raid10.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507
  1. /*
  2. * raid10.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 2000-2004 Neil Brown
  5. *
  6. * RAID-10 support for md.
  7. *
  8. * Base on code in raid1.c. See raid1.c for futher copyright information.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/seq_file.h>
  24. #include "md.h"
  25. #include "raid10.h"
  26. #include "raid0.h"
  27. #include "bitmap.h"
  28. /*
  29. * RAID10 provides a combination of RAID0 and RAID1 functionality.
  30. * The layout of data is defined by
  31. * chunk_size
  32. * raid_disks
  33. * near_copies (stored in low byte of layout)
  34. * far_copies (stored in second byte of layout)
  35. * far_offset (stored in bit 16 of layout )
  36. *
  37. * The data to be stored is divided into chunks using chunksize.
  38. * Each device is divided into far_copies sections.
  39. * In each section, chunks are laid out in a style similar to raid0, but
  40. * near_copies copies of each chunk is stored (each on a different drive).
  41. * The starting device for each section is offset near_copies from the starting
  42. * device of the previous section.
  43. * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  44. * drive.
  45. * near_copies and far_copies must be at least one, and their product is at most
  46. * raid_disks.
  47. *
  48. * If far_offset is true, then the far_copies are handled a bit differently.
  49. * The copies are still in different stripes, but instead of be very far apart
  50. * on disk, there are adjacent stripes.
  51. */
  52. /*
  53. * Number of guaranteed r10bios in case of extreme VM load:
  54. */
  55. #define NR_RAID10_BIOS 256
  56. static void unplug_slaves(mddev_t *mddev);
  57. static void allow_barrier(conf_t *conf);
  58. static void lower_barrier(conf_t *conf);
  59. static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  60. {
  61. conf_t *conf = data;
  62. r10bio_t *r10_bio;
  63. int size = offsetof(struct r10bio_s, devs[conf->copies]);
  64. /* allocate a r10bio with room for raid_disks entries in the bios array */
  65. r10_bio = kzalloc(size, gfp_flags);
  66. if (!r10_bio && conf->mddev)
  67. unplug_slaves(conf->mddev);
  68. return r10_bio;
  69. }
  70. static void r10bio_pool_free(void *r10_bio, void *data)
  71. {
  72. kfree(r10_bio);
  73. }
  74. /* Maximum size of each resync request */
  75. #define RESYNC_BLOCK_SIZE (64*1024)
  76. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  77. /* amount of memory to reserve for resync requests */
  78. #define RESYNC_WINDOW (1024*1024)
  79. /* maximum number of concurrent requests, memory permitting */
  80. #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  81. /*
  82. * When performing a resync, we need to read and compare, so
  83. * we need as many pages are there are copies.
  84. * When performing a recovery, we need 2 bios, one for read,
  85. * one for write (we recover only one drive per r10buf)
  86. *
  87. */
  88. static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  89. {
  90. conf_t *conf = data;
  91. struct page *page;
  92. r10bio_t *r10_bio;
  93. struct bio *bio;
  94. int i, j;
  95. int nalloc;
  96. r10_bio = r10bio_pool_alloc(gfp_flags, conf);
  97. if (!r10_bio) {
  98. unplug_slaves(conf->mddev);
  99. return NULL;
  100. }
  101. if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
  102. nalloc = conf->copies; /* resync */
  103. else
  104. nalloc = 2; /* recovery */
  105. /*
  106. * Allocate bios.
  107. */
  108. for (j = nalloc ; j-- ; ) {
  109. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  110. if (!bio)
  111. goto out_free_bio;
  112. r10_bio->devs[j].bio = bio;
  113. }
  114. /*
  115. * Allocate RESYNC_PAGES data pages and attach them
  116. * where needed.
  117. */
  118. for (j = 0 ; j < nalloc; j++) {
  119. bio = r10_bio->devs[j].bio;
  120. for (i = 0; i < RESYNC_PAGES; i++) {
  121. page = alloc_page(gfp_flags);
  122. if (unlikely(!page))
  123. goto out_free_pages;
  124. bio->bi_io_vec[i].bv_page = page;
  125. }
  126. }
  127. return r10_bio;
  128. out_free_pages:
  129. for ( ; i > 0 ; i--)
  130. safe_put_page(bio->bi_io_vec[i-1].bv_page);
  131. while (j--)
  132. for (i = 0; i < RESYNC_PAGES ; i++)
  133. safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
  134. j = -1;
  135. out_free_bio:
  136. while ( ++j < nalloc )
  137. bio_put(r10_bio->devs[j].bio);
  138. r10bio_pool_free(r10_bio, conf);
  139. return NULL;
  140. }
  141. static void r10buf_pool_free(void *__r10_bio, void *data)
  142. {
  143. int i;
  144. conf_t *conf = data;
  145. r10bio_t *r10bio = __r10_bio;
  146. int j;
  147. for (j=0; j < conf->copies; j++) {
  148. struct bio *bio = r10bio->devs[j].bio;
  149. if (bio) {
  150. for (i = 0; i < RESYNC_PAGES; i++) {
  151. safe_put_page(bio->bi_io_vec[i].bv_page);
  152. bio->bi_io_vec[i].bv_page = NULL;
  153. }
  154. bio_put(bio);
  155. }
  156. }
  157. r10bio_pool_free(r10bio, conf);
  158. }
  159. static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
  160. {
  161. int i;
  162. for (i = 0; i < conf->copies; i++) {
  163. struct bio **bio = & r10_bio->devs[i].bio;
  164. if (*bio && *bio != IO_BLOCKED)
  165. bio_put(*bio);
  166. *bio = NULL;
  167. }
  168. }
  169. static void free_r10bio(r10bio_t *r10_bio)
  170. {
  171. conf_t *conf = r10_bio->mddev->private;
  172. /*
  173. * Wake up any possible resync thread that waits for the device
  174. * to go idle.
  175. */
  176. allow_barrier(conf);
  177. put_all_bios(conf, r10_bio);
  178. mempool_free(r10_bio, conf->r10bio_pool);
  179. }
  180. static void put_buf(r10bio_t *r10_bio)
  181. {
  182. conf_t *conf = r10_bio->mddev->private;
  183. mempool_free(r10_bio, conf->r10buf_pool);
  184. lower_barrier(conf);
  185. }
  186. static void reschedule_retry(r10bio_t *r10_bio)
  187. {
  188. unsigned long flags;
  189. mddev_t *mddev = r10_bio->mddev;
  190. conf_t *conf = mddev->private;
  191. spin_lock_irqsave(&conf->device_lock, flags);
  192. list_add(&r10_bio->retry_list, &conf->retry_list);
  193. conf->nr_queued ++;
  194. spin_unlock_irqrestore(&conf->device_lock, flags);
  195. /* wake up frozen array... */
  196. wake_up(&conf->wait_barrier);
  197. md_wakeup_thread(mddev->thread);
  198. }
  199. /*
  200. * raid_end_bio_io() is called when we have finished servicing a mirrored
  201. * operation and are ready to return a success/failure code to the buffer
  202. * cache layer.
  203. */
  204. static void raid_end_bio_io(r10bio_t *r10_bio)
  205. {
  206. struct bio *bio = r10_bio->master_bio;
  207. bio_endio(bio,
  208. test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
  209. free_r10bio(r10_bio);
  210. }
  211. /*
  212. * Update disk head position estimator based on IRQ completion info.
  213. */
  214. static inline void update_head_pos(int slot, r10bio_t *r10_bio)
  215. {
  216. conf_t *conf = r10_bio->mddev->private;
  217. conf->mirrors[r10_bio->devs[slot].devnum].head_position =
  218. r10_bio->devs[slot].addr + (r10_bio->sectors);
  219. }
  220. static void raid10_end_read_request(struct bio *bio, int error)
  221. {
  222. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  223. r10bio_t *r10_bio = bio->bi_private;
  224. int slot, dev;
  225. conf_t *conf = r10_bio->mddev->private;
  226. slot = r10_bio->read_slot;
  227. dev = r10_bio->devs[slot].devnum;
  228. /*
  229. * this branch is our 'one mirror IO has finished' event handler:
  230. */
  231. update_head_pos(slot, r10_bio);
  232. if (uptodate) {
  233. /*
  234. * Set R10BIO_Uptodate in our master bio, so that
  235. * we will return a good error code to the higher
  236. * levels even if IO on some other mirrored buffer fails.
  237. *
  238. * The 'master' represents the composite IO operation to
  239. * user-side. So if something waits for IO, then it will
  240. * wait for the 'master' bio.
  241. */
  242. set_bit(R10BIO_Uptodate, &r10_bio->state);
  243. raid_end_bio_io(r10_bio);
  244. } else {
  245. /*
  246. * oops, read error:
  247. */
  248. char b[BDEVNAME_SIZE];
  249. if (printk_ratelimit())
  250. printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
  251. mdname(conf->mddev),
  252. bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
  253. reschedule_retry(r10_bio);
  254. }
  255. rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
  256. }
  257. static void raid10_end_write_request(struct bio *bio, int error)
  258. {
  259. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  260. r10bio_t *r10_bio = bio->bi_private;
  261. int slot, dev;
  262. conf_t *conf = r10_bio->mddev->private;
  263. for (slot = 0; slot < conf->copies; slot++)
  264. if (r10_bio->devs[slot].bio == bio)
  265. break;
  266. dev = r10_bio->devs[slot].devnum;
  267. /*
  268. * this branch is our 'one mirror IO has finished' event handler:
  269. */
  270. if (!uptodate) {
  271. md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
  272. /* an I/O failed, we can't clear the bitmap */
  273. set_bit(R10BIO_Degraded, &r10_bio->state);
  274. } else
  275. /*
  276. * Set R10BIO_Uptodate in our master bio, so that
  277. * we will return a good error code for to the higher
  278. * levels even if IO on some other mirrored buffer fails.
  279. *
  280. * The 'master' represents the composite IO operation to
  281. * user-side. So if something waits for IO, then it will
  282. * wait for the 'master' bio.
  283. */
  284. set_bit(R10BIO_Uptodate, &r10_bio->state);
  285. update_head_pos(slot, r10_bio);
  286. /*
  287. *
  288. * Let's see if all mirrored write operations have finished
  289. * already.
  290. */
  291. if (atomic_dec_and_test(&r10_bio->remaining)) {
  292. /* clear the bitmap if all writes complete successfully */
  293. bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
  294. r10_bio->sectors,
  295. !test_bit(R10BIO_Degraded, &r10_bio->state),
  296. 0);
  297. md_write_end(r10_bio->mddev);
  298. raid_end_bio_io(r10_bio);
  299. }
  300. rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
  301. }
  302. /*
  303. * RAID10 layout manager
  304. * Aswell as the chunksize and raid_disks count, there are two
  305. * parameters: near_copies and far_copies.
  306. * near_copies * far_copies must be <= raid_disks.
  307. * Normally one of these will be 1.
  308. * If both are 1, we get raid0.
  309. * If near_copies == raid_disks, we get raid1.
  310. *
  311. * Chunks are layed out in raid0 style with near_copies copies of the
  312. * first chunk, followed by near_copies copies of the next chunk and
  313. * so on.
  314. * If far_copies > 1, then after 1/far_copies of the array has been assigned
  315. * as described above, we start again with a device offset of near_copies.
  316. * So we effectively have another copy of the whole array further down all
  317. * the drives, but with blocks on different drives.
  318. * With this layout, and block is never stored twice on the one device.
  319. *
  320. * raid10_find_phys finds the sector offset of a given virtual sector
  321. * on each device that it is on.
  322. *
  323. * raid10_find_virt does the reverse mapping, from a device and a
  324. * sector offset to a virtual address
  325. */
  326. static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
  327. {
  328. int n,f;
  329. sector_t sector;
  330. sector_t chunk;
  331. sector_t stripe;
  332. int dev;
  333. int slot = 0;
  334. /* now calculate first sector/dev */
  335. chunk = r10bio->sector >> conf->chunk_shift;
  336. sector = r10bio->sector & conf->chunk_mask;
  337. chunk *= conf->near_copies;
  338. stripe = chunk;
  339. dev = sector_div(stripe, conf->raid_disks);
  340. if (conf->far_offset)
  341. stripe *= conf->far_copies;
  342. sector += stripe << conf->chunk_shift;
  343. /* and calculate all the others */
  344. for (n=0; n < conf->near_copies; n++) {
  345. int d = dev;
  346. sector_t s = sector;
  347. r10bio->devs[slot].addr = sector;
  348. r10bio->devs[slot].devnum = d;
  349. slot++;
  350. for (f = 1; f < conf->far_copies; f++) {
  351. d += conf->near_copies;
  352. if (d >= conf->raid_disks)
  353. d -= conf->raid_disks;
  354. s += conf->stride;
  355. r10bio->devs[slot].devnum = d;
  356. r10bio->devs[slot].addr = s;
  357. slot++;
  358. }
  359. dev++;
  360. if (dev >= conf->raid_disks) {
  361. dev = 0;
  362. sector += (conf->chunk_mask + 1);
  363. }
  364. }
  365. BUG_ON(slot != conf->copies);
  366. }
  367. static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
  368. {
  369. sector_t offset, chunk, vchunk;
  370. offset = sector & conf->chunk_mask;
  371. if (conf->far_offset) {
  372. int fc;
  373. chunk = sector >> conf->chunk_shift;
  374. fc = sector_div(chunk, conf->far_copies);
  375. dev -= fc * conf->near_copies;
  376. if (dev < 0)
  377. dev += conf->raid_disks;
  378. } else {
  379. while (sector >= conf->stride) {
  380. sector -= conf->stride;
  381. if (dev < conf->near_copies)
  382. dev += conf->raid_disks - conf->near_copies;
  383. else
  384. dev -= conf->near_copies;
  385. }
  386. chunk = sector >> conf->chunk_shift;
  387. }
  388. vchunk = chunk * conf->raid_disks + dev;
  389. sector_div(vchunk, conf->near_copies);
  390. return (vchunk << conf->chunk_shift) + offset;
  391. }
  392. /**
  393. * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
  394. * @q: request queue
  395. * @bvm: properties of new bio
  396. * @biovec: the request that could be merged to it.
  397. *
  398. * Return amount of bytes we can accept at this offset
  399. * If near_copies == raid_disk, there are no striping issues,
  400. * but in that case, the function isn't called at all.
  401. */
  402. static int raid10_mergeable_bvec(struct request_queue *q,
  403. struct bvec_merge_data *bvm,
  404. struct bio_vec *biovec)
  405. {
  406. mddev_t *mddev = q->queuedata;
  407. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  408. int max;
  409. unsigned int chunk_sectors = mddev->chunk_sectors;
  410. unsigned int bio_sectors = bvm->bi_size >> 9;
  411. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  412. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  413. if (max <= biovec->bv_len && bio_sectors == 0)
  414. return biovec->bv_len;
  415. else
  416. return max;
  417. }
  418. /*
  419. * This routine returns the disk from which the requested read should
  420. * be done. There is a per-array 'next expected sequential IO' sector
  421. * number - if this matches on the next IO then we use the last disk.
  422. * There is also a per-disk 'last know head position' sector that is
  423. * maintained from IRQ contexts, both the normal and the resync IO
  424. * completion handlers update this position correctly. If there is no
  425. * perfect sequential match then we pick the disk whose head is closest.
  426. *
  427. * If there are 2 mirrors in the same 2 devices, performance degrades
  428. * because position is mirror, not device based.
  429. *
  430. * The rdev for the device selected will have nr_pending incremented.
  431. */
  432. /*
  433. * FIXME: possibly should rethink readbalancing and do it differently
  434. * depending on near_copies / far_copies geometry.
  435. */
  436. static int read_balance(conf_t *conf, r10bio_t *r10_bio)
  437. {
  438. const sector_t this_sector = r10_bio->sector;
  439. int disk, slot, nslot;
  440. const int sectors = r10_bio->sectors;
  441. sector_t new_distance, current_distance;
  442. mdk_rdev_t *rdev;
  443. raid10_find_phys(conf, r10_bio);
  444. rcu_read_lock();
  445. /*
  446. * Check if we can balance. We can balance on the whole
  447. * device if no resync is going on (recovery is ok), or below
  448. * the resync window. We take the first readable disk when
  449. * above the resync window.
  450. */
  451. if (conf->mddev->recovery_cp < MaxSector
  452. && (this_sector + sectors >= conf->next_resync)) {
  453. /* make sure that disk is operational */
  454. slot = 0;
  455. disk = r10_bio->devs[slot].devnum;
  456. while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
  457. r10_bio->devs[slot].bio == IO_BLOCKED ||
  458. !test_bit(In_sync, &rdev->flags)) {
  459. slot++;
  460. if (slot == conf->copies) {
  461. slot = 0;
  462. disk = -1;
  463. break;
  464. }
  465. disk = r10_bio->devs[slot].devnum;
  466. }
  467. goto rb_out;
  468. }
  469. /* make sure the disk is operational */
  470. slot = 0;
  471. disk = r10_bio->devs[slot].devnum;
  472. while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
  473. r10_bio->devs[slot].bio == IO_BLOCKED ||
  474. !test_bit(In_sync, &rdev->flags)) {
  475. slot ++;
  476. if (slot == conf->copies) {
  477. disk = -1;
  478. goto rb_out;
  479. }
  480. disk = r10_bio->devs[slot].devnum;
  481. }
  482. current_distance = abs(r10_bio->devs[slot].addr -
  483. conf->mirrors[disk].head_position);
  484. /* Find the disk whose head is closest,
  485. * or - for far > 1 - find the closest to partition beginning */
  486. for (nslot = slot; nslot < conf->copies; nslot++) {
  487. int ndisk = r10_bio->devs[nslot].devnum;
  488. if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
  489. r10_bio->devs[nslot].bio == IO_BLOCKED ||
  490. !test_bit(In_sync, &rdev->flags))
  491. continue;
  492. /* This optimisation is debatable, and completely destroys
  493. * sequential read speed for 'far copies' arrays. So only
  494. * keep it for 'near' arrays, and review those later.
  495. */
  496. if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
  497. disk = ndisk;
  498. slot = nslot;
  499. break;
  500. }
  501. /* for far > 1 always use the lowest address */
  502. if (conf->far_copies > 1)
  503. new_distance = r10_bio->devs[nslot].addr;
  504. else
  505. new_distance = abs(r10_bio->devs[nslot].addr -
  506. conf->mirrors[ndisk].head_position);
  507. if (new_distance < current_distance) {
  508. current_distance = new_distance;
  509. disk = ndisk;
  510. slot = nslot;
  511. }
  512. }
  513. rb_out:
  514. r10_bio->read_slot = slot;
  515. /* conf->next_seq_sect = this_sector + sectors;*/
  516. if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
  517. atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
  518. else
  519. disk = -1;
  520. rcu_read_unlock();
  521. return disk;
  522. }
  523. static void unplug_slaves(mddev_t *mddev)
  524. {
  525. conf_t *conf = mddev->private;
  526. int i;
  527. rcu_read_lock();
  528. for (i=0; i < conf->raid_disks; i++) {
  529. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  530. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  531. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  532. atomic_inc(&rdev->nr_pending);
  533. rcu_read_unlock();
  534. blk_unplug(r_queue);
  535. rdev_dec_pending(rdev, mddev);
  536. rcu_read_lock();
  537. }
  538. }
  539. rcu_read_unlock();
  540. }
  541. static void raid10_unplug(struct request_queue *q)
  542. {
  543. mddev_t *mddev = q->queuedata;
  544. unplug_slaves(q->queuedata);
  545. md_wakeup_thread(mddev->thread);
  546. }
  547. static int raid10_congested(void *data, int bits)
  548. {
  549. mddev_t *mddev = data;
  550. conf_t *conf = mddev->private;
  551. int i, ret = 0;
  552. if (mddev_congested(mddev, bits))
  553. return 1;
  554. rcu_read_lock();
  555. for (i = 0; i < conf->raid_disks && ret == 0; i++) {
  556. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  557. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  558. struct request_queue *q = bdev_get_queue(rdev->bdev);
  559. ret |= bdi_congested(&q->backing_dev_info, bits);
  560. }
  561. }
  562. rcu_read_unlock();
  563. return ret;
  564. }
  565. static int flush_pending_writes(conf_t *conf)
  566. {
  567. /* Any writes that have been queued but are awaiting
  568. * bitmap updates get flushed here.
  569. * We return 1 if any requests were actually submitted.
  570. */
  571. int rv = 0;
  572. spin_lock_irq(&conf->device_lock);
  573. if (conf->pending_bio_list.head) {
  574. struct bio *bio;
  575. bio = bio_list_get(&conf->pending_bio_list);
  576. blk_remove_plug(conf->mddev->queue);
  577. spin_unlock_irq(&conf->device_lock);
  578. /* flush any pending bitmap writes to disk
  579. * before proceeding w/ I/O */
  580. bitmap_unplug(conf->mddev->bitmap);
  581. while (bio) { /* submit pending writes */
  582. struct bio *next = bio->bi_next;
  583. bio->bi_next = NULL;
  584. generic_make_request(bio);
  585. bio = next;
  586. }
  587. rv = 1;
  588. } else
  589. spin_unlock_irq(&conf->device_lock);
  590. return rv;
  591. }
  592. /* Barriers....
  593. * Sometimes we need to suspend IO while we do something else,
  594. * either some resync/recovery, or reconfigure the array.
  595. * To do this we raise a 'barrier'.
  596. * The 'barrier' is a counter that can be raised multiple times
  597. * to count how many activities are happening which preclude
  598. * normal IO.
  599. * We can only raise the barrier if there is no pending IO.
  600. * i.e. if nr_pending == 0.
  601. * We choose only to raise the barrier if no-one is waiting for the
  602. * barrier to go down. This means that as soon as an IO request
  603. * is ready, no other operations which require a barrier will start
  604. * until the IO request has had a chance.
  605. *
  606. * So: regular IO calls 'wait_barrier'. When that returns there
  607. * is no backgroup IO happening, It must arrange to call
  608. * allow_barrier when it has finished its IO.
  609. * backgroup IO calls must call raise_barrier. Once that returns
  610. * there is no normal IO happeing. It must arrange to call
  611. * lower_barrier when the particular background IO completes.
  612. */
  613. static void raise_barrier(conf_t *conf, int force)
  614. {
  615. BUG_ON(force && !conf->barrier);
  616. spin_lock_irq(&conf->resync_lock);
  617. /* Wait until no block IO is waiting (unless 'force') */
  618. wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
  619. conf->resync_lock,
  620. raid10_unplug(conf->mddev->queue));
  621. /* block any new IO from starting */
  622. conf->barrier++;
  623. /* No wait for all pending IO to complete */
  624. wait_event_lock_irq(conf->wait_barrier,
  625. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  626. conf->resync_lock,
  627. raid10_unplug(conf->mddev->queue));
  628. spin_unlock_irq(&conf->resync_lock);
  629. }
  630. static void lower_barrier(conf_t *conf)
  631. {
  632. unsigned long flags;
  633. spin_lock_irqsave(&conf->resync_lock, flags);
  634. conf->barrier--;
  635. spin_unlock_irqrestore(&conf->resync_lock, flags);
  636. wake_up(&conf->wait_barrier);
  637. }
  638. static void wait_barrier(conf_t *conf)
  639. {
  640. spin_lock_irq(&conf->resync_lock);
  641. if (conf->barrier) {
  642. conf->nr_waiting++;
  643. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  644. conf->resync_lock,
  645. raid10_unplug(conf->mddev->queue));
  646. conf->nr_waiting--;
  647. }
  648. conf->nr_pending++;
  649. spin_unlock_irq(&conf->resync_lock);
  650. }
  651. static void allow_barrier(conf_t *conf)
  652. {
  653. unsigned long flags;
  654. spin_lock_irqsave(&conf->resync_lock, flags);
  655. conf->nr_pending--;
  656. spin_unlock_irqrestore(&conf->resync_lock, flags);
  657. wake_up(&conf->wait_barrier);
  658. }
  659. static void freeze_array(conf_t *conf)
  660. {
  661. /* stop syncio and normal IO and wait for everything to
  662. * go quiet.
  663. * We increment barrier and nr_waiting, and then
  664. * wait until nr_pending match nr_queued+1
  665. * This is called in the context of one normal IO request
  666. * that has failed. Thus any sync request that might be pending
  667. * will be blocked by nr_pending, and we need to wait for
  668. * pending IO requests to complete or be queued for re-try.
  669. * Thus the number queued (nr_queued) plus this request (1)
  670. * must match the number of pending IOs (nr_pending) before
  671. * we continue.
  672. */
  673. spin_lock_irq(&conf->resync_lock);
  674. conf->barrier++;
  675. conf->nr_waiting++;
  676. wait_event_lock_irq(conf->wait_barrier,
  677. conf->nr_pending == conf->nr_queued+1,
  678. conf->resync_lock,
  679. ({ flush_pending_writes(conf);
  680. raid10_unplug(conf->mddev->queue); }));
  681. spin_unlock_irq(&conf->resync_lock);
  682. }
  683. static void unfreeze_array(conf_t *conf)
  684. {
  685. /* reverse the effect of the freeze */
  686. spin_lock_irq(&conf->resync_lock);
  687. conf->barrier--;
  688. conf->nr_waiting--;
  689. wake_up(&conf->wait_barrier);
  690. spin_unlock_irq(&conf->resync_lock);
  691. }
  692. static int make_request(mddev_t *mddev, struct bio * bio)
  693. {
  694. conf_t *conf = mddev->private;
  695. mirror_info_t *mirror;
  696. r10bio_t *r10_bio;
  697. struct bio *read_bio;
  698. int i;
  699. int chunk_sects = conf->chunk_mask + 1;
  700. const int rw = bio_data_dir(bio);
  701. const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
  702. struct bio_list bl;
  703. unsigned long flags;
  704. mdk_rdev_t *blocked_rdev;
  705. if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
  706. md_barrier_request(mddev, bio);
  707. return 0;
  708. }
  709. /* If this request crosses a chunk boundary, we need to
  710. * split it. This will only happen for 1 PAGE (or less) requests.
  711. */
  712. if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
  713. > chunk_sects &&
  714. conf->near_copies < conf->raid_disks)) {
  715. struct bio_pair *bp;
  716. /* Sanity check -- queue functions should prevent this happening */
  717. if (bio->bi_vcnt != 1 ||
  718. bio->bi_idx != 0)
  719. goto bad_map;
  720. /* This is a one page bio that upper layers
  721. * refuse to split for us, so we need to split it.
  722. */
  723. bp = bio_split(bio,
  724. chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  725. if (make_request(mddev, &bp->bio1))
  726. generic_make_request(&bp->bio1);
  727. if (make_request(mddev, &bp->bio2))
  728. generic_make_request(&bp->bio2);
  729. bio_pair_release(bp);
  730. return 0;
  731. bad_map:
  732. printk("md/raid10:%s: make_request bug: can't convert block across chunks"
  733. " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
  734. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  735. bio_io_error(bio);
  736. return 0;
  737. }
  738. md_write_start(mddev, bio);
  739. /*
  740. * Register the new request and wait if the reconstruction
  741. * thread has put up a bar for new requests.
  742. * Continue immediately if no resync is active currently.
  743. */
  744. wait_barrier(conf);
  745. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  746. r10_bio->master_bio = bio;
  747. r10_bio->sectors = bio->bi_size >> 9;
  748. r10_bio->mddev = mddev;
  749. r10_bio->sector = bio->bi_sector;
  750. r10_bio->state = 0;
  751. if (rw == READ) {
  752. /*
  753. * read balancing logic:
  754. */
  755. int disk = read_balance(conf, r10_bio);
  756. int slot = r10_bio->read_slot;
  757. if (disk < 0) {
  758. raid_end_bio_io(r10_bio);
  759. return 0;
  760. }
  761. mirror = conf->mirrors + disk;
  762. read_bio = bio_clone(bio, GFP_NOIO);
  763. r10_bio->devs[slot].bio = read_bio;
  764. read_bio->bi_sector = r10_bio->devs[slot].addr +
  765. mirror->rdev->data_offset;
  766. read_bio->bi_bdev = mirror->rdev->bdev;
  767. read_bio->bi_end_io = raid10_end_read_request;
  768. read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
  769. read_bio->bi_private = r10_bio;
  770. generic_make_request(read_bio);
  771. return 0;
  772. }
  773. /*
  774. * WRITE:
  775. */
  776. /* first select target devices under rcu_lock and
  777. * inc refcount on their rdev. Record them by setting
  778. * bios[x] to bio
  779. */
  780. raid10_find_phys(conf, r10_bio);
  781. retry_write:
  782. blocked_rdev = NULL;
  783. rcu_read_lock();
  784. for (i = 0; i < conf->copies; i++) {
  785. int d = r10_bio->devs[i].devnum;
  786. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
  787. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  788. atomic_inc(&rdev->nr_pending);
  789. blocked_rdev = rdev;
  790. break;
  791. }
  792. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  793. atomic_inc(&rdev->nr_pending);
  794. r10_bio->devs[i].bio = bio;
  795. } else {
  796. r10_bio->devs[i].bio = NULL;
  797. set_bit(R10BIO_Degraded, &r10_bio->state);
  798. }
  799. }
  800. rcu_read_unlock();
  801. if (unlikely(blocked_rdev)) {
  802. /* Have to wait for this device to get unblocked, then retry */
  803. int j;
  804. int d;
  805. for (j = 0; j < i; j++)
  806. if (r10_bio->devs[j].bio) {
  807. d = r10_bio->devs[j].devnum;
  808. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  809. }
  810. allow_barrier(conf);
  811. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  812. wait_barrier(conf);
  813. goto retry_write;
  814. }
  815. atomic_set(&r10_bio->remaining, 0);
  816. bio_list_init(&bl);
  817. for (i = 0; i < conf->copies; i++) {
  818. struct bio *mbio;
  819. int d = r10_bio->devs[i].devnum;
  820. if (!r10_bio->devs[i].bio)
  821. continue;
  822. mbio = bio_clone(bio, GFP_NOIO);
  823. r10_bio->devs[i].bio = mbio;
  824. mbio->bi_sector = r10_bio->devs[i].addr+
  825. conf->mirrors[d].rdev->data_offset;
  826. mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  827. mbio->bi_end_io = raid10_end_write_request;
  828. mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
  829. mbio->bi_private = r10_bio;
  830. atomic_inc(&r10_bio->remaining);
  831. bio_list_add(&bl, mbio);
  832. }
  833. if (unlikely(!atomic_read(&r10_bio->remaining))) {
  834. /* the array is dead */
  835. md_write_end(mddev);
  836. raid_end_bio_io(r10_bio);
  837. return 0;
  838. }
  839. bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
  840. spin_lock_irqsave(&conf->device_lock, flags);
  841. bio_list_merge(&conf->pending_bio_list, &bl);
  842. blk_plug_device(mddev->queue);
  843. spin_unlock_irqrestore(&conf->device_lock, flags);
  844. /* In case raid10d snuck in to freeze_array */
  845. wake_up(&conf->wait_barrier);
  846. if (do_sync)
  847. md_wakeup_thread(mddev->thread);
  848. return 0;
  849. }
  850. static void status(struct seq_file *seq, mddev_t *mddev)
  851. {
  852. conf_t *conf = mddev->private;
  853. int i;
  854. if (conf->near_copies < conf->raid_disks)
  855. seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
  856. if (conf->near_copies > 1)
  857. seq_printf(seq, " %d near-copies", conf->near_copies);
  858. if (conf->far_copies > 1) {
  859. if (conf->far_offset)
  860. seq_printf(seq, " %d offset-copies", conf->far_copies);
  861. else
  862. seq_printf(seq, " %d far-copies", conf->far_copies);
  863. }
  864. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  865. conf->raid_disks - mddev->degraded);
  866. for (i = 0; i < conf->raid_disks; i++)
  867. seq_printf(seq, "%s",
  868. conf->mirrors[i].rdev &&
  869. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  870. seq_printf(seq, "]");
  871. }
  872. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  873. {
  874. char b[BDEVNAME_SIZE];
  875. conf_t *conf = mddev->private;
  876. /*
  877. * If it is not operational, then we have already marked it as dead
  878. * else if it is the last working disks, ignore the error, let the
  879. * next level up know.
  880. * else mark the drive as failed
  881. */
  882. if (test_bit(In_sync, &rdev->flags)
  883. && conf->raid_disks-mddev->degraded == 1)
  884. /*
  885. * Don't fail the drive, just return an IO error.
  886. * The test should really be more sophisticated than
  887. * "working_disks == 1", but it isn't critical, and
  888. * can wait until we do more sophisticated "is the drive
  889. * really dead" tests...
  890. */
  891. return;
  892. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  893. unsigned long flags;
  894. spin_lock_irqsave(&conf->device_lock, flags);
  895. mddev->degraded++;
  896. spin_unlock_irqrestore(&conf->device_lock, flags);
  897. /*
  898. * if recovery is running, make sure it aborts.
  899. */
  900. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  901. }
  902. set_bit(Faulty, &rdev->flags);
  903. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  904. printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n"
  905. KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n",
  906. mdname(mddev), bdevname(rdev->bdev, b),
  907. mdname(mddev), conf->raid_disks - mddev->degraded);
  908. }
  909. static void print_conf(conf_t *conf)
  910. {
  911. int i;
  912. mirror_info_t *tmp;
  913. printk(KERN_DEBUG "RAID10 conf printout:\n");
  914. if (!conf) {
  915. printk(KERN_DEBUG "(!conf)\n");
  916. return;
  917. }
  918. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  919. conf->raid_disks);
  920. for (i = 0; i < conf->raid_disks; i++) {
  921. char b[BDEVNAME_SIZE];
  922. tmp = conf->mirrors + i;
  923. if (tmp->rdev)
  924. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  925. i, !test_bit(In_sync, &tmp->rdev->flags),
  926. !test_bit(Faulty, &tmp->rdev->flags),
  927. bdevname(tmp->rdev->bdev,b));
  928. }
  929. }
  930. static void close_sync(conf_t *conf)
  931. {
  932. wait_barrier(conf);
  933. allow_barrier(conf);
  934. mempool_destroy(conf->r10buf_pool);
  935. conf->r10buf_pool = NULL;
  936. }
  937. /* check if there are enough drives for
  938. * every block to appear on atleast one
  939. */
  940. static int enough(conf_t *conf)
  941. {
  942. int first = 0;
  943. do {
  944. int n = conf->copies;
  945. int cnt = 0;
  946. while (n--) {
  947. if (conf->mirrors[first].rdev)
  948. cnt++;
  949. first = (first+1) % conf->raid_disks;
  950. }
  951. if (cnt == 0)
  952. return 0;
  953. } while (first != 0);
  954. return 1;
  955. }
  956. static int raid10_spare_active(mddev_t *mddev)
  957. {
  958. int i;
  959. conf_t *conf = mddev->private;
  960. mirror_info_t *tmp;
  961. /*
  962. * Find all non-in_sync disks within the RAID10 configuration
  963. * and mark them in_sync
  964. */
  965. for (i = 0; i < conf->raid_disks; i++) {
  966. tmp = conf->mirrors + i;
  967. if (tmp->rdev
  968. && !test_bit(Faulty, &tmp->rdev->flags)
  969. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  970. unsigned long flags;
  971. spin_lock_irqsave(&conf->device_lock, flags);
  972. mddev->degraded--;
  973. spin_unlock_irqrestore(&conf->device_lock, flags);
  974. }
  975. }
  976. print_conf(conf);
  977. return 0;
  978. }
  979. static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  980. {
  981. conf_t *conf = mddev->private;
  982. int err = -EEXIST;
  983. int mirror;
  984. mirror_info_t *p;
  985. int first = 0;
  986. int last = conf->raid_disks - 1;
  987. if (mddev->recovery_cp < MaxSector)
  988. /* only hot-add to in-sync arrays, as recovery is
  989. * very different from resync
  990. */
  991. return -EBUSY;
  992. if (!enough(conf))
  993. return -EINVAL;
  994. if (rdev->raid_disk >= 0)
  995. first = last = rdev->raid_disk;
  996. if (rdev->saved_raid_disk >= 0 &&
  997. rdev->saved_raid_disk >= first &&
  998. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  999. mirror = rdev->saved_raid_disk;
  1000. else
  1001. mirror = first;
  1002. for ( ; mirror <= last ; mirror++)
  1003. if ( !(p=conf->mirrors+mirror)->rdev) {
  1004. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1005. rdev->data_offset << 9);
  1006. /* as we don't honour merge_bvec_fn, we must
  1007. * never risk violating it, so limit
  1008. * ->max_segments to one lying with a single
  1009. * page, as a one page request is never in
  1010. * violation.
  1011. */
  1012. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1013. blk_queue_max_segments(mddev->queue, 1);
  1014. blk_queue_segment_boundary(mddev->queue,
  1015. PAGE_CACHE_SIZE - 1);
  1016. }
  1017. p->head_position = 0;
  1018. rdev->raid_disk = mirror;
  1019. err = 0;
  1020. if (rdev->saved_raid_disk != mirror)
  1021. conf->fullsync = 1;
  1022. rcu_assign_pointer(p->rdev, rdev);
  1023. break;
  1024. }
  1025. md_integrity_add_rdev(rdev, mddev);
  1026. print_conf(conf);
  1027. return err;
  1028. }
  1029. static int raid10_remove_disk(mddev_t *mddev, int number)
  1030. {
  1031. conf_t *conf = mddev->private;
  1032. int err = 0;
  1033. mdk_rdev_t *rdev;
  1034. mirror_info_t *p = conf->mirrors+ number;
  1035. print_conf(conf);
  1036. rdev = p->rdev;
  1037. if (rdev) {
  1038. if (test_bit(In_sync, &rdev->flags) ||
  1039. atomic_read(&rdev->nr_pending)) {
  1040. err = -EBUSY;
  1041. goto abort;
  1042. }
  1043. /* Only remove faulty devices in recovery
  1044. * is not possible.
  1045. */
  1046. if (!test_bit(Faulty, &rdev->flags) &&
  1047. enough(conf)) {
  1048. err = -EBUSY;
  1049. goto abort;
  1050. }
  1051. p->rdev = NULL;
  1052. synchronize_rcu();
  1053. if (atomic_read(&rdev->nr_pending)) {
  1054. /* lost the race, try later */
  1055. err = -EBUSY;
  1056. p->rdev = rdev;
  1057. goto abort;
  1058. }
  1059. md_integrity_register(mddev);
  1060. }
  1061. abort:
  1062. print_conf(conf);
  1063. return err;
  1064. }
  1065. static void end_sync_read(struct bio *bio, int error)
  1066. {
  1067. r10bio_t *r10_bio = bio->bi_private;
  1068. conf_t *conf = r10_bio->mddev->private;
  1069. int i,d;
  1070. for (i=0; i<conf->copies; i++)
  1071. if (r10_bio->devs[i].bio == bio)
  1072. break;
  1073. BUG_ON(i == conf->copies);
  1074. update_head_pos(i, r10_bio);
  1075. d = r10_bio->devs[i].devnum;
  1076. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1077. set_bit(R10BIO_Uptodate, &r10_bio->state);
  1078. else {
  1079. atomic_add(r10_bio->sectors,
  1080. &conf->mirrors[d].rdev->corrected_errors);
  1081. if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
  1082. md_error(r10_bio->mddev,
  1083. conf->mirrors[d].rdev);
  1084. }
  1085. /* for reconstruct, we always reschedule after a read.
  1086. * for resync, only after all reads
  1087. */
  1088. rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
  1089. if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
  1090. atomic_dec_and_test(&r10_bio->remaining)) {
  1091. /* we have read all the blocks,
  1092. * do the comparison in process context in raid10d
  1093. */
  1094. reschedule_retry(r10_bio);
  1095. }
  1096. }
  1097. static void end_sync_write(struct bio *bio, int error)
  1098. {
  1099. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1100. r10bio_t *r10_bio = bio->bi_private;
  1101. mddev_t *mddev = r10_bio->mddev;
  1102. conf_t *conf = mddev->private;
  1103. int i,d;
  1104. for (i = 0; i < conf->copies; i++)
  1105. if (r10_bio->devs[i].bio == bio)
  1106. break;
  1107. d = r10_bio->devs[i].devnum;
  1108. if (!uptodate)
  1109. md_error(mddev, conf->mirrors[d].rdev);
  1110. update_head_pos(i, r10_bio);
  1111. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1112. while (atomic_dec_and_test(&r10_bio->remaining)) {
  1113. if (r10_bio->master_bio == NULL) {
  1114. /* the primary of several recovery bios */
  1115. sector_t s = r10_bio->sectors;
  1116. put_buf(r10_bio);
  1117. md_done_sync(mddev, s, 1);
  1118. break;
  1119. } else {
  1120. r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
  1121. put_buf(r10_bio);
  1122. r10_bio = r10_bio2;
  1123. }
  1124. }
  1125. }
  1126. /*
  1127. * Note: sync and recover and handled very differently for raid10
  1128. * This code is for resync.
  1129. * For resync, we read through virtual addresses and read all blocks.
  1130. * If there is any error, we schedule a write. The lowest numbered
  1131. * drive is authoritative.
  1132. * However requests come for physical address, so we need to map.
  1133. * For every physical address there are raid_disks/copies virtual addresses,
  1134. * which is always are least one, but is not necessarly an integer.
  1135. * This means that a physical address can span multiple chunks, so we may
  1136. * have to submit multiple io requests for a single sync request.
  1137. */
  1138. /*
  1139. * We check if all blocks are in-sync and only write to blocks that
  1140. * aren't in sync
  1141. */
  1142. static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
  1143. {
  1144. conf_t *conf = mddev->private;
  1145. int i, first;
  1146. struct bio *tbio, *fbio;
  1147. atomic_set(&r10_bio->remaining, 1);
  1148. /* find the first device with a block */
  1149. for (i=0; i<conf->copies; i++)
  1150. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
  1151. break;
  1152. if (i == conf->copies)
  1153. goto done;
  1154. first = i;
  1155. fbio = r10_bio->devs[i].bio;
  1156. /* now find blocks with errors */
  1157. for (i=0 ; i < conf->copies ; i++) {
  1158. int j, d;
  1159. int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
  1160. tbio = r10_bio->devs[i].bio;
  1161. if (tbio->bi_end_io != end_sync_read)
  1162. continue;
  1163. if (i == first)
  1164. continue;
  1165. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
  1166. /* We know that the bi_io_vec layout is the same for
  1167. * both 'first' and 'i', so we just compare them.
  1168. * All vec entries are PAGE_SIZE;
  1169. */
  1170. for (j = 0; j < vcnt; j++)
  1171. if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
  1172. page_address(tbio->bi_io_vec[j].bv_page),
  1173. PAGE_SIZE))
  1174. break;
  1175. if (j == vcnt)
  1176. continue;
  1177. mddev->resync_mismatches += r10_bio->sectors;
  1178. }
  1179. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1180. /* Don't fix anything. */
  1181. continue;
  1182. /* Ok, we need to write this bio
  1183. * First we need to fixup bv_offset, bv_len and
  1184. * bi_vecs, as the read request might have corrupted these
  1185. */
  1186. tbio->bi_vcnt = vcnt;
  1187. tbio->bi_size = r10_bio->sectors << 9;
  1188. tbio->bi_idx = 0;
  1189. tbio->bi_phys_segments = 0;
  1190. tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1191. tbio->bi_flags |= 1 << BIO_UPTODATE;
  1192. tbio->bi_next = NULL;
  1193. tbio->bi_rw = WRITE;
  1194. tbio->bi_private = r10_bio;
  1195. tbio->bi_sector = r10_bio->devs[i].addr;
  1196. for (j=0; j < vcnt ; j++) {
  1197. tbio->bi_io_vec[j].bv_offset = 0;
  1198. tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
  1199. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1200. page_address(fbio->bi_io_vec[j].bv_page),
  1201. PAGE_SIZE);
  1202. }
  1203. tbio->bi_end_io = end_sync_write;
  1204. d = r10_bio->devs[i].devnum;
  1205. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1206. atomic_inc(&r10_bio->remaining);
  1207. md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
  1208. tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
  1209. tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1210. generic_make_request(tbio);
  1211. }
  1212. done:
  1213. if (atomic_dec_and_test(&r10_bio->remaining)) {
  1214. md_done_sync(mddev, r10_bio->sectors, 1);
  1215. put_buf(r10_bio);
  1216. }
  1217. }
  1218. /*
  1219. * Now for the recovery code.
  1220. * Recovery happens across physical sectors.
  1221. * We recover all non-is_sync drives by finding the virtual address of
  1222. * each, and then choose a working drive that also has that virt address.
  1223. * There is a separate r10_bio for each non-in_sync drive.
  1224. * Only the first two slots are in use. The first for reading,
  1225. * The second for writing.
  1226. *
  1227. */
  1228. static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
  1229. {
  1230. conf_t *conf = mddev->private;
  1231. int i, d;
  1232. struct bio *bio, *wbio;
  1233. /* move the pages across to the second bio
  1234. * and submit the write request
  1235. */
  1236. bio = r10_bio->devs[0].bio;
  1237. wbio = r10_bio->devs[1].bio;
  1238. for (i=0; i < wbio->bi_vcnt; i++) {
  1239. struct page *p = bio->bi_io_vec[i].bv_page;
  1240. bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
  1241. wbio->bi_io_vec[i].bv_page = p;
  1242. }
  1243. d = r10_bio->devs[1].devnum;
  1244. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1245. md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
  1246. if (test_bit(R10BIO_Uptodate, &r10_bio->state))
  1247. generic_make_request(wbio);
  1248. else
  1249. bio_endio(wbio, -EIO);
  1250. }
  1251. /*
  1252. * Used by fix_read_error() to decay the per rdev read_errors.
  1253. * We halve the read error count for every hour that has elapsed
  1254. * since the last recorded read error.
  1255. *
  1256. */
  1257. static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
  1258. {
  1259. struct timespec cur_time_mon;
  1260. unsigned long hours_since_last;
  1261. unsigned int read_errors = atomic_read(&rdev->read_errors);
  1262. ktime_get_ts(&cur_time_mon);
  1263. if (rdev->last_read_error.tv_sec == 0 &&
  1264. rdev->last_read_error.tv_nsec == 0) {
  1265. /* first time we've seen a read error */
  1266. rdev->last_read_error = cur_time_mon;
  1267. return;
  1268. }
  1269. hours_since_last = (cur_time_mon.tv_sec -
  1270. rdev->last_read_error.tv_sec) / 3600;
  1271. rdev->last_read_error = cur_time_mon;
  1272. /*
  1273. * if hours_since_last is > the number of bits in read_errors
  1274. * just set read errors to 0. We do this to avoid
  1275. * overflowing the shift of read_errors by hours_since_last.
  1276. */
  1277. if (hours_since_last >= 8 * sizeof(read_errors))
  1278. atomic_set(&rdev->read_errors, 0);
  1279. else
  1280. atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
  1281. }
  1282. /*
  1283. * This is a kernel thread which:
  1284. *
  1285. * 1. Retries failed read operations on working mirrors.
  1286. * 2. Updates the raid superblock when problems encounter.
  1287. * 3. Performs writes following reads for array synchronising.
  1288. */
  1289. static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
  1290. {
  1291. int sect = 0; /* Offset from r10_bio->sector */
  1292. int sectors = r10_bio->sectors;
  1293. mdk_rdev_t*rdev;
  1294. int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
  1295. int d = r10_bio->devs[r10_bio->read_slot].devnum;
  1296. rcu_read_lock();
  1297. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1298. if (rdev) { /* If rdev is not NULL */
  1299. char b[BDEVNAME_SIZE];
  1300. int cur_read_error_count = 0;
  1301. bdevname(rdev->bdev, b);
  1302. if (test_bit(Faulty, &rdev->flags)) {
  1303. rcu_read_unlock();
  1304. /* drive has already been failed, just ignore any
  1305. more fix_read_error() attempts */
  1306. return;
  1307. }
  1308. check_decay_read_errors(mddev, rdev);
  1309. atomic_inc(&rdev->read_errors);
  1310. cur_read_error_count = atomic_read(&rdev->read_errors);
  1311. if (cur_read_error_count > max_read_errors) {
  1312. rcu_read_unlock();
  1313. printk(KERN_NOTICE
  1314. "md/raid10:%s: %s: Raid device exceeded "
  1315. "read_error threshold "
  1316. "[cur %d:max %d]\n",
  1317. mdname(mddev),
  1318. b, cur_read_error_count, max_read_errors);
  1319. printk(KERN_NOTICE
  1320. "md/raid10:%s: %s: Failing raid "
  1321. "device\n", mdname(mddev), b);
  1322. md_error(mddev, conf->mirrors[d].rdev);
  1323. return;
  1324. }
  1325. }
  1326. rcu_read_unlock();
  1327. while(sectors) {
  1328. int s = sectors;
  1329. int sl = r10_bio->read_slot;
  1330. int success = 0;
  1331. int start;
  1332. if (s > (PAGE_SIZE>>9))
  1333. s = PAGE_SIZE >> 9;
  1334. rcu_read_lock();
  1335. do {
  1336. d = r10_bio->devs[sl].devnum;
  1337. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1338. if (rdev &&
  1339. test_bit(In_sync, &rdev->flags)) {
  1340. atomic_inc(&rdev->nr_pending);
  1341. rcu_read_unlock();
  1342. success = sync_page_io(rdev->bdev,
  1343. r10_bio->devs[sl].addr +
  1344. sect + rdev->data_offset,
  1345. s<<9,
  1346. conf->tmppage, READ);
  1347. rdev_dec_pending(rdev, mddev);
  1348. rcu_read_lock();
  1349. if (success)
  1350. break;
  1351. }
  1352. sl++;
  1353. if (sl == conf->copies)
  1354. sl = 0;
  1355. } while (!success && sl != r10_bio->read_slot);
  1356. rcu_read_unlock();
  1357. if (!success) {
  1358. /* Cannot read from anywhere -- bye bye array */
  1359. int dn = r10_bio->devs[r10_bio->read_slot].devnum;
  1360. md_error(mddev, conf->mirrors[dn].rdev);
  1361. break;
  1362. }
  1363. start = sl;
  1364. /* write it back and re-read */
  1365. rcu_read_lock();
  1366. while (sl != r10_bio->read_slot) {
  1367. char b[BDEVNAME_SIZE];
  1368. if (sl==0)
  1369. sl = conf->copies;
  1370. sl--;
  1371. d = r10_bio->devs[sl].devnum;
  1372. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1373. if (rdev &&
  1374. test_bit(In_sync, &rdev->flags)) {
  1375. atomic_inc(&rdev->nr_pending);
  1376. rcu_read_unlock();
  1377. atomic_add(s, &rdev->corrected_errors);
  1378. if (sync_page_io(rdev->bdev,
  1379. r10_bio->devs[sl].addr +
  1380. sect + rdev->data_offset,
  1381. s<<9, conf->tmppage, WRITE)
  1382. == 0) {
  1383. /* Well, this device is dead */
  1384. printk(KERN_NOTICE
  1385. "md/raid10:%s: read correction "
  1386. "write failed"
  1387. " (%d sectors at %llu on %s)\n",
  1388. mdname(mddev), s,
  1389. (unsigned long long)(sect+
  1390. rdev->data_offset),
  1391. bdevname(rdev->bdev, b));
  1392. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  1393. "drive\n",
  1394. mdname(mddev),
  1395. bdevname(rdev->bdev, b));
  1396. md_error(mddev, rdev);
  1397. }
  1398. rdev_dec_pending(rdev, mddev);
  1399. rcu_read_lock();
  1400. }
  1401. }
  1402. sl = start;
  1403. while (sl != r10_bio->read_slot) {
  1404. if (sl==0)
  1405. sl = conf->copies;
  1406. sl--;
  1407. d = r10_bio->devs[sl].devnum;
  1408. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1409. if (rdev &&
  1410. test_bit(In_sync, &rdev->flags)) {
  1411. char b[BDEVNAME_SIZE];
  1412. atomic_inc(&rdev->nr_pending);
  1413. rcu_read_unlock();
  1414. if (sync_page_io(rdev->bdev,
  1415. r10_bio->devs[sl].addr +
  1416. sect + rdev->data_offset,
  1417. s<<9, conf->tmppage,
  1418. READ) == 0) {
  1419. /* Well, this device is dead */
  1420. printk(KERN_NOTICE
  1421. "md/raid10:%s: unable to read back "
  1422. "corrected sectors"
  1423. " (%d sectors at %llu on %s)\n",
  1424. mdname(mddev), s,
  1425. (unsigned long long)(sect+
  1426. rdev->data_offset),
  1427. bdevname(rdev->bdev, b));
  1428. printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
  1429. mdname(mddev),
  1430. bdevname(rdev->bdev, b));
  1431. md_error(mddev, rdev);
  1432. } else {
  1433. printk(KERN_INFO
  1434. "md/raid10:%s: read error corrected"
  1435. " (%d sectors at %llu on %s)\n",
  1436. mdname(mddev), s,
  1437. (unsigned long long)(sect+
  1438. rdev->data_offset),
  1439. bdevname(rdev->bdev, b));
  1440. }
  1441. rdev_dec_pending(rdev, mddev);
  1442. rcu_read_lock();
  1443. }
  1444. }
  1445. rcu_read_unlock();
  1446. sectors -= s;
  1447. sect += s;
  1448. }
  1449. }
  1450. static void raid10d(mddev_t *mddev)
  1451. {
  1452. r10bio_t *r10_bio;
  1453. struct bio *bio;
  1454. unsigned long flags;
  1455. conf_t *conf = mddev->private;
  1456. struct list_head *head = &conf->retry_list;
  1457. int unplug=0;
  1458. mdk_rdev_t *rdev;
  1459. md_check_recovery(mddev);
  1460. for (;;) {
  1461. char b[BDEVNAME_SIZE];
  1462. unplug += flush_pending_writes(conf);
  1463. spin_lock_irqsave(&conf->device_lock, flags);
  1464. if (list_empty(head)) {
  1465. spin_unlock_irqrestore(&conf->device_lock, flags);
  1466. break;
  1467. }
  1468. r10_bio = list_entry(head->prev, r10bio_t, retry_list);
  1469. list_del(head->prev);
  1470. conf->nr_queued--;
  1471. spin_unlock_irqrestore(&conf->device_lock, flags);
  1472. mddev = r10_bio->mddev;
  1473. conf = mddev->private;
  1474. if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
  1475. sync_request_write(mddev, r10_bio);
  1476. unplug = 1;
  1477. } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
  1478. recovery_request_write(mddev, r10_bio);
  1479. unplug = 1;
  1480. } else {
  1481. int mirror;
  1482. /* we got a read error. Maybe the drive is bad. Maybe just
  1483. * the block and we can fix it.
  1484. * We freeze all other IO, and try reading the block from
  1485. * other devices. When we find one, we re-write
  1486. * and check it that fixes the read error.
  1487. * This is all done synchronously while the array is
  1488. * frozen.
  1489. */
  1490. if (mddev->ro == 0) {
  1491. freeze_array(conf);
  1492. fix_read_error(conf, mddev, r10_bio);
  1493. unfreeze_array(conf);
  1494. }
  1495. bio = r10_bio->devs[r10_bio->read_slot].bio;
  1496. r10_bio->devs[r10_bio->read_slot].bio =
  1497. mddev->ro ? IO_BLOCKED : NULL;
  1498. mirror = read_balance(conf, r10_bio);
  1499. if (mirror == -1) {
  1500. printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
  1501. " read error for block %llu\n",
  1502. mdname(mddev),
  1503. bdevname(bio->bi_bdev,b),
  1504. (unsigned long long)r10_bio->sector);
  1505. raid_end_bio_io(r10_bio);
  1506. bio_put(bio);
  1507. } else {
  1508. const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
  1509. bio_put(bio);
  1510. rdev = conf->mirrors[mirror].rdev;
  1511. if (printk_ratelimit())
  1512. printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
  1513. " another mirror\n",
  1514. mdname(mddev),
  1515. bdevname(rdev->bdev,b),
  1516. (unsigned long long)r10_bio->sector);
  1517. bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
  1518. r10_bio->devs[r10_bio->read_slot].bio = bio;
  1519. bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
  1520. + rdev->data_offset;
  1521. bio->bi_bdev = rdev->bdev;
  1522. bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
  1523. bio->bi_private = r10_bio;
  1524. bio->bi_end_io = raid10_end_read_request;
  1525. unplug = 1;
  1526. generic_make_request(bio);
  1527. }
  1528. }
  1529. cond_resched();
  1530. }
  1531. if (unplug)
  1532. unplug_slaves(mddev);
  1533. }
  1534. static int init_resync(conf_t *conf)
  1535. {
  1536. int buffs;
  1537. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1538. BUG_ON(conf->r10buf_pool);
  1539. conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
  1540. if (!conf->r10buf_pool)
  1541. return -ENOMEM;
  1542. conf->next_resync = 0;
  1543. return 0;
  1544. }
  1545. /*
  1546. * perform a "sync" on one "block"
  1547. *
  1548. * We need to make sure that no normal I/O request - particularly write
  1549. * requests - conflict with active sync requests.
  1550. *
  1551. * This is achieved by tracking pending requests and a 'barrier' concept
  1552. * that can be installed to exclude normal IO requests.
  1553. *
  1554. * Resync and recovery are handled very differently.
  1555. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
  1556. *
  1557. * For resync, we iterate over virtual addresses, read all copies,
  1558. * and update if there are differences. If only one copy is live,
  1559. * skip it.
  1560. * For recovery, we iterate over physical addresses, read a good
  1561. * value for each non-in_sync drive, and over-write.
  1562. *
  1563. * So, for recovery we may have several outstanding complex requests for a
  1564. * given address, one for each out-of-sync device. We model this by allocating
  1565. * a number of r10_bio structures, one for each out-of-sync device.
  1566. * As we setup these structures, we collect all bio's together into a list
  1567. * which we then process collectively to add pages, and then process again
  1568. * to pass to generic_make_request.
  1569. *
  1570. * The r10_bio structures are linked using a borrowed master_bio pointer.
  1571. * This link is counted in ->remaining. When the r10_bio that points to NULL
  1572. * has its remaining count decremented to 0, the whole complex operation
  1573. * is complete.
  1574. *
  1575. */
  1576. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1577. {
  1578. conf_t *conf = mddev->private;
  1579. r10bio_t *r10_bio;
  1580. struct bio *biolist = NULL, *bio;
  1581. sector_t max_sector, nr_sectors;
  1582. int disk;
  1583. int i;
  1584. int max_sync;
  1585. int sync_blocks;
  1586. sector_t sectors_skipped = 0;
  1587. int chunks_skipped = 0;
  1588. if (!conf->r10buf_pool)
  1589. if (init_resync(conf))
  1590. return 0;
  1591. skipped:
  1592. max_sector = mddev->dev_sectors;
  1593. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  1594. max_sector = mddev->resync_max_sectors;
  1595. if (sector_nr >= max_sector) {
  1596. /* If we aborted, we need to abort the
  1597. * sync on the 'current' bitmap chucks (there can
  1598. * be several when recovering multiple devices).
  1599. * as we may have started syncing it but not finished.
  1600. * We can find the current address in
  1601. * mddev->curr_resync, but for recovery,
  1602. * we need to convert that to several
  1603. * virtual addresses.
  1604. */
  1605. if (mddev->curr_resync < max_sector) { /* aborted */
  1606. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  1607. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1608. &sync_blocks, 1);
  1609. else for (i=0; i<conf->raid_disks; i++) {
  1610. sector_t sect =
  1611. raid10_find_virt(conf, mddev->curr_resync, i);
  1612. bitmap_end_sync(mddev->bitmap, sect,
  1613. &sync_blocks, 1);
  1614. }
  1615. } else /* completed sync */
  1616. conf->fullsync = 0;
  1617. bitmap_close_sync(mddev->bitmap);
  1618. close_sync(conf);
  1619. *skipped = 1;
  1620. return sectors_skipped;
  1621. }
  1622. if (chunks_skipped >= conf->raid_disks) {
  1623. /* if there has been nothing to do on any drive,
  1624. * then there is nothing to do at all..
  1625. */
  1626. *skipped = 1;
  1627. return (max_sector - sector_nr) + sectors_skipped;
  1628. }
  1629. if (max_sector > mddev->resync_max)
  1630. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  1631. /* make sure whole request will fit in a chunk - if chunks
  1632. * are meaningful
  1633. */
  1634. if (conf->near_copies < conf->raid_disks &&
  1635. max_sector > (sector_nr | conf->chunk_mask))
  1636. max_sector = (sector_nr | conf->chunk_mask) + 1;
  1637. /*
  1638. * If there is non-resync activity waiting for us then
  1639. * put in a delay to throttle resync.
  1640. */
  1641. if (!go_faster && conf->nr_waiting)
  1642. msleep_interruptible(1000);
  1643. /* Again, very different code for resync and recovery.
  1644. * Both must result in an r10bio with a list of bios that
  1645. * have bi_end_io, bi_sector, bi_bdev set,
  1646. * and bi_private set to the r10bio.
  1647. * For recovery, we may actually create several r10bios
  1648. * with 2 bios in each, that correspond to the bios in the main one.
  1649. * In this case, the subordinate r10bios link back through a
  1650. * borrowed master_bio pointer, and the counter in the master
  1651. * includes a ref from each subordinate.
  1652. */
  1653. /* First, we decide what to do and set ->bi_end_io
  1654. * To end_sync_read if we want to read, and
  1655. * end_sync_write if we will want to write.
  1656. */
  1657. max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
  1658. if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1659. /* recovery... the complicated one */
  1660. int j, k;
  1661. r10_bio = NULL;
  1662. for (i=0 ; i<conf->raid_disks; i++)
  1663. if (conf->mirrors[i].rdev &&
  1664. !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
  1665. int still_degraded = 0;
  1666. /* want to reconstruct this device */
  1667. r10bio_t *rb2 = r10_bio;
  1668. sector_t sect = raid10_find_virt(conf, sector_nr, i);
  1669. int must_sync;
  1670. /* Unless we are doing a full sync, we only need
  1671. * to recover the block if it is set in the bitmap
  1672. */
  1673. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  1674. &sync_blocks, 1);
  1675. if (sync_blocks < max_sync)
  1676. max_sync = sync_blocks;
  1677. if (!must_sync &&
  1678. !conf->fullsync) {
  1679. /* yep, skip the sync_blocks here, but don't assume
  1680. * that there will never be anything to do here
  1681. */
  1682. chunks_skipped = -1;
  1683. continue;
  1684. }
  1685. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  1686. raise_barrier(conf, rb2 != NULL);
  1687. atomic_set(&r10_bio->remaining, 0);
  1688. r10_bio->master_bio = (struct bio*)rb2;
  1689. if (rb2)
  1690. atomic_inc(&rb2->remaining);
  1691. r10_bio->mddev = mddev;
  1692. set_bit(R10BIO_IsRecover, &r10_bio->state);
  1693. r10_bio->sector = sect;
  1694. raid10_find_phys(conf, r10_bio);
  1695. /* Need to check if the array will still be
  1696. * degraded
  1697. */
  1698. for (j=0; j<conf->raid_disks; j++)
  1699. if (conf->mirrors[j].rdev == NULL ||
  1700. test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
  1701. still_degraded = 1;
  1702. break;
  1703. }
  1704. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  1705. &sync_blocks, still_degraded);
  1706. for (j=0; j<conf->copies;j++) {
  1707. int d = r10_bio->devs[j].devnum;
  1708. if (conf->mirrors[d].rdev &&
  1709. test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
  1710. /* This is where we read from */
  1711. bio = r10_bio->devs[0].bio;
  1712. bio->bi_next = biolist;
  1713. biolist = bio;
  1714. bio->bi_private = r10_bio;
  1715. bio->bi_end_io = end_sync_read;
  1716. bio->bi_rw = READ;
  1717. bio->bi_sector = r10_bio->devs[j].addr +
  1718. conf->mirrors[d].rdev->data_offset;
  1719. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1720. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1721. atomic_inc(&r10_bio->remaining);
  1722. /* and we write to 'i' */
  1723. for (k=0; k<conf->copies; k++)
  1724. if (r10_bio->devs[k].devnum == i)
  1725. break;
  1726. BUG_ON(k == conf->copies);
  1727. bio = r10_bio->devs[1].bio;
  1728. bio->bi_next = biolist;
  1729. biolist = bio;
  1730. bio->bi_private = r10_bio;
  1731. bio->bi_end_io = end_sync_write;
  1732. bio->bi_rw = WRITE;
  1733. bio->bi_sector = r10_bio->devs[k].addr +
  1734. conf->mirrors[i].rdev->data_offset;
  1735. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1736. r10_bio->devs[0].devnum = d;
  1737. r10_bio->devs[1].devnum = i;
  1738. break;
  1739. }
  1740. }
  1741. if (j == conf->copies) {
  1742. /* Cannot recover, so abort the recovery */
  1743. put_buf(r10_bio);
  1744. if (rb2)
  1745. atomic_dec(&rb2->remaining);
  1746. r10_bio = rb2;
  1747. if (!test_and_set_bit(MD_RECOVERY_INTR,
  1748. &mddev->recovery))
  1749. printk(KERN_INFO "md/raid10:%s: insufficient "
  1750. "working devices for recovery.\n",
  1751. mdname(mddev));
  1752. break;
  1753. }
  1754. }
  1755. if (biolist == NULL) {
  1756. while (r10_bio) {
  1757. r10bio_t *rb2 = r10_bio;
  1758. r10_bio = (r10bio_t*) rb2->master_bio;
  1759. rb2->master_bio = NULL;
  1760. put_buf(rb2);
  1761. }
  1762. goto giveup;
  1763. }
  1764. } else {
  1765. /* resync. Schedule a read for every block at this virt offset */
  1766. int count = 0;
  1767. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1768. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1769. &sync_blocks, mddev->degraded) &&
  1770. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1771. /* We can skip this block */
  1772. *skipped = 1;
  1773. return sync_blocks + sectors_skipped;
  1774. }
  1775. if (sync_blocks < max_sync)
  1776. max_sync = sync_blocks;
  1777. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  1778. r10_bio->mddev = mddev;
  1779. atomic_set(&r10_bio->remaining, 0);
  1780. raise_barrier(conf, 0);
  1781. conf->next_resync = sector_nr;
  1782. r10_bio->master_bio = NULL;
  1783. r10_bio->sector = sector_nr;
  1784. set_bit(R10BIO_IsSync, &r10_bio->state);
  1785. raid10_find_phys(conf, r10_bio);
  1786. r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
  1787. for (i=0; i<conf->copies; i++) {
  1788. int d = r10_bio->devs[i].devnum;
  1789. bio = r10_bio->devs[i].bio;
  1790. bio->bi_end_io = NULL;
  1791. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1792. if (conf->mirrors[d].rdev == NULL ||
  1793. test_bit(Faulty, &conf->mirrors[d].rdev->flags))
  1794. continue;
  1795. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1796. atomic_inc(&r10_bio->remaining);
  1797. bio->bi_next = biolist;
  1798. biolist = bio;
  1799. bio->bi_private = r10_bio;
  1800. bio->bi_end_io = end_sync_read;
  1801. bio->bi_rw = READ;
  1802. bio->bi_sector = r10_bio->devs[i].addr +
  1803. conf->mirrors[d].rdev->data_offset;
  1804. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1805. count++;
  1806. }
  1807. if (count < 2) {
  1808. for (i=0; i<conf->copies; i++) {
  1809. int d = r10_bio->devs[i].devnum;
  1810. if (r10_bio->devs[i].bio->bi_end_io)
  1811. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1812. }
  1813. put_buf(r10_bio);
  1814. biolist = NULL;
  1815. goto giveup;
  1816. }
  1817. }
  1818. for (bio = biolist; bio ; bio=bio->bi_next) {
  1819. bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1820. if (bio->bi_end_io)
  1821. bio->bi_flags |= 1 << BIO_UPTODATE;
  1822. bio->bi_vcnt = 0;
  1823. bio->bi_idx = 0;
  1824. bio->bi_phys_segments = 0;
  1825. bio->bi_size = 0;
  1826. }
  1827. nr_sectors = 0;
  1828. if (sector_nr + max_sync < max_sector)
  1829. max_sector = sector_nr + max_sync;
  1830. do {
  1831. struct page *page;
  1832. int len = PAGE_SIZE;
  1833. disk = 0;
  1834. if (sector_nr + (len>>9) > max_sector)
  1835. len = (max_sector - sector_nr) << 9;
  1836. if (len == 0)
  1837. break;
  1838. for (bio= biolist ; bio ; bio=bio->bi_next) {
  1839. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1840. if (bio_add_page(bio, page, len, 0) == 0) {
  1841. /* stop here */
  1842. struct bio *bio2;
  1843. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1844. for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
  1845. /* remove last page from this bio */
  1846. bio2->bi_vcnt--;
  1847. bio2->bi_size -= len;
  1848. bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
  1849. }
  1850. goto bio_full;
  1851. }
  1852. disk = i;
  1853. }
  1854. nr_sectors += len>>9;
  1855. sector_nr += len>>9;
  1856. } while (biolist->bi_vcnt < RESYNC_PAGES);
  1857. bio_full:
  1858. r10_bio->sectors = nr_sectors;
  1859. while (biolist) {
  1860. bio = biolist;
  1861. biolist = biolist->bi_next;
  1862. bio->bi_next = NULL;
  1863. r10_bio = bio->bi_private;
  1864. r10_bio->sectors = nr_sectors;
  1865. if (bio->bi_end_io == end_sync_read) {
  1866. md_sync_acct(bio->bi_bdev, nr_sectors);
  1867. generic_make_request(bio);
  1868. }
  1869. }
  1870. if (sectors_skipped)
  1871. /* pretend they weren't skipped, it makes
  1872. * no important difference in this case
  1873. */
  1874. md_done_sync(mddev, sectors_skipped, 1);
  1875. return sectors_skipped + nr_sectors;
  1876. giveup:
  1877. /* There is nowhere to write, so all non-sync
  1878. * drives must be failed, so try the next chunk...
  1879. */
  1880. if (sector_nr + max_sync < max_sector)
  1881. max_sector = sector_nr + max_sync;
  1882. sectors_skipped += (max_sector - sector_nr);
  1883. chunks_skipped ++;
  1884. sector_nr = max_sector;
  1885. goto skipped;
  1886. }
  1887. static sector_t
  1888. raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  1889. {
  1890. sector_t size;
  1891. conf_t *conf = mddev->private;
  1892. if (!raid_disks)
  1893. raid_disks = conf->raid_disks;
  1894. if (!sectors)
  1895. sectors = conf->dev_sectors;
  1896. size = sectors >> conf->chunk_shift;
  1897. sector_div(size, conf->far_copies);
  1898. size = size * raid_disks;
  1899. sector_div(size, conf->near_copies);
  1900. return size << conf->chunk_shift;
  1901. }
  1902. static conf_t *setup_conf(mddev_t *mddev)
  1903. {
  1904. conf_t *conf = NULL;
  1905. int nc, fc, fo;
  1906. sector_t stride, size;
  1907. int err = -EINVAL;
  1908. if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
  1909. !is_power_of_2(mddev->new_chunk_sectors)) {
  1910. printk(KERN_ERR "md/raid10:%s: chunk size must be "
  1911. "at least PAGE_SIZE(%ld) and be a power of 2.\n",
  1912. mdname(mddev), PAGE_SIZE);
  1913. goto out;
  1914. }
  1915. nc = mddev->new_layout & 255;
  1916. fc = (mddev->new_layout >> 8) & 255;
  1917. fo = mddev->new_layout & (1<<16);
  1918. if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
  1919. (mddev->new_layout >> 17)) {
  1920. printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
  1921. mdname(mddev), mddev->new_layout);
  1922. goto out;
  1923. }
  1924. err = -ENOMEM;
  1925. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1926. if (!conf)
  1927. goto out;
  1928. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1929. GFP_KERNEL);
  1930. if (!conf->mirrors)
  1931. goto out;
  1932. conf->tmppage = alloc_page(GFP_KERNEL);
  1933. if (!conf->tmppage)
  1934. goto out;
  1935. conf->raid_disks = mddev->raid_disks;
  1936. conf->near_copies = nc;
  1937. conf->far_copies = fc;
  1938. conf->copies = nc*fc;
  1939. conf->far_offset = fo;
  1940. conf->chunk_mask = mddev->new_chunk_sectors - 1;
  1941. conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
  1942. conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
  1943. r10bio_pool_free, conf);
  1944. if (!conf->r10bio_pool)
  1945. goto out;
  1946. size = mddev->dev_sectors >> conf->chunk_shift;
  1947. sector_div(size, fc);
  1948. size = size * conf->raid_disks;
  1949. sector_div(size, nc);
  1950. /* 'size' is now the number of chunks in the array */
  1951. /* calculate "used chunks per device" in 'stride' */
  1952. stride = size * conf->copies;
  1953. /* We need to round up when dividing by raid_disks to
  1954. * get the stride size.
  1955. */
  1956. stride += conf->raid_disks - 1;
  1957. sector_div(stride, conf->raid_disks);
  1958. conf->dev_sectors = stride << conf->chunk_shift;
  1959. if (fo)
  1960. stride = 1;
  1961. else
  1962. sector_div(stride, fc);
  1963. conf->stride = stride << conf->chunk_shift;
  1964. spin_lock_init(&conf->device_lock);
  1965. INIT_LIST_HEAD(&conf->retry_list);
  1966. spin_lock_init(&conf->resync_lock);
  1967. init_waitqueue_head(&conf->wait_barrier);
  1968. conf->thread = md_register_thread(raid10d, mddev, NULL);
  1969. if (!conf->thread)
  1970. goto out;
  1971. conf->mddev = mddev;
  1972. return conf;
  1973. out:
  1974. printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
  1975. mdname(mddev));
  1976. if (conf) {
  1977. if (conf->r10bio_pool)
  1978. mempool_destroy(conf->r10bio_pool);
  1979. kfree(conf->mirrors);
  1980. safe_put_page(conf->tmppage);
  1981. kfree(conf);
  1982. }
  1983. return ERR_PTR(err);
  1984. }
  1985. static int run(mddev_t *mddev)
  1986. {
  1987. conf_t *conf;
  1988. int i, disk_idx, chunk_size;
  1989. mirror_info_t *disk;
  1990. mdk_rdev_t *rdev;
  1991. sector_t size;
  1992. /*
  1993. * copy the already verified devices into our private RAID10
  1994. * bookkeeping area. [whatever we allocate in run(),
  1995. * should be freed in stop()]
  1996. */
  1997. if (mddev->private == NULL) {
  1998. conf = setup_conf(mddev);
  1999. if (IS_ERR(conf))
  2000. return PTR_ERR(conf);
  2001. mddev->private = conf;
  2002. }
  2003. conf = mddev->private;
  2004. if (!conf)
  2005. goto out;
  2006. mddev->queue->queue_lock = &conf->device_lock;
  2007. mddev->thread = conf->thread;
  2008. conf->thread = NULL;
  2009. chunk_size = mddev->chunk_sectors << 9;
  2010. blk_queue_io_min(mddev->queue, chunk_size);
  2011. if (conf->raid_disks % conf->near_copies)
  2012. blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
  2013. else
  2014. blk_queue_io_opt(mddev->queue, chunk_size *
  2015. (conf->raid_disks / conf->near_copies));
  2016. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2017. disk_idx = rdev->raid_disk;
  2018. if (disk_idx >= conf->raid_disks
  2019. || disk_idx < 0)
  2020. continue;
  2021. disk = conf->mirrors + disk_idx;
  2022. disk->rdev = rdev;
  2023. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2024. rdev->data_offset << 9);
  2025. /* as we don't honour merge_bvec_fn, we must never risk
  2026. * violating it, so limit max_segments to 1 lying
  2027. * within a single page.
  2028. */
  2029. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2030. blk_queue_max_segments(mddev->queue, 1);
  2031. blk_queue_segment_boundary(mddev->queue,
  2032. PAGE_CACHE_SIZE - 1);
  2033. }
  2034. disk->head_position = 0;
  2035. }
  2036. /* need to check that every block has at least one working mirror */
  2037. if (!enough(conf)) {
  2038. printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
  2039. mdname(mddev));
  2040. goto out_free_conf;
  2041. }
  2042. mddev->degraded = 0;
  2043. for (i = 0; i < conf->raid_disks; i++) {
  2044. disk = conf->mirrors + i;
  2045. if (!disk->rdev ||
  2046. !test_bit(In_sync, &disk->rdev->flags)) {
  2047. disk->head_position = 0;
  2048. mddev->degraded++;
  2049. if (disk->rdev)
  2050. conf->fullsync = 1;
  2051. }
  2052. }
  2053. if (mddev->recovery_cp != MaxSector)
  2054. printk(KERN_NOTICE "md/raid10:%s: not clean"
  2055. " -- starting background reconstruction\n",
  2056. mdname(mddev));
  2057. printk(KERN_INFO
  2058. "md/raid10:%s: active with %d out of %d devices\n",
  2059. mdname(mddev), conf->raid_disks - mddev->degraded,
  2060. conf->raid_disks);
  2061. /*
  2062. * Ok, everything is just fine now
  2063. */
  2064. mddev->dev_sectors = conf->dev_sectors;
  2065. size = raid10_size(mddev, 0, 0);
  2066. md_set_array_sectors(mddev, size);
  2067. mddev->resync_max_sectors = size;
  2068. mddev->queue->unplug_fn = raid10_unplug;
  2069. mddev->queue->backing_dev_info.congested_fn = raid10_congested;
  2070. mddev->queue->backing_dev_info.congested_data = mddev;
  2071. /* Calculate max read-ahead size.
  2072. * We need to readahead at least twice a whole stripe....
  2073. * maybe...
  2074. */
  2075. {
  2076. int stripe = conf->raid_disks *
  2077. ((mddev->chunk_sectors << 9) / PAGE_SIZE);
  2078. stripe /= conf->near_copies;
  2079. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  2080. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  2081. }
  2082. if (conf->near_copies < conf->raid_disks)
  2083. blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
  2084. md_integrity_register(mddev);
  2085. return 0;
  2086. out_free_conf:
  2087. if (conf->r10bio_pool)
  2088. mempool_destroy(conf->r10bio_pool);
  2089. safe_put_page(conf->tmppage);
  2090. kfree(conf->mirrors);
  2091. kfree(conf);
  2092. mddev->private = NULL;
  2093. md_unregister_thread(mddev->thread);
  2094. out:
  2095. return -EIO;
  2096. }
  2097. static int stop(mddev_t *mddev)
  2098. {
  2099. conf_t *conf = mddev->private;
  2100. raise_barrier(conf, 0);
  2101. lower_barrier(conf);
  2102. md_unregister_thread(mddev->thread);
  2103. mddev->thread = NULL;
  2104. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  2105. if (conf->r10bio_pool)
  2106. mempool_destroy(conf->r10bio_pool);
  2107. kfree(conf->mirrors);
  2108. kfree(conf);
  2109. mddev->private = NULL;
  2110. return 0;
  2111. }
  2112. static void raid10_quiesce(mddev_t *mddev, int state)
  2113. {
  2114. conf_t *conf = mddev->private;
  2115. switch(state) {
  2116. case 1:
  2117. raise_barrier(conf, 0);
  2118. break;
  2119. case 0:
  2120. lower_barrier(conf);
  2121. break;
  2122. }
  2123. }
  2124. static void *raid10_takeover_raid0(mddev_t *mddev)
  2125. {
  2126. mdk_rdev_t *rdev;
  2127. conf_t *conf;
  2128. if (mddev->degraded > 0) {
  2129. printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
  2130. mdname(mddev));
  2131. return ERR_PTR(-EINVAL);
  2132. }
  2133. /* Set new parameters */
  2134. mddev->new_level = 10;
  2135. /* new layout: far_copies = 1, near_copies = 2 */
  2136. mddev->new_layout = (1<<8) + 2;
  2137. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2138. mddev->delta_disks = mddev->raid_disks;
  2139. mddev->raid_disks *= 2;
  2140. /* make sure it will be not marked as dirty */
  2141. mddev->recovery_cp = MaxSector;
  2142. conf = setup_conf(mddev);
  2143. if (!IS_ERR(conf))
  2144. list_for_each_entry(rdev, &mddev->disks, same_set)
  2145. if (rdev->raid_disk >= 0)
  2146. rdev->new_raid_disk = rdev->raid_disk * 2;
  2147. return conf;
  2148. }
  2149. static void *raid10_takeover(mddev_t *mddev)
  2150. {
  2151. struct raid0_private_data *raid0_priv;
  2152. /* raid10 can take over:
  2153. * raid0 - providing it has only two drives
  2154. */
  2155. if (mddev->level == 0) {
  2156. /* for raid0 takeover only one zone is supported */
  2157. raid0_priv = mddev->private;
  2158. if (raid0_priv->nr_strip_zones > 1) {
  2159. printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
  2160. " with more than one zone.\n",
  2161. mdname(mddev));
  2162. return ERR_PTR(-EINVAL);
  2163. }
  2164. return raid10_takeover_raid0(mddev);
  2165. }
  2166. return ERR_PTR(-EINVAL);
  2167. }
  2168. static struct mdk_personality raid10_personality =
  2169. {
  2170. .name = "raid10",
  2171. .level = 10,
  2172. .owner = THIS_MODULE,
  2173. .make_request = make_request,
  2174. .run = run,
  2175. .stop = stop,
  2176. .status = status,
  2177. .error_handler = error,
  2178. .hot_add_disk = raid10_add_disk,
  2179. .hot_remove_disk= raid10_remove_disk,
  2180. .spare_active = raid10_spare_active,
  2181. .sync_request = sync_request,
  2182. .quiesce = raid10_quiesce,
  2183. .size = raid10_size,
  2184. .takeover = raid10_takeover,
  2185. };
  2186. static int __init raid_init(void)
  2187. {
  2188. return register_md_personality(&raid10_personality);
  2189. }
  2190. static void raid_exit(void)
  2191. {
  2192. unregister_md_personality(&raid10_personality);
  2193. }
  2194. module_init(raid_init);
  2195. module_exit(raid_exit);
  2196. MODULE_LICENSE("GPL");
  2197. MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
  2198. MODULE_ALIAS("md-personality-9"); /* RAID10 */
  2199. MODULE_ALIAS("md-raid10");
  2200. MODULE_ALIAS("md-level-10");