  1435. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1436. }
  1437. /*
  1438. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1439. */
  1440. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1441. {
  1442. ql_mii_enable_scan_mode(qdev);
  1443. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1444. if (ql_this_adapter_controls_port(qdev))
  1445. ql_petbi_init_ex(qdev);
  1446. } else {
  1447. if (ql_this_adapter_controls_port(qdev))
  1448. ql_phy_init_ex(qdev);
  1449. }
  1450. }
  1451. /*
  1452. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1453. * management interface clock speed can be set properly. It would be better if
  1454. * we had a way to disable MDC until after the PHY is out of reset, but we
  1455. * don't have that capability.
  1456. */
  1457. static int ql_mii_setup(struct ql3_adapter *qdev)
  1458. {
  1459. u32 reg;
  1460. struct ql3xxx_port_registers __iomem *port_regs =
  1461. qdev->mem_map_registers;
  1462. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1463. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1464. 2) << 7))
  1465. return -1;
  1466. if (qdev->device_id == QL3032_DEVICE_ID)
  1467. ql_write_page0_reg(qdev,
  1468. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1469. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1470. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1471. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1472. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1473. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1474. return 0;
  1475. }
  1476. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1477. {
  1478. u32 supported;
  1479. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1480. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1481. | SUPPORTED_Autoneg;
  1482. } else {
  1483. supported = SUPPORTED_10baseT_Half
  1484. | SUPPORTED_10baseT_Full
  1485. | SUPPORTED_100baseT_Half
  1486. | SUPPORTED_100baseT_Full
  1487. | SUPPORTED_1000baseT_Half
  1488. | SUPPORTED_1000baseT_Full
  1489. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1490. }
  1491. return supported;
  1492. }
  1493. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1494. {
  1495. int status;
  1496. unsigned long hw_flags;
  1497. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1498. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1499. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1500. 2) << 7)) {
  1501. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1502. return 0;
  1503. }
  1504. status = ql_is_auto_cfg(qdev);
  1505. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1506. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1507. return status;
  1508. }
  1509. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1510. {
  1511. u32 status;
  1512. unsigned long hw_flags;
  1513. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1514. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1515. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1516. 2) << 7)) {
  1517. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1518. return 0;
  1519. }
  1520. status = ql_get_link_speed(qdev);
  1521. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1522. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1523. return status;
  1524. }
  1525. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1526. {
  1527. int status;
  1528. unsigned long hw_flags;
  1529. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1530. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1531. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1532. 2) << 7)) {
  1533. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1534. return 0;
  1535. }
  1536. status = ql_is_link_full_dup(qdev);
  1537. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1539. return status;
  1540. }
  1541. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1542. {
  1543. struct ql3_adapter *qdev = netdev_priv(ndev);
  1544. ecmd->transceiver = XCVR_INTERNAL;
  1545. ecmd->supported = ql_supported_modes(qdev);
  1546. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1547. ecmd->port = PORT_FIBRE;
  1548. } else {
  1549. ecmd->port = PORT_TP;
  1550. ecmd->phy_address = qdev->PHYAddr;
  1551. }
  1552. ecmd->advertising = ql_supported_modes(qdev);
  1553. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1554. ecmd->speed = ql_get_speed(qdev);
  1555. ecmd->duplex = ql_get_full_dup(qdev);
  1556. return 0;
  1557. }
  1558. static void ql_get_drvinfo(struct net_device *ndev,
  1559. struct ethtool_drvinfo *drvinfo)
  1560. {
  1561. struct ql3_adapter *qdev = netdev_priv(ndev);
  1562. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1563. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1564. strncpy(drvinfo->fw_version, "N/A", 32);
  1565. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1566. drvinfo->regdump_len = 0;
  1567. drvinfo->eedump_len = 0;
  1568. }
  1569. static u32 ql_get_msglevel(struct net_device *ndev)
  1570. {
  1571. struct ql3_adapter *qdev = netdev_priv(ndev);
  1572. return qdev->msg_enable;
  1573. }
  1574. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1575. {
  1576. struct ql3_adapter *qdev = netdev_priv(ndev);
  1577. qdev->msg_enable = value;
  1578. }
  1579. static void ql_get_pauseparam(struct net_device *ndev,
  1580. struct ethtool_pauseparam *pause)
  1581. {
  1582. struct ql3_adapter *qdev = netdev_priv(ndev);
  1583. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1584. u32 reg;
  1585. if(qdev->mac_index == 0)
  1586. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1587. else
  1588. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1589. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1590. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1591. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1592. }
  1593. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1594. .get_settings = ql_get_settings,
  1595. .get_drvinfo = ql_get_drvinfo,
  1596. .get_link = ethtool_op_get_link,
  1597. .get_msglevel = ql_get_msglevel,
  1598. .set_msglevel = ql_set_msglevel,
  1599. .get_pauseparam = ql_get_pauseparam,
  1600. };
  1601. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1602. {
  1603. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1604. dma_addr_t map;
  1605. int err;
  1606. while (lrg_buf_cb) {
  1607. if (!lrg_buf_cb->skb) {
  1608. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1609. qdev->lrg_buffer_len);
  1610. if (unlikely(!lrg_buf_cb->skb)) {
  1611. printk(KERN_DEBUG PFX
  1612. "%s: Failed netdev_alloc_skb().\n",
  1613. qdev->ndev->name);
  1614. break;
  1615. } else {
  1616. /*
  1617. * We save some space to copy the ethhdr from
  1618. * first buffer
  1619. */
  1620. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1621. map = pci_map_single(qdev->pdev,
  1622. lrg_buf_cb->skb->data,
  1623. qdev->lrg_buffer_len -
  1624. QL_HEADER_SPACE,
  1625. PCI_DMA_FROMDEVICE);
  1626. err = pci_dma_mapping_error(qdev->pdev, map);
  1627. if(err) {
  1628. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1629. qdev->ndev->name, err);
  1630. dev_kfree_skb(lrg_buf_cb->skb);
  1631. lrg_buf_cb->skb = NULL;
  1632. break;
  1633. }
  1634. lrg_buf_cb->buf_phy_addr_low =
  1635. cpu_to_le32(LS_64BITS(map));
  1636. lrg_buf_cb->buf_phy_addr_high =
  1637. cpu_to_le32(MS_64BITS(map));
  1638. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1639. dma_unmap_len_set(lrg_buf_cb, maplen,
  1640. qdev->lrg_buffer_len -
  1641. QL_HEADER_SPACE);
  1642. --qdev->lrg_buf_skb_check;
  1643. if (!qdev->lrg_buf_skb_check)
  1644. return 1;
  1645. }
  1646. }
  1647. lrg_buf_cb = lrg_buf_cb->next;
  1648. }
  1649. return 0;
  1650. }
  1651. /*
  1652. * Caller holds hw_lock.
  1653. */
  1654. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1655. {
  1656. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1657. if (qdev->small_buf_release_cnt >= 16) {
  1658. while (qdev->small_buf_release_cnt >= 16) {
  1659. qdev->small_buf_q_producer_index++;
  1660. if (qdev->small_buf_q_producer_index ==
  1661. NUM_SBUFQ_ENTRIES)
  1662. qdev->small_buf_q_producer_index = 0;
  1663. qdev->small_buf_release_cnt -= 8;
  1664. }
  1665. wmb();
  1666. writel(qdev->small_buf_q_producer_index,
  1667. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1668. }
  1669. }
  1670. /*
  1671. * Caller holds hw_lock.
  1672. */
  1673. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1674. {
  1675. struct bufq_addr_element *lrg_buf_q_ele;
  1676. int i;
  1677. struct ql_rcv_buf_cb *lrg_buf_cb;
  1678. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1679. if ((qdev->lrg_buf_free_count >= 8) &&
  1680. (qdev->lrg_buf_release_cnt >= 16)) {
  1681. if (qdev->lrg_buf_skb_check)
  1682. if (!ql_populate_free_queue(qdev))
  1683. return;
  1684. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1685. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1686. (qdev->lrg_buf_free_count >= 8)) {
  1687. for (i = 0; i < 8; i++) {
  1688. lrg_buf_cb =
  1689. ql_get_from_lrg_buf_free_list(qdev);
  1690. lrg_buf_q_ele->addr_high =
  1691. lrg_buf_cb->buf_phy_addr_high;
  1692. lrg_buf_q_ele->addr_low =
  1693. lrg_buf_cb->buf_phy_addr_low;
  1694. lrg_buf_q_ele++;
  1695. qdev->lrg_buf_release_cnt--;
  1696. }
  1697. qdev->lrg_buf_q_producer_index++;
  1698. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1699. qdev->lrg_buf_q_producer_index = 0;
  1700. if (qdev->lrg_buf_q_producer_index ==
  1701. (qdev->num_lbufq_entries - 1)) {
  1702. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1703. }
  1704. }
  1705. wmb();
  1706. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1707. writel(qdev->lrg_buf_q_producer_index,
  1708. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1709. }
  1710. }
  1711. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1712. struct ob_mac_iocb_rsp *mac_rsp)
  1713. {
  1714. struct ql_tx_buf_cb *tx_cb;
  1715. int i;
  1716. int retval = 0;
  1717. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1718. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1719. }
  1720. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1721. /* Check the transmit response flags for any errors */
  1722. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1723. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1724. qdev->ndev->stats.tx_errors++;
  1725. retval = -EIO;
  1726. goto frame_not_sent;
  1727. }
  1728. if(tx_cb->seg_count == 0) {
  1729. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1730. qdev->ndev->stats.tx_errors++;
  1731. retval = -EIO;
  1732. goto invalid_seg_count;
  1733. }
  1734. pci_unmap_single(qdev->pdev,
  1735. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1736. dma_unmap_len(&tx_cb->map[0], maplen),
  1737. PCI_DMA_TODEVICE);
  1738. tx_cb->seg_count--;
  1739. if (tx_cb->seg_count) {
  1740. for (i = 1; i < tx_cb->seg_count; i++) {
  1741. pci_unmap_page(qdev->pdev,
  1742. dma_unmap_addr(&tx_cb->map[i],
  1743. mapaddr),
  1744. dma_unmap_len(&tx_cb->map[i], maplen),
  1745. PCI_DMA_TODEVICE);
  1746. }
  1747. }
  1748. qdev->ndev->stats.tx_packets++;
  1749. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1750. frame_not_sent:
  1751. dev_kfree_skb_irq(tx_cb->skb);
  1752. tx_cb->skb = NULL;
  1753. invalid_seg_count:
  1754. atomic_inc(&qdev->tx_count);
  1755. }
  1756. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1757. {
  1758. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1759. qdev->small_buf_index = 0;
  1760. qdev->small_buf_release_cnt++;
  1761. }
  1762. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1763. {
  1764. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1765. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1766. qdev->lrg_buf_release_cnt++;
  1767. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1768. qdev->lrg_buf_index = 0;
  1769. return(lrg_buf_cb);
  1770. }
  1771. /*
  1772. * The difference between 3022 and 3032 for inbound completions:
  1773. * 3022 uses two buffers per completion. The first buffer contains
  1774. * (some) header info, the second the remainder of the headers plus
  1775. * the data. For this chip we reserve some space at the top of the
  1776. * receive buffer so that the header info in buffer one can be
  1777. * prepended to the buffer two. Buffer two is the sent up while
  1778. * buffer one is returned to the hardware to be reused.
  1779. * 3032 receives all of it's data and headers in one buffer for a
  1780. * simpler process. 3032 also supports checksum verification as
  1781. * can be seen in ql_process_macip_rx_intr().
  1782. */
  1783. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1784. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1785. {
  1786. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1787. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1788. struct sk_buff *skb;
  1789. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1790. /*
  1791. * Get the inbound address list (small buffer).
  1792. */
  1793. ql_get_sbuf(qdev);
  1794. if (qdev->device_id == QL3022_DEVICE_ID)
  1795. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1796. /* start of second buffer */
  1797. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1798. skb = lrg_buf_cb2->skb;
  1799. qdev->ndev->stats.rx_packets++;
  1800. qdev->ndev->stats.rx_bytes += length;
  1801. skb_put(skb, length);
  1802. pci_unmap_single(qdev->pdev,
  1803. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1804. dma_unmap_len(lrg_buf_cb2, maplen),
  1805. PCI_DMA_FROMDEVICE);
  1806. prefetch(skb->data);
  1807. skb->ip_summed = CHECKSUM_NONE;
  1808. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1809. netif_receive_skb(skb);
  1810. lrg_buf_cb2->skb = NULL;
  1811. if (qdev->device_id == QL3022_DEVICE_ID)
  1812. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1813. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1814. }
  1815. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1816. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1817. {
  1818. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1819. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1820. struct sk_buff *skb1 = NULL, *skb2;
  1821. struct net_device *ndev = qdev->ndev;
  1822. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1823. u16 size = 0;
  1824. /*
  1825. * Get the inbound address list (small buffer).
  1826. */
  1827. ql_get_sbuf(qdev);
  1828. if (qdev->device_id == QL3022_DEVICE_ID) {
  1829. /* start of first buffer on 3022 */
  1830. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1831. skb1 = lrg_buf_cb1->skb;
  1832. size = ETH_HLEN;
  1833. if (*((u16 *) skb1->data) != 0xFFFF)
  1834. size += VLAN_ETH_HLEN - ETH_HLEN;
  1835. }
  1836. /* start of second buffer */
  1837. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1838. skb2 = lrg_buf_cb2->skb;
  1839. skb_put(skb2, length); /* Just the second buffer length here. */
  1840. pci_unmap_single(qdev->pdev,
  1841. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1842. dma_unmap_len(lrg_buf_cb2, maplen),
  1843. PCI_DMA_FROMDEVICE);
  1844. prefetch(skb2->data);
  1845. skb2->ip_summed = CHECKSUM_NONE;
  1846. if (qdev->device_id == QL3022_DEVICE_ID) {
  1847. /*
  1848. * Copy the ethhdr from first buffer to second. This
  1849. * is necessary for 3022 IP completions.
  1850. */
  1851. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1852. skb_push(skb2, size), size);
  1853. } else {
  1854. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1855. if (checksum &
  1856. (IB_IP_IOCB_RSP_3032_ICE |
  1857. IB_IP_IOCB_RSP_3032_CE)) {
  1858. printk(KERN_ERR
  1859. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1860. __func__,
  1861. ((checksum &
  1862. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1863. "UDP"),checksum);
  1864. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1865. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1866. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1867. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1868. }
  1869. }
  1870. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1871. netif_receive_skb(skb2);
  1872. ndev->stats.rx_packets++;
  1873. ndev->stats.rx_bytes += length;
  1874. lrg_buf_cb2->skb = NULL;
  1875. if (qdev->device_id == QL3022_DEVICE_ID)
  1876. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1877. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1878. }
  1879. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1880. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1881. {
  1882. struct net_rsp_iocb *net_rsp;
  1883. struct net_device *ndev = qdev->ndev;
  1884. int work_done = 0;
  1885. /* While there are entries in the completion queue. */
  1886. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1887. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1888. net_rsp = qdev->rsp_current;
  1889. rmb();
  1890. /*
  1891. * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
  1892. * inbound completion is for a VLAN.
  1893. */
  1894. if (qdev->device_id == QL3032_DEVICE_ID)
  1895. net_rsp->opcode &= 0x7f;
  1896. switch (net_rsp->opcode) {
  1897. case OPCODE_OB_MAC_IOCB_FN0:
  1898. case OPCODE_OB_MAC_IOCB_FN2:
  1899. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1900. net_rsp);
  1901. (*tx_cleaned)++;
  1902. break;
  1903. case OPCODE_IB_MAC_IOCB:
  1904. case OPCODE_IB_3032_MAC_IOCB:
  1905. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1906. net_rsp);
  1907. (*rx_cleaned)++;
  1908. break;
  1909. case OPCODE_IB_IP_IOCB:
  1910. case OPCODE_IB_3032_IP_IOCB:
  1911. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1912. net_rsp);
  1913. (*rx_cleaned)++;
  1914. break;
  1915. default:
  1916. {
  1917. u32 *tmp = (u32 *) net_rsp;
  1918. printk(KERN_ERR PFX
  1919. "%s: Hit default case, not "
  1920. "handled!\n"
  1921. " dropping the packet, opcode = "
  1922. "%x.\n",
  1923. ndev->name, net_rsp->opcode);
  1924. printk(KERN_ERR PFX
  1925. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1926. (unsigned long int)tmp[0],
  1927. (unsigned long int)tmp[1],
  1928. (unsigned long int)tmp[2],
  1929. (unsigned long int)tmp[3]);
  1930. }
  1931. }
  1932. qdev->rsp_consumer_index++;
  1933. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1934. qdev->rsp_consumer_index = 0;
  1935. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1936. } else {
  1937. qdev->rsp_current++;
  1938. }
  1939. work_done = *tx_cleaned + *rx_cleaned;
  1940. }
  1941. return work_done;
  1942. }
  1943. static int ql_poll(struct napi_struct *napi, int budget)
  1944. {
  1945. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1946. int rx_cleaned = 0, tx_cleaned = 0;
  1947. unsigned long hw_flags;
  1948. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1949. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1950. if (tx_cleaned + rx_cleaned != budget) {
  1951. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1952. __napi_complete(napi);
  1953. ql_update_small_bufq_prod_index(qdev);
  1954. ql_update_lrg_bufq_prod_index(qdev);
  1955. writel(qdev->rsp_consumer_index,
  1956. &port_regs->CommonRegs.rspQConsumerIndex);
  1957. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1958. ql_enable_interrupts(qdev);
  1959. }
  1960. return tx_cleaned + rx_cleaned;
  1961. }
  1962. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1963. {
  1964. struct net_device *ndev = dev_id;
  1965. struct ql3_adapter *qdev = netdev_priv(ndev);
  1966. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1967. u32 value;
  1968. int handled = 1;
  1969. u32 var;
  1970. port_regs = qdev->mem_map_registers;
  1971. value =
  1972. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1973. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1974. spin_lock(&qdev->adapter_lock);
  1975. netif_stop_queue(qdev->ndev);
  1976. netif_carrier_off(qdev->ndev);
  1977. ql_disable_interrupts(qdev);
  1978. qdev->port_link_state = LS_DOWN;
  1979. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1980. if (value & ISP_CONTROL_FE) {
  1981. /*
  1982. * Chip Fatal Error.
  1983. */
  1984. var =
  1985. ql_read_page0_reg_l(qdev,
  1986. &port_regs->PortFatalErrStatus);
  1987. printk(KERN_WARNING PFX
  1988. "%s: Resetting chip. PortFatalErrStatus "
  1989. "register = 0x%x\n", ndev->name, var);
  1990. set_bit(QL_RESET_START,&qdev->flags) ;
  1991. } else {
  1992. /*
  1993. * Soft Reset Requested.
  1994. */
  1995. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1996. printk(KERN_ERR PFX
  1997. "%s: Another function issued a reset to the "
  1998. "chip. ISR value = %x.\n", ndev->name, value);
  1999. }
  2000. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2001. spin_unlock(&qdev->adapter_lock);
  2002. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2003. ql_disable_interrupts(qdev);
  2004. if (likely(napi_schedule_prep(&qdev->napi))) {
  2005. __napi_schedule(&qdev->napi);
  2006. }
  2007. } else {
  2008. return IRQ_NONE;
  2009. }
  2010. return IRQ_RETVAL(handled);
  2011. }
  2012. /*
  2013. * Get the total number of segments needed for the
  2014. * given number of fragments. This is necessary because
  2015. * outbound address lists (OAL) will be used when more than
  2016. * two frags are given. Each address list has 5 addr/len
  2017. * pairs. The 5th pair in each AOL is used to point to
  2018. * the next AOL if more frags are coming.
  2019. * That is why the frags:segment count ratio is not linear.
  2020. */
  2021. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2022. unsigned short frags)
  2023. {
  2024. if (qdev->device_id == QL3022_DEVICE_ID)
  2025. return 1;
  2026. switch(frags) {
  2027. case 0: return 1; /* just the skb->data seg */
  2028. case 1: return 2; /* skb->data + 1 frag */
  2029. case 2: return 3; /* skb->data + 2 frags */
  2030. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2031. case 4: return 6;
  2032. case 5: return 7;
  2033. case 6: return 8;
  2034. case 7: return 10;
  2035. case 8: return 11;
  2036. case 9: return 12;
  2037. case 10: return 13;
  2038. case 11: return 15;
  2039. case 12: return 16;
  2040. case 13: return 17;
  2041. case 14: return 18;
  2042. case 15: return 20;
  2043. case 16: return 21;
  2044. case 17: return 22;
  2045. case 18: return 23;
  2046. }
  2047. return -1;
  2048. }
  2049. static void ql_hw_csum_setup(const struct sk_buff *skb,
  2050. struct ob_mac_iocb_req *mac_iocb_ptr)
  2051. {
  2052. const struct iphdr *ip = ip_hdr(skb);
  2053. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  2054. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2055. if (ip->protocol == IPPROTO_TCP) {
  2056. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2057. OB_3032MAC_IOCB_REQ_IC;
  2058. } else {
  2059. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2060. OB_3032MAC_IOCB_REQ_IC;
  2061. }
  2062. }
  2063. /*
  2064. * Map the buffers for this transmit. This will return
  2065. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2066. */
  2067. static int ql_send_map(struct ql3_adapter *qdev,
  2068. struct ob_mac_iocb_req *mac_iocb_ptr,
  2069. struct ql_tx_buf_cb *tx_cb,
  2070. struct sk_buff *skb)
  2071. {
  2072. struct oal *oal;
  2073. struct oal_entry *oal_entry;
  2074. int len = skb_headlen(skb);
  2075. dma_addr_t map;
  2076. int err;
  2077. int completed_segs, i;
  2078. int seg_cnt, seg = 0;
  2079. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2080. seg_cnt = tx_cb->seg_count;
  2081. /*
  2082. * Map the skb buffer first.
  2083. */
  2084. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2085. err = pci_dma_mapping_error(qdev->pdev, map);
  2086. if(err) {
  2087. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2088. qdev->ndev->name, err);
  2089. return NETDEV_TX_BUSY;
  2090. }
  2091. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2092. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2093. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2094. oal_entry->len = cpu_to_le32(len);
  2095. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2096. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2097. seg++;
  2098. if (seg_cnt == 1) {
  2099. /* Terminate the last segment. */
  2100. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2101. } else {
  2102. oal = tx_cb->oal;
  2103. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2104. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2105. oal_entry++;
  2106. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2107. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2108. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2109. (seg == 17 && seg_cnt > 18)) {
  2110. /* Continuation entry points to outbound address list. */
  2111. map = pci_map_single(qdev->pdev, oal,
  2112. sizeof(struct oal),
  2113. PCI_DMA_TODEVICE);
  2114. err = pci_dma_mapping_error(qdev->pdev, map);
  2115. if(err) {
  2116. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2117. qdev->ndev->name, err);
  2118. goto map_error;
  2119. }
  2120. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2121. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2122. oal_entry->len =
  2123. cpu_to_le32(sizeof(struct oal) |
  2124. OAL_CONT_ENTRY);
  2125. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2126. map);
  2127. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2128. sizeof(struct oal));
  2129. oal_entry = (struct oal_entry *)oal;
  2130. oal++;
  2131. seg++;
  2132. }
  2133. map =
  2134. pci_map_page(qdev->pdev, frag->page,
  2135. frag->page_offset, frag->size,
  2136. PCI_DMA_TODEVICE);
  2137. err = pci_dma_mapping_error(qdev->pdev, map);
  2138. if(err) {
  2139. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2140. qdev->ndev->name, err);
  2141. goto map_error;
  2142. }
  2143. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2144. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2145. oal_entry->len = cpu_to_le32(frag->size);
  2146. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2147. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2148. frag->size);
  2149. }
  2150. /* Terminate the last segment. */
  2151. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2152. }
  2153. return NETDEV_TX_OK;
  2154. map_error:
  2155. /* A PCI mapping failed and now we will need to back out
  2156. * We need to traverse through the oal's and associated pages which
  2157. * have been mapped and now we must unmap them to clean up properly
  2158. */
  2159. seg = 1;
  2160. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2161. oal = tx_cb->oal;
  2162. for (i=0; i<completed_segs; i++,seg++) {
  2163. oal_entry++;
  2164. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2165. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2166. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2167. (seg == 17 && seg_cnt > 18)) {
  2168. pci_unmap_single(qdev->pdev,
  2169. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2170. dma_unmap_len(&tx_cb->map[seg], maplen),
  2171. PCI_DMA_TODEVICE);
  2172. oal++;
  2173. seg++;
  2174. }
  2175. pci_unmap_page(qdev->pdev,
  2176. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2177. dma_unmap_len(&tx_cb->map[seg], maplen),
  2178. PCI_DMA_TODEVICE);
  2179. }
  2180. pci_unmap_single(qdev->pdev,
  2181. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2182. dma_unmap_addr(&tx_cb->map[0], maplen),
  2183. PCI_DMA_TODEVICE);
  2184. return NETDEV_TX_BUSY;
  2185. }
  2186. /*
  2187. * The difference between 3022 and 3032 sends:
  2188. * 3022 only supports a simple single segment transmission.
  2189. * 3032 supports checksumming and scatter/gather lists (fragments).
  2190. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2191. * in the IOCB plus a chain of outbound address lists (OAL) that
  2192. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2193. * will used to point to an OAL when more ALP entries are required.
  2194. * The IOCB is always the top of the chain followed by one or more
  2195. * OALs (when necessary).
  2196. */
  2197. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2198. struct net_device *ndev)
  2199. {
  2200. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2201. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2202. struct ql_tx_buf_cb *tx_cb;
  2203. u32 tot_len = skb->len;
  2204. struct ob_mac_iocb_req *mac_iocb_ptr;
  2205. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2206. return NETDEV_TX_BUSY;
  2207. }
  2208. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2209. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2210. (skb_shinfo(skb)->nr_frags))) == -1) {
  2211. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2212. return NETDEV_TX_OK;
  2213. }
  2214. mac_iocb_ptr = tx_cb->queue_entry;
  2215. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2216. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2217. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2218. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2219. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2220. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2221. tx_cb->skb = skb;
  2222. if (qdev->device_id == QL3032_DEVICE_ID &&
  2223. skb->ip_summed == CHECKSUM_PARTIAL)
  2224. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2225. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2226. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2227. return NETDEV_TX_BUSY;
  2228. }
  2229. wmb();
  2230. qdev->req_producer_index++;
  2231. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2232. qdev->req_producer_index = 0;
  2233. wmb();
  2234. ql_write_common_reg_l(qdev,
  2235. &port_regs->CommonRegs.reqQProducerIndex,
  2236. qdev->req_producer_index);
  2237. if (netif_msg_tx_queued(qdev))
  2238. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2239. ndev->name, qdev->req_producer_index, skb->len);
  2240. atomic_dec(&qdev->tx_count);
  2241. return NETDEV_TX_OK;
  2242. }
  2243. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2244. {
  2245. qdev->req_q_size =
  2246. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2247. qdev->req_q_virt_addr =
  2248. pci_alloc_consistent(qdev->pdev,
  2249. (size_t) qdev->req_q_size,
  2250. &qdev->req_q_phy_addr);
  2251. if ((qdev->req_q_virt_addr == NULL) ||
  2252. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2253. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2254. qdev->ndev->name);
  2255. return -ENOMEM;
  2256. }
  2257. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2258. qdev->rsp_q_virt_addr =
  2259. pci_alloc_consistent(qdev->pdev,
  2260. (size_t) qdev->rsp_q_size,
  2261. &qdev->rsp_q_phy_addr);
  2262. if ((qdev->rsp_q_virt_addr == NULL) ||
  2263. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2264. printk(KERN_ERR PFX
  2265. "%s: rspQ allocation failed\n",
  2266. qdev->ndev->name);
  2267. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2268. qdev->req_q_virt_addr,
  2269. qdev->req_q_phy_addr);
  2270. return -ENOMEM;
  2271. }
  2272. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2273. return 0;
  2274. }
  2275. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2276. {
  2277. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2278. printk(KERN_INFO PFX
  2279. "%s: Already done.\n", qdev->ndev->name);
  2280. return;
  2281. }
  2282. pci_free_consistent(qdev->pdev,
  2283. qdev->req_q_size,
  2284. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2285. qdev->req_q_virt_addr = NULL;
  2286. pci_free_consistent(qdev->pdev,
  2287. qdev->rsp_q_size,
  2288. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2289. qdev->rsp_q_virt_addr = NULL;
  2290. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2291. }
  2292. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2293. {
  2294. /* Create Large Buffer Queue */
  2295. qdev->lrg_buf_q_size =
  2296. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2297. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2298. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2299. else
  2300. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2301. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2302. if (qdev->lrg_buf == NULL) {
  2303. printk(KERN_ERR PFX
  2304. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2305. return -ENOMEM;
  2306. }
  2307. qdev->lrg_buf_q_alloc_virt_addr =
  2308. pci_alloc_consistent(qdev->pdev,
  2309. qdev->lrg_buf_q_alloc_size,
  2310. &qdev->lrg_buf_q_alloc_phy_addr);
  2311. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2312. printk(KERN_ERR PFX
  2313. "%s: lBufQ failed\n", qdev->ndev->name);
  2314. return -ENOMEM;
  2315. }
  2316. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2317. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2318. /* Create Small Buffer Queue */
  2319. qdev->small_buf_q_size =
  2320. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2321. if (qdev->small_buf_q_size < PAGE_SIZE)
  2322. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2323. else
  2324. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2325. qdev->small_buf_q_alloc_virt_addr =
  2326. pci_alloc_consistent(qdev->pdev,
  2327. qdev->small_buf_q_alloc_size,
  2328. &qdev->small_buf_q_alloc_phy_addr);
  2329. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2330. printk(KERN_ERR PFX
  2331. "%s: Small Buffer Queue allocation failed.\n",
  2332. qdev->ndev->name);
  2333. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2334. qdev->lrg_buf_q_alloc_virt_addr,
  2335. qdev->lrg_buf_q_alloc_phy_addr);
  2336. return -ENOMEM;
  2337. }
  2338. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2339. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2340. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2341. return 0;
  2342. }
  2343. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2344. {
  2345. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2346. printk(KERN_INFO PFX
  2347. "%s: Already done.\n", qdev->ndev->name);
  2348. return;
  2349. }
  2350. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2351. pci_free_consistent(qdev->pdev,
  2352. qdev->lrg_buf_q_alloc_size,
  2353. qdev->lrg_buf_q_alloc_virt_addr,
  2354. qdev->lrg_buf_q_alloc_phy_addr);
  2355. qdev->lrg_buf_q_virt_addr = NULL;
  2356. pci_free_consistent(qdev->pdev,
  2357. qdev->small_buf_q_alloc_size,
  2358. qdev->small_buf_q_alloc_virt_addr,
  2359. qdev->small_buf_q_alloc_phy_addr);
  2360. qdev->small_buf_q_virt_addr = NULL;
  2361. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2362. }
  2363. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2364. {
  2365. int i;
  2366. struct bufq_addr_element *small_buf_q_entry;
  2367. /* Currently we allocate on one of memory and use it for smallbuffers */
  2368. qdev->small_buf_total_size =
  2369. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2370. QL_SMALL_BUFFER_SIZE);
  2371. qdev->small_buf_virt_addr =
  2372. pci_alloc_consistent(qdev->pdev,
  2373. qdev->small_buf_total_size,
  2374. &qdev->small_buf_phy_addr);
  2375. if (qdev->small_buf_virt_addr == NULL) {
  2376. printk(KERN_ERR PFX
  2377. "%s: Failed to get small buffer memory.\n",
  2378. qdev->ndev->name);
  2379. return -ENOMEM;
  2380. }
  2381. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2382. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2383. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2384. /* Initialize the small buffer queue. */
  2385. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2386. small_buf_q_entry->addr_high =
  2387. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2388. small_buf_q_entry->addr_low =
  2389. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2390. (i * QL_SMALL_BUFFER_SIZE));
  2391. small_buf_q_entry++;
  2392. }
  2393. qdev->small_buf_index = 0;
  2394. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2395. return 0;
  2396. }
  2397. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2398. {
  2399. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2400. printk(KERN_INFO PFX
  2401. "%s: Already done.\n", qdev->ndev->name);
  2402. return;
  2403. }
  2404. if (qdev->small_buf_virt_addr != NULL) {
  2405. pci_free_consistent(qdev->pdev,
  2406. qdev->small_buf_total_size,
  2407. qdev->small_buf_virt_addr,
  2408. qdev->small_buf_phy_addr);
  2409. qdev->small_buf_virt_addr = NULL;
  2410. }
  2411. }
  2412. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2413. {
  2414. int i = 0;
  2415. struct ql_rcv_buf_cb *lrg_buf_cb;
  2416. for (i = 0; i < qdev->num_large_buffers; i++) {
  2417. lrg_buf_cb = &qdev->lrg_buf[i];
  2418. if (lrg_buf_cb->skb) {
  2419. dev_kfree_skb(lrg_buf_cb->skb);
  2420. pci_unmap_single(qdev->pdev,
  2421. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2422. dma_unmap_len(lrg_buf_cb, maplen),
  2423. PCI_DMA_FROMDEVICE);
  2424. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2425. } else {
  2426. break;
  2427. }
  2428. }
  2429. }
  2430. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2431. {
  2432. int i;
  2433. struct ql_rcv_buf_cb *lrg_buf_cb;
  2434. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2435. for (i = 0; i < qdev->num_large_buffers; i++) {
  2436. lrg_buf_cb = &qdev->lrg_buf[i];
  2437. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2438. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2439. buf_addr_ele++;
  2440. }
  2441. qdev->lrg_buf_index = 0;
  2442. qdev->lrg_buf_skb_check = 0;
  2443. }
  2444. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2445. {
  2446. int i;
  2447. struct ql_rcv_buf_cb *lrg_buf_cb;
  2448. struct sk_buff *skb;
  2449. dma_addr_t map;
  2450. int err;
  2451. for (i = 0; i < qdev->num_large_buffers; i++) {
  2452. skb = netdev_alloc_skb(qdev->ndev,
  2453. qdev->lrg_buffer_len);
  2454. if (unlikely(!skb)) {
  2455. /* Better luck next round */
  2456. printk(KERN_ERR PFX
  2457. "%s: large buff alloc failed, "
  2458. "for %d bytes at index %d.\n",
  2459. qdev->ndev->name,
  2460. qdev->lrg_buffer_len * 2, i);
  2461. ql_free_large_buffers(qdev);
  2462. return -ENOMEM;
  2463. } else {
  2464. lrg_buf_cb = &qdev->lrg_buf[i];
  2465. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2466. lrg_buf_cb->index = i;
  2467. lrg_buf_cb->skb = skb;
  2468. /*
  2469. * We save some space to copy the ethhdr from first
  2470. * buffer
  2471. */
  2472. skb_reserve(skb, QL_HEADER_SPACE);
  2473. map = pci_map_single(qdev->pdev,
  2474. skb->data,
  2475. qdev->lrg_buffer_len -
  2476. QL_HEADER_SPACE,
  2477. PCI_DMA_FROMDEVICE);
  2478. err = pci_dma_mapping_error(qdev->pdev, map);
  2479. if(err) {
  2480. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2481. qdev->ndev->name, err);
  2482. ql_free_large_buffers(qdev);
  2483. return -ENOMEM;
  2484. }
  2485. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2486. dma_unmap_len_set(lrg_buf_cb, maplen,
  2487. qdev->lrg_buffer_len -
  2488. QL_HEADER_SPACE);
  2489. lrg_buf_cb->buf_phy_addr_low =
  2490. cpu_to_le32(LS_64BITS(map));
  2491. lrg_buf_cb->buf_phy_addr_high =
  2492. cpu_to_le32(MS_64BITS(map));
  2493. }
  2494. }
  2495. return 0;
  2496. }
  2497. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2498. {
  2499. struct ql_tx_buf_cb *tx_cb;
  2500. int i;
  2501. tx_cb = &qdev->tx_buf[0];
  2502. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2503. if (tx_cb->oal) {
  2504. kfree(tx_cb->oal);
  2505. tx_cb->oal = NULL;
  2506. }
  2507. tx_cb++;
  2508. }
  2509. }
  2510. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2511. {
  2512. struct ql_tx_buf_cb *tx_cb;
  2513. int i;
  2514. struct ob_mac_iocb_req *req_q_curr =
  2515. qdev->req_q_virt_addr;
  2516. /* Create free list of transmit buffers */
  2517. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2518. tx_cb = &qdev->tx_buf[i];
  2519. tx_cb->skb = NULL;
  2520. tx_cb->queue_entry = req_q_curr;
  2521. req_q_curr++;
  2522. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2523. if (tx_cb->oal == NULL)
  2524. return -1;
  2525. }
  2526. return 0;
  2527. }
  2528. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2529. {
  2530. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2531. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2532. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2533. }
  2534. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2535. /*
  2536. * Bigger buffers, so less of them.
  2537. */
  2538. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2539. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2540. } else {
  2541. printk(KERN_ERR PFX
  2542. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2543. qdev->ndev->name);
  2544. return -ENOMEM;
  2545. }
  2546. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2547. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2548. qdev->max_frame_size =
  2549. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2550. /*
  2551. * First allocate a page of shared memory and use it for shadow
  2552. * locations of Network Request Queue Consumer Address Register and
  2553. * Network Completion Queue Producer Index Register
  2554. */
  2555. qdev->shadow_reg_virt_addr =
  2556. pci_alloc_consistent(qdev->pdev,
  2557. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2558. if (qdev->shadow_reg_virt_addr != NULL) {
  2559. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2560. qdev->req_consumer_index_phy_addr_high =
  2561. MS_64BITS(qdev->shadow_reg_phy_addr);
  2562. qdev->req_consumer_index_phy_addr_low =
  2563. LS_64BITS(qdev->shadow_reg_phy_addr);
  2564. qdev->prsp_producer_index =
  2565. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2566. qdev->rsp_producer_index_phy_addr_high =
  2567. qdev->req_consumer_index_phy_addr_high;
  2568. qdev->rsp_producer_index_phy_addr_low =
  2569. qdev->req_consumer_index_phy_addr_low + 8;
  2570. } else {
  2571. printk(KERN_ERR PFX
  2572. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2573. return -ENOMEM;
  2574. }
  2575. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2576. printk(KERN_ERR PFX
  2577. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2578. qdev->ndev->name);
  2579. goto err_req_rsp;
  2580. }
  2581. if (ql_alloc_buffer_queues(qdev) != 0) {
  2582. printk(KERN_ERR PFX
  2583. "%s: ql_alloc_buffer_queues failed.\n",
  2584. qdev->ndev->name);
  2585. goto err_buffer_queues;
  2586. }
  2587. if (ql_alloc_small_buffers(qdev) != 0) {
  2588. printk(KERN_ERR PFX
  2589. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2590. goto err_small_buffers;
  2591. }
  2592. if (ql_alloc_large_buffers(qdev) != 0) {
  2593. printk(KERN_ERR PFX
  2594. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2595. goto err_small_buffers;
  2596. }
  2597. /* Initialize the large buffer queue. */
  2598. ql_init_large_buffers(qdev);
  2599. if (ql_create_send_free_list(qdev))
  2600. goto err_free_list;
  2601. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2602. return 0;
  2603. err_free_list:
  2604. ql_free_send_free_list(qdev);
  2605. err_small_buffers:
  2606. ql_free_buffer_queues(qdev);
  2607. err_buffer_queues:
  2608. ql_free_net_req_rsp_queues(qdev);
  2609. err_req_rsp:
  2610. pci_free_consistent(qdev->pdev,
  2611. PAGE_SIZE,
  2612. qdev->shadow_reg_virt_addr,
  2613. qdev->shadow_reg_phy_addr);
  2614. return -ENOMEM;
  2615. }
  2616. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2617. {
  2618. ql_free_send_free_list(qdev);
  2619. ql_free_large_buffers(qdev);
  2620. ql_free_small_buffers(qdev);
  2621. ql_free_buffer_queues(qdev);
  2622. ql_free_net_req_rsp_queues(qdev);
  2623. if (qdev->shadow_reg_virt_addr != NULL) {
  2624. pci_free_consistent(qdev->pdev,
  2625. PAGE_SIZE,
  2626. qdev->shadow_reg_virt_addr,
  2627. qdev->shadow_reg_phy_addr);
  2628. qdev->shadow_reg_virt_addr = NULL;
  2629. }
  2630. }
  2631. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2632. {
  2633. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2634. (void __iomem *)qdev->mem_map_registers;
  2635. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2636. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2637. 2) << 4))
  2638. return -1;
  2639. ql_write_page2_reg(qdev,
  2640. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2641. ql_write_page2_reg(qdev,
  2642. &local_ram->maxBufletCount,
  2643. qdev->nvram_data.bufletCount);
  2644. ql_write_page2_reg(qdev,
  2645. &local_ram->freeBufletThresholdLow,
  2646. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2647. (qdev->nvram_data.tcpWindowThreshold0));
  2648. ql_write_page2_reg(qdev,
  2649. &local_ram->freeBufletThresholdHigh,
  2650. qdev->nvram_data.tcpWindowThreshold50);
  2651. ql_write_page2_reg(qdev,
  2652. &local_ram->ipHashTableBase,
  2653. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2654. qdev->nvram_data.ipHashTableBaseLo);
  2655. ql_write_page2_reg(qdev,
  2656. &local_ram->ipHashTableCount,
  2657. qdev->nvram_data.ipHashTableSize);
  2658. ql_write_page2_reg(qdev,
  2659. &local_ram->tcpHashTableBase,
  2660. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2661. qdev->nvram_data.tcpHashTableBaseLo);
  2662. ql_write_page2_reg(qdev,
  2663. &local_ram->tcpHashTableCount,
  2664. qdev->nvram_data.tcpHashTableSize);
  2665. ql_write_page2_reg(qdev,
  2666. &local_ram->ncbBase,
  2667. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2668. qdev->nvram_data.ncbTableBaseLo);
  2669. ql_write_page2_reg(qdev,
  2670. &local_ram->maxNcbCount,
  2671. qdev->nvram_data.ncbTableSize);
  2672. ql_write_page2_reg(qdev,
  2673. &local_ram->drbBase,
  2674. (qdev->nvram_data.drbTableBaseHi << 16) |
  2675. qdev->nvram_data.drbTableBaseLo);
  2676. ql_write_page2_reg(qdev,
  2677. &local_ram->maxDrbCount,
  2678. qdev->nvram_data.drbTableSize);
  2679. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2680. return 0;
  2681. }
  2682. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2683. {
  2684. u32 value;
  2685. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2686. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2687. (void __iomem *)port_regs;
  2688. u32 delay = 10;
  2689. int status = 0;
  2690. unsigned long hw_flags = 0;
  2691. if(ql_mii_setup(qdev))
  2692. return -1;
  2693. /* Bring out PHY out of reset */
  2694. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2695. (ISP_SERIAL_PORT_IF_WE |
  2696. (ISP_SERIAL_PORT_IF_WE << 16)));
  2697. /* Give the PHY time to come out of reset. */
  2698. mdelay(100);
  2699. qdev->port_link_state = LS_DOWN;
  2700. netif_carrier_off(qdev->ndev);
  2701. /* V2 chip fix for ARS-39168. */
  2702. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2703. (ISP_SERIAL_PORT_IF_SDE |
  2704. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2705. /* Request Queue Registers */
  2706. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2707. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2708. qdev->req_producer_index = 0;
  2709. ql_write_page1_reg(qdev,
  2710. &hmem_regs->reqConsumerIndexAddrHigh,
  2711. qdev->req_consumer_index_phy_addr_high);
  2712. ql_write_page1_reg(qdev,
  2713. &hmem_regs->reqConsumerIndexAddrLow,
  2714. qdev->req_consumer_index_phy_addr_low);
  2715. ql_write_page1_reg(qdev,
  2716. &hmem_regs->reqBaseAddrHigh,
  2717. MS_64BITS(qdev->req_q_phy_addr));
  2718. ql_write_page1_reg(qdev,
  2719. &hmem_regs->reqBaseAddrLow,
  2720. LS_64BITS(qdev->req_q_phy_addr));
  2721. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2722. /* Response Queue Registers */
  2723. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2724. qdev->rsp_consumer_index = 0;
  2725. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2726. ql_write_page1_reg(qdev,
  2727. &hmem_regs->rspProducerIndexAddrHigh,
  2728. qdev->rsp_producer_index_phy_addr_high);
  2729. ql_write_page1_reg(qdev,
  2730. &hmem_regs->rspProducerIndexAddrLow,
  2731. qdev->rsp_producer_index_phy_addr_low);
  2732. ql_write_page1_reg(qdev,
  2733. &hmem_regs->rspBaseAddrHigh,
  2734. MS_64BITS(qdev->rsp_q_phy_addr));
  2735. ql_write_page1_reg(qdev,
  2736. &hmem_regs->rspBaseAddrLow,
  2737. LS_64BITS(qdev->rsp_q_phy_addr));
  2738. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2739. /* Large Buffer Queue */
  2740. ql_write_page1_reg(qdev,
  2741. &hmem_regs->rxLargeQBaseAddrHigh,
  2742. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2743. ql_write_page1_reg(qdev,
  2744. &hmem_regs->rxLargeQBaseAddrLow,
  2745. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2746. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2747. ql_write_page1_reg(qdev,
  2748. &hmem_regs->rxLargeBufferLength,
  2749. qdev->lrg_buffer_len);
  2750. /* Small Buffer Queue */
  2751. ql_write_page1_reg(qdev,
  2752. &hmem_regs->rxSmallQBaseAddrHigh,
  2753. MS_64BITS(qdev->small_buf_q_phy_addr));
  2754. ql_write_page1_reg(qdev,
  2755. &hmem_regs->rxSmallQBaseAddrLow,
  2756. LS_64BITS(qdev->small_buf_q_phy_addr));
  2757. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2758. ql_write_page1_reg(qdev,
  2759. &hmem_regs->rxSmallBufferLength,
  2760. QL_SMALL_BUFFER_SIZE);
  2761. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2762. qdev->small_buf_release_cnt = 8;
  2763. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2764. qdev->lrg_buf_release_cnt = 8;
  2765. qdev->lrg_buf_next_free =
  2766. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2767. qdev->small_buf_index = 0;
  2768. qdev->lrg_buf_index = 0;
  2769. qdev->lrg_buf_free_count = 0;
  2770. qdev->lrg_buf_free_head = NULL;
  2771. qdev->lrg_buf_free_tail = NULL;
  2772. ql_write_common_reg(qdev,
  2773. &port_regs->CommonRegs.
  2774. rxSmallQProducerIndex,
  2775. qdev->small_buf_q_producer_index);
  2776. ql_write_common_reg(qdev,
  2777. &port_regs->CommonRegs.
  2778. rxLargeQProducerIndex,
  2779. qdev->lrg_buf_q_producer_index);
  2780. /*
  2781. * Find out if the chip has already been initialized. If it has, then
  2782. * we skip some of the initialization.
  2783. */
  2784. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2785. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2786. if ((value & PORT_STATUS_IC) == 0) {
  2787. /* Chip has not been configured yet, so let it rip. */
  2788. if(ql_init_misc_registers(qdev)) {
  2789. status = -1;
  2790. goto out;
  2791. }
  2792. value = qdev->nvram_data.tcpMaxWindowSize;
  2793. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2794. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2795. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2796. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2797. * 2) << 13)) {
  2798. status = -1;
  2799. goto out;
  2800. }
  2801. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2802. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2803. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2804. 16) | (INTERNAL_CHIP_SD |
  2805. INTERNAL_CHIP_WE)));
  2806. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2807. }
  2808. if (qdev->mac_index)
  2809. ql_write_page0_reg(qdev,
  2810. &port_regs->mac1MaxFrameLengthReg,
  2811. qdev->max_frame_size);
  2812. else
  2813. ql_write_page0_reg(qdev,
  2814. &port_regs->mac0MaxFrameLengthReg,
  2815. qdev->max_frame_size);
  2816. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2817. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2818. 2) << 7)) {
  2819. status = -1;
  2820. goto out;
  2821. }
  2822. PHY_Setup(qdev);
  2823. ql_init_scan_mode(qdev);
  2824. ql_get_phy_owner(qdev);
  2825. /* Load the MAC Configuration */
  2826. /* Program lower 32 bits of the MAC address */
  2827. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2828. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2829. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2830. ((qdev->ndev->dev_addr[2] << 24)
  2831. | (qdev->ndev->dev_addr[3] << 16)
  2832. | (qdev->ndev->dev_addr[4] << 8)
  2833. | qdev->ndev->dev_addr[5]));
  2834. /* Program top 16 bits of the MAC address */
  2835. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2836. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2837. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2838. ((qdev->ndev->dev_addr[0] << 8)
  2839. | qdev->ndev->dev_addr[1]));
  2840. /* Enable Primary MAC */
  2841. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2842. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2843. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2844. /* Clear Primary and Secondary IP addresses */
  2845. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2846. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2847. (qdev->mac_index << 2)));
  2848. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2849. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2850. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2851. ((qdev->mac_index << 2) + 1)));
  2852. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2853. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2854. /* Indicate Configuration Complete */
  2855. ql_write_page0_reg(qdev,
  2856. &port_regs->portControl,
  2857. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2858. do {
  2859. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2860. if (value & PORT_STATUS_IC)
  2861. break;
  2862. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2863. msleep(500);
  2864. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2865. } while (--delay);
  2866. if (delay == 0) {
  2867. printk(KERN_ERR PFX
  2868. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2869. status = -1;
  2870. goto out;
  2871. }
  2872. /* Enable Ethernet Function */
  2873. if (qdev->device_id == QL3032_DEVICE_ID) {
  2874. value =
  2875. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2876. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2877. QL3032_PORT_CONTROL_ET);
  2878. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2879. ((value << 16) | value));
  2880. } else {
  2881. value =
  2882. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2883. PORT_CONTROL_HH);
  2884. ql_write_page0_reg(qdev, &port_regs->portControl,
  2885. ((value << 16) | value));
  2886. }
  2887. out:
  2888. return status;
  2889. }
  2890. /*
  2891. * Caller holds hw_lock.
  2892. */
  2893. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2894. {
  2895. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2896. int status = 0;
  2897. u16 value;
  2898. int max_wait_time;
  2899. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2900. clear_bit(QL_RESET_DONE, &qdev->flags);
  2901. /*
  2902. * Issue soft reset to chip.
  2903. */
  2904. printk(KERN_DEBUG PFX
  2905. "%s: Issue soft reset to chip.\n",
  2906. qdev->ndev->name);
  2907. ql_write_common_reg(qdev,
  2908. &port_regs->CommonRegs.ispControlStatus,
  2909. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2910. /* Wait 3 seconds for reset to complete. */
  2911. printk(KERN_DEBUG PFX
  2912. "%s: Wait 10 milliseconds for reset to complete.\n",
  2913. qdev->ndev->name);
  2914. /* Wait until the firmware tells us the Soft Reset is done */
  2915. max_wait_time = 5;
  2916. do {
  2917. value =
  2918. ql_read_common_reg(qdev,
  2919. &port_regs->CommonRegs.ispControlStatus);
  2920. if ((value & ISP_CONTROL_SR) == 0)
  2921. break;
  2922. ssleep(1);
  2923. } while ((--max_wait_time));
  2924. /*
  2925. * Also, make sure that the Network Reset Interrupt bit has been
  2926. * cleared after the soft reset has taken place.
  2927. */
  2928. value =
  2929. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2930. if (value & ISP_CONTROL_RI) {
  2931. printk(KERN_DEBUG PFX
  2932. "ql_adapter_reset: clearing RI after reset.\n");
  2933. ql_write_common_reg(qdev,
  2934. &port_regs->CommonRegs.
  2935. ispControlStatus,
  2936. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2937. }
  2938. if (max_wait_time == 0) {
  2939. /* Issue Force Soft Reset */
  2940. ql_write_common_reg(qdev,
  2941. &port_regs->CommonRegs.
  2942. ispControlStatus,
  2943. ((ISP_CONTROL_FSR << 16) |
  2944. ISP_CONTROL_FSR));
  2945. /*
  2946. * Wait until the firmware tells us the Force Soft Reset is
  2947. * done
  2948. */
  2949. max_wait_time = 5;
  2950. do {
  2951. value =
  2952. ql_read_common_reg(qdev,
  2953. &port_regs->CommonRegs.
  2954. ispControlStatus);
  2955. if ((value & ISP_CONTROL_FSR) == 0) {
  2956. break;
  2957. }
  2958. ssleep(1);
  2959. } while ((--max_wait_time));
  2960. }
  2961. if (max_wait_time == 0)
  2962. status = 1;
  2963. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2964. set_bit(QL_RESET_DONE, &qdev->flags);
  2965. return status;
  2966. }
  2967. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2968. {
  2969. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2970. u32 value, port_status;
  2971. u8 func_number;
  2972. /* Get the function number */
  2973. value =
  2974. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2975. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2976. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2977. switch (value & ISP_CONTROL_FN_MASK) {
  2978. case ISP_CONTROL_FN0_NET:
  2979. qdev->mac_index = 0;
  2980. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2981. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2982. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2983. if (port_status & PORT_STATUS_SM0)
  2984. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2985. else
  2986. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2987. break;
  2988. case ISP_CONTROL_FN1_NET:
  2989. qdev->mac_index = 1;
  2990. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2991. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2992. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2993. if (port_status & PORT_STATUS_SM1)
  2994. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2995. else
  2996. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2997. break;
  2998. case ISP_CONTROL_FN0_SCSI:
  2999. case ISP_CONTROL_FN1_SCSI:
  3000. default:
  3001. printk(KERN_DEBUG PFX
  3002. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3003. qdev->ndev->name,value);
  3004. break;
  3005. }
  3006. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  3007. }
  3008. static void ql_display_dev_info(struct net_device *ndev)
  3009. {
  3010. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3011. struct pci_dev *pdev = qdev->pdev;
  3012. printk(KERN_INFO PFX
  3013. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3014. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3015. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3016. qdev->pci_slot);
  3017. printk(KERN_INFO PFX
  3018. "%s Interface.\n",
  3019. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3020. /*
  3021. * Print PCI bus width/type.
  3022. */
  3023. printk(KERN_INFO PFX
  3024. "Bus interface is %s %s.\n",
  3025. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3026. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3027. printk(KERN_INFO PFX
  3028. "mem IO base address adjusted = 0x%p\n",
  3029. qdev->mem_map_registers);
  3030. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3031. if (netif_msg_probe(qdev))
  3032. printk(KERN_INFO PFX
  3033. "%s: MAC address %pM\n",
  3034. ndev->name, ndev->dev_addr);
  3035. }
  3036. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3037. {
  3038. struct net_device *ndev = qdev->ndev;
  3039. int retval = 0;
  3040. netif_stop_queue(ndev);
  3041. netif_carrier_off(ndev);
  3042. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3043. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3044. ql_disable_interrupts(qdev);
  3045. free_irq(qdev->pdev->irq, ndev);
  3046. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3047. printk(KERN_INFO PFX
  3048. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3049. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3050. pci_disable_msi(qdev->pdev);
  3051. }
  3052. del_timer_sync(&qdev->adapter_timer);
  3053. napi_disable(&qdev->napi);
  3054. if (do_reset) {
  3055. int soft_reset;
  3056. unsigned long hw_flags;
  3057. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3058. if (ql_wait_for_drvr_lock(qdev)) {
  3059. if ((soft_reset = ql_adapter_reset(qdev))) {
  3060. printk(KERN_ERR PFX
  3061. "%s: ql_adapter_reset(%d) FAILED!\n",
  3062. ndev->name, qdev->index);
  3063. }
  3064. printk(KERN_ERR PFX
  3065. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3066. } else {
  3067. printk(KERN_ERR PFX
  3068. "%s: Could not acquire driver lock to do "
  3069. "reset!\n", ndev->name);
  3070. retval = -1;
  3071. }
  3072. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3073. }
  3074. ql_free_mem_resources(qdev);
  3075. return retval;
  3076. }
  3077. static int ql_adapter_up(struct ql3_adapter *qdev)
  3078. {
  3079. struct net_device *ndev = qdev->ndev;
  3080. int err;
  3081. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3082. unsigned long hw_flags;
  3083. if (ql_alloc_mem_resources(qdev)) {
  3084. printk(KERN_ERR PFX
  3085. "%s Unable to allocate buffers.\n", ndev->name);
  3086. return -ENOMEM;
  3087. }
  3088. if (qdev->msi) {
  3089. if (pci_enable_msi(qdev->pdev)) {
  3090. printk(KERN_ERR PFX
  3091. "%s: User requested MSI, but MSI failed to "
  3092. "initialize. Continuing without MSI.\n",
  3093. qdev->ndev->name);
  3094. qdev->msi = 0;
  3095. } else {
  3096. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3097. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3098. irq_flags &= ~IRQF_SHARED;
  3099. }
  3100. }
  3101. if ((err = request_irq(qdev->pdev->irq,
  3102. ql3xxx_isr,
  3103. irq_flags, ndev->name, ndev))) {
  3104. printk(KERN_ERR PFX
  3105. "%s: Failed to reserve interrupt %d already in use.\n",
  3106. ndev->name, qdev->pdev->irq);
  3107. goto err_irq;
  3108. }
  3109. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3110. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3111. if ((err = ql_adapter_initialize(qdev))) {
  3112. printk(KERN_ERR PFX
  3113. "%s: Unable to initialize adapter.\n",
  3114. ndev->name);
  3115. goto err_init;
  3116. }
  3117. printk(KERN_ERR PFX
  3118. "%s: Releaseing driver lock.\n",ndev->name);
  3119. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3120. } else {
  3121. printk(KERN_ERR PFX
  3122. "%s: Could not acquire driver lock.\n",
  3123. ndev->name);
  3124. goto err_lock;
  3125. }
  3126. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3127. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3128. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3129. napi_enable(&qdev->napi);
  3130. ql_enable_interrupts(qdev);
  3131. return 0;
  3132. err_init:
  3133. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3134. err_lock:
  3135. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3136. free_irq(qdev->pdev->irq, ndev);
  3137. err_irq:
  3138. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3139. printk(KERN_INFO PFX
  3140. "%s: calling pci_disable_msi().\n",
  3141. qdev->ndev->name);
  3142. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3143. pci_disable_msi(qdev->pdev);
  3144. }
  3145. return err;
  3146. }
  3147. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3148. {
  3149. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3150. printk(KERN_ERR PFX
  3151. "%s: Driver up/down cycle failed, "
  3152. "closing device\n",qdev->ndev->name);
  3153. rtnl_lock();
  3154. dev_close(qdev->ndev);
  3155. rtnl_unlock();
  3156. return -1;
  3157. }
  3158. return 0;
  3159. }
  3160. static int ql3xxx_close(struct net_device *ndev)
  3161. {
  3162. struct ql3_adapter *qdev = netdev_priv(ndev);
  3163. /*
  3164. * Wait for device to recover from a reset.
  3165. * (Rarely happens, but possible.)
  3166. */
  3167. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3168. msleep(50);
  3169. ql_adapter_down(qdev,QL_DO_RESET);
  3170. return 0;
  3171. }
  3172. static int ql3xxx_open(struct net_device *ndev)
  3173. {
  3174. struct ql3_adapter *qdev = netdev_priv(ndev);
  3175. return (ql_adapter_up(qdev));
  3176. }
  3177. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3178. {
  3179. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3180. struct ql3xxx_port_registers __iomem *port_regs =
  3181. qdev->mem_map_registers;
  3182. struct sockaddr *addr = p;
  3183. unsigned long hw_flags;
  3184. if (netif_running(ndev))
  3185. return -EBUSY;
  3186. if (!is_valid_ether_addr(addr->sa_data))
  3187. return -EADDRNOTAVAIL;
  3188. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3189. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3190. /* Program lower 32 bits of the MAC address */
  3191. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3192. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3193. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3194. ((ndev->dev_addr[2] << 24) | (ndev->
  3195. dev_addr[3] << 16) |
  3196. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3197. /* Program top 16 bits of the MAC address */
  3198. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3199. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3200. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3201. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3202. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3203. return 0;
  3204. }
  3205. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3206. {
  3207. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3208. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3209. /*
  3210. * Stop the queues, we've got a problem.
  3211. */
  3212. netif_stop_queue(ndev);
  3213. /*
  3214. * Wake up the worker to process this event.
  3215. */
  3216. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3217. }
  3218. static void ql_reset_work(struct work_struct *work)
  3219. {
  3220. struct ql3_adapter *qdev =
  3221. container_of(work, struct ql3_adapter, reset_work.work);
  3222. struct net_device *ndev = qdev->ndev;
  3223. u32 value;
  3224. struct ql_tx_buf_cb *tx_cb;
  3225. int max_wait_time, i;
  3226. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3227. unsigned long hw_flags;
  3228. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3229. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3230. /*
  3231. * Loop through the active list and return the skb.
  3232. */
  3233. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3234. int j;
  3235. tx_cb = &qdev->tx_buf[i];
  3236. if (tx_cb->skb) {
  3237. printk(KERN_DEBUG PFX
  3238. "%s: Freeing lost SKB.\n",
  3239. qdev->ndev->name);
  3240. pci_unmap_single(qdev->pdev,
  3241. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  3242. dma_unmap_len(&tx_cb->map[0], maplen),
  3243. PCI_DMA_TODEVICE);
  3244. for(j=1;j<tx_cb->seg_count;j++) {
  3245. pci_unmap_page(qdev->pdev,
  3246. dma_unmap_addr(&tx_cb->map[j],mapaddr),
  3247. dma_unmap_len(&tx_cb->map[j],maplen),
  3248. PCI_DMA_TODEVICE);
  3249. }
  3250. dev_kfree_skb(tx_cb->skb);
  3251. tx_cb->skb = NULL;
  3252. }
  3253. }
  3254. printk(KERN_ERR PFX
  3255. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3256. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3257. ql_write_common_reg(qdev,
  3258. &port_regs->CommonRegs.
  3259. ispControlStatus,
  3260. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3261. /*
  3262. * Wait the for Soft Reset to Complete.
  3263. */
  3264. max_wait_time = 10;
  3265. do {
  3266. value = ql_read_common_reg(qdev,
  3267. &port_regs->CommonRegs.
  3268. ispControlStatus);
  3269. if ((value & ISP_CONTROL_SR) == 0) {
  3270. printk(KERN_DEBUG PFX
  3271. "%s: reset completed.\n",
  3272. qdev->ndev->name);
  3273. break;
  3274. }
  3275. if (value & ISP_CONTROL_RI) {
  3276. printk(KERN_DEBUG PFX
  3277. "%s: clearing NRI after reset.\n",
  3278. qdev->ndev->name);
  3279. ql_write_common_reg(qdev,
  3280. &port_regs->
  3281. CommonRegs.
  3282. ispControlStatus,
  3283. ((ISP_CONTROL_RI <<
  3284. 16) | ISP_CONTROL_RI));
  3285. }
  3286. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3287. ssleep(1);
  3288. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3289. } while (--max_wait_time);
  3290. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3291. if (value & ISP_CONTROL_SR) {
  3292. /*
  3293. * Set the reset flags and clear the board again.
  3294. * Nothing else to do...
  3295. */
  3296. printk(KERN_ERR PFX
  3297. "%s: Timed out waiting for reset to "
  3298. "complete.\n", ndev->name);
  3299. printk(KERN_ERR PFX
  3300. "%s: Do a reset.\n", ndev->name);
  3301. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3302. clear_bit(QL_RESET_START,&qdev->flags);
  3303. ql_cycle_adapter(qdev,QL_DO_RESET);
  3304. return;
  3305. }
  3306. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3307. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3308. clear_bit(QL_RESET_START,&qdev->flags);
  3309. ql_cycle_adapter(qdev,QL_NO_RESET);
  3310. }
  3311. }
  3312. static void ql_tx_timeout_work(struct work_struct *work)
  3313. {
  3314. struct ql3_adapter *qdev =
  3315. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3316. ql_cycle_adapter(qdev, QL_DO_RESET);
  3317. }
  3318. static void ql_get_board_info(struct ql3_adapter *qdev)
  3319. {
  3320. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3321. u32 value;
  3322. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3323. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3324. if (value & PORT_STATUS_64)
  3325. qdev->pci_width = 64;
  3326. else
  3327. qdev->pci_width = 32;
  3328. if (value & PORT_STATUS_X)
  3329. qdev->pci_x = 1;
  3330. else
  3331. qdev->pci_x = 0;
  3332. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3333. }
  3334. static void ql3xxx_timer(unsigned long ptr)
  3335. {
  3336. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3337. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3338. }
  3339. static const struct net_device_ops ql3xxx_netdev_ops = {
  3340. .ndo_open = ql3xxx_open,
  3341. .ndo_start_xmit = ql3xxx_send,
  3342. .ndo_stop = ql3xxx_close,
  3343. .ndo_set_multicast_list = NULL, /* not allowed on NIC side */
  3344. .ndo_change_mtu = eth_change_mtu,
  3345. .ndo_validate_addr = eth_validate_addr,
  3346. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3347. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3348. };
  3349. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3350. const struct pci_device_id *pci_entry)
  3351. {
  3352. struct net_device *ndev = NULL;
  3353. struct ql3_adapter *qdev = NULL;
  3354. static int cards_found = 0;
  3355. int uninitialized_var(pci_using_dac), err;
  3356. err = pci_enable_device(pdev);
  3357. if (err) {
  3358. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3359. pci_name(pdev));
  3360. goto err_out;
  3361. }
  3362. err = pci_request_regions(pdev, DRV_NAME);
  3363. if (err) {
  3364. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3365. pci_name(pdev));
  3366. goto err_out_disable_pdev;
  3367. }
  3368. pci_set_master(pdev);
  3369. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3370. pci_using_dac = 1;
  3371. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3372. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3373. pci_using_dac = 0;
  3374. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3375. }
  3376. if (err) {
  3377. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3378. pci_name(pdev));
  3379. goto err_out_free_regions;
  3380. }
  3381. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3382. if (!ndev) {
  3383. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3384. pci_name(pdev));
  3385. err = -ENOMEM;
  3386. goto err_out_free_regions;
  3387. }
  3388. SET_NETDEV_DEV(ndev, &pdev->dev);
  3389. pci_set_drvdata(pdev, ndev);
  3390. qdev = netdev_priv(ndev);
  3391. qdev->index = cards_found;
  3392. qdev->ndev = ndev;
  3393. qdev->pdev = pdev;
  3394. qdev->device_id = pci_entry->device;
  3395. qdev->port_link_state = LS_DOWN;
  3396. if (msi)
  3397. qdev->msi = 1;
  3398. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3399. if (pci_using_dac)
  3400. ndev->features |= NETIF_F_HIGHDMA;
  3401. if (qdev->device_id == QL3032_DEVICE_ID)
  3402. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3403. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3404. if (!qdev->mem_map_registers) {
  3405. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3406. pci_name(pdev));
  3407. err = -EIO;
  3408. goto err_out_free_ndev;
  3409. }
  3410. spin_lock_init(&qdev->adapter_lock);
  3411. spin_lock_init(&qdev->hw_lock);
  3412. /* Set driver entry points */
  3413. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3414. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3415. ndev->watchdog_timeo = 5 * HZ;
  3416. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3417. ndev->irq = pdev->irq;
  3418. /* make sure the EEPROM is good */
  3419. if (ql_get_nvram_params(qdev)) {
  3420. printk(KERN_ALERT PFX
  3421. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3422. qdev->index);
  3423. err = -EIO;
  3424. goto err_out_iounmap;
  3425. }
  3426. ql_set_mac_info(qdev);
  3427. /* Validate and set parameters */
  3428. if (qdev->mac_index) {
  3429. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3430. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3431. } else {
  3432. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3433. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3434. }
  3435. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3436. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3437. /* Record PCI bus information. */
  3438. ql_get_board_info(qdev);
  3439. /*
  3440. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3441. * jumbo frames.
  3442. */
  3443. if (qdev->pci_x) {
  3444. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3445. }
  3446. err = register_netdev(ndev);
  3447. if (err) {
  3448. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3449. pci_name(pdev));
  3450. goto err_out_iounmap;
  3451. }
  3452. /* we're going to reset, so assume we have no link for now */
  3453. netif_carrier_off(ndev);
  3454. netif_stop_queue(ndev);
  3455. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3456. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3457. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3458. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3459. init_timer(&qdev->adapter_timer);
  3460. qdev->adapter_timer.function = ql3xxx_timer;
  3461. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3462. qdev->adapter_timer.data = (unsigned long)qdev;
  3463. if(!cards_found) {
  3464. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3465. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3466. DRV_NAME, DRV_VERSION);
  3467. }
  3468. ql_display_dev_info(ndev);
  3469. cards_found++;
  3470. return 0;
  3471. err_out_iounmap:
  3472. iounmap(qdev->mem_map_registers);
  3473. err_out_free_ndev:
  3474. free_netdev(ndev);
  3475. err_out_free_regions:
  3476. pci_release_regions(pdev);
  3477. err_out_disable_pdev:
  3478. pci_disable_device(pdev);
  3479. pci_set_drvdata(pdev, NULL);
  3480. err_out:
  3481. return err;
  3482. }
  3483. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3484. {
  3485. struct net_device *ndev = pci_get_drvdata(pdev);
  3486. struct ql3_adapter *qdev = netdev_priv(ndev);
  3487. unregister_netdev(ndev);
  3488. ql_disable_interrupts(qdev);
  3489. if (qdev->workqueue) {
  3490. cancel_delayed_work(&qdev->reset_work);
  3491. cancel_delayed_work(&qdev->tx_timeout_work);
  3492. destroy_workqueue(qdev->workqueue);
  3493. qdev->workqueue = NULL;
  3494. }
  3495. iounmap(qdev->mem_map_registers);
  3496. pci_release_regions(pdev);
  3497. pci_set_drvdata(pdev, NULL);
  3498. free_netdev(ndev);
  3499. }
  3500. static struct pci_driver ql3xxx_driver = {
  3501. .name = DRV_NAME,
  3502. .id_table = ql3xxx_pci_tbl,
  3503. .probe = ql3xxx_probe,
  3504. .remove = __devexit_p(ql3xxx_remove),
  3505. };
  3506. static int __init ql3xxx_init_module(void)
  3507. {
  3508. return pci_register_driver(&ql3xxx_driver);
  3509. }
  3510. static void __exit ql3xxx_exit(void)
  3511. {
  3512. pci_unregister_driver(&ql3xxx_driver);
  3513. }
  3514. module_init(ql3xxx_init_module);
  3515. module_exit(ql3xxx_exit);