x86.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <linux/perf_event.h>
  42. #include <trace/events/kvm.h>
  43. #define CREATE_TRACE_POINTS
  44. #include "trace.h"
  45. #include <asm/debugreg.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <asm/mtrr.h>
  50. #include <asm/mce.h>
  51. #include <asm/i387.h>
  52. #include <asm/xcr.h>
  53. #define MAX_IO_MSRS 256
  54. #define CR0_RESERVED_BITS \
  55. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  56. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  57. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  58. #define CR4_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  60. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  61. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  62. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  63. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  64. #define KVM_MAX_MCE_BANKS 32
  65. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  66. /* EFER defaults:
  67. * - enable syscall per default because its emulated by KVM
  68. * - enable LME and LMA per default on 64 bit KVM
  69. */
  70. #ifdef CONFIG_X86_64
  71. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  72. #else
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  74. #endif
  75. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  76. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  77. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  78. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  79. struct kvm_cpuid_entry2 __user *entries);
  80. struct kvm_x86_ops *kvm_x86_ops;
  81. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  82. int ignore_msrs = 0;
  83. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  84. #define KVM_NR_SHARED_MSRS 16
  85. struct kvm_shared_msrs_global {
  86. int nr;
  87. u32 msrs[KVM_NR_SHARED_MSRS];
  88. };
  89. struct kvm_shared_msrs {
  90. struct user_return_notifier urn;
  91. bool registered;
  92. struct kvm_shared_msr_values {
  93. u64 host;
  94. u64 curr;
  95. } values[KVM_NR_SHARED_MSRS];
  96. };
  97. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  98. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  99. struct kvm_stats_debugfs_item debugfs_entries[] = {
  100. { "pf_fixed", VCPU_STAT(pf_fixed) },
  101. { "pf_guest", VCPU_STAT(pf_guest) },
  102. { "tlb_flush", VCPU_STAT(tlb_flush) },
  103. { "invlpg", VCPU_STAT(invlpg) },
  104. { "exits", VCPU_STAT(exits) },
  105. { "io_exits", VCPU_STAT(io_exits) },
  106. { "mmio_exits", VCPU_STAT(mmio_exits) },
  107. { "signal_exits", VCPU_STAT(signal_exits) },
  108. { "irq_window", VCPU_STAT(irq_window_exits) },
  109. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  110. { "halt_exits", VCPU_STAT(halt_exits) },
  111. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  112. { "hypercalls", VCPU_STAT(hypercalls) },
  113. { "request_irq", VCPU_STAT(request_irq_exits) },
  114. { "irq_exits", VCPU_STAT(irq_exits) },
  115. { "host_state_reload", VCPU_STAT(host_state_reload) },
  116. { "efer_reload", VCPU_STAT(efer_reload) },
  117. { "fpu_reload", VCPU_STAT(fpu_reload) },
  118. { "insn_emulation", VCPU_STAT(insn_emulation) },
  119. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  120. { "irq_injections", VCPU_STAT(irq_injections) },
  121. { "nmi_injections", VCPU_STAT(nmi_injections) },
  122. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  123. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  124. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  125. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  126. { "mmu_flooded", VM_STAT(mmu_flooded) },
  127. { "mmu_recycled", VM_STAT(mmu_recycled) },
  128. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  129. { "mmu_unsync", VM_STAT(mmu_unsync) },
  130. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  131. { "largepages", VM_STAT(lpages) },
  132. { NULL }
  133. };
  134. static void kvm_on_user_return(struct user_return_notifier *urn)
  135. {
  136. unsigned slot;
  137. struct kvm_shared_msrs *locals
  138. = container_of(urn, struct kvm_shared_msrs, urn);
  139. struct kvm_shared_msr_values *values;
  140. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  141. values = &locals->values[slot];
  142. if (values->host != values->curr) {
  143. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  144. values->curr = values->host;
  145. }
  146. }
  147. locals->registered = false;
  148. user_return_notifier_unregister(urn);
  149. }
  150. static void shared_msr_update(unsigned slot, u32 msr)
  151. {
  152. struct kvm_shared_msrs *smsr;
  153. u64 value;
  154. smsr = &__get_cpu_var(shared_msrs);
  155. /* only read, and nobody should modify it at this time,
  156. * so don't need lock */
  157. if (slot >= shared_msrs_global.nr) {
  158. printk(KERN_ERR "kvm: invalid MSR slot!");
  159. return;
  160. }
  161. rdmsrl_safe(msr, &value);
  162. smsr->values[slot].host = value;
  163. smsr->values[slot].curr = value;
  164. }
  165. void kvm_define_shared_msr(unsigned slot, u32 msr)
  166. {
  167. if (slot >= shared_msrs_global.nr)
  168. shared_msrs_global.nr = slot + 1;
  169. shared_msrs_global.msrs[slot] = msr;
  170. /* we need ensured the shared_msr_global have been updated */
  171. smp_wmb();
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  174. static void kvm_shared_msr_cpu_online(void)
  175. {
  176. unsigned i;
  177. for (i = 0; i < shared_msrs_global.nr; ++i)
  178. shared_msr_update(i, shared_msrs_global.msrs[i]);
  179. }
  180. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  181. {
  182. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  183. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  184. return;
  185. smsr->values[slot].curr = value;
  186. wrmsrl(shared_msrs_global.msrs[slot], value);
  187. if (!smsr->registered) {
  188. smsr->urn.on_user_return = kvm_on_user_return;
  189. user_return_notifier_register(&smsr->urn);
  190. smsr->registered = true;
  191. }
  192. }
  193. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  194. static void drop_user_return_notifiers(void *ignore)
  195. {
  196. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  197. if (smsr->registered)
  198. kvm_on_user_return(&smsr->urn);
  199. }
  200. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  201. {
  202. if (irqchip_in_kernel(vcpu->kvm))
  203. return vcpu->arch.apic_base;
  204. else
  205. return vcpu->arch.apic_base;
  206. }
  207. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  208. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  209. {
  210. /* TODO: reserve bits check */
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. kvm_lapic_set_base(vcpu, data);
  213. else
  214. vcpu->arch.apic_base = data;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  217. #define EXCPT_BENIGN 0
  218. #define EXCPT_CONTRIBUTORY 1
  219. #define EXCPT_PF 2
  220. static int exception_class(int vector)
  221. {
  222. switch (vector) {
  223. case PF_VECTOR:
  224. return EXCPT_PF;
  225. case DE_VECTOR:
  226. case TS_VECTOR:
  227. case NP_VECTOR:
  228. case SS_VECTOR:
  229. case GP_VECTOR:
  230. return EXCPT_CONTRIBUTORY;
  231. default:
  232. break;
  233. }
  234. return EXCPT_BENIGN;
  235. }
  236. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  237. unsigned nr, bool has_error, u32 error_code,
  238. bool reinject)
  239. {
  240. u32 prev_nr;
  241. int class1, class2;
  242. if (!vcpu->arch.exception.pending) {
  243. queue:
  244. vcpu->arch.exception.pending = true;
  245. vcpu->arch.exception.has_error_code = has_error;
  246. vcpu->arch.exception.nr = nr;
  247. vcpu->arch.exception.error_code = error_code;
  248. vcpu->arch.exception.reinject = reinject;
  249. return;
  250. }
  251. /* to check exception */
  252. prev_nr = vcpu->arch.exception.nr;
  253. if (prev_nr == DF_VECTOR) {
  254. /* triple fault -> shutdown */
  255. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  256. return;
  257. }
  258. class1 = exception_class(prev_nr);
  259. class2 = exception_class(nr);
  260. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  261. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  262. /* generate double fault per SDM Table 5-5 */
  263. vcpu->arch.exception.pending = true;
  264. vcpu->arch.exception.has_error_code = true;
  265. vcpu->arch.exception.nr = DF_VECTOR;
  266. vcpu->arch.exception.error_code = 0;
  267. } else
  268. /* replace previous exception with a new one in a hope
  269. that instruction re-execution will regenerate lost
  270. exception */
  271. goto queue;
  272. }
  273. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  274. {
  275. kvm_multiple_exception(vcpu, nr, false, 0, false);
  276. }
  277. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  278. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  279. {
  280. kvm_multiple_exception(vcpu, nr, false, 0, true);
  281. }
  282. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  283. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  284. u32 error_code)
  285. {
  286. ++vcpu->stat.pf_guest;
  287. vcpu->arch.cr2 = addr;
  288. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  289. }
  290. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  291. {
  292. vcpu->arch.nmi_pending = 1;
  293. }
  294. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  295. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  296. {
  297. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  298. }
  299. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  300. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  301. {
  302. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  305. /*
  306. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  307. * a #GP and return false.
  308. */
  309. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  310. {
  311. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  312. return true;
  313. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  314. return false;
  315. }
  316. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  317. /*
  318. * Load the pae pdptrs. Return true is they are all valid.
  319. */
  320. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  321. {
  322. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  323. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  324. int i;
  325. int ret;
  326. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  327. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  328. offset * sizeof(u64), sizeof(pdpte));
  329. if (ret < 0) {
  330. ret = 0;
  331. goto out;
  332. }
  333. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  334. if (is_present_gpte(pdpte[i]) &&
  335. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  336. ret = 0;
  337. goto out;
  338. }
  339. }
  340. ret = 1;
  341. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  342. __set_bit(VCPU_EXREG_PDPTR,
  343. (unsigned long *)&vcpu->arch.regs_avail);
  344. __set_bit(VCPU_EXREG_PDPTR,
  345. (unsigned long *)&vcpu->arch.regs_dirty);
  346. out:
  347. return ret;
  348. }
  349. EXPORT_SYMBOL_GPL(load_pdptrs);
  350. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  351. {
  352. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  353. bool changed = true;
  354. int r;
  355. if (is_long_mode(vcpu) || !is_pae(vcpu))
  356. return false;
  357. if (!test_bit(VCPU_EXREG_PDPTR,
  358. (unsigned long *)&vcpu->arch.regs_avail))
  359. return true;
  360. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  361. if (r < 0)
  362. goto out;
  363. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  364. out:
  365. return changed;
  366. }
  367. static int __kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  368. {
  369. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  370. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  371. X86_CR0_CD | X86_CR0_NW;
  372. cr0 |= X86_CR0_ET;
  373. #ifdef CONFIG_X86_64
  374. if (cr0 & 0xffffffff00000000UL)
  375. return 1;
  376. #endif
  377. cr0 &= ~CR0_RESERVED_BITS;
  378. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  379. return 1;
  380. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  381. return 1;
  382. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  383. #ifdef CONFIG_X86_64
  384. if ((vcpu->arch.efer & EFER_LME)) {
  385. int cs_db, cs_l;
  386. if (!is_pae(vcpu))
  387. return 1;
  388. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  389. if (cs_l)
  390. return 1;
  391. } else
  392. #endif
  393. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  394. return 1;
  395. }
  396. kvm_x86_ops->set_cr0(vcpu, cr0);
  397. if ((cr0 ^ old_cr0) & update_bits)
  398. kvm_mmu_reset_context(vcpu);
  399. return 0;
  400. }
  401. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  402. {
  403. if (__kvm_set_cr0(vcpu, cr0))
  404. kvm_inject_gp(vcpu, 0);
  405. }
  406. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  407. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  408. {
  409. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  410. }
  411. EXPORT_SYMBOL_GPL(kvm_lmsw);
  412. int __kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  413. {
  414. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  415. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  416. if (cr4 & CR4_RESERVED_BITS)
  417. return 1;
  418. if (is_long_mode(vcpu)) {
  419. if (!(cr4 & X86_CR4_PAE))
  420. return 1;
  421. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  422. && ((cr4 ^ old_cr4) & pdptr_bits)
  423. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  424. return 1;
  425. if (cr4 & X86_CR4_VMXE)
  426. return 1;
  427. kvm_x86_ops->set_cr4(vcpu, cr4);
  428. if ((cr4 ^ old_cr4) & pdptr_bits)
  429. kvm_mmu_reset_context(vcpu);
  430. return 0;
  431. }
  432. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  433. {
  434. if (__kvm_set_cr4(vcpu, cr4))
  435. kvm_inject_gp(vcpu, 0);
  436. }
  437. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  438. static int __kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  439. {
  440. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  441. kvm_mmu_sync_roots(vcpu);
  442. kvm_mmu_flush_tlb(vcpu);
  443. return 0;
  444. }
  445. if (is_long_mode(vcpu)) {
  446. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  447. return 1;
  448. } else {
  449. if (is_pae(vcpu)) {
  450. if (cr3 & CR3_PAE_RESERVED_BITS)
  451. return 1;
  452. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  453. return 1;
  454. }
  455. /*
  456. * We don't check reserved bits in nonpae mode, because
  457. * this isn't enforced, and VMware depends on this.
  458. */
  459. }
  460. /*
  461. * Does the new cr3 value map to physical memory? (Note, we
  462. * catch an invalid cr3 even in real-mode, because it would
  463. * cause trouble later on when we turn on paging anyway.)
  464. *
  465. * A real CPU would silently accept an invalid cr3 and would
  466. * attempt to use it - with largely undefined (and often hard
  467. * to debug) behavior on the guest side.
  468. */
  469. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  470. return 1;
  471. vcpu->arch.cr3 = cr3;
  472. vcpu->arch.mmu.new_cr3(vcpu);
  473. return 0;
  474. }
  475. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  476. {
  477. if (__kvm_set_cr3(vcpu, cr3))
  478. kvm_inject_gp(vcpu, 0);
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  481. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  482. {
  483. if (cr8 & CR8_RESERVED_BITS)
  484. return 1;
  485. if (irqchip_in_kernel(vcpu->kvm))
  486. kvm_lapic_set_tpr(vcpu, cr8);
  487. else
  488. vcpu->arch.cr8 = cr8;
  489. return 0;
  490. }
  491. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  492. {
  493. if (__kvm_set_cr8(vcpu, cr8))
  494. kvm_inject_gp(vcpu, 0);
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  497. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  498. {
  499. if (irqchip_in_kernel(vcpu->kvm))
  500. return kvm_lapic_get_cr8(vcpu);
  501. else
  502. return vcpu->arch.cr8;
  503. }
  504. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  505. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  506. {
  507. switch (dr) {
  508. case 0 ... 3:
  509. vcpu->arch.db[dr] = val;
  510. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  511. vcpu->arch.eff_db[dr] = val;
  512. break;
  513. case 4:
  514. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  515. return 1; /* #UD */
  516. /* fall through */
  517. case 6:
  518. if (val & 0xffffffff00000000ULL)
  519. return -1; /* #GP */
  520. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  521. break;
  522. case 5:
  523. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  524. return 1; /* #UD */
  525. /* fall through */
  526. default: /* 7 */
  527. if (val & 0xffffffff00000000ULL)
  528. return -1; /* #GP */
  529. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  530. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  531. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  532. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  533. }
  534. break;
  535. }
  536. return 0;
  537. }
  538. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  539. {
  540. int res;
  541. res = __kvm_set_dr(vcpu, dr, val);
  542. if (res > 0)
  543. kvm_queue_exception(vcpu, UD_VECTOR);
  544. else if (res < 0)
  545. kvm_inject_gp(vcpu, 0);
  546. return res;
  547. }
  548. EXPORT_SYMBOL_GPL(kvm_set_dr);
  549. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  550. {
  551. switch (dr) {
  552. case 0 ... 3:
  553. *val = vcpu->arch.db[dr];
  554. break;
  555. case 4:
  556. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  557. return 1;
  558. /* fall through */
  559. case 6:
  560. *val = vcpu->arch.dr6;
  561. break;
  562. case 5:
  563. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  564. return 1;
  565. /* fall through */
  566. default: /* 7 */
  567. *val = vcpu->arch.dr7;
  568. break;
  569. }
  570. return 0;
  571. }
  572. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  573. {
  574. if (_kvm_get_dr(vcpu, dr, val)) {
  575. kvm_queue_exception(vcpu, UD_VECTOR);
  576. return 1;
  577. }
  578. return 0;
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_get_dr);
  581. static inline u32 bit(int bitno)
  582. {
  583. return 1 << (bitno & 31);
  584. }
  585. /*
  586. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  587. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  588. *
  589. * This list is modified at module load time to reflect the
  590. * capabilities of the host cpu. This capabilities test skips MSRs that are
  591. * kvm-specific. Those are put in the beginning of the list.
  592. */
  593. #define KVM_SAVE_MSRS_BEGIN 7
  594. static u32 msrs_to_save[] = {
  595. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  596. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  597. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  598. HV_X64_MSR_APIC_ASSIST_PAGE,
  599. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  600. MSR_K6_STAR,
  601. #ifdef CONFIG_X86_64
  602. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  603. #endif
  604. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  605. };
  606. static unsigned num_msrs_to_save;
  607. static u32 emulated_msrs[] = {
  608. MSR_IA32_MISC_ENABLE,
  609. };
  610. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  611. {
  612. u64 old_efer = vcpu->arch.efer;
  613. if (efer & efer_reserved_bits)
  614. return 1;
  615. if (is_paging(vcpu)
  616. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  617. return 1;
  618. if (efer & EFER_FFXSR) {
  619. struct kvm_cpuid_entry2 *feat;
  620. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  621. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  622. return 1;
  623. }
  624. if (efer & EFER_SVME) {
  625. struct kvm_cpuid_entry2 *feat;
  626. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  627. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  628. return 1;
  629. }
  630. efer &= ~EFER_LMA;
  631. efer |= vcpu->arch.efer & EFER_LMA;
  632. kvm_x86_ops->set_efer(vcpu, efer);
  633. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  634. kvm_mmu_reset_context(vcpu);
  635. /* Update reserved bits */
  636. if ((efer ^ old_efer) & EFER_NX)
  637. kvm_mmu_reset_context(vcpu);
  638. return 0;
  639. }
  640. void kvm_enable_efer_bits(u64 mask)
  641. {
  642. efer_reserved_bits &= ~mask;
  643. }
  644. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  645. /*
  646. * Writes msr value into into the appropriate "register".
  647. * Returns 0 on success, non-0 otherwise.
  648. * Assumes vcpu_load() was already called.
  649. */
  650. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  651. {
  652. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  653. }
  654. /*
  655. * Adapt set_msr() to msr_io()'s calling convention
  656. */
  657. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  658. {
  659. return kvm_set_msr(vcpu, index, *data);
  660. }
  661. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  662. {
  663. int version;
  664. int r;
  665. struct pvclock_wall_clock wc;
  666. struct timespec boot;
  667. if (!wall_clock)
  668. return;
  669. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  670. if (r)
  671. return;
  672. if (version & 1)
  673. ++version; /* first time write, random junk */
  674. ++version;
  675. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  676. /*
  677. * The guest calculates current wall clock time by adding
  678. * system time (updated by kvm_write_guest_time below) to the
  679. * wall clock specified here. guest system time equals host
  680. * system time for us, thus we must fill in host boot time here.
  681. */
  682. getboottime(&boot);
  683. wc.sec = boot.tv_sec;
  684. wc.nsec = boot.tv_nsec;
  685. wc.version = version;
  686. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  687. version++;
  688. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  689. }
  690. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  691. {
  692. uint32_t quotient, remainder;
  693. /* Don't try to replace with do_div(), this one calculates
  694. * "(dividend << 32) / divisor" */
  695. __asm__ ( "divl %4"
  696. : "=a" (quotient), "=d" (remainder)
  697. : "0" (0), "1" (dividend), "r" (divisor) );
  698. return quotient;
  699. }
  700. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  701. {
  702. uint64_t nsecs = 1000000000LL;
  703. int32_t shift = 0;
  704. uint64_t tps64;
  705. uint32_t tps32;
  706. tps64 = tsc_khz * 1000LL;
  707. while (tps64 > nsecs*2) {
  708. tps64 >>= 1;
  709. shift--;
  710. }
  711. tps32 = (uint32_t)tps64;
  712. while (tps32 <= (uint32_t)nsecs) {
  713. tps32 <<= 1;
  714. shift++;
  715. }
  716. hv_clock->tsc_shift = shift;
  717. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  718. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  719. __func__, tsc_khz, hv_clock->tsc_shift,
  720. hv_clock->tsc_to_system_mul);
  721. }
  722. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  723. static void kvm_write_guest_time(struct kvm_vcpu *v)
  724. {
  725. struct timespec ts;
  726. unsigned long flags;
  727. struct kvm_vcpu_arch *vcpu = &v->arch;
  728. void *shared_kaddr;
  729. unsigned long this_tsc_khz;
  730. if ((!vcpu->time_page))
  731. return;
  732. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  733. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  734. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  735. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  736. }
  737. put_cpu_var(cpu_tsc_khz);
  738. /* Keep irq disabled to prevent changes to the clock */
  739. local_irq_save(flags);
  740. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  741. ktime_get_ts(&ts);
  742. monotonic_to_bootbased(&ts);
  743. local_irq_restore(flags);
  744. /* With all the info we got, fill in the values */
  745. vcpu->hv_clock.system_time = ts.tv_nsec +
  746. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  747. vcpu->hv_clock.flags = 0;
  748. /*
  749. * The interface expects us to write an even number signaling that the
  750. * update is finished. Since the guest won't see the intermediate
  751. * state, we just increase by 2 at the end.
  752. */
  753. vcpu->hv_clock.version += 2;
  754. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  755. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  756. sizeof(vcpu->hv_clock));
  757. kunmap_atomic(shared_kaddr, KM_USER0);
  758. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  759. }
  760. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  761. {
  762. struct kvm_vcpu_arch *vcpu = &v->arch;
  763. if (!vcpu->time_page)
  764. return 0;
  765. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  766. return 1;
  767. }
  768. static bool msr_mtrr_valid(unsigned msr)
  769. {
  770. switch (msr) {
  771. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  772. case MSR_MTRRfix64K_00000:
  773. case MSR_MTRRfix16K_80000:
  774. case MSR_MTRRfix16K_A0000:
  775. case MSR_MTRRfix4K_C0000:
  776. case MSR_MTRRfix4K_C8000:
  777. case MSR_MTRRfix4K_D0000:
  778. case MSR_MTRRfix4K_D8000:
  779. case MSR_MTRRfix4K_E0000:
  780. case MSR_MTRRfix4K_E8000:
  781. case MSR_MTRRfix4K_F0000:
  782. case MSR_MTRRfix4K_F8000:
  783. case MSR_MTRRdefType:
  784. case MSR_IA32_CR_PAT:
  785. return true;
  786. case 0x2f8:
  787. return true;
  788. }
  789. return false;
  790. }
  791. static bool valid_pat_type(unsigned t)
  792. {
  793. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  794. }
  795. static bool valid_mtrr_type(unsigned t)
  796. {
  797. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  798. }
  799. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  800. {
  801. int i;
  802. if (!msr_mtrr_valid(msr))
  803. return false;
  804. if (msr == MSR_IA32_CR_PAT) {
  805. for (i = 0; i < 8; i++)
  806. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  807. return false;
  808. return true;
  809. } else if (msr == MSR_MTRRdefType) {
  810. if (data & ~0xcff)
  811. return false;
  812. return valid_mtrr_type(data & 0xff);
  813. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  814. for (i = 0; i < 8 ; i++)
  815. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  816. return false;
  817. return true;
  818. }
  819. /* variable MTRRs */
  820. return valid_mtrr_type(data & 0xff);
  821. }
  822. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  823. {
  824. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  825. if (!mtrr_valid(vcpu, msr, data))
  826. return 1;
  827. if (msr == MSR_MTRRdefType) {
  828. vcpu->arch.mtrr_state.def_type = data;
  829. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  830. } else if (msr == MSR_MTRRfix64K_00000)
  831. p[0] = data;
  832. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  833. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  834. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  835. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  836. else if (msr == MSR_IA32_CR_PAT)
  837. vcpu->arch.pat = data;
  838. else { /* Variable MTRRs */
  839. int idx, is_mtrr_mask;
  840. u64 *pt;
  841. idx = (msr - 0x200) / 2;
  842. is_mtrr_mask = msr - 0x200 - 2 * idx;
  843. if (!is_mtrr_mask)
  844. pt =
  845. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  846. else
  847. pt =
  848. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  849. *pt = data;
  850. }
  851. kvm_mmu_reset_context(vcpu);
  852. return 0;
  853. }
  854. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  855. {
  856. u64 mcg_cap = vcpu->arch.mcg_cap;
  857. unsigned bank_num = mcg_cap & 0xff;
  858. switch (msr) {
  859. case MSR_IA32_MCG_STATUS:
  860. vcpu->arch.mcg_status = data;
  861. break;
  862. case MSR_IA32_MCG_CTL:
  863. if (!(mcg_cap & MCG_CTL_P))
  864. return 1;
  865. if (data != 0 && data != ~(u64)0)
  866. return -1;
  867. vcpu->arch.mcg_ctl = data;
  868. break;
  869. default:
  870. if (msr >= MSR_IA32_MC0_CTL &&
  871. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  872. u32 offset = msr - MSR_IA32_MC0_CTL;
  873. /* only 0 or all 1s can be written to IA32_MCi_CTL
  874. * some Linux kernels though clear bit 10 in bank 4 to
  875. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  876. * this to avoid an uncatched #GP in the guest
  877. */
  878. if ((offset & 0x3) == 0 &&
  879. data != 0 && (data | (1 << 10)) != ~(u64)0)
  880. return -1;
  881. vcpu->arch.mce_banks[offset] = data;
  882. break;
  883. }
  884. return 1;
  885. }
  886. return 0;
  887. }
  888. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  889. {
  890. struct kvm *kvm = vcpu->kvm;
  891. int lm = is_long_mode(vcpu);
  892. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  893. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  894. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  895. : kvm->arch.xen_hvm_config.blob_size_32;
  896. u32 page_num = data & ~PAGE_MASK;
  897. u64 page_addr = data & PAGE_MASK;
  898. u8 *page;
  899. int r;
  900. r = -E2BIG;
  901. if (page_num >= blob_size)
  902. goto out;
  903. r = -ENOMEM;
  904. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  905. if (!page)
  906. goto out;
  907. r = -EFAULT;
  908. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  909. goto out_free;
  910. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  911. goto out_free;
  912. r = 0;
  913. out_free:
  914. kfree(page);
  915. out:
  916. return r;
  917. }
  918. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  919. {
  920. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  921. }
  922. static bool kvm_hv_msr_partition_wide(u32 msr)
  923. {
  924. bool r = false;
  925. switch (msr) {
  926. case HV_X64_MSR_GUEST_OS_ID:
  927. case HV_X64_MSR_HYPERCALL:
  928. r = true;
  929. break;
  930. }
  931. return r;
  932. }
  933. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  934. {
  935. struct kvm *kvm = vcpu->kvm;
  936. switch (msr) {
  937. case HV_X64_MSR_GUEST_OS_ID:
  938. kvm->arch.hv_guest_os_id = data;
  939. /* setting guest os id to zero disables hypercall page */
  940. if (!kvm->arch.hv_guest_os_id)
  941. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  942. break;
  943. case HV_X64_MSR_HYPERCALL: {
  944. u64 gfn;
  945. unsigned long addr;
  946. u8 instructions[4];
  947. /* if guest os id is not set hypercall should remain disabled */
  948. if (!kvm->arch.hv_guest_os_id)
  949. break;
  950. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  951. kvm->arch.hv_hypercall = data;
  952. break;
  953. }
  954. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  955. addr = gfn_to_hva(kvm, gfn);
  956. if (kvm_is_error_hva(addr))
  957. return 1;
  958. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  959. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  960. if (copy_to_user((void __user *)addr, instructions, 4))
  961. return 1;
  962. kvm->arch.hv_hypercall = data;
  963. break;
  964. }
  965. default:
  966. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  967. "data 0x%llx\n", msr, data);
  968. return 1;
  969. }
  970. return 0;
  971. }
  972. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  973. {
  974. switch (msr) {
  975. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  976. unsigned long addr;
  977. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  978. vcpu->arch.hv_vapic = data;
  979. break;
  980. }
  981. addr = gfn_to_hva(vcpu->kvm, data >>
  982. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  983. if (kvm_is_error_hva(addr))
  984. return 1;
  985. if (clear_user((void __user *)addr, PAGE_SIZE))
  986. return 1;
  987. vcpu->arch.hv_vapic = data;
  988. break;
  989. }
  990. case HV_X64_MSR_EOI:
  991. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  992. case HV_X64_MSR_ICR:
  993. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  994. case HV_X64_MSR_TPR:
  995. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  996. default:
  997. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  998. "data 0x%llx\n", msr, data);
  999. return 1;
  1000. }
  1001. return 0;
  1002. }
  1003. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1004. {
  1005. switch (msr) {
  1006. case MSR_EFER:
  1007. return set_efer(vcpu, data);
  1008. case MSR_K7_HWCR:
  1009. data &= ~(u64)0x40; /* ignore flush filter disable */
  1010. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1011. if (data != 0) {
  1012. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1013. data);
  1014. return 1;
  1015. }
  1016. break;
  1017. case MSR_FAM10H_MMIO_CONF_BASE:
  1018. if (data != 0) {
  1019. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1020. "0x%llx\n", data);
  1021. return 1;
  1022. }
  1023. break;
  1024. case MSR_AMD64_NB_CFG:
  1025. break;
  1026. case MSR_IA32_DEBUGCTLMSR:
  1027. if (!data) {
  1028. /* We support the non-activated case already */
  1029. break;
  1030. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1031. /* Values other than LBR and BTF are vendor-specific,
  1032. thus reserved and should throw a #GP */
  1033. return 1;
  1034. }
  1035. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1036. __func__, data);
  1037. break;
  1038. case MSR_IA32_UCODE_REV:
  1039. case MSR_IA32_UCODE_WRITE:
  1040. case MSR_VM_HSAVE_PA:
  1041. case MSR_AMD64_PATCH_LOADER:
  1042. break;
  1043. case 0x200 ... 0x2ff:
  1044. return set_msr_mtrr(vcpu, msr, data);
  1045. case MSR_IA32_APICBASE:
  1046. kvm_set_apic_base(vcpu, data);
  1047. break;
  1048. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1049. return kvm_x2apic_msr_write(vcpu, msr, data);
  1050. case MSR_IA32_MISC_ENABLE:
  1051. vcpu->arch.ia32_misc_enable_msr = data;
  1052. break;
  1053. case MSR_KVM_WALL_CLOCK_NEW:
  1054. case MSR_KVM_WALL_CLOCK:
  1055. vcpu->kvm->arch.wall_clock = data;
  1056. kvm_write_wall_clock(vcpu->kvm, data);
  1057. break;
  1058. case MSR_KVM_SYSTEM_TIME_NEW:
  1059. case MSR_KVM_SYSTEM_TIME: {
  1060. if (vcpu->arch.time_page) {
  1061. kvm_release_page_dirty(vcpu->arch.time_page);
  1062. vcpu->arch.time_page = NULL;
  1063. }
  1064. vcpu->arch.time = data;
  1065. /* we verify if the enable bit is set... */
  1066. if (!(data & 1))
  1067. break;
  1068. /* ...but clean it before doing the actual write */
  1069. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1070. vcpu->arch.time_page =
  1071. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1072. if (is_error_page(vcpu->arch.time_page)) {
  1073. kvm_release_page_clean(vcpu->arch.time_page);
  1074. vcpu->arch.time_page = NULL;
  1075. }
  1076. kvm_request_guest_time_update(vcpu);
  1077. break;
  1078. }
  1079. case MSR_IA32_MCG_CTL:
  1080. case MSR_IA32_MCG_STATUS:
  1081. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1082. return set_msr_mce(vcpu, msr, data);
  1083. /* Performance counters are not protected by a CPUID bit,
  1084. * so we should check all of them in the generic path for the sake of
  1085. * cross vendor migration.
  1086. * Writing a zero into the event select MSRs disables them,
  1087. * which we perfectly emulate ;-). Any other value should be at least
  1088. * reported, some guests depend on them.
  1089. */
  1090. case MSR_P6_EVNTSEL0:
  1091. case MSR_P6_EVNTSEL1:
  1092. case MSR_K7_EVNTSEL0:
  1093. case MSR_K7_EVNTSEL1:
  1094. case MSR_K7_EVNTSEL2:
  1095. case MSR_K7_EVNTSEL3:
  1096. if (data != 0)
  1097. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1098. "0x%x data 0x%llx\n", msr, data);
  1099. break;
  1100. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1101. * so we ignore writes to make it happy.
  1102. */
  1103. case MSR_P6_PERFCTR0:
  1104. case MSR_P6_PERFCTR1:
  1105. case MSR_K7_PERFCTR0:
  1106. case MSR_K7_PERFCTR1:
  1107. case MSR_K7_PERFCTR2:
  1108. case MSR_K7_PERFCTR3:
  1109. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1110. "0x%x data 0x%llx\n", msr, data);
  1111. break;
  1112. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1113. if (kvm_hv_msr_partition_wide(msr)) {
  1114. int r;
  1115. mutex_lock(&vcpu->kvm->lock);
  1116. r = set_msr_hyperv_pw(vcpu, msr, data);
  1117. mutex_unlock(&vcpu->kvm->lock);
  1118. return r;
  1119. } else
  1120. return set_msr_hyperv(vcpu, msr, data);
  1121. break;
  1122. default:
  1123. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1124. return xen_hvm_config(vcpu, data);
  1125. if (!ignore_msrs) {
  1126. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1127. msr, data);
  1128. return 1;
  1129. } else {
  1130. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1131. msr, data);
  1132. break;
  1133. }
  1134. }
  1135. return 0;
  1136. }
  1137. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1138. /*
  1139. * Reads an msr value (of 'msr_index') into 'pdata'.
  1140. * Returns 0 on success, non-0 otherwise.
  1141. * Assumes vcpu_load() was already called.
  1142. */
  1143. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1144. {
  1145. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1146. }
  1147. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1148. {
  1149. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1150. if (!msr_mtrr_valid(msr))
  1151. return 1;
  1152. if (msr == MSR_MTRRdefType)
  1153. *pdata = vcpu->arch.mtrr_state.def_type +
  1154. (vcpu->arch.mtrr_state.enabled << 10);
  1155. else if (msr == MSR_MTRRfix64K_00000)
  1156. *pdata = p[0];
  1157. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1158. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1159. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1160. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1161. else if (msr == MSR_IA32_CR_PAT)
  1162. *pdata = vcpu->arch.pat;
  1163. else { /* Variable MTRRs */
  1164. int idx, is_mtrr_mask;
  1165. u64 *pt;
  1166. idx = (msr - 0x200) / 2;
  1167. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1168. if (!is_mtrr_mask)
  1169. pt =
  1170. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1171. else
  1172. pt =
  1173. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1174. *pdata = *pt;
  1175. }
  1176. return 0;
  1177. }
  1178. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1179. {
  1180. u64 data;
  1181. u64 mcg_cap = vcpu->arch.mcg_cap;
  1182. unsigned bank_num = mcg_cap & 0xff;
  1183. switch (msr) {
  1184. case MSR_IA32_P5_MC_ADDR:
  1185. case MSR_IA32_P5_MC_TYPE:
  1186. data = 0;
  1187. break;
  1188. case MSR_IA32_MCG_CAP:
  1189. data = vcpu->arch.mcg_cap;
  1190. break;
  1191. case MSR_IA32_MCG_CTL:
  1192. if (!(mcg_cap & MCG_CTL_P))
  1193. return 1;
  1194. data = vcpu->arch.mcg_ctl;
  1195. break;
  1196. case MSR_IA32_MCG_STATUS:
  1197. data = vcpu->arch.mcg_status;
  1198. break;
  1199. default:
  1200. if (msr >= MSR_IA32_MC0_CTL &&
  1201. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1202. u32 offset = msr - MSR_IA32_MC0_CTL;
  1203. data = vcpu->arch.mce_banks[offset];
  1204. break;
  1205. }
  1206. return 1;
  1207. }
  1208. *pdata = data;
  1209. return 0;
  1210. }
  1211. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1212. {
  1213. u64 data = 0;
  1214. struct kvm *kvm = vcpu->kvm;
  1215. switch (msr) {
  1216. case HV_X64_MSR_GUEST_OS_ID:
  1217. data = kvm->arch.hv_guest_os_id;
  1218. break;
  1219. case HV_X64_MSR_HYPERCALL:
  1220. data = kvm->arch.hv_hypercall;
  1221. break;
  1222. default:
  1223. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1224. return 1;
  1225. }
  1226. *pdata = data;
  1227. return 0;
  1228. }
  1229. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1230. {
  1231. u64 data = 0;
  1232. switch (msr) {
  1233. case HV_X64_MSR_VP_INDEX: {
  1234. int r;
  1235. struct kvm_vcpu *v;
  1236. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1237. if (v == vcpu)
  1238. data = r;
  1239. break;
  1240. }
  1241. case HV_X64_MSR_EOI:
  1242. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1243. case HV_X64_MSR_ICR:
  1244. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1245. case HV_X64_MSR_TPR:
  1246. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1247. default:
  1248. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1249. return 1;
  1250. }
  1251. *pdata = data;
  1252. return 0;
  1253. }
  1254. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1255. {
  1256. u64 data;
  1257. switch (msr) {
  1258. case MSR_IA32_PLATFORM_ID:
  1259. case MSR_IA32_UCODE_REV:
  1260. case MSR_IA32_EBL_CR_POWERON:
  1261. case MSR_IA32_DEBUGCTLMSR:
  1262. case MSR_IA32_LASTBRANCHFROMIP:
  1263. case MSR_IA32_LASTBRANCHTOIP:
  1264. case MSR_IA32_LASTINTFROMIP:
  1265. case MSR_IA32_LASTINTTOIP:
  1266. case MSR_K8_SYSCFG:
  1267. case MSR_K7_HWCR:
  1268. case MSR_VM_HSAVE_PA:
  1269. case MSR_P6_PERFCTR0:
  1270. case MSR_P6_PERFCTR1:
  1271. case MSR_P6_EVNTSEL0:
  1272. case MSR_P6_EVNTSEL1:
  1273. case MSR_K7_EVNTSEL0:
  1274. case MSR_K7_PERFCTR0:
  1275. case MSR_K8_INT_PENDING_MSG:
  1276. case MSR_AMD64_NB_CFG:
  1277. case MSR_FAM10H_MMIO_CONF_BASE:
  1278. data = 0;
  1279. break;
  1280. case MSR_MTRRcap:
  1281. data = 0x500 | KVM_NR_VAR_MTRR;
  1282. break;
  1283. case 0x200 ... 0x2ff:
  1284. return get_msr_mtrr(vcpu, msr, pdata);
  1285. case 0xcd: /* fsb frequency */
  1286. data = 3;
  1287. break;
  1288. case MSR_IA32_APICBASE:
  1289. data = kvm_get_apic_base(vcpu);
  1290. break;
  1291. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1292. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1293. break;
  1294. case MSR_IA32_MISC_ENABLE:
  1295. data = vcpu->arch.ia32_misc_enable_msr;
  1296. break;
  1297. case MSR_IA32_PERF_STATUS:
  1298. /* TSC increment by tick */
  1299. data = 1000ULL;
  1300. /* CPU multiplier */
  1301. data |= (((uint64_t)4ULL) << 40);
  1302. break;
  1303. case MSR_EFER:
  1304. data = vcpu->arch.efer;
  1305. break;
  1306. case MSR_KVM_WALL_CLOCK:
  1307. case MSR_KVM_WALL_CLOCK_NEW:
  1308. data = vcpu->kvm->arch.wall_clock;
  1309. break;
  1310. case MSR_KVM_SYSTEM_TIME:
  1311. case MSR_KVM_SYSTEM_TIME_NEW:
  1312. data = vcpu->arch.time;
  1313. break;
  1314. case MSR_IA32_P5_MC_ADDR:
  1315. case MSR_IA32_P5_MC_TYPE:
  1316. case MSR_IA32_MCG_CAP:
  1317. case MSR_IA32_MCG_CTL:
  1318. case MSR_IA32_MCG_STATUS:
  1319. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1320. return get_msr_mce(vcpu, msr, pdata);
  1321. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1322. if (kvm_hv_msr_partition_wide(msr)) {
  1323. int r;
  1324. mutex_lock(&vcpu->kvm->lock);
  1325. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1326. mutex_unlock(&vcpu->kvm->lock);
  1327. return r;
  1328. } else
  1329. return get_msr_hyperv(vcpu, msr, pdata);
  1330. break;
  1331. default:
  1332. if (!ignore_msrs) {
  1333. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1334. return 1;
  1335. } else {
  1336. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1337. data = 0;
  1338. }
  1339. break;
  1340. }
  1341. *pdata = data;
  1342. return 0;
  1343. }
  1344. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1345. /*
  1346. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1347. *
  1348. * @return number of msrs set successfully.
  1349. */
  1350. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1351. struct kvm_msr_entry *entries,
  1352. int (*do_msr)(struct kvm_vcpu *vcpu,
  1353. unsigned index, u64 *data))
  1354. {
  1355. int i, idx;
  1356. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1357. for (i = 0; i < msrs->nmsrs; ++i)
  1358. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1359. break;
  1360. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1361. return i;
  1362. }
  1363. /*
  1364. * Read or write a bunch of msrs. Parameters are user addresses.
  1365. *
  1366. * @return number of msrs set successfully.
  1367. */
  1368. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1369. int (*do_msr)(struct kvm_vcpu *vcpu,
  1370. unsigned index, u64 *data),
  1371. int writeback)
  1372. {
  1373. struct kvm_msrs msrs;
  1374. struct kvm_msr_entry *entries;
  1375. int r, n;
  1376. unsigned size;
  1377. r = -EFAULT;
  1378. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1379. goto out;
  1380. r = -E2BIG;
  1381. if (msrs.nmsrs >= MAX_IO_MSRS)
  1382. goto out;
  1383. r = -ENOMEM;
  1384. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1385. entries = kmalloc(size, GFP_KERNEL);
  1386. if (!entries)
  1387. goto out;
  1388. r = -EFAULT;
  1389. if (copy_from_user(entries, user_msrs->entries, size))
  1390. goto out_free;
  1391. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1392. if (r < 0)
  1393. goto out_free;
  1394. r = -EFAULT;
  1395. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1396. goto out_free;
  1397. r = n;
  1398. out_free:
  1399. kfree(entries);
  1400. out:
  1401. return r;
  1402. }
  1403. int kvm_dev_ioctl_check_extension(long ext)
  1404. {
  1405. int r;
  1406. switch (ext) {
  1407. case KVM_CAP_IRQCHIP:
  1408. case KVM_CAP_HLT:
  1409. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1410. case KVM_CAP_SET_TSS_ADDR:
  1411. case KVM_CAP_EXT_CPUID:
  1412. case KVM_CAP_CLOCKSOURCE:
  1413. case KVM_CAP_PIT:
  1414. case KVM_CAP_NOP_IO_DELAY:
  1415. case KVM_CAP_MP_STATE:
  1416. case KVM_CAP_SYNC_MMU:
  1417. case KVM_CAP_REINJECT_CONTROL:
  1418. case KVM_CAP_IRQ_INJECT_STATUS:
  1419. case KVM_CAP_ASSIGN_DEV_IRQ:
  1420. case KVM_CAP_IRQFD:
  1421. case KVM_CAP_IOEVENTFD:
  1422. case KVM_CAP_PIT2:
  1423. case KVM_CAP_PIT_STATE2:
  1424. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1425. case KVM_CAP_XEN_HVM:
  1426. case KVM_CAP_ADJUST_CLOCK:
  1427. case KVM_CAP_VCPU_EVENTS:
  1428. case KVM_CAP_HYPERV:
  1429. case KVM_CAP_HYPERV_VAPIC:
  1430. case KVM_CAP_HYPERV_SPIN:
  1431. case KVM_CAP_PCI_SEGMENT:
  1432. case KVM_CAP_DEBUGREGS:
  1433. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1434. r = 1;
  1435. break;
  1436. case KVM_CAP_COALESCED_MMIO:
  1437. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1438. break;
  1439. case KVM_CAP_VAPIC:
  1440. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1441. break;
  1442. case KVM_CAP_NR_VCPUS:
  1443. r = KVM_MAX_VCPUS;
  1444. break;
  1445. case KVM_CAP_NR_MEMSLOTS:
  1446. r = KVM_MEMORY_SLOTS;
  1447. break;
  1448. case KVM_CAP_PV_MMU: /* obsolete */
  1449. r = 0;
  1450. break;
  1451. case KVM_CAP_IOMMU:
  1452. r = iommu_found();
  1453. break;
  1454. case KVM_CAP_MCE:
  1455. r = KVM_MAX_MCE_BANKS;
  1456. break;
  1457. default:
  1458. r = 0;
  1459. break;
  1460. }
  1461. return r;
  1462. }
  1463. long kvm_arch_dev_ioctl(struct file *filp,
  1464. unsigned int ioctl, unsigned long arg)
  1465. {
  1466. void __user *argp = (void __user *)arg;
  1467. long r;
  1468. switch (ioctl) {
  1469. case KVM_GET_MSR_INDEX_LIST: {
  1470. struct kvm_msr_list __user *user_msr_list = argp;
  1471. struct kvm_msr_list msr_list;
  1472. unsigned n;
  1473. r = -EFAULT;
  1474. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1475. goto out;
  1476. n = msr_list.nmsrs;
  1477. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1478. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1479. goto out;
  1480. r = -E2BIG;
  1481. if (n < msr_list.nmsrs)
  1482. goto out;
  1483. r = -EFAULT;
  1484. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1485. num_msrs_to_save * sizeof(u32)))
  1486. goto out;
  1487. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1488. &emulated_msrs,
  1489. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1490. goto out;
  1491. r = 0;
  1492. break;
  1493. }
  1494. case KVM_GET_SUPPORTED_CPUID: {
  1495. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1496. struct kvm_cpuid2 cpuid;
  1497. r = -EFAULT;
  1498. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1499. goto out;
  1500. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1501. cpuid_arg->entries);
  1502. if (r)
  1503. goto out;
  1504. r = -EFAULT;
  1505. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1506. goto out;
  1507. r = 0;
  1508. break;
  1509. }
  1510. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1511. u64 mce_cap;
  1512. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1513. r = -EFAULT;
  1514. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. default:
  1520. r = -EINVAL;
  1521. }
  1522. out:
  1523. return r;
  1524. }
  1525. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1526. {
  1527. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1528. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1529. unsigned long khz = cpufreq_quick_get(cpu);
  1530. if (!khz)
  1531. khz = tsc_khz;
  1532. per_cpu(cpu_tsc_khz, cpu) = khz;
  1533. }
  1534. kvm_request_guest_time_update(vcpu);
  1535. }
  1536. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1537. {
  1538. kvm_x86_ops->vcpu_put(vcpu);
  1539. kvm_put_guest_fpu(vcpu);
  1540. }
  1541. static int is_efer_nx(void)
  1542. {
  1543. unsigned long long efer = 0;
  1544. rdmsrl_safe(MSR_EFER, &efer);
  1545. return efer & EFER_NX;
  1546. }
  1547. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1548. {
  1549. int i;
  1550. struct kvm_cpuid_entry2 *e, *entry;
  1551. entry = NULL;
  1552. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1553. e = &vcpu->arch.cpuid_entries[i];
  1554. if (e->function == 0x80000001) {
  1555. entry = e;
  1556. break;
  1557. }
  1558. }
  1559. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1560. entry->edx &= ~(1 << 20);
  1561. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1562. }
  1563. }
  1564. /* when an old userspace process fills a new kernel module */
  1565. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1566. struct kvm_cpuid *cpuid,
  1567. struct kvm_cpuid_entry __user *entries)
  1568. {
  1569. int r, i;
  1570. struct kvm_cpuid_entry *cpuid_entries;
  1571. r = -E2BIG;
  1572. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1573. goto out;
  1574. r = -ENOMEM;
  1575. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1576. if (!cpuid_entries)
  1577. goto out;
  1578. r = -EFAULT;
  1579. if (copy_from_user(cpuid_entries, entries,
  1580. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1581. goto out_free;
  1582. for (i = 0; i < cpuid->nent; i++) {
  1583. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1584. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1585. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1586. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1587. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1588. vcpu->arch.cpuid_entries[i].index = 0;
  1589. vcpu->arch.cpuid_entries[i].flags = 0;
  1590. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1591. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1592. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1593. }
  1594. vcpu->arch.cpuid_nent = cpuid->nent;
  1595. cpuid_fix_nx_cap(vcpu);
  1596. r = 0;
  1597. kvm_apic_set_version(vcpu);
  1598. kvm_x86_ops->cpuid_update(vcpu);
  1599. out_free:
  1600. vfree(cpuid_entries);
  1601. out:
  1602. return r;
  1603. }
  1604. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1605. struct kvm_cpuid2 *cpuid,
  1606. struct kvm_cpuid_entry2 __user *entries)
  1607. {
  1608. int r;
  1609. r = -E2BIG;
  1610. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1611. goto out;
  1612. r = -EFAULT;
  1613. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1614. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1615. goto out;
  1616. vcpu->arch.cpuid_nent = cpuid->nent;
  1617. kvm_apic_set_version(vcpu);
  1618. kvm_x86_ops->cpuid_update(vcpu);
  1619. return 0;
  1620. out:
  1621. return r;
  1622. }
  1623. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1624. struct kvm_cpuid2 *cpuid,
  1625. struct kvm_cpuid_entry2 __user *entries)
  1626. {
  1627. int r;
  1628. r = -E2BIG;
  1629. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1630. goto out;
  1631. r = -EFAULT;
  1632. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1633. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1634. goto out;
  1635. return 0;
  1636. out:
  1637. cpuid->nent = vcpu->arch.cpuid_nent;
  1638. return r;
  1639. }
  1640. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1641. u32 index)
  1642. {
  1643. entry->function = function;
  1644. entry->index = index;
  1645. cpuid_count(entry->function, entry->index,
  1646. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1647. entry->flags = 0;
  1648. }
  1649. #define F(x) bit(X86_FEATURE_##x)
  1650. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1651. u32 index, int *nent, int maxnent)
  1652. {
  1653. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1654. #ifdef CONFIG_X86_64
  1655. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1656. ? F(GBPAGES) : 0;
  1657. unsigned f_lm = F(LM);
  1658. #else
  1659. unsigned f_gbpages = 0;
  1660. unsigned f_lm = 0;
  1661. #endif
  1662. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1663. /* cpuid 1.edx */
  1664. const u32 kvm_supported_word0_x86_features =
  1665. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1666. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1667. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1668. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1669. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1670. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1671. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1672. 0 /* HTT, TM, Reserved, PBE */;
  1673. /* cpuid 0x80000001.edx */
  1674. const u32 kvm_supported_word1_x86_features =
  1675. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1676. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1677. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1678. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1679. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1680. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1681. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1682. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1683. /* cpuid 1.ecx */
  1684. const u32 kvm_supported_word4_x86_features =
  1685. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1686. 0 /* DS-CPL, VMX, SMX, EST */ |
  1687. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1688. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1689. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1690. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1691. 0 /* Reserved, XSAVE, OSXSAVE */;
  1692. /* cpuid 0x80000001.ecx */
  1693. const u32 kvm_supported_word6_x86_features =
  1694. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1695. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1696. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1697. 0 /* SKINIT */ | 0 /* WDT */;
  1698. /* all calls to cpuid_count() should be made on the same cpu */
  1699. get_cpu();
  1700. do_cpuid_1_ent(entry, function, index);
  1701. ++*nent;
  1702. switch (function) {
  1703. case 0:
  1704. entry->eax = min(entry->eax, (u32)0xb);
  1705. break;
  1706. case 1:
  1707. entry->edx &= kvm_supported_word0_x86_features;
  1708. entry->ecx &= kvm_supported_word4_x86_features;
  1709. /* we support x2apic emulation even if host does not support
  1710. * it since we emulate x2apic in software */
  1711. entry->ecx |= F(X2APIC);
  1712. break;
  1713. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1714. * may return different values. This forces us to get_cpu() before
  1715. * issuing the first command, and also to emulate this annoying behavior
  1716. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1717. case 2: {
  1718. int t, times = entry->eax & 0xff;
  1719. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1720. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1721. for (t = 1; t < times && *nent < maxnent; ++t) {
  1722. do_cpuid_1_ent(&entry[t], function, 0);
  1723. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1724. ++*nent;
  1725. }
  1726. break;
  1727. }
  1728. /* function 4 and 0xb have additional index. */
  1729. case 4: {
  1730. int i, cache_type;
  1731. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1732. /* read more entries until cache_type is zero */
  1733. for (i = 1; *nent < maxnent; ++i) {
  1734. cache_type = entry[i - 1].eax & 0x1f;
  1735. if (!cache_type)
  1736. break;
  1737. do_cpuid_1_ent(&entry[i], function, i);
  1738. entry[i].flags |=
  1739. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1740. ++*nent;
  1741. }
  1742. break;
  1743. }
  1744. case 0xb: {
  1745. int i, level_type;
  1746. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1747. /* read more entries until level_type is zero */
  1748. for (i = 1; *nent < maxnent; ++i) {
  1749. level_type = entry[i - 1].ecx & 0xff00;
  1750. if (!level_type)
  1751. break;
  1752. do_cpuid_1_ent(&entry[i], function, i);
  1753. entry[i].flags |=
  1754. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1755. ++*nent;
  1756. }
  1757. break;
  1758. }
  1759. case KVM_CPUID_SIGNATURE: {
  1760. char signature[12] = "KVMKVMKVM\0\0";
  1761. u32 *sigptr = (u32 *)signature;
  1762. entry->eax = 0;
  1763. entry->ebx = sigptr[0];
  1764. entry->ecx = sigptr[1];
  1765. entry->edx = sigptr[2];
  1766. break;
  1767. }
  1768. case KVM_CPUID_FEATURES:
  1769. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1770. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1771. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1772. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1773. entry->ebx = 0;
  1774. entry->ecx = 0;
  1775. entry->edx = 0;
  1776. break;
  1777. case 0x80000000:
  1778. entry->eax = min(entry->eax, 0x8000001a);
  1779. break;
  1780. case 0x80000001:
  1781. entry->edx &= kvm_supported_word1_x86_features;
  1782. entry->ecx &= kvm_supported_word6_x86_features;
  1783. break;
  1784. }
  1785. kvm_x86_ops->set_supported_cpuid(function, entry);
  1786. put_cpu();
  1787. }
  1788. #undef F
  1789. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1790. struct kvm_cpuid_entry2 __user *entries)
  1791. {
  1792. struct kvm_cpuid_entry2 *cpuid_entries;
  1793. int limit, nent = 0, r = -E2BIG;
  1794. u32 func;
  1795. if (cpuid->nent < 1)
  1796. goto out;
  1797. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1798. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1799. r = -ENOMEM;
  1800. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1801. if (!cpuid_entries)
  1802. goto out;
  1803. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1804. limit = cpuid_entries[0].eax;
  1805. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1806. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1807. &nent, cpuid->nent);
  1808. r = -E2BIG;
  1809. if (nent >= cpuid->nent)
  1810. goto out_free;
  1811. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1812. limit = cpuid_entries[nent - 1].eax;
  1813. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1814. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1815. &nent, cpuid->nent);
  1816. r = -E2BIG;
  1817. if (nent >= cpuid->nent)
  1818. goto out_free;
  1819. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1820. cpuid->nent);
  1821. r = -E2BIG;
  1822. if (nent >= cpuid->nent)
  1823. goto out_free;
  1824. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1825. cpuid->nent);
  1826. r = -E2BIG;
  1827. if (nent >= cpuid->nent)
  1828. goto out_free;
  1829. r = -EFAULT;
  1830. if (copy_to_user(entries, cpuid_entries,
  1831. nent * sizeof(struct kvm_cpuid_entry2)))
  1832. goto out_free;
  1833. cpuid->nent = nent;
  1834. r = 0;
  1835. out_free:
  1836. vfree(cpuid_entries);
  1837. out:
  1838. return r;
  1839. }
  1840. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1841. struct kvm_lapic_state *s)
  1842. {
  1843. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1844. return 0;
  1845. }
  1846. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1847. struct kvm_lapic_state *s)
  1848. {
  1849. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1850. kvm_apic_post_state_restore(vcpu);
  1851. update_cr8_intercept(vcpu);
  1852. return 0;
  1853. }
  1854. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1855. struct kvm_interrupt *irq)
  1856. {
  1857. if (irq->irq < 0 || irq->irq >= 256)
  1858. return -EINVAL;
  1859. if (irqchip_in_kernel(vcpu->kvm))
  1860. return -ENXIO;
  1861. kvm_queue_interrupt(vcpu, irq->irq, false);
  1862. return 0;
  1863. }
  1864. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1865. {
  1866. kvm_inject_nmi(vcpu);
  1867. return 0;
  1868. }
  1869. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1870. struct kvm_tpr_access_ctl *tac)
  1871. {
  1872. if (tac->flags)
  1873. return -EINVAL;
  1874. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1875. return 0;
  1876. }
  1877. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1878. u64 mcg_cap)
  1879. {
  1880. int r;
  1881. unsigned bank_num = mcg_cap & 0xff, bank;
  1882. r = -EINVAL;
  1883. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1884. goto out;
  1885. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1886. goto out;
  1887. r = 0;
  1888. vcpu->arch.mcg_cap = mcg_cap;
  1889. /* Init IA32_MCG_CTL to all 1s */
  1890. if (mcg_cap & MCG_CTL_P)
  1891. vcpu->arch.mcg_ctl = ~(u64)0;
  1892. /* Init IA32_MCi_CTL to all 1s */
  1893. for (bank = 0; bank < bank_num; bank++)
  1894. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1895. out:
  1896. return r;
  1897. }
  1898. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1899. struct kvm_x86_mce *mce)
  1900. {
  1901. u64 mcg_cap = vcpu->arch.mcg_cap;
  1902. unsigned bank_num = mcg_cap & 0xff;
  1903. u64 *banks = vcpu->arch.mce_banks;
  1904. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1905. return -EINVAL;
  1906. /*
  1907. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1908. * reporting is disabled
  1909. */
  1910. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1911. vcpu->arch.mcg_ctl != ~(u64)0)
  1912. return 0;
  1913. banks += 4 * mce->bank;
  1914. /*
  1915. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1916. * reporting is disabled for the bank
  1917. */
  1918. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1919. return 0;
  1920. if (mce->status & MCI_STATUS_UC) {
  1921. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1922. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1923. printk(KERN_DEBUG "kvm: set_mce: "
  1924. "injects mce exception while "
  1925. "previous one is in progress!\n");
  1926. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1927. return 0;
  1928. }
  1929. if (banks[1] & MCI_STATUS_VAL)
  1930. mce->status |= MCI_STATUS_OVER;
  1931. banks[2] = mce->addr;
  1932. banks[3] = mce->misc;
  1933. vcpu->arch.mcg_status = mce->mcg_status;
  1934. banks[1] = mce->status;
  1935. kvm_queue_exception(vcpu, MC_VECTOR);
  1936. } else if (!(banks[1] & MCI_STATUS_VAL)
  1937. || !(banks[1] & MCI_STATUS_UC)) {
  1938. if (banks[1] & MCI_STATUS_VAL)
  1939. mce->status |= MCI_STATUS_OVER;
  1940. banks[2] = mce->addr;
  1941. banks[3] = mce->misc;
  1942. banks[1] = mce->status;
  1943. } else
  1944. banks[1] |= MCI_STATUS_OVER;
  1945. return 0;
  1946. }
  1947. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1948. struct kvm_vcpu_events *events)
  1949. {
  1950. events->exception.injected =
  1951. vcpu->arch.exception.pending &&
  1952. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1953. events->exception.nr = vcpu->arch.exception.nr;
  1954. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1955. events->exception.error_code = vcpu->arch.exception.error_code;
  1956. events->interrupt.injected =
  1957. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1958. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1959. events->interrupt.soft = 0;
  1960. events->interrupt.shadow =
  1961. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1962. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1963. events->nmi.injected = vcpu->arch.nmi_injected;
  1964. events->nmi.pending = vcpu->arch.nmi_pending;
  1965. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1966. events->sipi_vector = vcpu->arch.sipi_vector;
  1967. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1968. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1969. | KVM_VCPUEVENT_VALID_SHADOW);
  1970. }
  1971. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1972. struct kvm_vcpu_events *events)
  1973. {
  1974. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1975. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1976. | KVM_VCPUEVENT_VALID_SHADOW))
  1977. return -EINVAL;
  1978. vcpu->arch.exception.pending = events->exception.injected;
  1979. vcpu->arch.exception.nr = events->exception.nr;
  1980. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1981. vcpu->arch.exception.error_code = events->exception.error_code;
  1982. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1983. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1984. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1985. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1986. kvm_pic_clear_isr_ack(vcpu->kvm);
  1987. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1988. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1989. events->interrupt.shadow);
  1990. vcpu->arch.nmi_injected = events->nmi.injected;
  1991. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1992. vcpu->arch.nmi_pending = events->nmi.pending;
  1993. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1994. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1995. vcpu->arch.sipi_vector = events->sipi_vector;
  1996. return 0;
  1997. }
  1998. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1999. struct kvm_debugregs *dbgregs)
  2000. {
  2001. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2002. dbgregs->dr6 = vcpu->arch.dr6;
  2003. dbgregs->dr7 = vcpu->arch.dr7;
  2004. dbgregs->flags = 0;
  2005. }
  2006. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2007. struct kvm_debugregs *dbgregs)
  2008. {
  2009. if (dbgregs->flags)
  2010. return -EINVAL;
  2011. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2012. vcpu->arch.dr6 = dbgregs->dr6;
  2013. vcpu->arch.dr7 = dbgregs->dr7;
  2014. return 0;
  2015. }
  2016. long kvm_arch_vcpu_ioctl(struct file *filp,
  2017. unsigned int ioctl, unsigned long arg)
  2018. {
  2019. struct kvm_vcpu *vcpu = filp->private_data;
  2020. void __user *argp = (void __user *)arg;
  2021. int r;
  2022. struct kvm_lapic_state *lapic = NULL;
  2023. switch (ioctl) {
  2024. case KVM_GET_LAPIC: {
  2025. r = -EINVAL;
  2026. if (!vcpu->arch.apic)
  2027. goto out;
  2028. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2029. r = -ENOMEM;
  2030. if (!lapic)
  2031. goto out;
  2032. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  2033. if (r)
  2034. goto out;
  2035. r = -EFAULT;
  2036. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  2037. goto out;
  2038. r = 0;
  2039. break;
  2040. }
  2041. case KVM_SET_LAPIC: {
  2042. r = -EINVAL;
  2043. if (!vcpu->arch.apic)
  2044. goto out;
  2045. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2046. r = -ENOMEM;
  2047. if (!lapic)
  2048. goto out;
  2049. r = -EFAULT;
  2050. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  2051. goto out;
  2052. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  2053. if (r)
  2054. goto out;
  2055. r = 0;
  2056. break;
  2057. }
  2058. case KVM_INTERRUPT: {
  2059. struct kvm_interrupt irq;
  2060. r = -EFAULT;
  2061. if (copy_from_user(&irq, argp, sizeof irq))
  2062. goto out;
  2063. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2064. if (r)
  2065. goto out;
  2066. r = 0;
  2067. break;
  2068. }
  2069. case KVM_NMI: {
  2070. r = kvm_vcpu_ioctl_nmi(vcpu);
  2071. if (r)
  2072. goto out;
  2073. r = 0;
  2074. break;
  2075. }
  2076. case KVM_SET_CPUID: {
  2077. struct kvm_cpuid __user *cpuid_arg = argp;
  2078. struct kvm_cpuid cpuid;
  2079. r = -EFAULT;
  2080. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2081. goto out;
  2082. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2083. if (r)
  2084. goto out;
  2085. break;
  2086. }
  2087. case KVM_SET_CPUID2: {
  2088. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2089. struct kvm_cpuid2 cpuid;
  2090. r = -EFAULT;
  2091. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2092. goto out;
  2093. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2094. cpuid_arg->entries);
  2095. if (r)
  2096. goto out;
  2097. break;
  2098. }
  2099. case KVM_GET_CPUID2: {
  2100. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2101. struct kvm_cpuid2 cpuid;
  2102. r = -EFAULT;
  2103. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2104. goto out;
  2105. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2106. cpuid_arg->entries);
  2107. if (r)
  2108. goto out;
  2109. r = -EFAULT;
  2110. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2111. goto out;
  2112. r = 0;
  2113. break;
  2114. }
  2115. case KVM_GET_MSRS:
  2116. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2117. break;
  2118. case KVM_SET_MSRS:
  2119. r = msr_io(vcpu, argp, do_set_msr, 0);
  2120. break;
  2121. case KVM_TPR_ACCESS_REPORTING: {
  2122. struct kvm_tpr_access_ctl tac;
  2123. r = -EFAULT;
  2124. if (copy_from_user(&tac, argp, sizeof tac))
  2125. goto out;
  2126. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2127. if (r)
  2128. goto out;
  2129. r = -EFAULT;
  2130. if (copy_to_user(argp, &tac, sizeof tac))
  2131. goto out;
  2132. r = 0;
  2133. break;
  2134. };
  2135. case KVM_SET_VAPIC_ADDR: {
  2136. struct kvm_vapic_addr va;
  2137. r = -EINVAL;
  2138. if (!irqchip_in_kernel(vcpu->kvm))
  2139. goto out;
  2140. r = -EFAULT;
  2141. if (copy_from_user(&va, argp, sizeof va))
  2142. goto out;
  2143. r = 0;
  2144. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2145. break;
  2146. }
  2147. case KVM_X86_SETUP_MCE: {
  2148. u64 mcg_cap;
  2149. r = -EFAULT;
  2150. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2151. goto out;
  2152. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2153. break;
  2154. }
  2155. case KVM_X86_SET_MCE: {
  2156. struct kvm_x86_mce mce;
  2157. r = -EFAULT;
  2158. if (copy_from_user(&mce, argp, sizeof mce))
  2159. goto out;
  2160. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2161. break;
  2162. }
  2163. case KVM_GET_VCPU_EVENTS: {
  2164. struct kvm_vcpu_events events;
  2165. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2166. r = -EFAULT;
  2167. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2168. break;
  2169. r = 0;
  2170. break;
  2171. }
  2172. case KVM_SET_VCPU_EVENTS: {
  2173. struct kvm_vcpu_events events;
  2174. r = -EFAULT;
  2175. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2176. break;
  2177. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2178. break;
  2179. }
  2180. case KVM_GET_DEBUGREGS: {
  2181. struct kvm_debugregs dbgregs;
  2182. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2183. r = -EFAULT;
  2184. if (copy_to_user(argp, &dbgregs,
  2185. sizeof(struct kvm_debugregs)))
  2186. break;
  2187. r = 0;
  2188. break;
  2189. }
  2190. case KVM_SET_DEBUGREGS: {
  2191. struct kvm_debugregs dbgregs;
  2192. r = -EFAULT;
  2193. if (copy_from_user(&dbgregs, argp,
  2194. sizeof(struct kvm_debugregs)))
  2195. break;
  2196. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2197. break;
  2198. }
  2199. default:
  2200. r = -EINVAL;
  2201. }
  2202. out:
  2203. kfree(lapic);
  2204. return r;
  2205. }
  2206. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2207. {
  2208. int ret;
  2209. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2210. return -1;
  2211. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2212. return ret;
  2213. }
  2214. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2215. u64 ident_addr)
  2216. {
  2217. kvm->arch.ept_identity_map_addr = ident_addr;
  2218. return 0;
  2219. }
  2220. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2221. u32 kvm_nr_mmu_pages)
  2222. {
  2223. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2224. return -EINVAL;
  2225. mutex_lock(&kvm->slots_lock);
  2226. spin_lock(&kvm->mmu_lock);
  2227. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2228. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2229. spin_unlock(&kvm->mmu_lock);
  2230. mutex_unlock(&kvm->slots_lock);
  2231. return 0;
  2232. }
  2233. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2234. {
  2235. return kvm->arch.n_alloc_mmu_pages;
  2236. }
  2237. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2238. {
  2239. int i;
  2240. struct kvm_mem_alias *alias;
  2241. struct kvm_mem_aliases *aliases;
  2242. aliases = kvm_aliases(kvm);
  2243. for (i = 0; i < aliases->naliases; ++i) {
  2244. alias = &aliases->aliases[i];
  2245. if (alias->flags & KVM_ALIAS_INVALID)
  2246. continue;
  2247. if (gfn >= alias->base_gfn
  2248. && gfn < alias->base_gfn + alias->npages)
  2249. return alias->target_gfn + gfn - alias->base_gfn;
  2250. }
  2251. return gfn;
  2252. }
  2253. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2254. {
  2255. int i;
  2256. struct kvm_mem_alias *alias;
  2257. struct kvm_mem_aliases *aliases;
  2258. aliases = kvm_aliases(kvm);
  2259. for (i = 0; i < aliases->naliases; ++i) {
  2260. alias = &aliases->aliases[i];
  2261. if (gfn >= alias->base_gfn
  2262. && gfn < alias->base_gfn + alias->npages)
  2263. return alias->target_gfn + gfn - alias->base_gfn;
  2264. }
  2265. return gfn;
  2266. }
  2267. /*
  2268. * Set a new alias region. Aliases map a portion of physical memory into
  2269. * another portion. This is useful for memory windows, for example the PC
  2270. * VGA region.
  2271. */
  2272. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2273. struct kvm_memory_alias *alias)
  2274. {
  2275. int r, n;
  2276. struct kvm_mem_alias *p;
  2277. struct kvm_mem_aliases *aliases, *old_aliases;
  2278. r = -EINVAL;
  2279. /* General sanity checks */
  2280. if (alias->memory_size & (PAGE_SIZE - 1))
  2281. goto out;
  2282. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2283. goto out;
  2284. if (alias->slot >= KVM_ALIAS_SLOTS)
  2285. goto out;
  2286. if (alias->guest_phys_addr + alias->memory_size
  2287. < alias->guest_phys_addr)
  2288. goto out;
  2289. if (alias->target_phys_addr + alias->memory_size
  2290. < alias->target_phys_addr)
  2291. goto out;
  2292. r = -ENOMEM;
  2293. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2294. if (!aliases)
  2295. goto out;
  2296. mutex_lock(&kvm->slots_lock);
  2297. /* invalidate any gfn reference in case of deletion/shrinking */
  2298. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2299. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2300. old_aliases = kvm->arch.aliases;
  2301. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2302. synchronize_srcu_expedited(&kvm->srcu);
  2303. kvm_mmu_zap_all(kvm);
  2304. kfree(old_aliases);
  2305. r = -ENOMEM;
  2306. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2307. if (!aliases)
  2308. goto out_unlock;
  2309. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2310. p = &aliases->aliases[alias->slot];
  2311. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2312. p->npages = alias->memory_size >> PAGE_SHIFT;
  2313. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2314. p->flags &= ~(KVM_ALIAS_INVALID);
  2315. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2316. if (aliases->aliases[n - 1].npages)
  2317. break;
  2318. aliases->naliases = n;
  2319. old_aliases = kvm->arch.aliases;
  2320. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2321. synchronize_srcu_expedited(&kvm->srcu);
  2322. kfree(old_aliases);
  2323. r = 0;
  2324. out_unlock:
  2325. mutex_unlock(&kvm->slots_lock);
  2326. out:
  2327. return r;
  2328. }
  2329. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2330. {
  2331. int r;
  2332. r = 0;
  2333. switch (chip->chip_id) {
  2334. case KVM_IRQCHIP_PIC_MASTER:
  2335. memcpy(&chip->chip.pic,
  2336. &pic_irqchip(kvm)->pics[0],
  2337. sizeof(struct kvm_pic_state));
  2338. break;
  2339. case KVM_IRQCHIP_PIC_SLAVE:
  2340. memcpy(&chip->chip.pic,
  2341. &pic_irqchip(kvm)->pics[1],
  2342. sizeof(struct kvm_pic_state));
  2343. break;
  2344. case KVM_IRQCHIP_IOAPIC:
  2345. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2346. break;
  2347. default:
  2348. r = -EINVAL;
  2349. break;
  2350. }
  2351. return r;
  2352. }
  2353. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2354. {
  2355. int r;
  2356. r = 0;
  2357. switch (chip->chip_id) {
  2358. case KVM_IRQCHIP_PIC_MASTER:
  2359. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2360. memcpy(&pic_irqchip(kvm)->pics[0],
  2361. &chip->chip.pic,
  2362. sizeof(struct kvm_pic_state));
  2363. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2364. break;
  2365. case KVM_IRQCHIP_PIC_SLAVE:
  2366. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2367. memcpy(&pic_irqchip(kvm)->pics[1],
  2368. &chip->chip.pic,
  2369. sizeof(struct kvm_pic_state));
  2370. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2371. break;
  2372. case KVM_IRQCHIP_IOAPIC:
  2373. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2374. break;
  2375. default:
  2376. r = -EINVAL;
  2377. break;
  2378. }
  2379. kvm_pic_update_irq(pic_irqchip(kvm));
  2380. return r;
  2381. }
  2382. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2383. {
  2384. int r = 0;
  2385. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2386. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2387. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2388. return r;
  2389. }
  2390. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2391. {
  2392. int r = 0;
  2393. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2394. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2395. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2396. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2397. return r;
  2398. }
  2399. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2400. {
  2401. int r = 0;
  2402. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2403. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2404. sizeof(ps->channels));
  2405. ps->flags = kvm->arch.vpit->pit_state.flags;
  2406. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2407. return r;
  2408. }
  2409. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2410. {
  2411. int r = 0, start = 0;
  2412. u32 prev_legacy, cur_legacy;
  2413. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2414. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2415. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2416. if (!prev_legacy && cur_legacy)
  2417. start = 1;
  2418. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2419. sizeof(kvm->arch.vpit->pit_state.channels));
  2420. kvm->arch.vpit->pit_state.flags = ps->flags;
  2421. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2422. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2423. return r;
  2424. }
  2425. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2426. struct kvm_reinject_control *control)
  2427. {
  2428. if (!kvm->arch.vpit)
  2429. return -ENXIO;
  2430. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2431. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2432. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2433. return 0;
  2434. }
  2435. /*
  2436. * Get (and clear) the dirty memory log for a memory slot.
  2437. */
  2438. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2439. struct kvm_dirty_log *log)
  2440. {
  2441. int r, i;
  2442. struct kvm_memory_slot *memslot;
  2443. unsigned long n;
  2444. unsigned long is_dirty = 0;
  2445. mutex_lock(&kvm->slots_lock);
  2446. r = -EINVAL;
  2447. if (log->slot >= KVM_MEMORY_SLOTS)
  2448. goto out;
  2449. memslot = &kvm->memslots->memslots[log->slot];
  2450. r = -ENOENT;
  2451. if (!memslot->dirty_bitmap)
  2452. goto out;
  2453. n = kvm_dirty_bitmap_bytes(memslot);
  2454. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2455. is_dirty = memslot->dirty_bitmap[i];
  2456. /* If nothing is dirty, don't bother messing with page tables. */
  2457. if (is_dirty) {
  2458. struct kvm_memslots *slots, *old_slots;
  2459. unsigned long *dirty_bitmap;
  2460. spin_lock(&kvm->mmu_lock);
  2461. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2462. spin_unlock(&kvm->mmu_lock);
  2463. r = -ENOMEM;
  2464. dirty_bitmap = vmalloc(n);
  2465. if (!dirty_bitmap)
  2466. goto out;
  2467. memset(dirty_bitmap, 0, n);
  2468. r = -ENOMEM;
  2469. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2470. if (!slots) {
  2471. vfree(dirty_bitmap);
  2472. goto out;
  2473. }
  2474. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2475. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2476. old_slots = kvm->memslots;
  2477. rcu_assign_pointer(kvm->memslots, slots);
  2478. synchronize_srcu_expedited(&kvm->srcu);
  2479. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2480. kfree(old_slots);
  2481. r = -EFAULT;
  2482. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2483. vfree(dirty_bitmap);
  2484. goto out;
  2485. }
  2486. vfree(dirty_bitmap);
  2487. } else {
  2488. r = -EFAULT;
  2489. if (clear_user(log->dirty_bitmap, n))
  2490. goto out;
  2491. }
  2492. r = 0;
  2493. out:
  2494. mutex_unlock(&kvm->slots_lock);
  2495. return r;
  2496. }
  2497. long kvm_arch_vm_ioctl(struct file *filp,
  2498. unsigned int ioctl, unsigned long arg)
  2499. {
  2500. struct kvm *kvm = filp->private_data;
  2501. void __user *argp = (void __user *)arg;
  2502. int r = -ENOTTY;
  2503. /*
  2504. * This union makes it completely explicit to gcc-3.x
  2505. * that these two variables' stack usage should be
  2506. * combined, not added together.
  2507. */
  2508. union {
  2509. struct kvm_pit_state ps;
  2510. struct kvm_pit_state2 ps2;
  2511. struct kvm_memory_alias alias;
  2512. struct kvm_pit_config pit_config;
  2513. } u;
  2514. switch (ioctl) {
  2515. case KVM_SET_TSS_ADDR:
  2516. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2517. if (r < 0)
  2518. goto out;
  2519. break;
  2520. case KVM_SET_IDENTITY_MAP_ADDR: {
  2521. u64 ident_addr;
  2522. r = -EFAULT;
  2523. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2524. goto out;
  2525. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2526. if (r < 0)
  2527. goto out;
  2528. break;
  2529. }
  2530. case KVM_SET_MEMORY_REGION: {
  2531. struct kvm_memory_region kvm_mem;
  2532. struct kvm_userspace_memory_region kvm_userspace_mem;
  2533. r = -EFAULT;
  2534. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2535. goto out;
  2536. kvm_userspace_mem.slot = kvm_mem.slot;
  2537. kvm_userspace_mem.flags = kvm_mem.flags;
  2538. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2539. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2540. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2541. if (r)
  2542. goto out;
  2543. break;
  2544. }
  2545. case KVM_SET_NR_MMU_PAGES:
  2546. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2547. if (r)
  2548. goto out;
  2549. break;
  2550. case KVM_GET_NR_MMU_PAGES:
  2551. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2552. break;
  2553. case KVM_SET_MEMORY_ALIAS:
  2554. r = -EFAULT;
  2555. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2556. goto out;
  2557. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2558. if (r)
  2559. goto out;
  2560. break;
  2561. case KVM_CREATE_IRQCHIP: {
  2562. struct kvm_pic *vpic;
  2563. mutex_lock(&kvm->lock);
  2564. r = -EEXIST;
  2565. if (kvm->arch.vpic)
  2566. goto create_irqchip_unlock;
  2567. r = -ENOMEM;
  2568. vpic = kvm_create_pic(kvm);
  2569. if (vpic) {
  2570. r = kvm_ioapic_init(kvm);
  2571. if (r) {
  2572. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2573. &vpic->dev);
  2574. kfree(vpic);
  2575. goto create_irqchip_unlock;
  2576. }
  2577. } else
  2578. goto create_irqchip_unlock;
  2579. smp_wmb();
  2580. kvm->arch.vpic = vpic;
  2581. smp_wmb();
  2582. r = kvm_setup_default_irq_routing(kvm);
  2583. if (r) {
  2584. mutex_lock(&kvm->irq_lock);
  2585. kvm_ioapic_destroy(kvm);
  2586. kvm_destroy_pic(kvm);
  2587. mutex_unlock(&kvm->irq_lock);
  2588. }
  2589. create_irqchip_unlock:
  2590. mutex_unlock(&kvm->lock);
  2591. break;
  2592. }
  2593. case KVM_CREATE_PIT:
  2594. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2595. goto create_pit;
  2596. case KVM_CREATE_PIT2:
  2597. r = -EFAULT;
  2598. if (copy_from_user(&u.pit_config, argp,
  2599. sizeof(struct kvm_pit_config)))
  2600. goto out;
  2601. create_pit:
  2602. mutex_lock(&kvm->slots_lock);
  2603. r = -EEXIST;
  2604. if (kvm->arch.vpit)
  2605. goto create_pit_unlock;
  2606. r = -ENOMEM;
  2607. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2608. if (kvm->arch.vpit)
  2609. r = 0;
  2610. create_pit_unlock:
  2611. mutex_unlock(&kvm->slots_lock);
  2612. break;
  2613. case KVM_IRQ_LINE_STATUS:
  2614. case KVM_IRQ_LINE: {
  2615. struct kvm_irq_level irq_event;
  2616. r = -EFAULT;
  2617. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2618. goto out;
  2619. r = -ENXIO;
  2620. if (irqchip_in_kernel(kvm)) {
  2621. __s32 status;
  2622. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2623. irq_event.irq, irq_event.level);
  2624. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2625. r = -EFAULT;
  2626. irq_event.status = status;
  2627. if (copy_to_user(argp, &irq_event,
  2628. sizeof irq_event))
  2629. goto out;
  2630. }
  2631. r = 0;
  2632. }
  2633. break;
  2634. }
  2635. case KVM_GET_IRQCHIP: {
  2636. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2637. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2638. r = -ENOMEM;
  2639. if (!chip)
  2640. goto out;
  2641. r = -EFAULT;
  2642. if (copy_from_user(chip, argp, sizeof *chip))
  2643. goto get_irqchip_out;
  2644. r = -ENXIO;
  2645. if (!irqchip_in_kernel(kvm))
  2646. goto get_irqchip_out;
  2647. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2648. if (r)
  2649. goto get_irqchip_out;
  2650. r = -EFAULT;
  2651. if (copy_to_user(argp, chip, sizeof *chip))
  2652. goto get_irqchip_out;
  2653. r = 0;
  2654. get_irqchip_out:
  2655. kfree(chip);
  2656. if (r)
  2657. goto out;
  2658. break;
  2659. }
  2660. case KVM_SET_IRQCHIP: {
  2661. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2662. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2663. r = -ENOMEM;
  2664. if (!chip)
  2665. goto out;
  2666. r = -EFAULT;
  2667. if (copy_from_user(chip, argp, sizeof *chip))
  2668. goto set_irqchip_out;
  2669. r = -ENXIO;
  2670. if (!irqchip_in_kernel(kvm))
  2671. goto set_irqchip_out;
  2672. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2673. if (r)
  2674. goto set_irqchip_out;
  2675. r = 0;
  2676. set_irqchip_out:
  2677. kfree(chip);
  2678. if (r)
  2679. goto out;
  2680. break;
  2681. }
  2682. case KVM_GET_PIT: {
  2683. r = -EFAULT;
  2684. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2685. goto out;
  2686. r = -ENXIO;
  2687. if (!kvm->arch.vpit)
  2688. goto out;
  2689. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2690. if (r)
  2691. goto out;
  2692. r = -EFAULT;
  2693. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2694. goto out;
  2695. r = 0;
  2696. break;
  2697. }
  2698. case KVM_SET_PIT: {
  2699. r = -EFAULT;
  2700. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2701. goto out;
  2702. r = -ENXIO;
  2703. if (!kvm->arch.vpit)
  2704. goto out;
  2705. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2706. if (r)
  2707. goto out;
  2708. r = 0;
  2709. break;
  2710. }
  2711. case KVM_GET_PIT2: {
  2712. r = -ENXIO;
  2713. if (!kvm->arch.vpit)
  2714. goto out;
  2715. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2716. if (r)
  2717. goto out;
  2718. r = -EFAULT;
  2719. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2720. goto out;
  2721. r = 0;
  2722. break;
  2723. }
  2724. case KVM_SET_PIT2: {
  2725. r = -EFAULT;
  2726. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2727. goto out;
  2728. r = -ENXIO;
  2729. if (!kvm->arch.vpit)
  2730. goto out;
  2731. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2732. if (r)
  2733. goto out;
  2734. r = 0;
  2735. break;
  2736. }
  2737. case KVM_REINJECT_CONTROL: {
  2738. struct kvm_reinject_control control;
  2739. r = -EFAULT;
  2740. if (copy_from_user(&control, argp, sizeof(control)))
  2741. goto out;
  2742. r = kvm_vm_ioctl_reinject(kvm, &control);
  2743. if (r)
  2744. goto out;
  2745. r = 0;
  2746. break;
  2747. }
  2748. case KVM_XEN_HVM_CONFIG: {
  2749. r = -EFAULT;
  2750. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2751. sizeof(struct kvm_xen_hvm_config)))
  2752. goto out;
  2753. r = -EINVAL;
  2754. if (kvm->arch.xen_hvm_config.flags)
  2755. goto out;
  2756. r = 0;
  2757. break;
  2758. }
  2759. case KVM_SET_CLOCK: {
  2760. struct timespec now;
  2761. struct kvm_clock_data user_ns;
  2762. u64 now_ns;
  2763. s64 delta;
  2764. r = -EFAULT;
  2765. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2766. goto out;
  2767. r = -EINVAL;
  2768. if (user_ns.flags)
  2769. goto out;
  2770. r = 0;
  2771. ktime_get_ts(&now);
  2772. now_ns = timespec_to_ns(&now);
  2773. delta = user_ns.clock - now_ns;
  2774. kvm->arch.kvmclock_offset = delta;
  2775. break;
  2776. }
  2777. case KVM_GET_CLOCK: {
  2778. struct timespec now;
  2779. struct kvm_clock_data user_ns;
  2780. u64 now_ns;
  2781. ktime_get_ts(&now);
  2782. now_ns = timespec_to_ns(&now);
  2783. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2784. user_ns.flags = 0;
  2785. r = -EFAULT;
  2786. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2787. goto out;
  2788. r = 0;
  2789. break;
  2790. }
  2791. default:
  2792. ;
  2793. }
  2794. out:
  2795. return r;
  2796. }
  2797. static void kvm_init_msr_list(void)
  2798. {
  2799. u32 dummy[2];
  2800. unsigned i, j;
  2801. /* skip the first msrs in the list. KVM-specific */
  2802. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2803. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2804. continue;
  2805. if (j < i)
  2806. msrs_to_save[j] = msrs_to_save[i];
  2807. j++;
  2808. }
  2809. num_msrs_to_save = j;
  2810. }
  2811. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2812. const void *v)
  2813. {
  2814. if (vcpu->arch.apic &&
  2815. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2816. return 0;
  2817. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2818. }
  2819. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2820. {
  2821. if (vcpu->arch.apic &&
  2822. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2823. return 0;
  2824. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2825. }
  2826. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2827. struct kvm_segment *var, int seg)
  2828. {
  2829. kvm_x86_ops->set_segment(vcpu, var, seg);
  2830. }
  2831. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2832. struct kvm_segment *var, int seg)
  2833. {
  2834. kvm_x86_ops->get_segment(vcpu, var, seg);
  2835. }
  2836. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2837. {
  2838. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2839. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2840. }
  2841. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2842. {
  2843. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2844. access |= PFERR_FETCH_MASK;
  2845. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2846. }
  2847. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2848. {
  2849. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2850. access |= PFERR_WRITE_MASK;
  2851. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2852. }
  2853. /* uses this to access any guest's mapped memory without checking CPL */
  2854. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2855. {
  2856. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2857. }
  2858. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2859. struct kvm_vcpu *vcpu, u32 access,
  2860. u32 *error)
  2861. {
  2862. void *data = val;
  2863. int r = X86EMUL_CONTINUE;
  2864. while (bytes) {
  2865. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2866. unsigned offset = addr & (PAGE_SIZE-1);
  2867. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2868. int ret;
  2869. if (gpa == UNMAPPED_GVA) {
  2870. r = X86EMUL_PROPAGATE_FAULT;
  2871. goto out;
  2872. }
  2873. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2874. if (ret < 0) {
  2875. r = X86EMUL_IO_NEEDED;
  2876. goto out;
  2877. }
  2878. bytes -= toread;
  2879. data += toread;
  2880. addr += toread;
  2881. }
  2882. out:
  2883. return r;
  2884. }
  2885. /* used for instruction fetching */
  2886. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2887. struct kvm_vcpu *vcpu, u32 *error)
  2888. {
  2889. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2890. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2891. access | PFERR_FETCH_MASK, error);
  2892. }
  2893. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2894. struct kvm_vcpu *vcpu, u32 *error)
  2895. {
  2896. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2897. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2898. error);
  2899. }
  2900. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2901. struct kvm_vcpu *vcpu, u32 *error)
  2902. {
  2903. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2904. }
  2905. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2906. unsigned int bytes,
  2907. struct kvm_vcpu *vcpu,
  2908. u32 *error)
  2909. {
  2910. void *data = val;
  2911. int r = X86EMUL_CONTINUE;
  2912. while (bytes) {
  2913. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2914. PFERR_WRITE_MASK, error);
  2915. unsigned offset = addr & (PAGE_SIZE-1);
  2916. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2917. int ret;
  2918. if (gpa == UNMAPPED_GVA) {
  2919. r = X86EMUL_PROPAGATE_FAULT;
  2920. goto out;
  2921. }
  2922. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2923. if (ret < 0) {
  2924. r = X86EMUL_IO_NEEDED;
  2925. goto out;
  2926. }
  2927. bytes -= towrite;
  2928. data += towrite;
  2929. addr += towrite;
  2930. }
  2931. out:
  2932. return r;
  2933. }
  2934. static int emulator_read_emulated(unsigned long addr,
  2935. void *val,
  2936. unsigned int bytes,
  2937. unsigned int *error_code,
  2938. struct kvm_vcpu *vcpu)
  2939. {
  2940. gpa_t gpa;
  2941. if (vcpu->mmio_read_completed) {
  2942. memcpy(val, vcpu->mmio_data, bytes);
  2943. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2944. vcpu->mmio_phys_addr, *(u64 *)val);
  2945. vcpu->mmio_read_completed = 0;
  2946. return X86EMUL_CONTINUE;
  2947. }
  2948. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  2949. if (gpa == UNMAPPED_GVA)
  2950. return X86EMUL_PROPAGATE_FAULT;
  2951. /* For APIC access vmexit */
  2952. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2953. goto mmio;
  2954. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2955. == X86EMUL_CONTINUE)
  2956. return X86EMUL_CONTINUE;
  2957. mmio:
  2958. /*
  2959. * Is this MMIO handled locally?
  2960. */
  2961. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2962. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2963. return X86EMUL_CONTINUE;
  2964. }
  2965. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2966. vcpu->mmio_needed = 1;
  2967. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  2968. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  2969. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  2970. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  2971. return X86EMUL_IO_NEEDED;
  2972. }
  2973. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2974. const void *val, int bytes)
  2975. {
  2976. int ret;
  2977. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2978. if (ret < 0)
  2979. return 0;
  2980. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2981. return 1;
  2982. }
  2983. static int emulator_write_emulated_onepage(unsigned long addr,
  2984. const void *val,
  2985. unsigned int bytes,
  2986. unsigned int *error_code,
  2987. struct kvm_vcpu *vcpu)
  2988. {
  2989. gpa_t gpa;
  2990. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  2991. if (gpa == UNMAPPED_GVA)
  2992. return X86EMUL_PROPAGATE_FAULT;
  2993. /* For APIC access vmexit */
  2994. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2995. goto mmio;
  2996. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2997. return X86EMUL_CONTINUE;
  2998. mmio:
  2999. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3000. /*
  3001. * Is this MMIO handled locally?
  3002. */
  3003. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3004. return X86EMUL_CONTINUE;
  3005. vcpu->mmio_needed = 1;
  3006. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3007. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3008. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3009. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3010. memcpy(vcpu->run->mmio.data, val, bytes);
  3011. return X86EMUL_CONTINUE;
  3012. }
  3013. int emulator_write_emulated(unsigned long addr,
  3014. const void *val,
  3015. unsigned int bytes,
  3016. unsigned int *error_code,
  3017. struct kvm_vcpu *vcpu)
  3018. {
  3019. /* Crossing a page boundary? */
  3020. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3021. int rc, now;
  3022. now = -addr & ~PAGE_MASK;
  3023. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3024. vcpu);
  3025. if (rc != X86EMUL_CONTINUE)
  3026. return rc;
  3027. addr += now;
  3028. val += now;
  3029. bytes -= now;
  3030. }
  3031. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3032. vcpu);
  3033. }
  3034. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3035. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3036. #ifdef CONFIG_X86_64
  3037. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3038. #else
  3039. # define CMPXCHG64(ptr, old, new) \
  3040. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3041. #endif
  3042. static int emulator_cmpxchg_emulated(unsigned long addr,
  3043. const void *old,
  3044. const void *new,
  3045. unsigned int bytes,
  3046. unsigned int *error_code,
  3047. struct kvm_vcpu *vcpu)
  3048. {
  3049. gpa_t gpa;
  3050. struct page *page;
  3051. char *kaddr;
  3052. bool exchanged;
  3053. /* guests cmpxchg8b have to be emulated atomically */
  3054. if (bytes > 8 || (bytes & (bytes - 1)))
  3055. goto emul_write;
  3056. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3057. if (gpa == UNMAPPED_GVA ||
  3058. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3059. goto emul_write;
  3060. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3061. goto emul_write;
  3062. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3063. kaddr = kmap_atomic(page, KM_USER0);
  3064. kaddr += offset_in_page(gpa);
  3065. switch (bytes) {
  3066. case 1:
  3067. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3068. break;
  3069. case 2:
  3070. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3071. break;
  3072. case 4:
  3073. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3074. break;
  3075. case 8:
  3076. exchanged = CMPXCHG64(kaddr, old, new);
  3077. break;
  3078. default:
  3079. BUG();
  3080. }
  3081. kunmap_atomic(kaddr, KM_USER0);
  3082. kvm_release_page_dirty(page);
  3083. if (!exchanged)
  3084. return X86EMUL_CMPXCHG_FAILED;
  3085. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3086. return X86EMUL_CONTINUE;
  3087. emul_write:
  3088. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3089. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3090. }
  3091. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3092. {
  3093. /* TODO: String I/O for in kernel device */
  3094. int r;
  3095. if (vcpu->arch.pio.in)
  3096. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3097. vcpu->arch.pio.size, pd);
  3098. else
  3099. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3100. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3101. pd);
  3102. return r;
  3103. }
  3104. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3105. unsigned int count, struct kvm_vcpu *vcpu)
  3106. {
  3107. if (vcpu->arch.pio.count)
  3108. goto data_avail;
  3109. trace_kvm_pio(1, port, size, 1);
  3110. vcpu->arch.pio.port = port;
  3111. vcpu->arch.pio.in = 1;
  3112. vcpu->arch.pio.count = count;
  3113. vcpu->arch.pio.size = size;
  3114. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3115. data_avail:
  3116. memcpy(val, vcpu->arch.pio_data, size * count);
  3117. vcpu->arch.pio.count = 0;
  3118. return 1;
  3119. }
  3120. vcpu->run->exit_reason = KVM_EXIT_IO;
  3121. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3122. vcpu->run->io.size = size;
  3123. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3124. vcpu->run->io.count = count;
  3125. vcpu->run->io.port = port;
  3126. return 0;
  3127. }
  3128. static int emulator_pio_out_emulated(int size, unsigned short port,
  3129. const void *val, unsigned int count,
  3130. struct kvm_vcpu *vcpu)
  3131. {
  3132. trace_kvm_pio(0, port, size, 1);
  3133. vcpu->arch.pio.port = port;
  3134. vcpu->arch.pio.in = 0;
  3135. vcpu->arch.pio.count = count;
  3136. vcpu->arch.pio.size = size;
  3137. memcpy(vcpu->arch.pio_data, val, size * count);
  3138. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3139. vcpu->arch.pio.count = 0;
  3140. return 1;
  3141. }
  3142. vcpu->run->exit_reason = KVM_EXIT_IO;
  3143. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3144. vcpu->run->io.size = size;
  3145. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3146. vcpu->run->io.count = count;
  3147. vcpu->run->io.port = port;
  3148. return 0;
  3149. }
  3150. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3151. {
  3152. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3153. }
  3154. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3155. {
  3156. kvm_mmu_invlpg(vcpu, address);
  3157. return X86EMUL_CONTINUE;
  3158. }
  3159. int emulate_clts(struct kvm_vcpu *vcpu)
  3160. {
  3161. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3162. kvm_x86_ops->fpu_activate(vcpu);
  3163. return X86EMUL_CONTINUE;
  3164. }
  3165. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3166. {
  3167. return _kvm_get_dr(vcpu, dr, dest);
  3168. }
  3169. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3170. {
  3171. return __kvm_set_dr(vcpu, dr, value);
  3172. }
  3173. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3174. {
  3175. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3176. }
  3177. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3178. {
  3179. unsigned long value;
  3180. switch (cr) {
  3181. case 0:
  3182. value = kvm_read_cr0(vcpu);
  3183. break;
  3184. case 2:
  3185. value = vcpu->arch.cr2;
  3186. break;
  3187. case 3:
  3188. value = vcpu->arch.cr3;
  3189. break;
  3190. case 4:
  3191. value = kvm_read_cr4(vcpu);
  3192. break;
  3193. case 8:
  3194. value = kvm_get_cr8(vcpu);
  3195. break;
  3196. default:
  3197. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3198. return 0;
  3199. }
  3200. return value;
  3201. }
  3202. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3203. {
  3204. int res = 0;
  3205. switch (cr) {
  3206. case 0:
  3207. res = __kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3208. break;
  3209. case 2:
  3210. vcpu->arch.cr2 = val;
  3211. break;
  3212. case 3:
  3213. res = __kvm_set_cr3(vcpu, val);
  3214. break;
  3215. case 4:
  3216. res = __kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3217. break;
  3218. case 8:
  3219. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3220. break;
  3221. default:
  3222. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3223. res = -1;
  3224. }
  3225. return res;
  3226. }
  3227. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3228. {
  3229. return kvm_x86_ops->get_cpl(vcpu);
  3230. }
  3231. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3232. {
  3233. kvm_x86_ops->get_gdt(vcpu, dt);
  3234. }
  3235. static unsigned long emulator_get_cached_segment_base(int seg,
  3236. struct kvm_vcpu *vcpu)
  3237. {
  3238. return get_segment_base(vcpu, seg);
  3239. }
  3240. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3241. struct kvm_vcpu *vcpu)
  3242. {
  3243. struct kvm_segment var;
  3244. kvm_get_segment(vcpu, &var, seg);
  3245. if (var.unusable)
  3246. return false;
  3247. if (var.g)
  3248. var.limit >>= 12;
  3249. set_desc_limit(desc, var.limit);
  3250. set_desc_base(desc, (unsigned long)var.base);
  3251. desc->type = var.type;
  3252. desc->s = var.s;
  3253. desc->dpl = var.dpl;
  3254. desc->p = var.present;
  3255. desc->avl = var.avl;
  3256. desc->l = var.l;
  3257. desc->d = var.db;
  3258. desc->g = var.g;
  3259. return true;
  3260. }
  3261. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3262. struct kvm_vcpu *vcpu)
  3263. {
  3264. struct kvm_segment var;
  3265. /* needed to preserve selector */
  3266. kvm_get_segment(vcpu, &var, seg);
  3267. var.base = get_desc_base(desc);
  3268. var.limit = get_desc_limit(desc);
  3269. if (desc->g)
  3270. var.limit = (var.limit << 12) | 0xfff;
  3271. var.type = desc->type;
  3272. var.present = desc->p;
  3273. var.dpl = desc->dpl;
  3274. var.db = desc->d;
  3275. var.s = desc->s;
  3276. var.l = desc->l;
  3277. var.g = desc->g;
  3278. var.avl = desc->avl;
  3279. var.present = desc->p;
  3280. var.unusable = !var.present;
  3281. var.padding = 0;
  3282. kvm_set_segment(vcpu, &var, seg);
  3283. return;
  3284. }
  3285. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3286. {
  3287. struct kvm_segment kvm_seg;
  3288. kvm_get_segment(vcpu, &kvm_seg, seg);
  3289. return kvm_seg.selector;
  3290. }
  3291. static void emulator_set_segment_selector(u16 sel, int seg,
  3292. struct kvm_vcpu *vcpu)
  3293. {
  3294. struct kvm_segment kvm_seg;
  3295. kvm_get_segment(vcpu, &kvm_seg, seg);
  3296. kvm_seg.selector = sel;
  3297. kvm_set_segment(vcpu, &kvm_seg, seg);
  3298. }
  3299. static struct x86_emulate_ops emulate_ops = {
  3300. .read_std = kvm_read_guest_virt_system,
  3301. .write_std = kvm_write_guest_virt_system,
  3302. .fetch = kvm_fetch_guest_virt,
  3303. .read_emulated = emulator_read_emulated,
  3304. .write_emulated = emulator_write_emulated,
  3305. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3306. .pio_in_emulated = emulator_pio_in_emulated,
  3307. .pio_out_emulated = emulator_pio_out_emulated,
  3308. .get_cached_descriptor = emulator_get_cached_descriptor,
  3309. .set_cached_descriptor = emulator_set_cached_descriptor,
  3310. .get_segment_selector = emulator_get_segment_selector,
  3311. .set_segment_selector = emulator_set_segment_selector,
  3312. .get_cached_segment_base = emulator_get_cached_segment_base,
  3313. .get_gdt = emulator_get_gdt,
  3314. .get_cr = emulator_get_cr,
  3315. .set_cr = emulator_set_cr,
  3316. .cpl = emulator_get_cpl,
  3317. .get_dr = emulator_get_dr,
  3318. .set_dr = emulator_set_dr,
  3319. .set_msr = kvm_set_msr,
  3320. .get_msr = kvm_get_msr,
  3321. };
  3322. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3323. {
  3324. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3325. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3326. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3327. vcpu->arch.regs_dirty = ~0;
  3328. }
  3329. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3330. {
  3331. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3332. /*
  3333. * an sti; sti; sequence only disable interrupts for the first
  3334. * instruction. So, if the last instruction, be it emulated or
  3335. * not, left the system with the INT_STI flag enabled, it
  3336. * means that the last instruction is an sti. We should not
  3337. * leave the flag on in this case. The same goes for mov ss
  3338. */
  3339. if (!(int_shadow & mask))
  3340. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3341. }
  3342. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3343. {
  3344. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3345. if (ctxt->exception == PF_VECTOR)
  3346. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3347. else if (ctxt->error_code_valid)
  3348. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3349. else
  3350. kvm_queue_exception(vcpu, ctxt->exception);
  3351. }
  3352. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3353. {
  3354. ++vcpu->stat.insn_emulation_fail;
  3355. trace_kvm_emulate_insn_failed(vcpu);
  3356. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3357. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3358. vcpu->run->internal.ndata = 0;
  3359. kvm_queue_exception(vcpu, UD_VECTOR);
  3360. return EMULATE_FAIL;
  3361. }
  3362. int emulate_instruction(struct kvm_vcpu *vcpu,
  3363. unsigned long cr2,
  3364. u16 error_code,
  3365. int emulation_type)
  3366. {
  3367. int r;
  3368. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3369. kvm_clear_exception_queue(vcpu);
  3370. vcpu->arch.mmio_fault_cr2 = cr2;
  3371. /*
  3372. * TODO: fix emulate.c to use guest_read/write_register
  3373. * instead of direct ->regs accesses, can save hundred cycles
  3374. * on Intel for instructions that don't read/change RSP, for
  3375. * for example.
  3376. */
  3377. cache_all_regs(vcpu);
  3378. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3379. int cs_db, cs_l;
  3380. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3381. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3382. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3383. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3384. vcpu->arch.emulate_ctxt.mode =
  3385. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3386. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3387. ? X86EMUL_MODE_VM86 : cs_l
  3388. ? X86EMUL_MODE_PROT64 : cs_db
  3389. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3390. memset(c, 0, sizeof(struct decode_cache));
  3391. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3392. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3393. vcpu->arch.emulate_ctxt.exception = -1;
  3394. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3395. trace_kvm_emulate_insn_start(vcpu);
  3396. /* Only allow emulation of specific instructions on #UD
  3397. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3398. if (emulation_type & EMULTYPE_TRAP_UD) {
  3399. if (!c->twobyte)
  3400. return EMULATE_FAIL;
  3401. switch (c->b) {
  3402. case 0x01: /* VMMCALL */
  3403. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3404. return EMULATE_FAIL;
  3405. break;
  3406. case 0x34: /* sysenter */
  3407. case 0x35: /* sysexit */
  3408. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3409. return EMULATE_FAIL;
  3410. break;
  3411. case 0x05: /* syscall */
  3412. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3413. return EMULATE_FAIL;
  3414. break;
  3415. default:
  3416. return EMULATE_FAIL;
  3417. }
  3418. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3419. return EMULATE_FAIL;
  3420. }
  3421. ++vcpu->stat.insn_emulation;
  3422. if (r) {
  3423. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3424. return EMULATE_DONE;
  3425. if (emulation_type & EMULTYPE_SKIP)
  3426. return EMULATE_FAIL;
  3427. return handle_emulation_failure(vcpu);
  3428. }
  3429. }
  3430. if (emulation_type & EMULTYPE_SKIP) {
  3431. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3432. return EMULATE_DONE;
  3433. }
  3434. /* this is needed for vmware backdor interface to work since it
  3435. changes registers values during IO operation */
  3436. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3437. restart:
  3438. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3439. if (r) { /* emulation failed */
  3440. /*
  3441. * if emulation was due to access to shadowed page table
  3442. * and it failed try to unshadow page and re-entetr the
  3443. * guest to let CPU execute the instruction.
  3444. */
  3445. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3446. return EMULATE_DONE;
  3447. return handle_emulation_failure(vcpu);
  3448. }
  3449. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3450. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3451. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3452. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3453. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3454. inject_emulated_exception(vcpu);
  3455. return EMULATE_DONE;
  3456. }
  3457. if (vcpu->arch.pio.count) {
  3458. if (!vcpu->arch.pio.in)
  3459. vcpu->arch.pio.count = 0;
  3460. return EMULATE_DO_MMIO;
  3461. }
  3462. if (vcpu->mmio_needed) {
  3463. if (vcpu->mmio_is_write)
  3464. vcpu->mmio_needed = 0;
  3465. return EMULATE_DO_MMIO;
  3466. }
  3467. if (vcpu->arch.emulate_ctxt.restart)
  3468. goto restart;
  3469. return EMULATE_DONE;
  3470. }
  3471. EXPORT_SYMBOL_GPL(emulate_instruction);
  3472. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3473. {
  3474. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3475. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3476. /* do not return to emulator after return from userspace */
  3477. vcpu->arch.pio.count = 0;
  3478. return ret;
  3479. }
  3480. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3481. static void bounce_off(void *info)
  3482. {
  3483. /* nothing */
  3484. }
  3485. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3486. void *data)
  3487. {
  3488. struct cpufreq_freqs *freq = data;
  3489. struct kvm *kvm;
  3490. struct kvm_vcpu *vcpu;
  3491. int i, send_ipi = 0;
  3492. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3493. return 0;
  3494. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3495. return 0;
  3496. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3497. spin_lock(&kvm_lock);
  3498. list_for_each_entry(kvm, &vm_list, vm_list) {
  3499. kvm_for_each_vcpu(i, vcpu, kvm) {
  3500. if (vcpu->cpu != freq->cpu)
  3501. continue;
  3502. if (!kvm_request_guest_time_update(vcpu))
  3503. continue;
  3504. if (vcpu->cpu != smp_processor_id())
  3505. send_ipi++;
  3506. }
  3507. }
  3508. spin_unlock(&kvm_lock);
  3509. if (freq->old < freq->new && send_ipi) {
  3510. /*
  3511. * We upscale the frequency. Must make the guest
  3512. * doesn't see old kvmclock values while running with
  3513. * the new frequency, otherwise we risk the guest sees
  3514. * time go backwards.
  3515. *
  3516. * In case we update the frequency for another cpu
  3517. * (which might be in guest context) send an interrupt
  3518. * to kick the cpu out of guest context. Next time
  3519. * guest context is entered kvmclock will be updated,
  3520. * so the guest will not see stale values.
  3521. */
  3522. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3523. }
  3524. return 0;
  3525. }
  3526. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3527. .notifier_call = kvmclock_cpufreq_notifier
  3528. };
  3529. static void kvm_timer_init(void)
  3530. {
  3531. int cpu;
  3532. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3533. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3534. CPUFREQ_TRANSITION_NOTIFIER);
  3535. for_each_online_cpu(cpu) {
  3536. unsigned long khz = cpufreq_get(cpu);
  3537. if (!khz)
  3538. khz = tsc_khz;
  3539. per_cpu(cpu_tsc_khz, cpu) = khz;
  3540. }
  3541. } else {
  3542. for_each_possible_cpu(cpu)
  3543. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3544. }
  3545. }
  3546. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3547. static int kvm_is_in_guest(void)
  3548. {
  3549. return percpu_read(current_vcpu) != NULL;
  3550. }
  3551. static int kvm_is_user_mode(void)
  3552. {
  3553. int user_mode = 3;
  3554. if (percpu_read(current_vcpu))
  3555. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3556. return user_mode != 0;
  3557. }
  3558. static unsigned long kvm_get_guest_ip(void)
  3559. {
  3560. unsigned long ip = 0;
  3561. if (percpu_read(current_vcpu))
  3562. ip = kvm_rip_read(percpu_read(current_vcpu));
  3563. return ip;
  3564. }
  3565. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3566. .is_in_guest = kvm_is_in_guest,
  3567. .is_user_mode = kvm_is_user_mode,
  3568. .get_guest_ip = kvm_get_guest_ip,
  3569. };
  3570. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3571. {
  3572. percpu_write(current_vcpu, vcpu);
  3573. }
  3574. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3575. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3576. {
  3577. percpu_write(current_vcpu, NULL);
  3578. }
  3579. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3580. int kvm_arch_init(void *opaque)
  3581. {
  3582. int r;
  3583. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3584. if (kvm_x86_ops) {
  3585. printk(KERN_ERR "kvm: already loaded the other module\n");
  3586. r = -EEXIST;
  3587. goto out;
  3588. }
  3589. if (!ops->cpu_has_kvm_support()) {
  3590. printk(KERN_ERR "kvm: no hardware support\n");
  3591. r = -EOPNOTSUPP;
  3592. goto out;
  3593. }
  3594. if (ops->disabled_by_bios()) {
  3595. printk(KERN_ERR "kvm: disabled by bios\n");
  3596. r = -EOPNOTSUPP;
  3597. goto out;
  3598. }
  3599. r = kvm_mmu_module_init();
  3600. if (r)
  3601. goto out;
  3602. kvm_init_msr_list();
  3603. kvm_x86_ops = ops;
  3604. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3605. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3606. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3607. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3608. kvm_timer_init();
  3609. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3610. return 0;
  3611. out:
  3612. return r;
  3613. }
  3614. void kvm_arch_exit(void)
  3615. {
  3616. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3617. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3618. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3619. CPUFREQ_TRANSITION_NOTIFIER);
  3620. kvm_x86_ops = NULL;
  3621. kvm_mmu_module_exit();
  3622. }
  3623. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3624. {
  3625. ++vcpu->stat.halt_exits;
  3626. if (irqchip_in_kernel(vcpu->kvm)) {
  3627. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3628. return 1;
  3629. } else {
  3630. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3631. return 0;
  3632. }
  3633. }
  3634. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3635. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3636. unsigned long a1)
  3637. {
  3638. if (is_long_mode(vcpu))
  3639. return a0;
  3640. else
  3641. return a0 | ((gpa_t)a1 << 32);
  3642. }
  3643. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3644. {
  3645. u64 param, ingpa, outgpa, ret;
  3646. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3647. bool fast, longmode;
  3648. int cs_db, cs_l;
  3649. /*
  3650. * hypercall generates UD from non zero cpl and real mode
  3651. * per HYPER-V spec
  3652. */
  3653. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3654. kvm_queue_exception(vcpu, UD_VECTOR);
  3655. return 0;
  3656. }
  3657. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3658. longmode = is_long_mode(vcpu) && cs_l == 1;
  3659. if (!longmode) {
  3660. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3661. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3662. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3663. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3664. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3665. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3666. }
  3667. #ifdef CONFIG_X86_64
  3668. else {
  3669. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3670. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3671. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3672. }
  3673. #endif
  3674. code = param & 0xffff;
  3675. fast = (param >> 16) & 0x1;
  3676. rep_cnt = (param >> 32) & 0xfff;
  3677. rep_idx = (param >> 48) & 0xfff;
  3678. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3679. switch (code) {
  3680. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3681. kvm_vcpu_on_spin(vcpu);
  3682. break;
  3683. default:
  3684. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3685. break;
  3686. }
  3687. ret = res | (((u64)rep_done & 0xfff) << 32);
  3688. if (longmode) {
  3689. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3690. } else {
  3691. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3692. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3693. }
  3694. return 1;
  3695. }
  3696. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3697. {
  3698. unsigned long nr, a0, a1, a2, a3, ret;
  3699. int r = 1;
  3700. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3701. return kvm_hv_hypercall(vcpu);
  3702. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3703. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3704. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3705. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3706. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3707. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3708. if (!is_long_mode(vcpu)) {
  3709. nr &= 0xFFFFFFFF;
  3710. a0 &= 0xFFFFFFFF;
  3711. a1 &= 0xFFFFFFFF;
  3712. a2 &= 0xFFFFFFFF;
  3713. a3 &= 0xFFFFFFFF;
  3714. }
  3715. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3716. ret = -KVM_EPERM;
  3717. goto out;
  3718. }
  3719. switch (nr) {
  3720. case KVM_HC_VAPIC_POLL_IRQ:
  3721. ret = 0;
  3722. break;
  3723. case KVM_HC_MMU_OP:
  3724. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3725. break;
  3726. default:
  3727. ret = -KVM_ENOSYS;
  3728. break;
  3729. }
  3730. out:
  3731. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3732. ++vcpu->stat.hypercalls;
  3733. return r;
  3734. }
  3735. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3736. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3737. {
  3738. char instruction[3];
  3739. unsigned long rip = kvm_rip_read(vcpu);
  3740. /*
  3741. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3742. * to ensure that the updated hypercall appears atomically across all
  3743. * VCPUs.
  3744. */
  3745. kvm_mmu_zap_all(vcpu->kvm);
  3746. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3747. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  3748. }
  3749. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3750. {
  3751. struct desc_ptr dt = { limit, base };
  3752. kvm_x86_ops->set_gdt(vcpu, &dt);
  3753. }
  3754. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3755. {
  3756. struct desc_ptr dt = { limit, base };
  3757. kvm_x86_ops->set_idt(vcpu, &dt);
  3758. }
  3759. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3760. {
  3761. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3762. int j, nent = vcpu->arch.cpuid_nent;
  3763. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3764. /* when no next entry is found, the current entry[i] is reselected */
  3765. for (j = i + 1; ; j = (j + 1) % nent) {
  3766. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3767. if (ej->function == e->function) {
  3768. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3769. return j;
  3770. }
  3771. }
  3772. return 0; /* silence gcc, even though control never reaches here */
  3773. }
  3774. /* find an entry with matching function, matching index (if needed), and that
  3775. * should be read next (if it's stateful) */
  3776. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3777. u32 function, u32 index)
  3778. {
  3779. if (e->function != function)
  3780. return 0;
  3781. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3782. return 0;
  3783. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3784. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3785. return 0;
  3786. return 1;
  3787. }
  3788. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3789. u32 function, u32 index)
  3790. {
  3791. int i;
  3792. struct kvm_cpuid_entry2 *best = NULL;
  3793. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3794. struct kvm_cpuid_entry2 *e;
  3795. e = &vcpu->arch.cpuid_entries[i];
  3796. if (is_matching_cpuid_entry(e, function, index)) {
  3797. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3798. move_to_next_stateful_cpuid_entry(vcpu, i);
  3799. best = e;
  3800. break;
  3801. }
  3802. /*
  3803. * Both basic or both extended?
  3804. */
  3805. if (((e->function ^ function) & 0x80000000) == 0)
  3806. if (!best || e->function > best->function)
  3807. best = e;
  3808. }
  3809. return best;
  3810. }
  3811. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3812. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3813. {
  3814. struct kvm_cpuid_entry2 *best;
  3815. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3816. if (!best || best->eax < 0x80000008)
  3817. goto not_found;
  3818. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3819. if (best)
  3820. return best->eax & 0xff;
  3821. not_found:
  3822. return 36;
  3823. }
  3824. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3825. {
  3826. u32 function, index;
  3827. struct kvm_cpuid_entry2 *best;
  3828. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3829. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3830. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3831. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3832. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3833. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3834. best = kvm_find_cpuid_entry(vcpu, function, index);
  3835. if (best) {
  3836. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3837. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3838. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3839. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3840. }
  3841. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3842. trace_kvm_cpuid(function,
  3843. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3844. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3845. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3846. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3847. }
  3848. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3849. /*
  3850. * Check if userspace requested an interrupt window, and that the
  3851. * interrupt window is open.
  3852. *
  3853. * No need to exit to userspace if we already have an interrupt queued.
  3854. */
  3855. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3856. {
  3857. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3858. vcpu->run->request_interrupt_window &&
  3859. kvm_arch_interrupt_allowed(vcpu));
  3860. }
  3861. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3862. {
  3863. struct kvm_run *kvm_run = vcpu->run;
  3864. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3865. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3866. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3867. if (irqchip_in_kernel(vcpu->kvm))
  3868. kvm_run->ready_for_interrupt_injection = 1;
  3869. else
  3870. kvm_run->ready_for_interrupt_injection =
  3871. kvm_arch_interrupt_allowed(vcpu) &&
  3872. !kvm_cpu_has_interrupt(vcpu) &&
  3873. !kvm_event_needs_reinjection(vcpu);
  3874. }
  3875. static void vapic_enter(struct kvm_vcpu *vcpu)
  3876. {
  3877. struct kvm_lapic *apic = vcpu->arch.apic;
  3878. struct page *page;
  3879. if (!apic || !apic->vapic_addr)
  3880. return;
  3881. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3882. vcpu->arch.apic->vapic_page = page;
  3883. }
  3884. static void vapic_exit(struct kvm_vcpu *vcpu)
  3885. {
  3886. struct kvm_lapic *apic = vcpu->arch.apic;
  3887. int idx;
  3888. if (!apic || !apic->vapic_addr)
  3889. return;
  3890. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3891. kvm_release_page_dirty(apic->vapic_page);
  3892. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3893. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3894. }
  3895. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3896. {
  3897. int max_irr, tpr;
  3898. if (!kvm_x86_ops->update_cr8_intercept)
  3899. return;
  3900. if (!vcpu->arch.apic)
  3901. return;
  3902. if (!vcpu->arch.apic->vapic_addr)
  3903. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3904. else
  3905. max_irr = -1;
  3906. if (max_irr != -1)
  3907. max_irr >>= 4;
  3908. tpr = kvm_lapic_get_cr8(vcpu);
  3909. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3910. }
  3911. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3912. {
  3913. /* try to reinject previous events if any */
  3914. if (vcpu->arch.exception.pending) {
  3915. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3916. vcpu->arch.exception.has_error_code,
  3917. vcpu->arch.exception.error_code);
  3918. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3919. vcpu->arch.exception.has_error_code,
  3920. vcpu->arch.exception.error_code,
  3921. vcpu->arch.exception.reinject);
  3922. return;
  3923. }
  3924. if (vcpu->arch.nmi_injected) {
  3925. kvm_x86_ops->set_nmi(vcpu);
  3926. return;
  3927. }
  3928. if (vcpu->arch.interrupt.pending) {
  3929. kvm_x86_ops->set_irq(vcpu);
  3930. return;
  3931. }
  3932. /* try to inject new event if pending */
  3933. if (vcpu->arch.nmi_pending) {
  3934. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3935. vcpu->arch.nmi_pending = false;
  3936. vcpu->arch.nmi_injected = true;
  3937. kvm_x86_ops->set_nmi(vcpu);
  3938. }
  3939. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3940. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3941. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3942. false);
  3943. kvm_x86_ops->set_irq(vcpu);
  3944. }
  3945. }
  3946. }
  3947. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3948. {
  3949. int r;
  3950. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3951. vcpu->run->request_interrupt_window;
  3952. if (vcpu->requests)
  3953. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3954. kvm_mmu_unload(vcpu);
  3955. r = kvm_mmu_reload(vcpu);
  3956. if (unlikely(r))
  3957. goto out;
  3958. if (vcpu->requests) {
  3959. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3960. __kvm_migrate_timers(vcpu);
  3961. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3962. kvm_write_guest_time(vcpu);
  3963. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3964. kvm_mmu_sync_roots(vcpu);
  3965. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3966. kvm_x86_ops->tlb_flush(vcpu);
  3967. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3968. &vcpu->requests)) {
  3969. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3970. r = 0;
  3971. goto out;
  3972. }
  3973. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3974. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3975. r = 0;
  3976. goto out;
  3977. }
  3978. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3979. vcpu->fpu_active = 0;
  3980. kvm_x86_ops->fpu_deactivate(vcpu);
  3981. }
  3982. }
  3983. preempt_disable();
  3984. kvm_x86_ops->prepare_guest_switch(vcpu);
  3985. if (vcpu->fpu_active)
  3986. kvm_load_guest_fpu(vcpu);
  3987. atomic_set(&vcpu->guest_mode, 1);
  3988. smp_wmb();
  3989. local_irq_disable();
  3990. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  3991. || need_resched() || signal_pending(current)) {
  3992. atomic_set(&vcpu->guest_mode, 0);
  3993. smp_wmb();
  3994. local_irq_enable();
  3995. preempt_enable();
  3996. r = 1;
  3997. goto out;
  3998. }
  3999. inject_pending_event(vcpu);
  4000. /* enable NMI/IRQ window open exits if needed */
  4001. if (vcpu->arch.nmi_pending)
  4002. kvm_x86_ops->enable_nmi_window(vcpu);
  4003. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4004. kvm_x86_ops->enable_irq_window(vcpu);
  4005. if (kvm_lapic_enabled(vcpu)) {
  4006. update_cr8_intercept(vcpu);
  4007. kvm_lapic_sync_to_vapic(vcpu);
  4008. }
  4009. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4010. kvm_guest_enter();
  4011. if (unlikely(vcpu->arch.switch_db_regs)) {
  4012. set_debugreg(0, 7);
  4013. set_debugreg(vcpu->arch.eff_db[0], 0);
  4014. set_debugreg(vcpu->arch.eff_db[1], 1);
  4015. set_debugreg(vcpu->arch.eff_db[2], 2);
  4016. set_debugreg(vcpu->arch.eff_db[3], 3);
  4017. }
  4018. trace_kvm_entry(vcpu->vcpu_id);
  4019. kvm_x86_ops->run(vcpu);
  4020. /*
  4021. * If the guest has used debug registers, at least dr7
  4022. * will be disabled while returning to the host.
  4023. * If we don't have active breakpoints in the host, we don't
  4024. * care about the messed up debug address registers. But if
  4025. * we have some of them active, restore the old state.
  4026. */
  4027. if (hw_breakpoint_active())
  4028. hw_breakpoint_restore();
  4029. atomic_set(&vcpu->guest_mode, 0);
  4030. smp_wmb();
  4031. local_irq_enable();
  4032. ++vcpu->stat.exits;
  4033. /*
  4034. * We must have an instruction between local_irq_enable() and
  4035. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4036. * the interrupt shadow. The stat.exits increment will do nicely.
  4037. * But we need to prevent reordering, hence this barrier():
  4038. */
  4039. barrier();
  4040. kvm_guest_exit();
  4041. preempt_enable();
  4042. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4043. /*
  4044. * Profile KVM exit RIPs:
  4045. */
  4046. if (unlikely(prof_on == KVM_PROFILING)) {
  4047. unsigned long rip = kvm_rip_read(vcpu);
  4048. profile_hit(KVM_PROFILING, (void *)rip);
  4049. }
  4050. kvm_lapic_sync_from_vapic(vcpu);
  4051. r = kvm_x86_ops->handle_exit(vcpu);
  4052. out:
  4053. return r;
  4054. }
  4055. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4056. {
  4057. int r;
  4058. struct kvm *kvm = vcpu->kvm;
  4059. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4060. pr_debug("vcpu %d received sipi with vector # %x\n",
  4061. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4062. kvm_lapic_reset(vcpu);
  4063. r = kvm_arch_vcpu_reset(vcpu);
  4064. if (r)
  4065. return r;
  4066. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4067. }
  4068. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4069. vapic_enter(vcpu);
  4070. r = 1;
  4071. while (r > 0) {
  4072. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4073. r = vcpu_enter_guest(vcpu);
  4074. else {
  4075. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4076. kvm_vcpu_block(vcpu);
  4077. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4078. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4079. {
  4080. switch(vcpu->arch.mp_state) {
  4081. case KVM_MP_STATE_HALTED:
  4082. vcpu->arch.mp_state =
  4083. KVM_MP_STATE_RUNNABLE;
  4084. case KVM_MP_STATE_RUNNABLE:
  4085. break;
  4086. case KVM_MP_STATE_SIPI_RECEIVED:
  4087. default:
  4088. r = -EINTR;
  4089. break;
  4090. }
  4091. }
  4092. }
  4093. if (r <= 0)
  4094. break;
  4095. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4096. if (kvm_cpu_has_pending_timer(vcpu))
  4097. kvm_inject_pending_timer_irqs(vcpu);
  4098. if (dm_request_for_irq_injection(vcpu)) {
  4099. r = -EINTR;
  4100. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4101. ++vcpu->stat.request_irq_exits;
  4102. }
  4103. if (signal_pending(current)) {
  4104. r = -EINTR;
  4105. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4106. ++vcpu->stat.signal_exits;
  4107. }
  4108. if (need_resched()) {
  4109. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4110. kvm_resched(vcpu);
  4111. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4112. }
  4113. }
  4114. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4115. vapic_exit(vcpu);
  4116. return r;
  4117. }
  4118. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4119. {
  4120. int r;
  4121. sigset_t sigsaved;
  4122. if (vcpu->sigset_active)
  4123. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4124. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4125. kvm_vcpu_block(vcpu);
  4126. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4127. r = -EAGAIN;
  4128. goto out;
  4129. }
  4130. /* re-sync apic's tpr */
  4131. if (!irqchip_in_kernel(vcpu->kvm))
  4132. kvm_set_cr8(vcpu, kvm_run->cr8);
  4133. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4134. vcpu->arch.emulate_ctxt.restart) {
  4135. if (vcpu->mmio_needed) {
  4136. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4137. vcpu->mmio_read_completed = 1;
  4138. vcpu->mmio_needed = 0;
  4139. }
  4140. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4141. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4142. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4143. if (r != EMULATE_DONE) {
  4144. r = 0;
  4145. goto out;
  4146. }
  4147. }
  4148. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4149. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4150. kvm_run->hypercall.ret);
  4151. r = __vcpu_run(vcpu);
  4152. out:
  4153. post_kvm_run_save(vcpu);
  4154. if (vcpu->sigset_active)
  4155. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4156. return r;
  4157. }
  4158. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4159. {
  4160. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4161. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4162. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4163. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4164. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4165. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4166. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4167. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4168. #ifdef CONFIG_X86_64
  4169. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4170. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4171. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4172. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4173. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4174. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4175. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4176. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4177. #endif
  4178. regs->rip = kvm_rip_read(vcpu);
  4179. regs->rflags = kvm_get_rflags(vcpu);
  4180. return 0;
  4181. }
  4182. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4183. {
  4184. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4185. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4186. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4187. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4188. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4189. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4190. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4191. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4192. #ifdef CONFIG_X86_64
  4193. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4194. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4195. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4196. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4197. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4198. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4199. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4200. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4201. #endif
  4202. kvm_rip_write(vcpu, regs->rip);
  4203. kvm_set_rflags(vcpu, regs->rflags);
  4204. vcpu->arch.exception.pending = false;
  4205. return 0;
  4206. }
  4207. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4208. {
  4209. struct kvm_segment cs;
  4210. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4211. *db = cs.db;
  4212. *l = cs.l;
  4213. }
  4214. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4215. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4216. struct kvm_sregs *sregs)
  4217. {
  4218. struct desc_ptr dt;
  4219. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4220. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4221. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4222. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4223. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4224. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4225. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4226. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4227. kvm_x86_ops->get_idt(vcpu, &dt);
  4228. sregs->idt.limit = dt.size;
  4229. sregs->idt.base = dt.address;
  4230. kvm_x86_ops->get_gdt(vcpu, &dt);
  4231. sregs->gdt.limit = dt.size;
  4232. sregs->gdt.base = dt.address;
  4233. sregs->cr0 = kvm_read_cr0(vcpu);
  4234. sregs->cr2 = vcpu->arch.cr2;
  4235. sregs->cr3 = vcpu->arch.cr3;
  4236. sregs->cr4 = kvm_read_cr4(vcpu);
  4237. sregs->cr8 = kvm_get_cr8(vcpu);
  4238. sregs->efer = vcpu->arch.efer;
  4239. sregs->apic_base = kvm_get_apic_base(vcpu);
  4240. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4241. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4242. set_bit(vcpu->arch.interrupt.nr,
  4243. (unsigned long *)sregs->interrupt_bitmap);
  4244. return 0;
  4245. }
  4246. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4247. struct kvm_mp_state *mp_state)
  4248. {
  4249. mp_state->mp_state = vcpu->arch.mp_state;
  4250. return 0;
  4251. }
  4252. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4253. struct kvm_mp_state *mp_state)
  4254. {
  4255. vcpu->arch.mp_state = mp_state->mp_state;
  4256. return 0;
  4257. }
  4258. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4259. bool has_error_code, u32 error_code)
  4260. {
  4261. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4262. int cs_db, cs_l, ret;
  4263. cache_all_regs(vcpu);
  4264. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4265. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4266. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4267. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4268. vcpu->arch.emulate_ctxt.mode =
  4269. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4270. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4271. ? X86EMUL_MODE_VM86 : cs_l
  4272. ? X86EMUL_MODE_PROT64 : cs_db
  4273. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4274. memset(c, 0, sizeof(struct decode_cache));
  4275. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4276. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4277. tss_selector, reason, has_error_code,
  4278. error_code);
  4279. if (ret)
  4280. return EMULATE_FAIL;
  4281. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4282. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4283. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4284. return EMULATE_DONE;
  4285. }
  4286. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4287. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4288. struct kvm_sregs *sregs)
  4289. {
  4290. int mmu_reset_needed = 0;
  4291. int pending_vec, max_bits;
  4292. struct desc_ptr dt;
  4293. dt.size = sregs->idt.limit;
  4294. dt.address = sregs->idt.base;
  4295. kvm_x86_ops->set_idt(vcpu, &dt);
  4296. dt.size = sregs->gdt.limit;
  4297. dt.address = sregs->gdt.base;
  4298. kvm_x86_ops->set_gdt(vcpu, &dt);
  4299. vcpu->arch.cr2 = sregs->cr2;
  4300. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4301. vcpu->arch.cr3 = sregs->cr3;
  4302. kvm_set_cr8(vcpu, sregs->cr8);
  4303. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4304. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4305. kvm_set_apic_base(vcpu, sregs->apic_base);
  4306. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4307. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4308. vcpu->arch.cr0 = sregs->cr0;
  4309. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4310. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4311. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4312. load_pdptrs(vcpu, vcpu->arch.cr3);
  4313. mmu_reset_needed = 1;
  4314. }
  4315. if (mmu_reset_needed)
  4316. kvm_mmu_reset_context(vcpu);
  4317. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4318. pending_vec = find_first_bit(
  4319. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4320. if (pending_vec < max_bits) {
  4321. kvm_queue_interrupt(vcpu, pending_vec, false);
  4322. pr_debug("Set back pending irq %d\n", pending_vec);
  4323. if (irqchip_in_kernel(vcpu->kvm))
  4324. kvm_pic_clear_isr_ack(vcpu->kvm);
  4325. }
  4326. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4327. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4328. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4329. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4330. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4331. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4332. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4333. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4334. update_cr8_intercept(vcpu);
  4335. /* Older userspace won't unhalt the vcpu on reset. */
  4336. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4337. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4338. !is_protmode(vcpu))
  4339. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4340. return 0;
  4341. }
  4342. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4343. struct kvm_guest_debug *dbg)
  4344. {
  4345. unsigned long rflags;
  4346. int i, r;
  4347. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4348. r = -EBUSY;
  4349. if (vcpu->arch.exception.pending)
  4350. goto out;
  4351. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4352. kvm_queue_exception(vcpu, DB_VECTOR);
  4353. else
  4354. kvm_queue_exception(vcpu, BP_VECTOR);
  4355. }
  4356. /*
  4357. * Read rflags as long as potentially injected trace flags are still
  4358. * filtered out.
  4359. */
  4360. rflags = kvm_get_rflags(vcpu);
  4361. vcpu->guest_debug = dbg->control;
  4362. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4363. vcpu->guest_debug = 0;
  4364. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4365. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4366. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4367. vcpu->arch.switch_db_regs =
  4368. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4369. } else {
  4370. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4371. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4372. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4373. }
  4374. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4375. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4376. get_segment_base(vcpu, VCPU_SREG_CS);
  4377. /*
  4378. * Trigger an rflags update that will inject or remove the trace
  4379. * flags.
  4380. */
  4381. kvm_set_rflags(vcpu, rflags);
  4382. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4383. r = 0;
  4384. out:
  4385. return r;
  4386. }
  4387. /*
  4388. * Translate a guest virtual address to a guest physical address.
  4389. */
  4390. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4391. struct kvm_translation *tr)
  4392. {
  4393. unsigned long vaddr = tr->linear_address;
  4394. gpa_t gpa;
  4395. int idx;
  4396. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4397. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4398. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4399. tr->physical_address = gpa;
  4400. tr->valid = gpa != UNMAPPED_GVA;
  4401. tr->writeable = 1;
  4402. tr->usermode = 0;
  4403. return 0;
  4404. }
  4405. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4406. {
  4407. struct i387_fxsave_struct *fxsave =
  4408. &vcpu->arch.guest_fpu.state->fxsave;
  4409. memcpy(fpu->fpr, fxsave->st_space, 128);
  4410. fpu->fcw = fxsave->cwd;
  4411. fpu->fsw = fxsave->swd;
  4412. fpu->ftwx = fxsave->twd;
  4413. fpu->last_opcode = fxsave->fop;
  4414. fpu->last_ip = fxsave->rip;
  4415. fpu->last_dp = fxsave->rdp;
  4416. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4417. return 0;
  4418. }
  4419. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4420. {
  4421. struct i387_fxsave_struct *fxsave =
  4422. &vcpu->arch.guest_fpu.state->fxsave;
  4423. memcpy(fxsave->st_space, fpu->fpr, 128);
  4424. fxsave->cwd = fpu->fcw;
  4425. fxsave->swd = fpu->fsw;
  4426. fxsave->twd = fpu->ftwx;
  4427. fxsave->fop = fpu->last_opcode;
  4428. fxsave->rip = fpu->last_ip;
  4429. fxsave->rdp = fpu->last_dp;
  4430. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4431. return 0;
  4432. }
  4433. void fx_init(struct kvm_vcpu *vcpu)
  4434. {
  4435. fpu_alloc(&vcpu->arch.guest_fpu);
  4436. fpu_finit(&vcpu->arch.guest_fpu);
  4437. vcpu->arch.cr0 |= X86_CR0_ET;
  4438. }
  4439. EXPORT_SYMBOL_GPL(fx_init);
  4440. static void fx_free(struct kvm_vcpu *vcpu)
  4441. {
  4442. fpu_free(&vcpu->arch.guest_fpu);
  4443. }
  4444. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4445. {
  4446. if (vcpu->guest_fpu_loaded)
  4447. return;
  4448. vcpu->guest_fpu_loaded = 1;
  4449. unlazy_fpu(current);
  4450. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4451. trace_kvm_fpu(1);
  4452. }
  4453. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4454. {
  4455. if (!vcpu->guest_fpu_loaded)
  4456. return;
  4457. vcpu->guest_fpu_loaded = 0;
  4458. fpu_save_init(&vcpu->arch.guest_fpu);
  4459. ++vcpu->stat.fpu_reload;
  4460. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4461. trace_kvm_fpu(0);
  4462. }
  4463. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4464. {
  4465. if (vcpu->arch.time_page) {
  4466. kvm_release_page_dirty(vcpu->arch.time_page);
  4467. vcpu->arch.time_page = NULL;
  4468. }
  4469. fx_free(vcpu);
  4470. kvm_x86_ops->vcpu_free(vcpu);
  4471. }
  4472. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4473. unsigned int id)
  4474. {
  4475. return kvm_x86_ops->vcpu_create(kvm, id);
  4476. }
  4477. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4478. {
  4479. int r;
  4480. vcpu->arch.mtrr_state.have_fixed = 1;
  4481. vcpu_load(vcpu);
  4482. r = kvm_arch_vcpu_reset(vcpu);
  4483. if (r == 0)
  4484. r = kvm_mmu_setup(vcpu);
  4485. vcpu_put(vcpu);
  4486. if (r < 0)
  4487. goto free_vcpu;
  4488. return 0;
  4489. free_vcpu:
  4490. kvm_x86_ops->vcpu_free(vcpu);
  4491. return r;
  4492. }
  4493. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4494. {
  4495. vcpu_load(vcpu);
  4496. kvm_mmu_unload(vcpu);
  4497. vcpu_put(vcpu);
  4498. fx_free(vcpu);
  4499. kvm_x86_ops->vcpu_free(vcpu);
  4500. }
  4501. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4502. {
  4503. vcpu->arch.nmi_pending = false;
  4504. vcpu->arch.nmi_injected = false;
  4505. vcpu->arch.switch_db_regs = 0;
  4506. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4507. vcpu->arch.dr6 = DR6_FIXED_1;
  4508. vcpu->arch.dr7 = DR7_FIXED_1;
  4509. return kvm_x86_ops->vcpu_reset(vcpu);
  4510. }
  4511. int kvm_arch_hardware_enable(void *garbage)
  4512. {
  4513. /*
  4514. * Since this may be called from a hotplug notifcation,
  4515. * we can't get the CPU frequency directly.
  4516. */
  4517. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4518. int cpu = raw_smp_processor_id();
  4519. per_cpu(cpu_tsc_khz, cpu) = 0;
  4520. }
  4521. kvm_shared_msr_cpu_online();
  4522. return kvm_x86_ops->hardware_enable(garbage);
  4523. }
  4524. void kvm_arch_hardware_disable(void *garbage)
  4525. {
  4526. kvm_x86_ops->hardware_disable(garbage);
  4527. drop_user_return_notifiers(garbage);
  4528. }
  4529. int kvm_arch_hardware_setup(void)
  4530. {
  4531. return kvm_x86_ops->hardware_setup();
  4532. }
  4533. void kvm_arch_hardware_unsetup(void)
  4534. {
  4535. kvm_x86_ops->hardware_unsetup();
  4536. }
  4537. void kvm_arch_check_processor_compat(void *rtn)
  4538. {
  4539. kvm_x86_ops->check_processor_compatibility(rtn);
  4540. }
  4541. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4542. {
  4543. struct page *page;
  4544. struct kvm *kvm;
  4545. int r;
  4546. BUG_ON(vcpu->kvm == NULL);
  4547. kvm = vcpu->kvm;
  4548. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4549. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4550. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4551. else
  4552. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4553. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4554. if (!page) {
  4555. r = -ENOMEM;
  4556. goto fail;
  4557. }
  4558. vcpu->arch.pio_data = page_address(page);
  4559. r = kvm_mmu_create(vcpu);
  4560. if (r < 0)
  4561. goto fail_free_pio_data;
  4562. if (irqchip_in_kernel(kvm)) {
  4563. r = kvm_create_lapic(vcpu);
  4564. if (r < 0)
  4565. goto fail_mmu_destroy;
  4566. }
  4567. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4568. GFP_KERNEL);
  4569. if (!vcpu->arch.mce_banks) {
  4570. r = -ENOMEM;
  4571. goto fail_free_lapic;
  4572. }
  4573. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4574. return 0;
  4575. fail_free_lapic:
  4576. kvm_free_lapic(vcpu);
  4577. fail_mmu_destroy:
  4578. kvm_mmu_destroy(vcpu);
  4579. fail_free_pio_data:
  4580. free_page((unsigned long)vcpu->arch.pio_data);
  4581. fail:
  4582. return r;
  4583. }
  4584. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4585. {
  4586. int idx;
  4587. kfree(vcpu->arch.mce_banks);
  4588. kvm_free_lapic(vcpu);
  4589. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4590. kvm_mmu_destroy(vcpu);
  4591. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4592. free_page((unsigned long)vcpu->arch.pio_data);
  4593. }
  4594. struct kvm *kvm_arch_create_vm(void)
  4595. {
  4596. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4597. if (!kvm)
  4598. return ERR_PTR(-ENOMEM);
  4599. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4600. if (!kvm->arch.aliases) {
  4601. kfree(kvm);
  4602. return ERR_PTR(-ENOMEM);
  4603. }
  4604. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4605. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4606. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4607. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4608. rdtscll(kvm->arch.vm_init_tsc);
  4609. return kvm;
  4610. }
  4611. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4612. {
  4613. vcpu_load(vcpu);
  4614. kvm_mmu_unload(vcpu);
  4615. vcpu_put(vcpu);
  4616. }
  4617. static void kvm_free_vcpus(struct kvm *kvm)
  4618. {
  4619. unsigned int i;
  4620. struct kvm_vcpu *vcpu;
  4621. /*
  4622. * Unpin any mmu pages first.
  4623. */
  4624. kvm_for_each_vcpu(i, vcpu, kvm)
  4625. kvm_unload_vcpu_mmu(vcpu);
  4626. kvm_for_each_vcpu(i, vcpu, kvm)
  4627. kvm_arch_vcpu_free(vcpu);
  4628. mutex_lock(&kvm->lock);
  4629. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4630. kvm->vcpus[i] = NULL;
  4631. atomic_set(&kvm->online_vcpus, 0);
  4632. mutex_unlock(&kvm->lock);
  4633. }
  4634. void kvm_arch_sync_events(struct kvm *kvm)
  4635. {
  4636. kvm_free_all_assigned_devices(kvm);
  4637. }
  4638. void kvm_arch_destroy_vm(struct kvm *kvm)
  4639. {
  4640. kvm_iommu_unmap_guest(kvm);
  4641. kvm_free_pit(kvm);
  4642. kfree(kvm->arch.vpic);
  4643. kfree(kvm->arch.vioapic);
  4644. kvm_free_vcpus(kvm);
  4645. kvm_free_physmem(kvm);
  4646. if (kvm->arch.apic_access_page)
  4647. put_page(kvm->arch.apic_access_page);
  4648. if (kvm->arch.ept_identity_pagetable)
  4649. put_page(kvm->arch.ept_identity_pagetable);
  4650. cleanup_srcu_struct(&kvm->srcu);
  4651. kfree(kvm->arch.aliases);
  4652. kfree(kvm);
  4653. }
  4654. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4655. struct kvm_memory_slot *memslot,
  4656. struct kvm_memory_slot old,
  4657. struct kvm_userspace_memory_region *mem,
  4658. int user_alloc)
  4659. {
  4660. int npages = memslot->npages;
  4661. /*To keep backward compatibility with older userspace,
  4662. *x86 needs to hanlde !user_alloc case.
  4663. */
  4664. if (!user_alloc) {
  4665. if (npages && !old.rmap) {
  4666. unsigned long userspace_addr;
  4667. down_write(&current->mm->mmap_sem);
  4668. userspace_addr = do_mmap(NULL, 0,
  4669. npages * PAGE_SIZE,
  4670. PROT_READ | PROT_WRITE,
  4671. MAP_PRIVATE | MAP_ANONYMOUS,
  4672. 0);
  4673. up_write(&current->mm->mmap_sem);
  4674. if (IS_ERR((void *)userspace_addr))
  4675. return PTR_ERR((void *)userspace_addr);
  4676. memslot->userspace_addr = userspace_addr;
  4677. }
  4678. }
  4679. return 0;
  4680. }
  4681. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4682. struct kvm_userspace_memory_region *mem,
  4683. struct kvm_memory_slot old,
  4684. int user_alloc)
  4685. {
  4686. int npages = mem->memory_size >> PAGE_SHIFT;
  4687. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4688. int ret;
  4689. down_write(&current->mm->mmap_sem);
  4690. ret = do_munmap(current->mm, old.userspace_addr,
  4691. old.npages * PAGE_SIZE);
  4692. up_write(&current->mm->mmap_sem);
  4693. if (ret < 0)
  4694. printk(KERN_WARNING
  4695. "kvm_vm_ioctl_set_memory_region: "
  4696. "failed to munmap memory\n");
  4697. }
  4698. spin_lock(&kvm->mmu_lock);
  4699. if (!kvm->arch.n_requested_mmu_pages) {
  4700. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4701. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4702. }
  4703. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4704. spin_unlock(&kvm->mmu_lock);
  4705. }
  4706. void kvm_arch_flush_shadow(struct kvm *kvm)
  4707. {
  4708. kvm_mmu_zap_all(kvm);
  4709. kvm_reload_remote_mmus(kvm);
  4710. }
  4711. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4712. {
  4713. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4714. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4715. || vcpu->arch.nmi_pending ||
  4716. (kvm_arch_interrupt_allowed(vcpu) &&
  4717. kvm_cpu_has_interrupt(vcpu));
  4718. }
  4719. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4720. {
  4721. int me;
  4722. int cpu = vcpu->cpu;
  4723. if (waitqueue_active(&vcpu->wq)) {
  4724. wake_up_interruptible(&vcpu->wq);
  4725. ++vcpu->stat.halt_wakeup;
  4726. }
  4727. me = get_cpu();
  4728. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4729. if (atomic_xchg(&vcpu->guest_mode, 0))
  4730. smp_send_reschedule(cpu);
  4731. put_cpu();
  4732. }
  4733. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4734. {
  4735. return kvm_x86_ops->interrupt_allowed(vcpu);
  4736. }
  4737. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4738. {
  4739. unsigned long current_rip = kvm_rip_read(vcpu) +
  4740. get_segment_base(vcpu, VCPU_SREG_CS);
  4741. return current_rip == linear_rip;
  4742. }
  4743. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4744. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4745. {
  4746. unsigned long rflags;
  4747. rflags = kvm_x86_ops->get_rflags(vcpu);
  4748. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4749. rflags &= ~X86_EFLAGS_TF;
  4750. return rflags;
  4751. }
  4752. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4753. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4754. {
  4755. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4756. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4757. rflags |= X86_EFLAGS_TF;
  4758. kvm_x86_ops->set_rflags(vcpu, rflags);
  4759. }
  4760. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4761. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4762. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4763. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4764. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4765. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4766. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4767. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4768. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4769. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4770. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4771. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4772. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);