vmx.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include <linux/tboot.h>
  29. #include "kvm_cache_regs.h"
  30. #include "x86.h"
  31. #include <asm/io.h>
  32. #include <asm/desc.h>
  33. #include <asm/vmx.h>
  34. #include <asm/virtext.h>
  35. #include <asm/mce.h>
  36. #include "trace.h"
  37. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  38. MODULE_AUTHOR("Qumranet");
  39. MODULE_LICENSE("GPL");
  40. static int __read_mostly bypass_guest_pf = 1;
  41. module_param(bypass_guest_pf, bool, S_IRUGO);
  42. static int __read_mostly enable_vpid = 1;
  43. module_param_named(vpid, enable_vpid, bool, 0444);
  44. static int __read_mostly flexpriority_enabled = 1;
  45. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  46. static int __read_mostly enable_ept = 1;
  47. module_param_named(ept, enable_ept, bool, S_IRUGO);
  48. static int __read_mostly enable_unrestricted_guest = 1;
  49. module_param_named(unrestricted_guest,
  50. enable_unrestricted_guest, bool, S_IRUGO);
  51. static int __read_mostly emulate_invalid_guest_state = 0;
  52. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  53. static int __read_mostly vmm_exclusive = 1;
  54. module_param(vmm_exclusive, bool, S_IRUGO);
  55. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  57. #define KVM_GUEST_CR0_MASK \
  58. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  60. (X86_CR0_WP | X86_CR0_NE)
  61. #define KVM_VM_CR0_ALWAYS_ON \
  62. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  63. #define KVM_CR4_GUEST_OWNED_BITS \
  64. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  65. | X86_CR4_OSXMMEXCPT)
  66. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  67. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  68. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  69. /*
  70. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  71. * ple_gap: upper bound on the amount of time between two successive
  72. * executions of PAUSE in a loop. Also indicate if ple enabled.
  73. * According to test, this time is usually small than 41 cycles.
  74. * ple_window: upper bound on the amount of time a guest is allowed to execute
  75. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  76. * less than 2^12 cycles
  77. * Time is measured based on a counter that runs at the same rate as the TSC,
  78. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  79. */
  80. #define KVM_VMX_DEFAULT_PLE_GAP 41
  81. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  82. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  83. module_param(ple_gap, int, S_IRUGO);
  84. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  85. module_param(ple_window, int, S_IRUGO);
  86. #define NR_AUTOLOAD_MSRS 1
  87. struct vmcs {
  88. u32 revision_id;
  89. u32 abort;
  90. char data[0];
  91. };
  92. struct shared_msr_entry {
  93. unsigned index;
  94. u64 data;
  95. u64 mask;
  96. };
  97. struct vcpu_vmx {
  98. struct kvm_vcpu vcpu;
  99. struct list_head local_vcpus_link;
  100. unsigned long host_rsp;
  101. int launched;
  102. u8 fail;
  103. u32 idt_vectoring_info;
  104. struct shared_msr_entry *guest_msrs;
  105. int nmsrs;
  106. int save_nmsrs;
  107. #ifdef CONFIG_X86_64
  108. u64 msr_host_kernel_gs_base;
  109. u64 msr_guest_kernel_gs_base;
  110. #endif
  111. struct vmcs *vmcs;
  112. struct msr_autoload {
  113. unsigned nr;
  114. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  115. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  116. } msr_autoload;
  117. struct {
  118. int loaded;
  119. u16 fs_sel, gs_sel, ldt_sel;
  120. int gs_ldt_reload_needed;
  121. int fs_reload_needed;
  122. } host_state;
  123. struct {
  124. int vm86_active;
  125. ulong save_rflags;
  126. struct kvm_save_segment {
  127. u16 selector;
  128. unsigned long base;
  129. u32 limit;
  130. u32 ar;
  131. } tr, es, ds, fs, gs;
  132. struct {
  133. bool pending;
  134. u8 vector;
  135. unsigned rip;
  136. } irq;
  137. } rmode;
  138. int vpid;
  139. bool emulation_required;
  140. /* Support for vnmi-less CPUs */
  141. int soft_vnmi_blocked;
  142. ktime_t entry_time;
  143. s64 vnmi_blocked_time;
  144. u32 exit_reason;
  145. bool rdtscp_enabled;
  146. };
  147. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  148. {
  149. return container_of(vcpu, struct vcpu_vmx, vcpu);
  150. }
  151. static int init_rmode(struct kvm *kvm);
  152. static u64 construct_eptp(unsigned long root_hpa);
  153. static void kvm_cpu_vmxon(u64 addr);
  154. static void kvm_cpu_vmxoff(void);
  155. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  156. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  157. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  158. static unsigned long *vmx_io_bitmap_a;
  159. static unsigned long *vmx_io_bitmap_b;
  160. static unsigned long *vmx_msr_bitmap_legacy;
  161. static unsigned long *vmx_msr_bitmap_longmode;
  162. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  163. static DEFINE_SPINLOCK(vmx_vpid_lock);
  164. static struct vmcs_config {
  165. int size;
  166. int order;
  167. u32 revision_id;
  168. u32 pin_based_exec_ctrl;
  169. u32 cpu_based_exec_ctrl;
  170. u32 cpu_based_2nd_exec_ctrl;
  171. u32 vmexit_ctrl;
  172. u32 vmentry_ctrl;
  173. } vmcs_config;
  174. static struct vmx_capability {
  175. u32 ept;
  176. u32 vpid;
  177. } vmx_capability;
  178. #define VMX_SEGMENT_FIELD(seg) \
  179. [VCPU_SREG_##seg] = { \
  180. .selector = GUEST_##seg##_SELECTOR, \
  181. .base = GUEST_##seg##_BASE, \
  182. .limit = GUEST_##seg##_LIMIT, \
  183. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  184. }
  185. static struct kvm_vmx_segment_field {
  186. unsigned selector;
  187. unsigned base;
  188. unsigned limit;
  189. unsigned ar_bytes;
  190. } kvm_vmx_segment_fields[] = {
  191. VMX_SEGMENT_FIELD(CS),
  192. VMX_SEGMENT_FIELD(DS),
  193. VMX_SEGMENT_FIELD(ES),
  194. VMX_SEGMENT_FIELD(FS),
  195. VMX_SEGMENT_FIELD(GS),
  196. VMX_SEGMENT_FIELD(SS),
  197. VMX_SEGMENT_FIELD(TR),
  198. VMX_SEGMENT_FIELD(LDTR),
  199. };
  200. static u64 host_efer;
  201. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  202. /*
  203. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  204. * away by decrementing the array size.
  205. */
  206. static const u32 vmx_msr_index[] = {
  207. #ifdef CONFIG_X86_64
  208. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  209. #endif
  210. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  211. };
  212. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  213. static inline bool is_page_fault(u32 intr_info)
  214. {
  215. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  216. INTR_INFO_VALID_MASK)) ==
  217. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  218. }
  219. static inline bool is_no_device(u32 intr_info)
  220. {
  221. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  222. INTR_INFO_VALID_MASK)) ==
  223. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  224. }
  225. static inline bool is_invalid_opcode(u32 intr_info)
  226. {
  227. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  228. INTR_INFO_VALID_MASK)) ==
  229. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  230. }
  231. static inline bool is_external_interrupt(u32 intr_info)
  232. {
  233. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  234. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  235. }
  236. static inline bool is_machine_check(u32 intr_info)
  237. {
  238. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  239. INTR_INFO_VALID_MASK)) ==
  240. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  241. }
  242. static inline bool cpu_has_vmx_msr_bitmap(void)
  243. {
  244. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  245. }
  246. static inline bool cpu_has_vmx_tpr_shadow(void)
  247. {
  248. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  249. }
  250. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  251. {
  252. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  253. }
  254. static inline bool cpu_has_secondary_exec_ctrls(void)
  255. {
  256. return vmcs_config.cpu_based_exec_ctrl &
  257. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  258. }
  259. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  260. {
  261. return vmcs_config.cpu_based_2nd_exec_ctrl &
  262. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  263. }
  264. static inline bool cpu_has_vmx_flexpriority(void)
  265. {
  266. return cpu_has_vmx_tpr_shadow() &&
  267. cpu_has_vmx_virtualize_apic_accesses();
  268. }
  269. static inline bool cpu_has_vmx_ept_execute_only(void)
  270. {
  271. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  272. }
  273. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  274. {
  275. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  276. }
  277. static inline bool cpu_has_vmx_eptp_writeback(void)
  278. {
  279. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  280. }
  281. static inline bool cpu_has_vmx_ept_2m_page(void)
  282. {
  283. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  284. }
  285. static inline bool cpu_has_vmx_ept_1g_page(void)
  286. {
  287. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  288. }
  289. static inline bool cpu_has_vmx_invept_individual_addr(void)
  290. {
  291. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  292. }
  293. static inline bool cpu_has_vmx_invept_context(void)
  294. {
  295. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  296. }
  297. static inline bool cpu_has_vmx_invept_global(void)
  298. {
  299. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  300. }
  301. static inline bool cpu_has_vmx_ept(void)
  302. {
  303. return vmcs_config.cpu_based_2nd_exec_ctrl &
  304. SECONDARY_EXEC_ENABLE_EPT;
  305. }
  306. static inline bool cpu_has_vmx_unrestricted_guest(void)
  307. {
  308. return vmcs_config.cpu_based_2nd_exec_ctrl &
  309. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  310. }
  311. static inline bool cpu_has_vmx_ple(void)
  312. {
  313. return vmcs_config.cpu_based_2nd_exec_ctrl &
  314. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  315. }
  316. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  317. {
  318. return flexpriority_enabled && irqchip_in_kernel(kvm);
  319. }
  320. static inline bool cpu_has_vmx_vpid(void)
  321. {
  322. return vmcs_config.cpu_based_2nd_exec_ctrl &
  323. SECONDARY_EXEC_ENABLE_VPID;
  324. }
  325. static inline bool cpu_has_vmx_rdtscp(void)
  326. {
  327. return vmcs_config.cpu_based_2nd_exec_ctrl &
  328. SECONDARY_EXEC_RDTSCP;
  329. }
  330. static inline bool cpu_has_virtual_nmis(void)
  331. {
  332. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  333. }
  334. static inline bool report_flexpriority(void)
  335. {
  336. return flexpriority_enabled;
  337. }
  338. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  339. {
  340. int i;
  341. for (i = 0; i < vmx->nmsrs; ++i)
  342. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  343. return i;
  344. return -1;
  345. }
  346. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  347. {
  348. struct {
  349. u64 vpid : 16;
  350. u64 rsvd : 48;
  351. u64 gva;
  352. } operand = { vpid, 0, gva };
  353. asm volatile (__ex(ASM_VMX_INVVPID)
  354. /* CF==1 or ZF==1 --> rc = -1 */
  355. "; ja 1f ; ud2 ; 1:"
  356. : : "a"(&operand), "c"(ext) : "cc", "memory");
  357. }
  358. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  359. {
  360. struct {
  361. u64 eptp, gpa;
  362. } operand = {eptp, gpa};
  363. asm volatile (__ex(ASM_VMX_INVEPT)
  364. /* CF==1 or ZF==1 --> rc = -1 */
  365. "; ja 1f ; ud2 ; 1:\n"
  366. : : "a" (&operand), "c" (ext) : "cc", "memory");
  367. }
  368. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  369. {
  370. int i;
  371. i = __find_msr_index(vmx, msr);
  372. if (i >= 0)
  373. return &vmx->guest_msrs[i];
  374. return NULL;
  375. }
  376. static void vmcs_clear(struct vmcs *vmcs)
  377. {
  378. u64 phys_addr = __pa(vmcs);
  379. u8 error;
  380. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  381. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  382. : "cc", "memory");
  383. if (error)
  384. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  385. vmcs, phys_addr);
  386. }
  387. static void vmcs_load(struct vmcs *vmcs)
  388. {
  389. u64 phys_addr = __pa(vmcs);
  390. u8 error;
  391. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  392. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  393. : "cc", "memory");
  394. if (error)
  395. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  396. vmcs, phys_addr);
  397. }
  398. static void __vcpu_clear(void *arg)
  399. {
  400. struct vcpu_vmx *vmx = arg;
  401. int cpu = raw_smp_processor_id();
  402. if (vmx->vcpu.cpu == cpu)
  403. vmcs_clear(vmx->vmcs);
  404. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  405. per_cpu(current_vmcs, cpu) = NULL;
  406. rdtscll(vmx->vcpu.arch.host_tsc);
  407. list_del(&vmx->local_vcpus_link);
  408. vmx->vcpu.cpu = -1;
  409. vmx->launched = 0;
  410. }
  411. static void vcpu_clear(struct vcpu_vmx *vmx)
  412. {
  413. if (vmx->vcpu.cpu == -1)
  414. return;
  415. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  416. }
  417. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  418. {
  419. if (vmx->vpid == 0)
  420. return;
  421. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  422. }
  423. static inline void ept_sync_global(void)
  424. {
  425. if (cpu_has_vmx_invept_global())
  426. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  427. }
  428. static inline void ept_sync_context(u64 eptp)
  429. {
  430. if (enable_ept) {
  431. if (cpu_has_vmx_invept_context())
  432. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  433. else
  434. ept_sync_global();
  435. }
  436. }
  437. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  438. {
  439. if (enable_ept) {
  440. if (cpu_has_vmx_invept_individual_addr())
  441. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  442. eptp, gpa);
  443. else
  444. ept_sync_context(eptp);
  445. }
  446. }
  447. static unsigned long vmcs_readl(unsigned long field)
  448. {
  449. unsigned long value;
  450. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  451. : "=a"(value) : "d"(field) : "cc");
  452. return value;
  453. }
  454. static u16 vmcs_read16(unsigned long field)
  455. {
  456. return vmcs_readl(field);
  457. }
  458. static u32 vmcs_read32(unsigned long field)
  459. {
  460. return vmcs_readl(field);
  461. }
  462. static u64 vmcs_read64(unsigned long field)
  463. {
  464. #ifdef CONFIG_X86_64
  465. return vmcs_readl(field);
  466. #else
  467. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  468. #endif
  469. }
  470. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  471. {
  472. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  473. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  474. dump_stack();
  475. }
  476. static void vmcs_writel(unsigned long field, unsigned long value)
  477. {
  478. u8 error;
  479. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  480. : "=q"(error) : "a"(value), "d"(field) : "cc");
  481. if (unlikely(error))
  482. vmwrite_error(field, value);
  483. }
  484. static void vmcs_write16(unsigned long field, u16 value)
  485. {
  486. vmcs_writel(field, value);
  487. }
  488. static void vmcs_write32(unsigned long field, u32 value)
  489. {
  490. vmcs_writel(field, value);
  491. }
  492. static void vmcs_write64(unsigned long field, u64 value)
  493. {
  494. vmcs_writel(field, value);
  495. #ifndef CONFIG_X86_64
  496. asm volatile ("");
  497. vmcs_writel(field+1, value >> 32);
  498. #endif
  499. }
  500. static void vmcs_clear_bits(unsigned long field, u32 mask)
  501. {
  502. vmcs_writel(field, vmcs_readl(field) & ~mask);
  503. }
  504. static void vmcs_set_bits(unsigned long field, u32 mask)
  505. {
  506. vmcs_writel(field, vmcs_readl(field) | mask);
  507. }
  508. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  509. {
  510. u32 eb;
  511. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  512. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  513. if ((vcpu->guest_debug &
  514. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  515. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  516. eb |= 1u << BP_VECTOR;
  517. if (to_vmx(vcpu)->rmode.vm86_active)
  518. eb = ~0;
  519. if (enable_ept)
  520. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  521. if (vcpu->fpu_active)
  522. eb &= ~(1u << NM_VECTOR);
  523. vmcs_write32(EXCEPTION_BITMAP, eb);
  524. }
  525. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  526. {
  527. unsigned i;
  528. struct msr_autoload *m = &vmx->msr_autoload;
  529. for (i = 0; i < m->nr; ++i)
  530. if (m->guest[i].index == msr)
  531. break;
  532. if (i == m->nr)
  533. return;
  534. --m->nr;
  535. m->guest[i] = m->guest[m->nr];
  536. m->host[i] = m->host[m->nr];
  537. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  538. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  539. }
  540. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  541. u64 guest_val, u64 host_val)
  542. {
  543. unsigned i;
  544. struct msr_autoload *m = &vmx->msr_autoload;
  545. for (i = 0; i < m->nr; ++i)
  546. if (m->guest[i].index == msr)
  547. break;
  548. if (i == m->nr) {
  549. ++m->nr;
  550. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  551. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  552. }
  553. m->guest[i].index = msr;
  554. m->guest[i].value = guest_val;
  555. m->host[i].index = msr;
  556. m->host[i].value = host_val;
  557. }
  558. static void reload_tss(void)
  559. {
  560. /*
  561. * VT restores TR but not its size. Useless.
  562. */
  563. struct desc_ptr gdt;
  564. struct desc_struct *descs;
  565. native_store_gdt(&gdt);
  566. descs = (void *)gdt.address;
  567. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  568. load_TR_desc();
  569. }
  570. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  571. {
  572. u64 guest_efer;
  573. u64 ignore_bits;
  574. guest_efer = vmx->vcpu.arch.efer;
  575. /*
  576. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  577. * outside long mode
  578. */
  579. ignore_bits = EFER_NX | EFER_SCE;
  580. #ifdef CONFIG_X86_64
  581. ignore_bits |= EFER_LMA | EFER_LME;
  582. /* SCE is meaningful only in long mode on Intel */
  583. if (guest_efer & EFER_LMA)
  584. ignore_bits &= ~(u64)EFER_SCE;
  585. #endif
  586. guest_efer &= ~ignore_bits;
  587. guest_efer |= host_efer & ignore_bits;
  588. vmx->guest_msrs[efer_offset].data = guest_efer;
  589. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  590. clear_atomic_switch_msr(vmx, MSR_EFER);
  591. /* On ept, can't emulate nx, and must switch nx atomically */
  592. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  593. guest_efer = vmx->vcpu.arch.efer;
  594. if (!(guest_efer & EFER_LMA))
  595. guest_efer &= ~EFER_LME;
  596. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  597. return false;
  598. }
  599. return true;
  600. }
  601. static unsigned long segment_base(u16 selector)
  602. {
  603. struct desc_ptr gdt;
  604. struct desc_struct *d;
  605. unsigned long table_base;
  606. unsigned long v;
  607. if (!(selector & ~3))
  608. return 0;
  609. native_store_gdt(&gdt);
  610. table_base = gdt.address;
  611. if (selector & 4) { /* from ldt */
  612. u16 ldt_selector = kvm_read_ldt();
  613. if (!(ldt_selector & ~3))
  614. return 0;
  615. table_base = segment_base(ldt_selector);
  616. }
  617. d = (struct desc_struct *)(table_base + (selector & ~7));
  618. v = get_desc_base(d);
  619. #ifdef CONFIG_X86_64
  620. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  621. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  622. #endif
  623. return v;
  624. }
  625. static inline unsigned long kvm_read_tr_base(void)
  626. {
  627. u16 tr;
  628. asm("str %0" : "=g"(tr));
  629. return segment_base(tr);
  630. }
  631. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  632. {
  633. struct vcpu_vmx *vmx = to_vmx(vcpu);
  634. int i;
  635. if (vmx->host_state.loaded)
  636. return;
  637. vmx->host_state.loaded = 1;
  638. /*
  639. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  640. * allow segment selectors with cpl > 0 or ti == 1.
  641. */
  642. vmx->host_state.ldt_sel = kvm_read_ldt();
  643. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  644. vmx->host_state.fs_sel = kvm_read_fs();
  645. if (!(vmx->host_state.fs_sel & 7)) {
  646. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  647. vmx->host_state.fs_reload_needed = 0;
  648. } else {
  649. vmcs_write16(HOST_FS_SELECTOR, 0);
  650. vmx->host_state.fs_reload_needed = 1;
  651. }
  652. vmx->host_state.gs_sel = kvm_read_gs();
  653. if (!(vmx->host_state.gs_sel & 7))
  654. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  655. else {
  656. vmcs_write16(HOST_GS_SELECTOR, 0);
  657. vmx->host_state.gs_ldt_reload_needed = 1;
  658. }
  659. #ifdef CONFIG_X86_64
  660. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  661. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  662. #else
  663. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  664. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  665. #endif
  666. #ifdef CONFIG_X86_64
  667. if (is_long_mode(&vmx->vcpu)) {
  668. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  669. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  670. }
  671. #endif
  672. for (i = 0; i < vmx->save_nmsrs; ++i)
  673. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  674. vmx->guest_msrs[i].data,
  675. vmx->guest_msrs[i].mask);
  676. }
  677. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  678. {
  679. unsigned long flags;
  680. if (!vmx->host_state.loaded)
  681. return;
  682. ++vmx->vcpu.stat.host_state_reload;
  683. vmx->host_state.loaded = 0;
  684. if (vmx->host_state.fs_reload_needed)
  685. kvm_load_fs(vmx->host_state.fs_sel);
  686. if (vmx->host_state.gs_ldt_reload_needed) {
  687. kvm_load_ldt(vmx->host_state.ldt_sel);
  688. /*
  689. * If we have to reload gs, we must take care to
  690. * preserve our gs base.
  691. */
  692. local_irq_save(flags);
  693. kvm_load_gs(vmx->host_state.gs_sel);
  694. #ifdef CONFIG_X86_64
  695. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  696. #endif
  697. local_irq_restore(flags);
  698. }
  699. reload_tss();
  700. #ifdef CONFIG_X86_64
  701. if (is_long_mode(&vmx->vcpu)) {
  702. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  703. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  704. }
  705. #endif
  706. if (current_thread_info()->status & TS_USEDFPU)
  707. clts();
  708. }
  709. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  710. {
  711. preempt_disable();
  712. __vmx_load_host_state(vmx);
  713. preempt_enable();
  714. }
  715. /*
  716. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  717. * vcpu mutex is already taken.
  718. */
  719. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  720. {
  721. struct vcpu_vmx *vmx = to_vmx(vcpu);
  722. u64 tsc_this, delta, new_offset;
  723. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  724. if (!vmm_exclusive)
  725. kvm_cpu_vmxon(phys_addr);
  726. else if (vcpu->cpu != cpu)
  727. vcpu_clear(vmx);
  728. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  729. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  730. vmcs_load(vmx->vmcs);
  731. }
  732. if (vcpu->cpu != cpu) {
  733. struct desc_ptr dt;
  734. unsigned long sysenter_esp;
  735. kvm_migrate_timers(vcpu);
  736. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  737. local_irq_disable();
  738. list_add(&vmx->local_vcpus_link,
  739. &per_cpu(vcpus_on_cpu, cpu));
  740. local_irq_enable();
  741. vcpu->cpu = cpu;
  742. /*
  743. * Linux uses per-cpu TSS and GDT, so set these when switching
  744. * processors.
  745. */
  746. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  747. native_store_gdt(&dt);
  748. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  749. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  750. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  751. /*
  752. * Make sure the time stamp counter is monotonous.
  753. */
  754. rdtscll(tsc_this);
  755. if (tsc_this < vcpu->arch.host_tsc) {
  756. delta = vcpu->arch.host_tsc - tsc_this;
  757. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  758. vmcs_write64(TSC_OFFSET, new_offset);
  759. }
  760. }
  761. }
  762. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  763. {
  764. __vmx_load_host_state(to_vmx(vcpu));
  765. if (!vmm_exclusive) {
  766. __vcpu_clear(to_vmx(vcpu));
  767. kvm_cpu_vmxoff();
  768. }
  769. }
  770. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  771. {
  772. ulong cr0;
  773. if (vcpu->fpu_active)
  774. return;
  775. vcpu->fpu_active = 1;
  776. cr0 = vmcs_readl(GUEST_CR0);
  777. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  778. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  779. vmcs_writel(GUEST_CR0, cr0);
  780. update_exception_bitmap(vcpu);
  781. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  782. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  783. }
  784. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  785. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  786. {
  787. vmx_decache_cr0_guest_bits(vcpu);
  788. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  789. update_exception_bitmap(vcpu);
  790. vcpu->arch.cr0_guest_owned_bits = 0;
  791. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  792. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  793. }
  794. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  795. {
  796. unsigned long rflags, save_rflags;
  797. rflags = vmcs_readl(GUEST_RFLAGS);
  798. if (to_vmx(vcpu)->rmode.vm86_active) {
  799. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  800. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  801. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  802. }
  803. return rflags;
  804. }
  805. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  806. {
  807. if (to_vmx(vcpu)->rmode.vm86_active) {
  808. to_vmx(vcpu)->rmode.save_rflags = rflags;
  809. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  810. }
  811. vmcs_writel(GUEST_RFLAGS, rflags);
  812. }
  813. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  814. {
  815. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  816. int ret = 0;
  817. if (interruptibility & GUEST_INTR_STATE_STI)
  818. ret |= KVM_X86_SHADOW_INT_STI;
  819. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  820. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  821. return ret & mask;
  822. }
  823. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  824. {
  825. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  826. u32 interruptibility = interruptibility_old;
  827. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  828. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  829. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  830. else if (mask & KVM_X86_SHADOW_INT_STI)
  831. interruptibility |= GUEST_INTR_STATE_STI;
  832. if ((interruptibility != interruptibility_old))
  833. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  834. }
  835. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  836. {
  837. unsigned long rip;
  838. rip = kvm_rip_read(vcpu);
  839. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  840. kvm_rip_write(vcpu, rip);
  841. /* skipping an emulated instruction also counts */
  842. vmx_set_interrupt_shadow(vcpu, 0);
  843. }
  844. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  845. bool has_error_code, u32 error_code,
  846. bool reinject)
  847. {
  848. struct vcpu_vmx *vmx = to_vmx(vcpu);
  849. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  850. if (has_error_code) {
  851. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  852. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  853. }
  854. if (vmx->rmode.vm86_active) {
  855. vmx->rmode.irq.pending = true;
  856. vmx->rmode.irq.vector = nr;
  857. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  858. if (kvm_exception_is_soft(nr))
  859. vmx->rmode.irq.rip +=
  860. vmx->vcpu.arch.event_exit_inst_len;
  861. intr_info |= INTR_TYPE_SOFT_INTR;
  862. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  863. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  864. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  865. return;
  866. }
  867. if (kvm_exception_is_soft(nr)) {
  868. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  869. vmx->vcpu.arch.event_exit_inst_len);
  870. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  871. } else
  872. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  873. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  874. }
  875. static bool vmx_rdtscp_supported(void)
  876. {
  877. return cpu_has_vmx_rdtscp();
  878. }
  879. /*
  880. * Swap MSR entry in host/guest MSR entry array.
  881. */
  882. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  883. {
  884. struct shared_msr_entry tmp;
  885. tmp = vmx->guest_msrs[to];
  886. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  887. vmx->guest_msrs[from] = tmp;
  888. }
  889. /*
  890. * Set up the vmcs to automatically save and restore system
  891. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  892. * mode, as fiddling with msrs is very expensive.
  893. */
  894. static void setup_msrs(struct vcpu_vmx *vmx)
  895. {
  896. int save_nmsrs, index;
  897. unsigned long *msr_bitmap;
  898. vmx_load_host_state(vmx);
  899. save_nmsrs = 0;
  900. #ifdef CONFIG_X86_64
  901. if (is_long_mode(&vmx->vcpu)) {
  902. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  903. if (index >= 0)
  904. move_msr_up(vmx, index, save_nmsrs++);
  905. index = __find_msr_index(vmx, MSR_LSTAR);
  906. if (index >= 0)
  907. move_msr_up(vmx, index, save_nmsrs++);
  908. index = __find_msr_index(vmx, MSR_CSTAR);
  909. if (index >= 0)
  910. move_msr_up(vmx, index, save_nmsrs++);
  911. index = __find_msr_index(vmx, MSR_TSC_AUX);
  912. if (index >= 0 && vmx->rdtscp_enabled)
  913. move_msr_up(vmx, index, save_nmsrs++);
  914. /*
  915. * MSR_K6_STAR is only needed on long mode guests, and only
  916. * if efer.sce is enabled.
  917. */
  918. index = __find_msr_index(vmx, MSR_K6_STAR);
  919. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  920. move_msr_up(vmx, index, save_nmsrs++);
  921. }
  922. #endif
  923. index = __find_msr_index(vmx, MSR_EFER);
  924. if (index >= 0 && update_transition_efer(vmx, index))
  925. move_msr_up(vmx, index, save_nmsrs++);
  926. vmx->save_nmsrs = save_nmsrs;
  927. if (cpu_has_vmx_msr_bitmap()) {
  928. if (is_long_mode(&vmx->vcpu))
  929. msr_bitmap = vmx_msr_bitmap_longmode;
  930. else
  931. msr_bitmap = vmx_msr_bitmap_legacy;
  932. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  933. }
  934. }
  935. /*
  936. * reads and returns guest's timestamp counter "register"
  937. * guest_tsc = host_tsc + tsc_offset -- 21.3
  938. */
  939. static u64 guest_read_tsc(void)
  940. {
  941. u64 host_tsc, tsc_offset;
  942. rdtscll(host_tsc);
  943. tsc_offset = vmcs_read64(TSC_OFFSET);
  944. return host_tsc + tsc_offset;
  945. }
  946. /*
  947. * writes 'guest_tsc' into guest's timestamp counter "register"
  948. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  949. */
  950. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  951. {
  952. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  953. }
  954. /*
  955. * Reads an msr value (of 'msr_index') into 'pdata'.
  956. * Returns 0 on success, non-0 otherwise.
  957. * Assumes vcpu_load() was already called.
  958. */
  959. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  960. {
  961. u64 data;
  962. struct shared_msr_entry *msr;
  963. if (!pdata) {
  964. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  965. return -EINVAL;
  966. }
  967. switch (msr_index) {
  968. #ifdef CONFIG_X86_64
  969. case MSR_FS_BASE:
  970. data = vmcs_readl(GUEST_FS_BASE);
  971. break;
  972. case MSR_GS_BASE:
  973. data = vmcs_readl(GUEST_GS_BASE);
  974. break;
  975. case MSR_KERNEL_GS_BASE:
  976. vmx_load_host_state(to_vmx(vcpu));
  977. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  978. break;
  979. #endif
  980. case MSR_EFER:
  981. return kvm_get_msr_common(vcpu, msr_index, pdata);
  982. case MSR_IA32_TSC:
  983. data = guest_read_tsc();
  984. break;
  985. case MSR_IA32_SYSENTER_CS:
  986. data = vmcs_read32(GUEST_SYSENTER_CS);
  987. break;
  988. case MSR_IA32_SYSENTER_EIP:
  989. data = vmcs_readl(GUEST_SYSENTER_EIP);
  990. break;
  991. case MSR_IA32_SYSENTER_ESP:
  992. data = vmcs_readl(GUEST_SYSENTER_ESP);
  993. break;
  994. case MSR_TSC_AUX:
  995. if (!to_vmx(vcpu)->rdtscp_enabled)
  996. return 1;
  997. /* Otherwise falls through */
  998. default:
  999. vmx_load_host_state(to_vmx(vcpu));
  1000. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1001. if (msr) {
  1002. vmx_load_host_state(to_vmx(vcpu));
  1003. data = msr->data;
  1004. break;
  1005. }
  1006. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1007. }
  1008. *pdata = data;
  1009. return 0;
  1010. }
  1011. /*
  1012. * Writes msr value into into the appropriate "register".
  1013. * Returns 0 on success, non-0 otherwise.
  1014. * Assumes vcpu_load() was already called.
  1015. */
  1016. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1017. {
  1018. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1019. struct shared_msr_entry *msr;
  1020. u64 host_tsc;
  1021. int ret = 0;
  1022. switch (msr_index) {
  1023. case MSR_EFER:
  1024. vmx_load_host_state(vmx);
  1025. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1026. break;
  1027. #ifdef CONFIG_X86_64
  1028. case MSR_FS_BASE:
  1029. vmcs_writel(GUEST_FS_BASE, data);
  1030. break;
  1031. case MSR_GS_BASE:
  1032. vmcs_writel(GUEST_GS_BASE, data);
  1033. break;
  1034. case MSR_KERNEL_GS_BASE:
  1035. vmx_load_host_state(vmx);
  1036. vmx->msr_guest_kernel_gs_base = data;
  1037. break;
  1038. #endif
  1039. case MSR_IA32_SYSENTER_CS:
  1040. vmcs_write32(GUEST_SYSENTER_CS, data);
  1041. break;
  1042. case MSR_IA32_SYSENTER_EIP:
  1043. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1044. break;
  1045. case MSR_IA32_SYSENTER_ESP:
  1046. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1047. break;
  1048. case MSR_IA32_TSC:
  1049. rdtscll(host_tsc);
  1050. guest_write_tsc(data, host_tsc);
  1051. break;
  1052. case MSR_IA32_CR_PAT:
  1053. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1054. vmcs_write64(GUEST_IA32_PAT, data);
  1055. vcpu->arch.pat = data;
  1056. break;
  1057. }
  1058. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1059. break;
  1060. case MSR_TSC_AUX:
  1061. if (!vmx->rdtscp_enabled)
  1062. return 1;
  1063. /* Check reserved bit, higher 32 bits should be zero */
  1064. if ((data >> 32) != 0)
  1065. return 1;
  1066. /* Otherwise falls through */
  1067. default:
  1068. msr = find_msr_entry(vmx, msr_index);
  1069. if (msr) {
  1070. vmx_load_host_state(vmx);
  1071. msr->data = data;
  1072. break;
  1073. }
  1074. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1075. }
  1076. return ret;
  1077. }
  1078. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1079. {
  1080. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1081. switch (reg) {
  1082. case VCPU_REGS_RSP:
  1083. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1084. break;
  1085. case VCPU_REGS_RIP:
  1086. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1087. break;
  1088. case VCPU_EXREG_PDPTR:
  1089. if (enable_ept)
  1090. ept_save_pdptrs(vcpu);
  1091. break;
  1092. default:
  1093. break;
  1094. }
  1095. }
  1096. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1097. {
  1098. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1099. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1100. else
  1101. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1102. update_exception_bitmap(vcpu);
  1103. }
  1104. static __init int cpu_has_kvm_support(void)
  1105. {
  1106. return cpu_has_vmx();
  1107. }
  1108. static __init int vmx_disabled_by_bios(void)
  1109. {
  1110. u64 msr;
  1111. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1112. if (msr & FEATURE_CONTROL_LOCKED) {
  1113. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1114. && tboot_enabled())
  1115. return 1;
  1116. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1117. && !tboot_enabled())
  1118. return 1;
  1119. }
  1120. return 0;
  1121. /* locked but not enabled */
  1122. }
  1123. static void kvm_cpu_vmxon(u64 addr)
  1124. {
  1125. asm volatile (ASM_VMX_VMXON_RAX
  1126. : : "a"(&addr), "m"(addr)
  1127. : "memory", "cc");
  1128. }
  1129. static int hardware_enable(void *garbage)
  1130. {
  1131. int cpu = raw_smp_processor_id();
  1132. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1133. u64 old, test_bits;
  1134. if (read_cr4() & X86_CR4_VMXE)
  1135. return -EBUSY;
  1136. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1137. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1138. test_bits = FEATURE_CONTROL_LOCKED;
  1139. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1140. if (tboot_enabled())
  1141. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1142. if ((old & test_bits) != test_bits) {
  1143. /* enable and lock */
  1144. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1145. }
  1146. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1147. if (vmm_exclusive) {
  1148. kvm_cpu_vmxon(phys_addr);
  1149. ept_sync_global();
  1150. }
  1151. return 0;
  1152. }
  1153. static void vmclear_local_vcpus(void)
  1154. {
  1155. int cpu = raw_smp_processor_id();
  1156. struct vcpu_vmx *vmx, *n;
  1157. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1158. local_vcpus_link)
  1159. __vcpu_clear(vmx);
  1160. }
  1161. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1162. * tricks.
  1163. */
  1164. static void kvm_cpu_vmxoff(void)
  1165. {
  1166. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1167. }
  1168. static void hardware_disable(void *garbage)
  1169. {
  1170. if (vmm_exclusive) {
  1171. vmclear_local_vcpus();
  1172. kvm_cpu_vmxoff();
  1173. }
  1174. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1175. }
  1176. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1177. u32 msr, u32 *result)
  1178. {
  1179. u32 vmx_msr_low, vmx_msr_high;
  1180. u32 ctl = ctl_min | ctl_opt;
  1181. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1182. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1183. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1184. /* Ensure minimum (required) set of control bits are supported. */
  1185. if (ctl_min & ~ctl)
  1186. return -EIO;
  1187. *result = ctl;
  1188. return 0;
  1189. }
  1190. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1191. {
  1192. u32 vmx_msr_low, vmx_msr_high;
  1193. u32 min, opt, min2, opt2;
  1194. u32 _pin_based_exec_control = 0;
  1195. u32 _cpu_based_exec_control = 0;
  1196. u32 _cpu_based_2nd_exec_control = 0;
  1197. u32 _vmexit_control = 0;
  1198. u32 _vmentry_control = 0;
  1199. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1200. opt = PIN_BASED_VIRTUAL_NMIS;
  1201. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1202. &_pin_based_exec_control) < 0)
  1203. return -EIO;
  1204. min = CPU_BASED_HLT_EXITING |
  1205. #ifdef CONFIG_X86_64
  1206. CPU_BASED_CR8_LOAD_EXITING |
  1207. CPU_BASED_CR8_STORE_EXITING |
  1208. #endif
  1209. CPU_BASED_CR3_LOAD_EXITING |
  1210. CPU_BASED_CR3_STORE_EXITING |
  1211. CPU_BASED_USE_IO_BITMAPS |
  1212. CPU_BASED_MOV_DR_EXITING |
  1213. CPU_BASED_USE_TSC_OFFSETING |
  1214. CPU_BASED_MWAIT_EXITING |
  1215. CPU_BASED_MONITOR_EXITING |
  1216. CPU_BASED_INVLPG_EXITING;
  1217. opt = CPU_BASED_TPR_SHADOW |
  1218. CPU_BASED_USE_MSR_BITMAPS |
  1219. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1220. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1221. &_cpu_based_exec_control) < 0)
  1222. return -EIO;
  1223. #ifdef CONFIG_X86_64
  1224. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1225. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1226. ~CPU_BASED_CR8_STORE_EXITING;
  1227. #endif
  1228. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1229. min2 = 0;
  1230. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1231. SECONDARY_EXEC_WBINVD_EXITING |
  1232. SECONDARY_EXEC_ENABLE_VPID |
  1233. SECONDARY_EXEC_ENABLE_EPT |
  1234. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1235. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1236. SECONDARY_EXEC_RDTSCP;
  1237. if (adjust_vmx_controls(min2, opt2,
  1238. MSR_IA32_VMX_PROCBASED_CTLS2,
  1239. &_cpu_based_2nd_exec_control) < 0)
  1240. return -EIO;
  1241. }
  1242. #ifndef CONFIG_X86_64
  1243. if (!(_cpu_based_2nd_exec_control &
  1244. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1245. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1246. #endif
  1247. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1248. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1249. enabled */
  1250. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1251. CPU_BASED_CR3_STORE_EXITING |
  1252. CPU_BASED_INVLPG_EXITING);
  1253. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1254. vmx_capability.ept, vmx_capability.vpid);
  1255. }
  1256. min = 0;
  1257. #ifdef CONFIG_X86_64
  1258. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1259. #endif
  1260. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1261. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1262. &_vmexit_control) < 0)
  1263. return -EIO;
  1264. min = 0;
  1265. opt = VM_ENTRY_LOAD_IA32_PAT;
  1266. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1267. &_vmentry_control) < 0)
  1268. return -EIO;
  1269. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1270. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1271. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1272. return -EIO;
  1273. #ifdef CONFIG_X86_64
  1274. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1275. if (vmx_msr_high & (1u<<16))
  1276. return -EIO;
  1277. #endif
  1278. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1279. if (((vmx_msr_high >> 18) & 15) != 6)
  1280. return -EIO;
  1281. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1282. vmcs_conf->order = get_order(vmcs_config.size);
  1283. vmcs_conf->revision_id = vmx_msr_low;
  1284. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1285. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1286. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1287. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1288. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1289. return 0;
  1290. }
  1291. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1292. {
  1293. int node = cpu_to_node(cpu);
  1294. struct page *pages;
  1295. struct vmcs *vmcs;
  1296. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1297. if (!pages)
  1298. return NULL;
  1299. vmcs = page_address(pages);
  1300. memset(vmcs, 0, vmcs_config.size);
  1301. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1302. return vmcs;
  1303. }
  1304. static struct vmcs *alloc_vmcs(void)
  1305. {
  1306. return alloc_vmcs_cpu(raw_smp_processor_id());
  1307. }
  1308. static void free_vmcs(struct vmcs *vmcs)
  1309. {
  1310. free_pages((unsigned long)vmcs, vmcs_config.order);
  1311. }
  1312. static void free_kvm_area(void)
  1313. {
  1314. int cpu;
  1315. for_each_possible_cpu(cpu) {
  1316. free_vmcs(per_cpu(vmxarea, cpu));
  1317. per_cpu(vmxarea, cpu) = NULL;
  1318. }
  1319. }
  1320. static __init int alloc_kvm_area(void)
  1321. {
  1322. int cpu;
  1323. for_each_possible_cpu(cpu) {
  1324. struct vmcs *vmcs;
  1325. vmcs = alloc_vmcs_cpu(cpu);
  1326. if (!vmcs) {
  1327. free_kvm_area();
  1328. return -ENOMEM;
  1329. }
  1330. per_cpu(vmxarea, cpu) = vmcs;
  1331. }
  1332. return 0;
  1333. }
  1334. static __init int hardware_setup(void)
  1335. {
  1336. if (setup_vmcs_config(&vmcs_config) < 0)
  1337. return -EIO;
  1338. if (boot_cpu_has(X86_FEATURE_NX))
  1339. kvm_enable_efer_bits(EFER_NX);
  1340. if (!cpu_has_vmx_vpid())
  1341. enable_vpid = 0;
  1342. if (!cpu_has_vmx_ept()) {
  1343. enable_ept = 0;
  1344. enable_unrestricted_guest = 0;
  1345. }
  1346. if (!cpu_has_vmx_unrestricted_guest())
  1347. enable_unrestricted_guest = 0;
  1348. if (!cpu_has_vmx_flexpriority())
  1349. flexpriority_enabled = 0;
  1350. if (!cpu_has_vmx_tpr_shadow())
  1351. kvm_x86_ops->update_cr8_intercept = NULL;
  1352. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1353. kvm_disable_largepages();
  1354. if (!cpu_has_vmx_ple())
  1355. ple_gap = 0;
  1356. return alloc_kvm_area();
  1357. }
  1358. static __exit void hardware_unsetup(void)
  1359. {
  1360. free_kvm_area();
  1361. }
  1362. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1363. {
  1364. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1365. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1366. vmcs_write16(sf->selector, save->selector);
  1367. vmcs_writel(sf->base, save->base);
  1368. vmcs_write32(sf->limit, save->limit);
  1369. vmcs_write32(sf->ar_bytes, save->ar);
  1370. } else {
  1371. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1372. << AR_DPL_SHIFT;
  1373. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1374. }
  1375. }
  1376. static void enter_pmode(struct kvm_vcpu *vcpu)
  1377. {
  1378. unsigned long flags;
  1379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1380. vmx->emulation_required = 1;
  1381. vmx->rmode.vm86_active = 0;
  1382. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1383. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1384. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1385. flags = vmcs_readl(GUEST_RFLAGS);
  1386. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1387. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1388. vmcs_writel(GUEST_RFLAGS, flags);
  1389. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1390. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1391. update_exception_bitmap(vcpu);
  1392. if (emulate_invalid_guest_state)
  1393. return;
  1394. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1395. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1396. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1397. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1398. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1399. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1400. vmcs_write16(GUEST_CS_SELECTOR,
  1401. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1402. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1403. }
  1404. static gva_t rmode_tss_base(struct kvm *kvm)
  1405. {
  1406. if (!kvm->arch.tss_addr) {
  1407. struct kvm_memslots *slots;
  1408. gfn_t base_gfn;
  1409. slots = kvm_memslots(kvm);
  1410. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1411. kvm->memslots->memslots[0].npages - 3;
  1412. return base_gfn << PAGE_SHIFT;
  1413. }
  1414. return kvm->arch.tss_addr;
  1415. }
  1416. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1417. {
  1418. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1419. save->selector = vmcs_read16(sf->selector);
  1420. save->base = vmcs_readl(sf->base);
  1421. save->limit = vmcs_read32(sf->limit);
  1422. save->ar = vmcs_read32(sf->ar_bytes);
  1423. vmcs_write16(sf->selector, save->base >> 4);
  1424. vmcs_write32(sf->base, save->base & 0xfffff);
  1425. vmcs_write32(sf->limit, 0xffff);
  1426. vmcs_write32(sf->ar_bytes, 0xf3);
  1427. }
  1428. static void enter_rmode(struct kvm_vcpu *vcpu)
  1429. {
  1430. unsigned long flags;
  1431. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1432. if (enable_unrestricted_guest)
  1433. return;
  1434. vmx->emulation_required = 1;
  1435. vmx->rmode.vm86_active = 1;
  1436. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1437. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1438. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1439. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1440. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1441. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1442. flags = vmcs_readl(GUEST_RFLAGS);
  1443. vmx->rmode.save_rflags = flags;
  1444. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1445. vmcs_writel(GUEST_RFLAGS, flags);
  1446. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1447. update_exception_bitmap(vcpu);
  1448. if (emulate_invalid_guest_state)
  1449. goto continue_rmode;
  1450. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1451. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1452. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1453. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1454. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1455. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1456. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1457. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1458. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1459. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1460. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1461. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1462. continue_rmode:
  1463. kvm_mmu_reset_context(vcpu);
  1464. init_rmode(vcpu->kvm);
  1465. }
  1466. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1467. {
  1468. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1469. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1470. if (!msr)
  1471. return;
  1472. /*
  1473. * Force kernel_gs_base reloading before EFER changes, as control
  1474. * of this msr depends on is_long_mode().
  1475. */
  1476. vmx_load_host_state(to_vmx(vcpu));
  1477. vcpu->arch.efer = efer;
  1478. if (efer & EFER_LMA) {
  1479. vmcs_write32(VM_ENTRY_CONTROLS,
  1480. vmcs_read32(VM_ENTRY_CONTROLS) |
  1481. VM_ENTRY_IA32E_MODE);
  1482. msr->data = efer;
  1483. } else {
  1484. vmcs_write32(VM_ENTRY_CONTROLS,
  1485. vmcs_read32(VM_ENTRY_CONTROLS) &
  1486. ~VM_ENTRY_IA32E_MODE);
  1487. msr->data = efer & ~EFER_LME;
  1488. }
  1489. setup_msrs(vmx);
  1490. }
  1491. #ifdef CONFIG_X86_64
  1492. static void enter_lmode(struct kvm_vcpu *vcpu)
  1493. {
  1494. u32 guest_tr_ar;
  1495. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1496. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1497. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1498. __func__);
  1499. vmcs_write32(GUEST_TR_AR_BYTES,
  1500. (guest_tr_ar & ~AR_TYPE_MASK)
  1501. | AR_TYPE_BUSY_64_TSS);
  1502. }
  1503. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1504. }
  1505. static void exit_lmode(struct kvm_vcpu *vcpu)
  1506. {
  1507. vmcs_write32(VM_ENTRY_CONTROLS,
  1508. vmcs_read32(VM_ENTRY_CONTROLS)
  1509. & ~VM_ENTRY_IA32E_MODE);
  1510. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1511. }
  1512. #endif
  1513. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1514. {
  1515. vpid_sync_vcpu_all(to_vmx(vcpu));
  1516. if (enable_ept)
  1517. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1518. }
  1519. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1520. {
  1521. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1522. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1523. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1524. }
  1525. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1526. {
  1527. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1528. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1529. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1530. }
  1531. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1532. {
  1533. if (!test_bit(VCPU_EXREG_PDPTR,
  1534. (unsigned long *)&vcpu->arch.regs_dirty))
  1535. return;
  1536. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1537. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1538. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1539. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1540. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1541. }
  1542. }
  1543. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1544. {
  1545. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1546. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1547. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1548. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1549. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1550. }
  1551. __set_bit(VCPU_EXREG_PDPTR,
  1552. (unsigned long *)&vcpu->arch.regs_avail);
  1553. __set_bit(VCPU_EXREG_PDPTR,
  1554. (unsigned long *)&vcpu->arch.regs_dirty);
  1555. }
  1556. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1557. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1558. unsigned long cr0,
  1559. struct kvm_vcpu *vcpu)
  1560. {
  1561. if (!(cr0 & X86_CR0_PG)) {
  1562. /* From paging/starting to nonpaging */
  1563. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1564. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1565. (CPU_BASED_CR3_LOAD_EXITING |
  1566. CPU_BASED_CR3_STORE_EXITING));
  1567. vcpu->arch.cr0 = cr0;
  1568. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1569. } else if (!is_paging(vcpu)) {
  1570. /* From nonpaging to paging */
  1571. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1572. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1573. ~(CPU_BASED_CR3_LOAD_EXITING |
  1574. CPU_BASED_CR3_STORE_EXITING));
  1575. vcpu->arch.cr0 = cr0;
  1576. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1577. }
  1578. if (!(cr0 & X86_CR0_WP))
  1579. *hw_cr0 &= ~X86_CR0_WP;
  1580. }
  1581. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1582. {
  1583. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1584. unsigned long hw_cr0;
  1585. if (enable_unrestricted_guest)
  1586. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1587. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1588. else
  1589. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1590. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1591. enter_pmode(vcpu);
  1592. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1593. enter_rmode(vcpu);
  1594. #ifdef CONFIG_X86_64
  1595. if (vcpu->arch.efer & EFER_LME) {
  1596. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1597. enter_lmode(vcpu);
  1598. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1599. exit_lmode(vcpu);
  1600. }
  1601. #endif
  1602. if (enable_ept)
  1603. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1604. if (!vcpu->fpu_active)
  1605. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1606. vmcs_writel(CR0_READ_SHADOW, cr0);
  1607. vmcs_writel(GUEST_CR0, hw_cr0);
  1608. vcpu->arch.cr0 = cr0;
  1609. }
  1610. static u64 construct_eptp(unsigned long root_hpa)
  1611. {
  1612. u64 eptp;
  1613. /* TODO write the value reading from MSR */
  1614. eptp = VMX_EPT_DEFAULT_MT |
  1615. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1616. eptp |= (root_hpa & PAGE_MASK);
  1617. return eptp;
  1618. }
  1619. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1620. {
  1621. unsigned long guest_cr3;
  1622. u64 eptp;
  1623. guest_cr3 = cr3;
  1624. if (enable_ept) {
  1625. eptp = construct_eptp(cr3);
  1626. vmcs_write64(EPT_POINTER, eptp);
  1627. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1628. vcpu->kvm->arch.ept_identity_map_addr;
  1629. ept_load_pdptrs(vcpu);
  1630. }
  1631. vmx_flush_tlb(vcpu);
  1632. vmcs_writel(GUEST_CR3, guest_cr3);
  1633. }
  1634. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1635. {
  1636. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1637. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1638. vcpu->arch.cr4 = cr4;
  1639. if (enable_ept) {
  1640. if (!is_paging(vcpu)) {
  1641. hw_cr4 &= ~X86_CR4_PAE;
  1642. hw_cr4 |= X86_CR4_PSE;
  1643. } else if (!(cr4 & X86_CR4_PAE)) {
  1644. hw_cr4 &= ~X86_CR4_PAE;
  1645. }
  1646. }
  1647. vmcs_writel(CR4_READ_SHADOW, cr4);
  1648. vmcs_writel(GUEST_CR4, hw_cr4);
  1649. }
  1650. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1651. {
  1652. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1653. return vmcs_readl(sf->base);
  1654. }
  1655. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1656. struct kvm_segment *var, int seg)
  1657. {
  1658. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1659. u32 ar;
  1660. var->base = vmcs_readl(sf->base);
  1661. var->limit = vmcs_read32(sf->limit);
  1662. var->selector = vmcs_read16(sf->selector);
  1663. ar = vmcs_read32(sf->ar_bytes);
  1664. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1665. ar = 0;
  1666. var->type = ar & 15;
  1667. var->s = (ar >> 4) & 1;
  1668. var->dpl = (ar >> 5) & 3;
  1669. var->present = (ar >> 7) & 1;
  1670. var->avl = (ar >> 12) & 1;
  1671. var->l = (ar >> 13) & 1;
  1672. var->db = (ar >> 14) & 1;
  1673. var->g = (ar >> 15) & 1;
  1674. var->unusable = (ar >> 16) & 1;
  1675. }
  1676. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1677. {
  1678. if (!is_protmode(vcpu))
  1679. return 0;
  1680. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1681. return 3;
  1682. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1683. }
  1684. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1685. {
  1686. u32 ar;
  1687. if (var->unusable)
  1688. ar = 1 << 16;
  1689. else {
  1690. ar = var->type & 15;
  1691. ar |= (var->s & 1) << 4;
  1692. ar |= (var->dpl & 3) << 5;
  1693. ar |= (var->present & 1) << 7;
  1694. ar |= (var->avl & 1) << 12;
  1695. ar |= (var->l & 1) << 13;
  1696. ar |= (var->db & 1) << 14;
  1697. ar |= (var->g & 1) << 15;
  1698. }
  1699. if (ar == 0) /* a 0 value means unusable */
  1700. ar = AR_UNUSABLE_MASK;
  1701. return ar;
  1702. }
  1703. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1704. struct kvm_segment *var, int seg)
  1705. {
  1706. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1707. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1708. u32 ar;
  1709. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1710. vmx->rmode.tr.selector = var->selector;
  1711. vmx->rmode.tr.base = var->base;
  1712. vmx->rmode.tr.limit = var->limit;
  1713. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1714. return;
  1715. }
  1716. vmcs_writel(sf->base, var->base);
  1717. vmcs_write32(sf->limit, var->limit);
  1718. vmcs_write16(sf->selector, var->selector);
  1719. if (vmx->rmode.vm86_active && var->s) {
  1720. /*
  1721. * Hack real-mode segments into vm86 compatibility.
  1722. */
  1723. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1724. vmcs_writel(sf->base, 0xf0000);
  1725. ar = 0xf3;
  1726. } else
  1727. ar = vmx_segment_access_rights(var);
  1728. /*
  1729. * Fix the "Accessed" bit in AR field of segment registers for older
  1730. * qemu binaries.
  1731. * IA32 arch specifies that at the time of processor reset the
  1732. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1733. * is setting it to 0 in the usedland code. This causes invalid guest
  1734. * state vmexit when "unrestricted guest" mode is turned on.
  1735. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1736. * tree. Newer qemu binaries with that qemu fix would not need this
  1737. * kvm hack.
  1738. */
  1739. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1740. ar |= 0x1; /* Accessed */
  1741. vmcs_write32(sf->ar_bytes, ar);
  1742. }
  1743. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1744. {
  1745. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1746. *db = (ar >> 14) & 1;
  1747. *l = (ar >> 13) & 1;
  1748. }
  1749. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1750. {
  1751. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1752. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1753. }
  1754. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1755. {
  1756. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1757. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1758. }
  1759. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1760. {
  1761. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1762. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1763. }
  1764. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1765. {
  1766. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1767. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1768. }
  1769. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1770. {
  1771. struct kvm_segment var;
  1772. u32 ar;
  1773. vmx_get_segment(vcpu, &var, seg);
  1774. ar = vmx_segment_access_rights(&var);
  1775. if (var.base != (var.selector << 4))
  1776. return false;
  1777. if (var.limit != 0xffff)
  1778. return false;
  1779. if (ar != 0xf3)
  1780. return false;
  1781. return true;
  1782. }
  1783. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1784. {
  1785. struct kvm_segment cs;
  1786. unsigned int cs_rpl;
  1787. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1788. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1789. if (cs.unusable)
  1790. return false;
  1791. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1792. return false;
  1793. if (!cs.s)
  1794. return false;
  1795. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1796. if (cs.dpl > cs_rpl)
  1797. return false;
  1798. } else {
  1799. if (cs.dpl != cs_rpl)
  1800. return false;
  1801. }
  1802. if (!cs.present)
  1803. return false;
  1804. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1805. return true;
  1806. }
  1807. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1808. {
  1809. struct kvm_segment ss;
  1810. unsigned int ss_rpl;
  1811. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1812. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1813. if (ss.unusable)
  1814. return true;
  1815. if (ss.type != 3 && ss.type != 7)
  1816. return false;
  1817. if (!ss.s)
  1818. return false;
  1819. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1820. return false;
  1821. if (!ss.present)
  1822. return false;
  1823. return true;
  1824. }
  1825. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1826. {
  1827. struct kvm_segment var;
  1828. unsigned int rpl;
  1829. vmx_get_segment(vcpu, &var, seg);
  1830. rpl = var.selector & SELECTOR_RPL_MASK;
  1831. if (var.unusable)
  1832. return true;
  1833. if (!var.s)
  1834. return false;
  1835. if (!var.present)
  1836. return false;
  1837. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1838. if (var.dpl < rpl) /* DPL < RPL */
  1839. return false;
  1840. }
  1841. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1842. * rights flags
  1843. */
  1844. return true;
  1845. }
  1846. static bool tr_valid(struct kvm_vcpu *vcpu)
  1847. {
  1848. struct kvm_segment tr;
  1849. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1850. if (tr.unusable)
  1851. return false;
  1852. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1853. return false;
  1854. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1855. return false;
  1856. if (!tr.present)
  1857. return false;
  1858. return true;
  1859. }
  1860. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1861. {
  1862. struct kvm_segment ldtr;
  1863. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1864. if (ldtr.unusable)
  1865. return true;
  1866. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1867. return false;
  1868. if (ldtr.type != 2)
  1869. return false;
  1870. if (!ldtr.present)
  1871. return false;
  1872. return true;
  1873. }
  1874. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1875. {
  1876. struct kvm_segment cs, ss;
  1877. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1878. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1879. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1880. (ss.selector & SELECTOR_RPL_MASK));
  1881. }
  1882. /*
  1883. * Check if guest state is valid. Returns true if valid, false if
  1884. * not.
  1885. * We assume that registers are always usable
  1886. */
  1887. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1888. {
  1889. /* real mode guest state checks */
  1890. if (!is_protmode(vcpu)) {
  1891. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1892. return false;
  1893. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1894. return false;
  1895. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1896. return false;
  1897. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1898. return false;
  1899. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1900. return false;
  1901. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1902. return false;
  1903. } else {
  1904. /* protected mode guest state checks */
  1905. if (!cs_ss_rpl_check(vcpu))
  1906. return false;
  1907. if (!code_segment_valid(vcpu))
  1908. return false;
  1909. if (!stack_segment_valid(vcpu))
  1910. return false;
  1911. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1912. return false;
  1913. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1914. return false;
  1915. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1916. return false;
  1917. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1918. return false;
  1919. if (!tr_valid(vcpu))
  1920. return false;
  1921. if (!ldtr_valid(vcpu))
  1922. return false;
  1923. }
  1924. /* TODO:
  1925. * - Add checks on RIP
  1926. * - Add checks on RFLAGS
  1927. */
  1928. return true;
  1929. }
  1930. static int init_rmode_tss(struct kvm *kvm)
  1931. {
  1932. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1933. u16 data = 0;
  1934. int ret = 0;
  1935. int r;
  1936. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1937. if (r < 0)
  1938. goto out;
  1939. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1940. r = kvm_write_guest_page(kvm, fn++, &data,
  1941. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1942. if (r < 0)
  1943. goto out;
  1944. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1945. if (r < 0)
  1946. goto out;
  1947. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1948. if (r < 0)
  1949. goto out;
  1950. data = ~0;
  1951. r = kvm_write_guest_page(kvm, fn, &data,
  1952. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1953. sizeof(u8));
  1954. if (r < 0)
  1955. goto out;
  1956. ret = 1;
  1957. out:
  1958. return ret;
  1959. }
  1960. static int init_rmode_identity_map(struct kvm *kvm)
  1961. {
  1962. int i, r, ret;
  1963. pfn_t identity_map_pfn;
  1964. u32 tmp;
  1965. if (!enable_ept)
  1966. return 1;
  1967. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1968. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1969. "haven't been allocated!\n");
  1970. return 0;
  1971. }
  1972. if (likely(kvm->arch.ept_identity_pagetable_done))
  1973. return 1;
  1974. ret = 0;
  1975. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1976. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1977. if (r < 0)
  1978. goto out;
  1979. /* Set up identity-mapping pagetable for EPT in real mode */
  1980. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1981. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1982. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1983. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1984. &tmp, i * sizeof(tmp), sizeof(tmp));
  1985. if (r < 0)
  1986. goto out;
  1987. }
  1988. kvm->arch.ept_identity_pagetable_done = true;
  1989. ret = 1;
  1990. out:
  1991. return ret;
  1992. }
  1993. static void seg_setup(int seg)
  1994. {
  1995. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1996. unsigned int ar;
  1997. vmcs_write16(sf->selector, 0);
  1998. vmcs_writel(sf->base, 0);
  1999. vmcs_write32(sf->limit, 0xffff);
  2000. if (enable_unrestricted_guest) {
  2001. ar = 0x93;
  2002. if (seg == VCPU_SREG_CS)
  2003. ar |= 0x08; /* code segment */
  2004. } else
  2005. ar = 0xf3;
  2006. vmcs_write32(sf->ar_bytes, ar);
  2007. }
  2008. static int alloc_apic_access_page(struct kvm *kvm)
  2009. {
  2010. struct kvm_userspace_memory_region kvm_userspace_mem;
  2011. int r = 0;
  2012. mutex_lock(&kvm->slots_lock);
  2013. if (kvm->arch.apic_access_page)
  2014. goto out;
  2015. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2016. kvm_userspace_mem.flags = 0;
  2017. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2018. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2019. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2020. if (r)
  2021. goto out;
  2022. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2023. out:
  2024. mutex_unlock(&kvm->slots_lock);
  2025. return r;
  2026. }
  2027. static int alloc_identity_pagetable(struct kvm *kvm)
  2028. {
  2029. struct kvm_userspace_memory_region kvm_userspace_mem;
  2030. int r = 0;
  2031. mutex_lock(&kvm->slots_lock);
  2032. if (kvm->arch.ept_identity_pagetable)
  2033. goto out;
  2034. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2035. kvm_userspace_mem.flags = 0;
  2036. kvm_userspace_mem.guest_phys_addr =
  2037. kvm->arch.ept_identity_map_addr;
  2038. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2039. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2040. if (r)
  2041. goto out;
  2042. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2043. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2044. out:
  2045. mutex_unlock(&kvm->slots_lock);
  2046. return r;
  2047. }
  2048. static void allocate_vpid(struct vcpu_vmx *vmx)
  2049. {
  2050. int vpid;
  2051. vmx->vpid = 0;
  2052. if (!enable_vpid)
  2053. return;
  2054. spin_lock(&vmx_vpid_lock);
  2055. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2056. if (vpid < VMX_NR_VPIDS) {
  2057. vmx->vpid = vpid;
  2058. __set_bit(vpid, vmx_vpid_bitmap);
  2059. }
  2060. spin_unlock(&vmx_vpid_lock);
  2061. }
  2062. static void free_vpid(struct vcpu_vmx *vmx)
  2063. {
  2064. if (!enable_vpid)
  2065. return;
  2066. spin_lock(&vmx_vpid_lock);
  2067. if (vmx->vpid != 0)
  2068. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2069. spin_unlock(&vmx_vpid_lock);
  2070. }
  2071. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2072. {
  2073. int f = sizeof(unsigned long);
  2074. if (!cpu_has_vmx_msr_bitmap())
  2075. return;
  2076. /*
  2077. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2078. * have the write-low and read-high bitmap offsets the wrong way round.
  2079. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2080. */
  2081. if (msr <= 0x1fff) {
  2082. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2083. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2084. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2085. msr &= 0x1fff;
  2086. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2087. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2088. }
  2089. }
  2090. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2091. {
  2092. if (!longmode_only)
  2093. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2094. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2095. }
  2096. /*
  2097. * Sets up the vmcs for emulated real mode.
  2098. */
  2099. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2100. {
  2101. u32 host_sysenter_cs, msr_low, msr_high;
  2102. u32 junk;
  2103. u64 host_pat, tsc_this, tsc_base;
  2104. unsigned long a;
  2105. struct desc_ptr dt;
  2106. int i;
  2107. unsigned long kvm_vmx_return;
  2108. u32 exec_control;
  2109. /* I/O */
  2110. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2111. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2112. if (cpu_has_vmx_msr_bitmap())
  2113. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2114. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2115. /* Control */
  2116. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2117. vmcs_config.pin_based_exec_ctrl);
  2118. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2119. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2120. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2121. #ifdef CONFIG_X86_64
  2122. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2123. CPU_BASED_CR8_LOAD_EXITING;
  2124. #endif
  2125. }
  2126. if (!enable_ept)
  2127. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2128. CPU_BASED_CR3_LOAD_EXITING |
  2129. CPU_BASED_INVLPG_EXITING;
  2130. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2131. if (cpu_has_secondary_exec_ctrls()) {
  2132. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2133. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2134. exec_control &=
  2135. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2136. if (vmx->vpid == 0)
  2137. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2138. if (!enable_ept) {
  2139. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2140. enable_unrestricted_guest = 0;
  2141. }
  2142. if (!enable_unrestricted_guest)
  2143. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2144. if (!ple_gap)
  2145. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2146. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2147. }
  2148. if (ple_gap) {
  2149. vmcs_write32(PLE_GAP, ple_gap);
  2150. vmcs_write32(PLE_WINDOW, ple_window);
  2151. }
  2152. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2153. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2154. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2155. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2156. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2157. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2158. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2159. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2160. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2161. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2162. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2163. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2164. #ifdef CONFIG_X86_64
  2165. rdmsrl(MSR_FS_BASE, a);
  2166. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2167. rdmsrl(MSR_GS_BASE, a);
  2168. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2169. #else
  2170. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2171. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2172. #endif
  2173. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2174. native_store_idt(&dt);
  2175. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2176. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2177. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2178. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2179. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2180. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2181. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2182. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2183. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2184. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2185. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2186. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2187. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2188. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2189. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2190. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2191. host_pat = msr_low | ((u64) msr_high << 32);
  2192. vmcs_write64(HOST_IA32_PAT, host_pat);
  2193. }
  2194. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2195. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2196. host_pat = msr_low | ((u64) msr_high << 32);
  2197. /* Write the default value follow host pat */
  2198. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2199. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2200. vmx->vcpu.arch.pat = host_pat;
  2201. }
  2202. for (i = 0; i < NR_VMX_MSR; ++i) {
  2203. u32 index = vmx_msr_index[i];
  2204. u32 data_low, data_high;
  2205. int j = vmx->nmsrs;
  2206. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2207. continue;
  2208. if (wrmsr_safe(index, data_low, data_high) < 0)
  2209. continue;
  2210. vmx->guest_msrs[j].index = i;
  2211. vmx->guest_msrs[j].data = 0;
  2212. vmx->guest_msrs[j].mask = -1ull;
  2213. ++vmx->nmsrs;
  2214. }
  2215. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2216. /* 22.2.1, 20.8.1 */
  2217. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2218. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2219. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2220. if (enable_ept)
  2221. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2222. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2223. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2224. rdtscll(tsc_this);
  2225. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2226. tsc_base = tsc_this;
  2227. guest_write_tsc(0, tsc_base);
  2228. return 0;
  2229. }
  2230. static int init_rmode(struct kvm *kvm)
  2231. {
  2232. if (!init_rmode_tss(kvm))
  2233. return 0;
  2234. if (!init_rmode_identity_map(kvm))
  2235. return 0;
  2236. return 1;
  2237. }
  2238. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2239. {
  2240. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2241. u64 msr;
  2242. int ret, idx;
  2243. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2244. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2245. if (!init_rmode(vmx->vcpu.kvm)) {
  2246. ret = -ENOMEM;
  2247. goto out;
  2248. }
  2249. vmx->rmode.vm86_active = 0;
  2250. vmx->soft_vnmi_blocked = 0;
  2251. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2252. kvm_set_cr8(&vmx->vcpu, 0);
  2253. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2254. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2255. msr |= MSR_IA32_APICBASE_BSP;
  2256. kvm_set_apic_base(&vmx->vcpu, msr);
  2257. fx_init(&vmx->vcpu);
  2258. seg_setup(VCPU_SREG_CS);
  2259. /*
  2260. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2261. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2262. */
  2263. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2264. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2265. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2266. } else {
  2267. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2268. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2269. }
  2270. seg_setup(VCPU_SREG_DS);
  2271. seg_setup(VCPU_SREG_ES);
  2272. seg_setup(VCPU_SREG_FS);
  2273. seg_setup(VCPU_SREG_GS);
  2274. seg_setup(VCPU_SREG_SS);
  2275. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2276. vmcs_writel(GUEST_TR_BASE, 0);
  2277. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2278. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2279. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2280. vmcs_writel(GUEST_LDTR_BASE, 0);
  2281. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2282. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2283. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2284. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2285. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2286. vmcs_writel(GUEST_RFLAGS, 0x02);
  2287. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2288. kvm_rip_write(vcpu, 0xfff0);
  2289. else
  2290. kvm_rip_write(vcpu, 0);
  2291. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2292. vmcs_writel(GUEST_DR7, 0x400);
  2293. vmcs_writel(GUEST_GDTR_BASE, 0);
  2294. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2295. vmcs_writel(GUEST_IDTR_BASE, 0);
  2296. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2297. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2298. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2299. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2300. /* Special registers */
  2301. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2302. setup_msrs(vmx);
  2303. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2304. if (cpu_has_vmx_tpr_shadow()) {
  2305. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2306. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2307. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2308. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2309. vmcs_write32(TPR_THRESHOLD, 0);
  2310. }
  2311. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2312. vmcs_write64(APIC_ACCESS_ADDR,
  2313. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2314. if (vmx->vpid != 0)
  2315. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2316. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2317. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2318. vmx_set_cr4(&vmx->vcpu, 0);
  2319. vmx_set_efer(&vmx->vcpu, 0);
  2320. vmx_fpu_activate(&vmx->vcpu);
  2321. update_exception_bitmap(&vmx->vcpu);
  2322. vpid_sync_vcpu_all(vmx);
  2323. ret = 0;
  2324. /* HACK: Don't enable emulation on guest boot/reset */
  2325. vmx->emulation_required = 0;
  2326. out:
  2327. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2328. return ret;
  2329. }
  2330. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2331. {
  2332. u32 cpu_based_vm_exec_control;
  2333. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2334. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2335. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2336. }
  2337. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2338. {
  2339. u32 cpu_based_vm_exec_control;
  2340. if (!cpu_has_virtual_nmis()) {
  2341. enable_irq_window(vcpu);
  2342. return;
  2343. }
  2344. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2345. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2346. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2347. }
  2348. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2349. {
  2350. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2351. uint32_t intr;
  2352. int irq = vcpu->arch.interrupt.nr;
  2353. trace_kvm_inj_virq(irq);
  2354. ++vcpu->stat.irq_injections;
  2355. if (vmx->rmode.vm86_active) {
  2356. vmx->rmode.irq.pending = true;
  2357. vmx->rmode.irq.vector = irq;
  2358. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2359. if (vcpu->arch.interrupt.soft)
  2360. vmx->rmode.irq.rip +=
  2361. vmx->vcpu.arch.event_exit_inst_len;
  2362. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2363. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2364. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2365. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2366. return;
  2367. }
  2368. intr = irq | INTR_INFO_VALID_MASK;
  2369. if (vcpu->arch.interrupt.soft) {
  2370. intr |= INTR_TYPE_SOFT_INTR;
  2371. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2372. vmx->vcpu.arch.event_exit_inst_len);
  2373. } else
  2374. intr |= INTR_TYPE_EXT_INTR;
  2375. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2376. }
  2377. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2378. {
  2379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2380. if (!cpu_has_virtual_nmis()) {
  2381. /*
  2382. * Tracking the NMI-blocked state in software is built upon
  2383. * finding the next open IRQ window. This, in turn, depends on
  2384. * well-behaving guests: They have to keep IRQs disabled at
  2385. * least as long as the NMI handler runs. Otherwise we may
  2386. * cause NMI nesting, maybe breaking the guest. But as this is
  2387. * highly unlikely, we can live with the residual risk.
  2388. */
  2389. vmx->soft_vnmi_blocked = 1;
  2390. vmx->vnmi_blocked_time = 0;
  2391. }
  2392. ++vcpu->stat.nmi_injections;
  2393. if (vmx->rmode.vm86_active) {
  2394. vmx->rmode.irq.pending = true;
  2395. vmx->rmode.irq.vector = NMI_VECTOR;
  2396. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2397. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2398. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2399. INTR_INFO_VALID_MASK);
  2400. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2401. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2402. return;
  2403. }
  2404. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2405. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2406. }
  2407. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2408. {
  2409. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2410. return 0;
  2411. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2412. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2413. }
  2414. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2415. {
  2416. if (!cpu_has_virtual_nmis())
  2417. return to_vmx(vcpu)->soft_vnmi_blocked;
  2418. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2419. }
  2420. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2421. {
  2422. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2423. if (!cpu_has_virtual_nmis()) {
  2424. if (vmx->soft_vnmi_blocked != masked) {
  2425. vmx->soft_vnmi_blocked = masked;
  2426. vmx->vnmi_blocked_time = 0;
  2427. }
  2428. } else {
  2429. if (masked)
  2430. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2431. GUEST_INTR_STATE_NMI);
  2432. else
  2433. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2434. GUEST_INTR_STATE_NMI);
  2435. }
  2436. }
  2437. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2438. {
  2439. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2440. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2441. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2442. }
  2443. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2444. {
  2445. int ret;
  2446. struct kvm_userspace_memory_region tss_mem = {
  2447. .slot = TSS_PRIVATE_MEMSLOT,
  2448. .guest_phys_addr = addr,
  2449. .memory_size = PAGE_SIZE * 3,
  2450. .flags = 0,
  2451. };
  2452. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2453. if (ret)
  2454. return ret;
  2455. kvm->arch.tss_addr = addr;
  2456. return 0;
  2457. }
  2458. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2459. int vec, u32 err_code)
  2460. {
  2461. /*
  2462. * Instruction with address size override prefix opcode 0x67
  2463. * Cause the #SS fault with 0 error code in VM86 mode.
  2464. */
  2465. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2466. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2467. return 1;
  2468. /*
  2469. * Forward all other exceptions that are valid in real mode.
  2470. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2471. * the required debugging infrastructure rework.
  2472. */
  2473. switch (vec) {
  2474. case DB_VECTOR:
  2475. if (vcpu->guest_debug &
  2476. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2477. return 0;
  2478. kvm_queue_exception(vcpu, vec);
  2479. return 1;
  2480. case BP_VECTOR:
  2481. /*
  2482. * Update instruction length as we may reinject the exception
  2483. * from user space while in guest debugging mode.
  2484. */
  2485. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2486. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2487. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2488. return 0;
  2489. /* fall through */
  2490. case DE_VECTOR:
  2491. case OF_VECTOR:
  2492. case BR_VECTOR:
  2493. case UD_VECTOR:
  2494. case DF_VECTOR:
  2495. case SS_VECTOR:
  2496. case GP_VECTOR:
  2497. case MF_VECTOR:
  2498. kvm_queue_exception(vcpu, vec);
  2499. return 1;
  2500. }
  2501. return 0;
  2502. }
  2503. /*
  2504. * Trigger machine check on the host. We assume all the MSRs are already set up
  2505. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2506. * We pass a fake environment to the machine check handler because we want
  2507. * the guest to be always treated like user space, no matter what context
  2508. * it used internally.
  2509. */
  2510. static void kvm_machine_check(void)
  2511. {
  2512. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2513. struct pt_regs regs = {
  2514. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2515. .flags = X86_EFLAGS_IF,
  2516. };
  2517. do_machine_check(&regs, 0);
  2518. #endif
  2519. }
  2520. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2521. {
  2522. /* already handled by vcpu_run */
  2523. return 1;
  2524. }
  2525. static int handle_exception(struct kvm_vcpu *vcpu)
  2526. {
  2527. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2528. struct kvm_run *kvm_run = vcpu->run;
  2529. u32 intr_info, ex_no, error_code;
  2530. unsigned long cr2, rip, dr6;
  2531. u32 vect_info;
  2532. enum emulation_result er;
  2533. vect_info = vmx->idt_vectoring_info;
  2534. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2535. if (is_machine_check(intr_info))
  2536. return handle_machine_check(vcpu);
  2537. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2538. !is_page_fault(intr_info)) {
  2539. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2540. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2541. vcpu->run->internal.ndata = 2;
  2542. vcpu->run->internal.data[0] = vect_info;
  2543. vcpu->run->internal.data[1] = intr_info;
  2544. return 0;
  2545. }
  2546. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2547. return 1; /* already handled by vmx_vcpu_run() */
  2548. if (is_no_device(intr_info)) {
  2549. vmx_fpu_activate(vcpu);
  2550. return 1;
  2551. }
  2552. if (is_invalid_opcode(intr_info)) {
  2553. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2554. if (er != EMULATE_DONE)
  2555. kvm_queue_exception(vcpu, UD_VECTOR);
  2556. return 1;
  2557. }
  2558. error_code = 0;
  2559. rip = kvm_rip_read(vcpu);
  2560. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2561. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2562. if (is_page_fault(intr_info)) {
  2563. /* EPT won't cause page fault directly */
  2564. if (enable_ept)
  2565. BUG();
  2566. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2567. trace_kvm_page_fault(cr2, error_code);
  2568. if (kvm_event_needs_reinjection(vcpu))
  2569. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2570. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2571. }
  2572. if (vmx->rmode.vm86_active &&
  2573. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2574. error_code)) {
  2575. if (vcpu->arch.halt_request) {
  2576. vcpu->arch.halt_request = 0;
  2577. return kvm_emulate_halt(vcpu);
  2578. }
  2579. return 1;
  2580. }
  2581. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2582. switch (ex_no) {
  2583. case DB_VECTOR:
  2584. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2585. if (!(vcpu->guest_debug &
  2586. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2587. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2588. kvm_queue_exception(vcpu, DB_VECTOR);
  2589. return 1;
  2590. }
  2591. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2592. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2593. /* fall through */
  2594. case BP_VECTOR:
  2595. /*
  2596. * Update instruction length as we may reinject #BP from
  2597. * user space while in guest debugging mode. Reading it for
  2598. * #DB as well causes no harm, it is not used in that case.
  2599. */
  2600. vmx->vcpu.arch.event_exit_inst_len =
  2601. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2602. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2603. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2604. kvm_run->debug.arch.exception = ex_no;
  2605. break;
  2606. default:
  2607. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2608. kvm_run->ex.exception = ex_no;
  2609. kvm_run->ex.error_code = error_code;
  2610. break;
  2611. }
  2612. return 0;
  2613. }
  2614. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2615. {
  2616. ++vcpu->stat.irq_exits;
  2617. return 1;
  2618. }
  2619. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2620. {
  2621. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2622. return 0;
  2623. }
  2624. static int handle_io(struct kvm_vcpu *vcpu)
  2625. {
  2626. unsigned long exit_qualification;
  2627. int size, in, string;
  2628. unsigned port;
  2629. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2630. string = (exit_qualification & 16) != 0;
  2631. in = (exit_qualification & 8) != 0;
  2632. ++vcpu->stat.io_exits;
  2633. if (string || in)
  2634. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2635. port = exit_qualification >> 16;
  2636. size = (exit_qualification & 7) + 1;
  2637. skip_emulated_instruction(vcpu);
  2638. return kvm_fast_pio_out(vcpu, size, port);
  2639. }
  2640. static void
  2641. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2642. {
  2643. /*
  2644. * Patch in the VMCALL instruction:
  2645. */
  2646. hypercall[0] = 0x0f;
  2647. hypercall[1] = 0x01;
  2648. hypercall[2] = 0xc1;
  2649. }
  2650. static int handle_cr(struct kvm_vcpu *vcpu)
  2651. {
  2652. unsigned long exit_qualification, val;
  2653. int cr;
  2654. int reg;
  2655. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2656. cr = exit_qualification & 15;
  2657. reg = (exit_qualification >> 8) & 15;
  2658. switch ((exit_qualification >> 4) & 3) {
  2659. case 0: /* mov to cr */
  2660. val = kvm_register_read(vcpu, reg);
  2661. trace_kvm_cr_write(cr, val);
  2662. switch (cr) {
  2663. case 0:
  2664. kvm_set_cr0(vcpu, val);
  2665. skip_emulated_instruction(vcpu);
  2666. return 1;
  2667. case 3:
  2668. kvm_set_cr3(vcpu, val);
  2669. skip_emulated_instruction(vcpu);
  2670. return 1;
  2671. case 4:
  2672. kvm_set_cr4(vcpu, val);
  2673. skip_emulated_instruction(vcpu);
  2674. return 1;
  2675. case 8: {
  2676. u8 cr8_prev = kvm_get_cr8(vcpu);
  2677. u8 cr8 = kvm_register_read(vcpu, reg);
  2678. kvm_set_cr8(vcpu, cr8);
  2679. skip_emulated_instruction(vcpu);
  2680. if (irqchip_in_kernel(vcpu->kvm))
  2681. return 1;
  2682. if (cr8_prev <= cr8)
  2683. return 1;
  2684. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2685. return 0;
  2686. }
  2687. };
  2688. break;
  2689. case 2: /* clts */
  2690. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2691. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2692. skip_emulated_instruction(vcpu);
  2693. vmx_fpu_activate(vcpu);
  2694. return 1;
  2695. case 1: /*mov from cr*/
  2696. switch (cr) {
  2697. case 3:
  2698. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2699. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2700. skip_emulated_instruction(vcpu);
  2701. return 1;
  2702. case 8:
  2703. val = kvm_get_cr8(vcpu);
  2704. kvm_register_write(vcpu, reg, val);
  2705. trace_kvm_cr_read(cr, val);
  2706. skip_emulated_instruction(vcpu);
  2707. return 1;
  2708. }
  2709. break;
  2710. case 3: /* lmsw */
  2711. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2712. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2713. kvm_lmsw(vcpu, val);
  2714. skip_emulated_instruction(vcpu);
  2715. return 1;
  2716. default:
  2717. break;
  2718. }
  2719. vcpu->run->exit_reason = 0;
  2720. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2721. (int)(exit_qualification >> 4) & 3, cr);
  2722. return 0;
  2723. }
  2724. static int handle_dr(struct kvm_vcpu *vcpu)
  2725. {
  2726. unsigned long exit_qualification;
  2727. int dr, reg;
  2728. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2729. if (!kvm_require_cpl(vcpu, 0))
  2730. return 1;
  2731. dr = vmcs_readl(GUEST_DR7);
  2732. if (dr & DR7_GD) {
  2733. /*
  2734. * As the vm-exit takes precedence over the debug trap, we
  2735. * need to emulate the latter, either for the host or the
  2736. * guest debugging itself.
  2737. */
  2738. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2739. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2740. vcpu->run->debug.arch.dr7 = dr;
  2741. vcpu->run->debug.arch.pc =
  2742. vmcs_readl(GUEST_CS_BASE) +
  2743. vmcs_readl(GUEST_RIP);
  2744. vcpu->run->debug.arch.exception = DB_VECTOR;
  2745. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2746. return 0;
  2747. } else {
  2748. vcpu->arch.dr7 &= ~DR7_GD;
  2749. vcpu->arch.dr6 |= DR6_BD;
  2750. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2751. kvm_queue_exception(vcpu, DB_VECTOR);
  2752. return 1;
  2753. }
  2754. }
  2755. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2756. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2757. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2758. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2759. unsigned long val;
  2760. if (!kvm_get_dr(vcpu, dr, &val))
  2761. kvm_register_write(vcpu, reg, val);
  2762. } else
  2763. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2764. skip_emulated_instruction(vcpu);
  2765. return 1;
  2766. }
  2767. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2768. {
  2769. vmcs_writel(GUEST_DR7, val);
  2770. }
  2771. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2772. {
  2773. kvm_emulate_cpuid(vcpu);
  2774. return 1;
  2775. }
  2776. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2777. {
  2778. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2779. u64 data;
  2780. if (vmx_get_msr(vcpu, ecx, &data)) {
  2781. trace_kvm_msr_read_ex(ecx);
  2782. kvm_inject_gp(vcpu, 0);
  2783. return 1;
  2784. }
  2785. trace_kvm_msr_read(ecx, data);
  2786. /* FIXME: handling of bits 32:63 of rax, rdx */
  2787. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2788. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2789. skip_emulated_instruction(vcpu);
  2790. return 1;
  2791. }
  2792. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2793. {
  2794. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2795. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2796. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2797. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2798. trace_kvm_msr_write_ex(ecx, data);
  2799. kvm_inject_gp(vcpu, 0);
  2800. return 1;
  2801. }
  2802. trace_kvm_msr_write(ecx, data);
  2803. skip_emulated_instruction(vcpu);
  2804. return 1;
  2805. }
  2806. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2807. {
  2808. return 1;
  2809. }
  2810. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2811. {
  2812. u32 cpu_based_vm_exec_control;
  2813. /* clear pending irq */
  2814. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2815. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2816. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2817. ++vcpu->stat.irq_window_exits;
  2818. /*
  2819. * If the user space waits to inject interrupts, exit as soon as
  2820. * possible
  2821. */
  2822. if (!irqchip_in_kernel(vcpu->kvm) &&
  2823. vcpu->run->request_interrupt_window &&
  2824. !kvm_cpu_has_interrupt(vcpu)) {
  2825. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2826. return 0;
  2827. }
  2828. return 1;
  2829. }
  2830. static int handle_halt(struct kvm_vcpu *vcpu)
  2831. {
  2832. skip_emulated_instruction(vcpu);
  2833. return kvm_emulate_halt(vcpu);
  2834. }
  2835. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2836. {
  2837. skip_emulated_instruction(vcpu);
  2838. kvm_emulate_hypercall(vcpu);
  2839. return 1;
  2840. }
  2841. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2842. {
  2843. kvm_queue_exception(vcpu, UD_VECTOR);
  2844. return 1;
  2845. }
  2846. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2847. {
  2848. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2849. kvm_mmu_invlpg(vcpu, exit_qualification);
  2850. skip_emulated_instruction(vcpu);
  2851. return 1;
  2852. }
  2853. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2854. {
  2855. skip_emulated_instruction(vcpu);
  2856. /* TODO: Add support for VT-d/pass-through device */
  2857. return 1;
  2858. }
  2859. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2860. {
  2861. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2862. }
  2863. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2864. {
  2865. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2866. unsigned long exit_qualification;
  2867. bool has_error_code = false;
  2868. u32 error_code = 0;
  2869. u16 tss_selector;
  2870. int reason, type, idt_v;
  2871. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2872. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2873. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2874. reason = (u32)exit_qualification >> 30;
  2875. if (reason == TASK_SWITCH_GATE && idt_v) {
  2876. switch (type) {
  2877. case INTR_TYPE_NMI_INTR:
  2878. vcpu->arch.nmi_injected = false;
  2879. if (cpu_has_virtual_nmis())
  2880. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2881. GUEST_INTR_STATE_NMI);
  2882. break;
  2883. case INTR_TYPE_EXT_INTR:
  2884. case INTR_TYPE_SOFT_INTR:
  2885. kvm_clear_interrupt_queue(vcpu);
  2886. break;
  2887. case INTR_TYPE_HARD_EXCEPTION:
  2888. if (vmx->idt_vectoring_info &
  2889. VECTORING_INFO_DELIVER_CODE_MASK) {
  2890. has_error_code = true;
  2891. error_code =
  2892. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2893. }
  2894. /* fall through */
  2895. case INTR_TYPE_SOFT_EXCEPTION:
  2896. kvm_clear_exception_queue(vcpu);
  2897. break;
  2898. default:
  2899. break;
  2900. }
  2901. }
  2902. tss_selector = exit_qualification;
  2903. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2904. type != INTR_TYPE_EXT_INTR &&
  2905. type != INTR_TYPE_NMI_INTR))
  2906. skip_emulated_instruction(vcpu);
  2907. if (kvm_task_switch(vcpu, tss_selector, reason,
  2908. has_error_code, error_code) == EMULATE_FAIL) {
  2909. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2910. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2911. vcpu->run->internal.ndata = 0;
  2912. return 0;
  2913. }
  2914. /* clear all local breakpoint enable flags */
  2915. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2916. /*
  2917. * TODO: What about debug traps on tss switch?
  2918. * Are we supposed to inject them and update dr6?
  2919. */
  2920. return 1;
  2921. }
  2922. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2923. {
  2924. unsigned long exit_qualification;
  2925. gpa_t gpa;
  2926. int gla_validity;
  2927. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2928. if (exit_qualification & (1 << 6)) {
  2929. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2930. return -EINVAL;
  2931. }
  2932. gla_validity = (exit_qualification >> 7) & 0x3;
  2933. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2934. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2935. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2936. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2937. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2938. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2939. (long unsigned int)exit_qualification);
  2940. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2941. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2942. return 0;
  2943. }
  2944. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2945. trace_kvm_page_fault(gpa, exit_qualification);
  2946. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2947. }
  2948. static u64 ept_rsvd_mask(u64 spte, int level)
  2949. {
  2950. int i;
  2951. u64 mask = 0;
  2952. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2953. mask |= (1ULL << i);
  2954. if (level > 2)
  2955. /* bits 7:3 reserved */
  2956. mask |= 0xf8;
  2957. else if (level == 2) {
  2958. if (spte & (1ULL << 7))
  2959. /* 2MB ref, bits 20:12 reserved */
  2960. mask |= 0x1ff000;
  2961. else
  2962. /* bits 6:3 reserved */
  2963. mask |= 0x78;
  2964. }
  2965. return mask;
  2966. }
  2967. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2968. int level)
  2969. {
  2970. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2971. /* 010b (write-only) */
  2972. WARN_ON((spte & 0x7) == 0x2);
  2973. /* 110b (write/execute) */
  2974. WARN_ON((spte & 0x7) == 0x6);
  2975. /* 100b (execute-only) and value not supported by logical processor */
  2976. if (!cpu_has_vmx_ept_execute_only())
  2977. WARN_ON((spte & 0x7) == 0x4);
  2978. /* not 000b */
  2979. if ((spte & 0x7)) {
  2980. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2981. if (rsvd_bits != 0) {
  2982. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2983. __func__, rsvd_bits);
  2984. WARN_ON(1);
  2985. }
  2986. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2987. u64 ept_mem_type = (spte & 0x38) >> 3;
  2988. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2989. ept_mem_type == 7) {
  2990. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2991. __func__, ept_mem_type);
  2992. WARN_ON(1);
  2993. }
  2994. }
  2995. }
  2996. }
  2997. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2998. {
  2999. u64 sptes[4];
  3000. int nr_sptes, i;
  3001. gpa_t gpa;
  3002. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3003. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3004. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3005. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3006. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3007. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3008. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3009. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3010. return 0;
  3011. }
  3012. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3013. {
  3014. u32 cpu_based_vm_exec_control;
  3015. /* clear pending NMI */
  3016. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3017. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3018. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3019. ++vcpu->stat.nmi_window_exits;
  3020. return 1;
  3021. }
  3022. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3023. {
  3024. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3025. enum emulation_result err = EMULATE_DONE;
  3026. int ret = 1;
  3027. while (!guest_state_valid(vcpu)) {
  3028. err = emulate_instruction(vcpu, 0, 0, 0);
  3029. if (err == EMULATE_DO_MMIO) {
  3030. ret = 0;
  3031. goto out;
  3032. }
  3033. if (err != EMULATE_DONE)
  3034. return 0;
  3035. if (signal_pending(current))
  3036. goto out;
  3037. if (need_resched())
  3038. schedule();
  3039. }
  3040. vmx->emulation_required = 0;
  3041. out:
  3042. return ret;
  3043. }
  3044. /*
  3045. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3046. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3047. */
  3048. static int handle_pause(struct kvm_vcpu *vcpu)
  3049. {
  3050. skip_emulated_instruction(vcpu);
  3051. kvm_vcpu_on_spin(vcpu);
  3052. return 1;
  3053. }
  3054. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3055. {
  3056. kvm_queue_exception(vcpu, UD_VECTOR);
  3057. return 1;
  3058. }
  3059. /*
  3060. * The exit handlers return 1 if the exit was handled fully and guest execution
  3061. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3062. * to be done to userspace and return 0.
  3063. */
  3064. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3065. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3066. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3067. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3068. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3069. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3070. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3071. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3072. [EXIT_REASON_CPUID] = handle_cpuid,
  3073. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3074. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3075. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3076. [EXIT_REASON_HLT] = handle_halt,
  3077. [EXIT_REASON_INVLPG] = handle_invlpg,
  3078. [EXIT_REASON_VMCALL] = handle_vmcall,
  3079. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3080. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3081. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3082. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3083. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3084. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3085. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3086. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3087. [EXIT_REASON_VMON] = handle_vmx_insn,
  3088. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3089. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3090. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3091. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3092. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3093. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3094. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3095. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3096. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3097. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3098. };
  3099. static const int kvm_vmx_max_exit_handlers =
  3100. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3101. /*
  3102. * The guest has exited. See if we can fix it or if we need userspace
  3103. * assistance.
  3104. */
  3105. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3106. {
  3107. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3108. u32 exit_reason = vmx->exit_reason;
  3109. u32 vectoring_info = vmx->idt_vectoring_info;
  3110. trace_kvm_exit(exit_reason, vcpu);
  3111. /* If guest state is invalid, start emulating */
  3112. if (vmx->emulation_required && emulate_invalid_guest_state)
  3113. return handle_invalid_guest_state(vcpu);
  3114. /* Access CR3 don't cause VMExit in paging mode, so we need
  3115. * to sync with guest real CR3. */
  3116. if (enable_ept && is_paging(vcpu))
  3117. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3118. if (unlikely(vmx->fail)) {
  3119. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3120. vcpu->run->fail_entry.hardware_entry_failure_reason
  3121. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3122. return 0;
  3123. }
  3124. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3125. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3126. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3127. exit_reason != EXIT_REASON_TASK_SWITCH))
  3128. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3129. "(0x%x) and exit reason is 0x%x\n",
  3130. __func__, vectoring_info, exit_reason);
  3131. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3132. if (vmx_interrupt_allowed(vcpu)) {
  3133. vmx->soft_vnmi_blocked = 0;
  3134. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3135. vcpu->arch.nmi_pending) {
  3136. /*
  3137. * This CPU don't support us in finding the end of an
  3138. * NMI-blocked window if the guest runs with IRQs
  3139. * disabled. So we pull the trigger after 1 s of
  3140. * futile waiting, but inform the user about this.
  3141. */
  3142. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3143. "state on VCPU %d after 1 s timeout\n",
  3144. __func__, vcpu->vcpu_id);
  3145. vmx->soft_vnmi_blocked = 0;
  3146. }
  3147. }
  3148. if (exit_reason < kvm_vmx_max_exit_handlers
  3149. && kvm_vmx_exit_handlers[exit_reason])
  3150. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3151. else {
  3152. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3153. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3154. }
  3155. return 0;
  3156. }
  3157. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3158. {
  3159. if (irr == -1 || tpr < irr) {
  3160. vmcs_write32(TPR_THRESHOLD, 0);
  3161. return;
  3162. }
  3163. vmcs_write32(TPR_THRESHOLD, irr);
  3164. }
  3165. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3166. {
  3167. u32 exit_intr_info;
  3168. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3169. bool unblock_nmi;
  3170. u8 vector;
  3171. int type;
  3172. bool idtv_info_valid;
  3173. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3174. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3175. /* Handle machine checks before interrupts are enabled */
  3176. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3177. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3178. && is_machine_check(exit_intr_info)))
  3179. kvm_machine_check();
  3180. /* We need to handle NMIs before interrupts are enabled */
  3181. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3182. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3183. kvm_before_handle_nmi(&vmx->vcpu);
  3184. asm("int $2");
  3185. kvm_after_handle_nmi(&vmx->vcpu);
  3186. }
  3187. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3188. if (cpu_has_virtual_nmis()) {
  3189. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3190. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3191. /*
  3192. * SDM 3: 27.7.1.2 (September 2008)
  3193. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3194. * a guest IRET fault.
  3195. * SDM 3: 23.2.2 (September 2008)
  3196. * Bit 12 is undefined in any of the following cases:
  3197. * If the VM exit sets the valid bit in the IDT-vectoring
  3198. * information field.
  3199. * If the VM exit is due to a double fault.
  3200. */
  3201. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3202. vector != DF_VECTOR && !idtv_info_valid)
  3203. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3204. GUEST_INTR_STATE_NMI);
  3205. } else if (unlikely(vmx->soft_vnmi_blocked))
  3206. vmx->vnmi_blocked_time +=
  3207. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3208. vmx->vcpu.arch.nmi_injected = false;
  3209. kvm_clear_exception_queue(&vmx->vcpu);
  3210. kvm_clear_interrupt_queue(&vmx->vcpu);
  3211. if (!idtv_info_valid)
  3212. return;
  3213. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3214. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3215. switch (type) {
  3216. case INTR_TYPE_NMI_INTR:
  3217. vmx->vcpu.arch.nmi_injected = true;
  3218. /*
  3219. * SDM 3: 27.7.1.2 (September 2008)
  3220. * Clear bit "block by NMI" before VM entry if a NMI
  3221. * delivery faulted.
  3222. */
  3223. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3224. GUEST_INTR_STATE_NMI);
  3225. break;
  3226. case INTR_TYPE_SOFT_EXCEPTION:
  3227. vmx->vcpu.arch.event_exit_inst_len =
  3228. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3229. /* fall through */
  3230. case INTR_TYPE_HARD_EXCEPTION:
  3231. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3232. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3233. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3234. } else
  3235. kvm_queue_exception(&vmx->vcpu, vector);
  3236. break;
  3237. case INTR_TYPE_SOFT_INTR:
  3238. vmx->vcpu.arch.event_exit_inst_len =
  3239. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3240. /* fall through */
  3241. case INTR_TYPE_EXT_INTR:
  3242. kvm_queue_interrupt(&vmx->vcpu, vector,
  3243. type == INTR_TYPE_SOFT_INTR);
  3244. break;
  3245. default:
  3246. break;
  3247. }
  3248. }
  3249. /*
  3250. * Failure to inject an interrupt should give us the information
  3251. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3252. * when fetching the interrupt redirection bitmap in the real-mode
  3253. * tss, this doesn't happen. So we do it ourselves.
  3254. */
  3255. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3256. {
  3257. vmx->rmode.irq.pending = 0;
  3258. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3259. return;
  3260. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3261. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3262. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3263. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3264. return;
  3265. }
  3266. vmx->idt_vectoring_info =
  3267. VECTORING_INFO_VALID_MASK
  3268. | INTR_TYPE_EXT_INTR
  3269. | vmx->rmode.irq.vector;
  3270. }
  3271. #ifdef CONFIG_X86_64
  3272. #define R "r"
  3273. #define Q "q"
  3274. #else
  3275. #define R "e"
  3276. #define Q "l"
  3277. #endif
  3278. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3279. {
  3280. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3281. /* Record the guest's net vcpu time for enforced NMI injections. */
  3282. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3283. vmx->entry_time = ktime_get();
  3284. /* Don't enter VMX if guest state is invalid, let the exit handler
  3285. start emulation until we arrive back to a valid state */
  3286. if (vmx->emulation_required && emulate_invalid_guest_state)
  3287. return;
  3288. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3289. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3290. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3291. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3292. /* When single-stepping over STI and MOV SS, we must clear the
  3293. * corresponding interruptibility bits in the guest state. Otherwise
  3294. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3295. * exceptions being set, but that's not correct for the guest debugging
  3296. * case. */
  3297. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3298. vmx_set_interrupt_shadow(vcpu, 0);
  3299. asm(
  3300. /* Store host registers */
  3301. "push %%"R"dx; push %%"R"bp;"
  3302. "push %%"R"cx \n\t"
  3303. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3304. "je 1f \n\t"
  3305. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3306. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3307. "1: \n\t"
  3308. /* Reload cr2 if changed */
  3309. "mov %c[cr2](%0), %%"R"ax \n\t"
  3310. "mov %%cr2, %%"R"dx \n\t"
  3311. "cmp %%"R"ax, %%"R"dx \n\t"
  3312. "je 2f \n\t"
  3313. "mov %%"R"ax, %%cr2 \n\t"
  3314. "2: \n\t"
  3315. /* Check if vmlaunch of vmresume is needed */
  3316. "cmpl $0, %c[launched](%0) \n\t"
  3317. /* Load guest registers. Don't clobber flags. */
  3318. "mov %c[rax](%0), %%"R"ax \n\t"
  3319. "mov %c[rbx](%0), %%"R"bx \n\t"
  3320. "mov %c[rdx](%0), %%"R"dx \n\t"
  3321. "mov %c[rsi](%0), %%"R"si \n\t"
  3322. "mov %c[rdi](%0), %%"R"di \n\t"
  3323. "mov %c[rbp](%0), %%"R"bp \n\t"
  3324. #ifdef CONFIG_X86_64
  3325. "mov %c[r8](%0), %%r8 \n\t"
  3326. "mov %c[r9](%0), %%r9 \n\t"
  3327. "mov %c[r10](%0), %%r10 \n\t"
  3328. "mov %c[r11](%0), %%r11 \n\t"
  3329. "mov %c[r12](%0), %%r12 \n\t"
  3330. "mov %c[r13](%0), %%r13 \n\t"
  3331. "mov %c[r14](%0), %%r14 \n\t"
  3332. "mov %c[r15](%0), %%r15 \n\t"
  3333. #endif
  3334. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3335. /* Enter guest mode */
  3336. "jne .Llaunched \n\t"
  3337. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3338. "jmp .Lkvm_vmx_return \n\t"
  3339. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3340. ".Lkvm_vmx_return: "
  3341. /* Save guest registers, load host registers, keep flags */
  3342. "xchg %0, (%%"R"sp) \n\t"
  3343. "mov %%"R"ax, %c[rax](%0) \n\t"
  3344. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3345. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3346. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3347. "mov %%"R"si, %c[rsi](%0) \n\t"
  3348. "mov %%"R"di, %c[rdi](%0) \n\t"
  3349. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3350. #ifdef CONFIG_X86_64
  3351. "mov %%r8, %c[r8](%0) \n\t"
  3352. "mov %%r9, %c[r9](%0) \n\t"
  3353. "mov %%r10, %c[r10](%0) \n\t"
  3354. "mov %%r11, %c[r11](%0) \n\t"
  3355. "mov %%r12, %c[r12](%0) \n\t"
  3356. "mov %%r13, %c[r13](%0) \n\t"
  3357. "mov %%r14, %c[r14](%0) \n\t"
  3358. "mov %%r15, %c[r15](%0) \n\t"
  3359. #endif
  3360. "mov %%cr2, %%"R"ax \n\t"
  3361. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3362. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3363. "setbe %c[fail](%0) \n\t"
  3364. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3365. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3366. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3367. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3368. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3369. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3370. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3371. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3372. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3373. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3374. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3375. #ifdef CONFIG_X86_64
  3376. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3377. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3378. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3379. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3380. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3381. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3382. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3383. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3384. #endif
  3385. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3386. : "cc", "memory"
  3387. , R"bx", R"di", R"si"
  3388. #ifdef CONFIG_X86_64
  3389. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3390. #endif
  3391. );
  3392. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3393. | (1 << VCPU_EXREG_PDPTR));
  3394. vcpu->arch.regs_dirty = 0;
  3395. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3396. if (vmx->rmode.irq.pending)
  3397. fixup_rmode_irq(vmx);
  3398. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3399. vmx->launched = 1;
  3400. vmx_complete_interrupts(vmx);
  3401. }
  3402. #undef R
  3403. #undef Q
  3404. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3405. {
  3406. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3407. if (vmx->vmcs) {
  3408. vcpu_clear(vmx);
  3409. free_vmcs(vmx->vmcs);
  3410. vmx->vmcs = NULL;
  3411. }
  3412. }
  3413. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3414. {
  3415. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3416. free_vpid(vmx);
  3417. vmx_free_vmcs(vcpu);
  3418. kfree(vmx->guest_msrs);
  3419. kvm_vcpu_uninit(vcpu);
  3420. kmem_cache_free(kvm_vcpu_cache, vmx);
  3421. }
  3422. static inline void vmcs_init(struct vmcs *vmcs)
  3423. {
  3424. u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
  3425. if (!vmm_exclusive)
  3426. kvm_cpu_vmxon(phys_addr);
  3427. vmcs_clear(vmcs);
  3428. if (!vmm_exclusive)
  3429. kvm_cpu_vmxoff();
  3430. }
  3431. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3432. {
  3433. int err;
  3434. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3435. int cpu;
  3436. if (!vmx)
  3437. return ERR_PTR(-ENOMEM);
  3438. allocate_vpid(vmx);
  3439. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3440. if (err)
  3441. goto free_vcpu;
  3442. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3443. if (!vmx->guest_msrs) {
  3444. err = -ENOMEM;
  3445. goto uninit_vcpu;
  3446. }
  3447. vmx->vmcs = alloc_vmcs();
  3448. if (!vmx->vmcs)
  3449. goto free_msrs;
  3450. vmcs_init(vmx->vmcs);
  3451. cpu = get_cpu();
  3452. vmx_vcpu_load(&vmx->vcpu, cpu);
  3453. err = vmx_vcpu_setup(vmx);
  3454. vmx_vcpu_put(&vmx->vcpu);
  3455. put_cpu();
  3456. if (err)
  3457. goto free_vmcs;
  3458. if (vm_need_virtualize_apic_accesses(kvm))
  3459. if (alloc_apic_access_page(kvm) != 0)
  3460. goto free_vmcs;
  3461. if (enable_ept) {
  3462. if (!kvm->arch.ept_identity_map_addr)
  3463. kvm->arch.ept_identity_map_addr =
  3464. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3465. if (alloc_identity_pagetable(kvm) != 0)
  3466. goto free_vmcs;
  3467. }
  3468. return &vmx->vcpu;
  3469. free_vmcs:
  3470. free_vmcs(vmx->vmcs);
  3471. free_msrs:
  3472. kfree(vmx->guest_msrs);
  3473. uninit_vcpu:
  3474. kvm_vcpu_uninit(&vmx->vcpu);
  3475. free_vcpu:
  3476. free_vpid(vmx);
  3477. kmem_cache_free(kvm_vcpu_cache, vmx);
  3478. return ERR_PTR(err);
  3479. }
  3480. static void __init vmx_check_processor_compat(void *rtn)
  3481. {
  3482. struct vmcs_config vmcs_conf;
  3483. *(int *)rtn = 0;
  3484. if (setup_vmcs_config(&vmcs_conf) < 0)
  3485. *(int *)rtn = -EIO;
  3486. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3487. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3488. smp_processor_id());
  3489. *(int *)rtn = -EIO;
  3490. }
  3491. }
  3492. static int get_ept_level(void)
  3493. {
  3494. return VMX_EPT_DEFAULT_GAW + 1;
  3495. }
  3496. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3497. {
  3498. u64 ret;
  3499. /* For VT-d and EPT combination
  3500. * 1. MMIO: always map as UC
  3501. * 2. EPT with VT-d:
  3502. * a. VT-d without snooping control feature: can't guarantee the
  3503. * result, try to trust guest.
  3504. * b. VT-d with snooping control feature: snooping control feature of
  3505. * VT-d engine can guarantee the cache correctness. Just set it
  3506. * to WB to keep consistent with host. So the same as item 3.
  3507. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3508. * consistent with host MTRR
  3509. */
  3510. if (is_mmio)
  3511. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3512. else if (vcpu->kvm->arch.iommu_domain &&
  3513. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3514. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3515. VMX_EPT_MT_EPTE_SHIFT;
  3516. else
  3517. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3518. | VMX_EPT_IPAT_BIT;
  3519. return ret;
  3520. }
  3521. #define _ER(x) { EXIT_REASON_##x, #x }
  3522. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3523. _ER(EXCEPTION_NMI),
  3524. _ER(EXTERNAL_INTERRUPT),
  3525. _ER(TRIPLE_FAULT),
  3526. _ER(PENDING_INTERRUPT),
  3527. _ER(NMI_WINDOW),
  3528. _ER(TASK_SWITCH),
  3529. _ER(CPUID),
  3530. _ER(HLT),
  3531. _ER(INVLPG),
  3532. _ER(RDPMC),
  3533. _ER(RDTSC),
  3534. _ER(VMCALL),
  3535. _ER(VMCLEAR),
  3536. _ER(VMLAUNCH),
  3537. _ER(VMPTRLD),
  3538. _ER(VMPTRST),
  3539. _ER(VMREAD),
  3540. _ER(VMRESUME),
  3541. _ER(VMWRITE),
  3542. _ER(VMOFF),
  3543. _ER(VMON),
  3544. _ER(CR_ACCESS),
  3545. _ER(DR_ACCESS),
  3546. _ER(IO_INSTRUCTION),
  3547. _ER(MSR_READ),
  3548. _ER(MSR_WRITE),
  3549. _ER(MWAIT_INSTRUCTION),
  3550. _ER(MONITOR_INSTRUCTION),
  3551. _ER(PAUSE_INSTRUCTION),
  3552. _ER(MCE_DURING_VMENTRY),
  3553. _ER(TPR_BELOW_THRESHOLD),
  3554. _ER(APIC_ACCESS),
  3555. _ER(EPT_VIOLATION),
  3556. _ER(EPT_MISCONFIG),
  3557. _ER(WBINVD),
  3558. { -1, NULL }
  3559. };
  3560. #undef _ER
  3561. static int vmx_get_lpage_level(void)
  3562. {
  3563. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3564. return PT_DIRECTORY_LEVEL;
  3565. else
  3566. /* For shadow and EPT supported 1GB page */
  3567. return PT_PDPE_LEVEL;
  3568. }
  3569. static inline u32 bit(int bitno)
  3570. {
  3571. return 1 << (bitno & 31);
  3572. }
  3573. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3574. {
  3575. struct kvm_cpuid_entry2 *best;
  3576. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3577. u32 exec_control;
  3578. vmx->rdtscp_enabled = false;
  3579. if (vmx_rdtscp_supported()) {
  3580. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3581. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3582. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3583. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3584. vmx->rdtscp_enabled = true;
  3585. else {
  3586. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3587. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3588. exec_control);
  3589. }
  3590. }
  3591. }
  3592. }
  3593. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3594. {
  3595. }
  3596. static struct kvm_x86_ops vmx_x86_ops = {
  3597. .cpu_has_kvm_support = cpu_has_kvm_support,
  3598. .disabled_by_bios = vmx_disabled_by_bios,
  3599. .hardware_setup = hardware_setup,
  3600. .hardware_unsetup = hardware_unsetup,
  3601. .check_processor_compatibility = vmx_check_processor_compat,
  3602. .hardware_enable = hardware_enable,
  3603. .hardware_disable = hardware_disable,
  3604. .cpu_has_accelerated_tpr = report_flexpriority,
  3605. .vcpu_create = vmx_create_vcpu,
  3606. .vcpu_free = vmx_free_vcpu,
  3607. .vcpu_reset = vmx_vcpu_reset,
  3608. .prepare_guest_switch = vmx_save_host_state,
  3609. .vcpu_load = vmx_vcpu_load,
  3610. .vcpu_put = vmx_vcpu_put,
  3611. .set_guest_debug = set_guest_debug,
  3612. .get_msr = vmx_get_msr,
  3613. .set_msr = vmx_set_msr,
  3614. .get_segment_base = vmx_get_segment_base,
  3615. .get_segment = vmx_get_segment,
  3616. .set_segment = vmx_set_segment,
  3617. .get_cpl = vmx_get_cpl,
  3618. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3619. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3620. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3621. .set_cr0 = vmx_set_cr0,
  3622. .set_cr3 = vmx_set_cr3,
  3623. .set_cr4 = vmx_set_cr4,
  3624. .set_efer = vmx_set_efer,
  3625. .get_idt = vmx_get_idt,
  3626. .set_idt = vmx_set_idt,
  3627. .get_gdt = vmx_get_gdt,
  3628. .set_gdt = vmx_set_gdt,
  3629. .set_dr7 = vmx_set_dr7,
  3630. .cache_reg = vmx_cache_reg,
  3631. .get_rflags = vmx_get_rflags,
  3632. .set_rflags = vmx_set_rflags,
  3633. .fpu_activate = vmx_fpu_activate,
  3634. .fpu_deactivate = vmx_fpu_deactivate,
  3635. .tlb_flush = vmx_flush_tlb,
  3636. .run = vmx_vcpu_run,
  3637. .handle_exit = vmx_handle_exit,
  3638. .skip_emulated_instruction = skip_emulated_instruction,
  3639. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3640. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3641. .patch_hypercall = vmx_patch_hypercall,
  3642. .set_irq = vmx_inject_irq,
  3643. .set_nmi = vmx_inject_nmi,
  3644. .queue_exception = vmx_queue_exception,
  3645. .interrupt_allowed = vmx_interrupt_allowed,
  3646. .nmi_allowed = vmx_nmi_allowed,
  3647. .get_nmi_mask = vmx_get_nmi_mask,
  3648. .set_nmi_mask = vmx_set_nmi_mask,
  3649. .enable_nmi_window = enable_nmi_window,
  3650. .enable_irq_window = enable_irq_window,
  3651. .update_cr8_intercept = update_cr8_intercept,
  3652. .set_tss_addr = vmx_set_tss_addr,
  3653. .get_tdp_level = get_ept_level,
  3654. .get_mt_mask = vmx_get_mt_mask,
  3655. .exit_reasons_str = vmx_exit_reasons_str,
  3656. .get_lpage_level = vmx_get_lpage_level,
  3657. .cpuid_update = vmx_cpuid_update,
  3658. .rdtscp_supported = vmx_rdtscp_supported,
  3659. .set_supported_cpuid = vmx_set_supported_cpuid,
  3660. };
  3661. static int __init vmx_init(void)
  3662. {
  3663. int r, i;
  3664. rdmsrl_safe(MSR_EFER, &host_efer);
  3665. for (i = 0; i < NR_VMX_MSR; ++i)
  3666. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3667. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3668. if (!vmx_io_bitmap_a)
  3669. return -ENOMEM;
  3670. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3671. if (!vmx_io_bitmap_b) {
  3672. r = -ENOMEM;
  3673. goto out;
  3674. }
  3675. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3676. if (!vmx_msr_bitmap_legacy) {
  3677. r = -ENOMEM;
  3678. goto out1;
  3679. }
  3680. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3681. if (!vmx_msr_bitmap_longmode) {
  3682. r = -ENOMEM;
  3683. goto out2;
  3684. }
  3685. /*
  3686. * Allow direct access to the PC debug port (it is often used for I/O
  3687. * delays, but the vmexits simply slow things down).
  3688. */
  3689. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3690. clear_bit(0x80, vmx_io_bitmap_a);
  3691. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3692. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3693. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3694. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3695. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3696. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3697. if (r)
  3698. goto out3;
  3699. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3700. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3701. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3702. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3703. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3704. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3705. if (enable_ept) {
  3706. bypass_guest_pf = 0;
  3707. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3708. VMX_EPT_WRITABLE_MASK);
  3709. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3710. VMX_EPT_EXECUTABLE_MASK);
  3711. kvm_enable_tdp();
  3712. } else
  3713. kvm_disable_tdp();
  3714. if (bypass_guest_pf)
  3715. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3716. return 0;
  3717. out3:
  3718. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3719. out2:
  3720. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3721. out1:
  3722. free_page((unsigned long)vmx_io_bitmap_b);
  3723. out:
  3724. free_page((unsigned long)vmx_io_bitmap_a);
  3725. return r;
  3726. }
  3727. static void __exit vmx_exit(void)
  3728. {
  3729. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3730. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3731. free_page((unsigned long)vmx_io_bitmap_b);
  3732. free_page((unsigned long)vmx_io_bitmap_a);
  3733. kvm_exit();
  3734. }
  3735. module_init(vmx_init)
  3736. module_exit(vmx_exit)