mmu.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <linux/uaccess.h>
  34. #include <asm/page.h>
  35. #include <asm/cmpxchg.h>
  36. #include <asm/io.h>
  37. #include <asm/vmx.h>
  38. /*
  39. * When setting this variable to true it enables Two-Dimensional-Paging
  40. * where the hardware walks 2 page tables:
  41. * 1. the guest-virtual to guest-physical
  42. * 2. while doing 1. it walks guest-physical to host-physical
  43. * If the hardware supports that we don't need to do shadow paging.
  44. */
  45. bool tdp_enabled = false;
  46. #undef MMU_DEBUG
  47. #undef AUDIT
  48. #ifdef AUDIT
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  50. #else
  51. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  52. #endif
  53. #ifdef MMU_DEBUG
  54. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  55. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  56. #else
  57. #define pgprintk(x...) do { } while (0)
  58. #define rmap_printk(x...) do { } while (0)
  59. #endif
  60. #if defined(MMU_DEBUG) || defined(AUDIT)
  61. static int dbg = 0;
  62. module_param(dbg, bool, 0644);
  63. #endif
  64. static int oos_shadow = 1;
  65. module_param(oos_shadow, bool, 0644);
  66. #ifndef MMU_DEBUG
  67. #define ASSERT(x) do { } while (0)
  68. #else
  69. #define ASSERT(x) \
  70. if (!(x)) { \
  71. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  72. __FILE__, __LINE__, #x); \
  73. }
  74. #endif
  75. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  76. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  77. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  233. struct kmem_cache *base_cache, int min)
  234. {
  235. void *obj;
  236. if (cache->nobjs >= min)
  237. return 0;
  238. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  239. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  240. if (!obj)
  241. return -ENOMEM;
  242. cache->objects[cache->nobjs++] = obj;
  243. }
  244. return 0;
  245. }
  246. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  247. struct kmem_cache *cache)
  248. {
  249. while (mc->nobjs)
  250. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  251. }
  252. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  253. int min)
  254. {
  255. struct page *page;
  256. if (cache->nobjs >= min)
  257. return 0;
  258. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  259. page = alloc_page(GFP_KERNEL);
  260. if (!page)
  261. return -ENOMEM;
  262. cache->objects[cache->nobjs++] = page_address(page);
  263. }
  264. return 0;
  265. }
  266. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  267. {
  268. while (mc->nobjs)
  269. free_page((unsigned long)mc->objects[--mc->nobjs]);
  270. }
  271. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  272. {
  273. int r;
  274. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  275. pte_chain_cache, 4);
  276. if (r)
  277. goto out;
  278. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  279. rmap_desc_cache, 4);
  280. if (r)
  281. goto out;
  282. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  283. if (r)
  284. goto out;
  285. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  286. mmu_page_header_cache, 4);
  287. out:
  288. return r;
  289. }
  290. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  291. {
  292. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  293. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  294. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  295. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  296. mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kmem_cache_free(pte_chain_cache, pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kmem_cache_free(rmap_desc_cache, rd);
  323. }
  324. /*
  325. * Return the pointer to the largepage write count for a given
  326. * gfn, handling slots that are not large page aligned.
  327. */
  328. static int *slot_largepage_idx(gfn_t gfn,
  329. struct kvm_memory_slot *slot,
  330. int level)
  331. {
  332. unsigned long idx;
  333. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  334. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  335. return &slot->lpage_info[level - 2][idx].write_count;
  336. }
  337. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. int *write_count;
  341. int i;
  342. gfn = unalias_gfn(kvm, gfn);
  343. slot = gfn_to_memslot_unaliased(kvm, gfn);
  344. for (i = PT_DIRECTORY_LEVEL;
  345. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  346. write_count = slot_largepage_idx(gfn, slot, i);
  347. *write_count += 1;
  348. }
  349. }
  350. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. slot = gfn_to_memslot_unaliased(kvm, gfn);
  357. for (i = PT_DIRECTORY_LEVEL;
  358. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count -= 1;
  361. WARN_ON(*write_count < 0);
  362. }
  363. }
  364. static int has_wrprotected_page(struct kvm *kvm,
  365. gfn_t gfn,
  366. int level)
  367. {
  368. struct kvm_memory_slot *slot;
  369. int *largepage_idx;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = gfn_to_memslot_unaliased(kvm, gfn);
  372. if (slot) {
  373. largepage_idx = slot_largepage_idx(gfn, slot, level);
  374. return *largepage_idx;
  375. }
  376. return 1;
  377. }
  378. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  379. {
  380. unsigned long page_size;
  381. int i, ret = 0;
  382. page_size = kvm_host_page_size(kvm, gfn);
  383. for (i = PT_PAGE_TABLE_LEVEL;
  384. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  385. if (page_size >= KVM_HPAGE_SIZE(i))
  386. ret = i;
  387. else
  388. break;
  389. }
  390. return ret;
  391. }
  392. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int host_level, level, max_level;
  396. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  397. if (slot && slot->dirty_bitmap)
  398. return PT_PAGE_TABLE_LEVEL;
  399. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  400. if (host_level == PT_PAGE_TABLE_LEVEL)
  401. return host_level;
  402. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  403. kvm_x86_ops->get_lpage_level() : host_level;
  404. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  405. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  406. break;
  407. return level - 1;
  408. }
  409. /*
  410. * Take gfn and return the reverse mapping to it.
  411. * Note: gfn must be unaliased before this function get called
  412. */
  413. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  414. {
  415. struct kvm_memory_slot *slot;
  416. unsigned long idx;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. if (likely(level == PT_PAGE_TABLE_LEVEL))
  419. return &slot->rmap[gfn - slot->base_gfn];
  420. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  421. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  422. return &slot->lpage_info[level - 2][idx].rmap_pde;
  423. }
  424. /*
  425. * Reverse mapping data structures:
  426. *
  427. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  428. * that points to page_address(page).
  429. *
  430. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  431. * containing more mappings.
  432. *
  433. * Returns the number of rmap entries before the spte was added or zero if
  434. * the spte was not added.
  435. *
  436. */
  437. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  438. {
  439. struct kvm_mmu_page *sp;
  440. struct kvm_rmap_desc *desc;
  441. unsigned long *rmapp;
  442. int i, count = 0;
  443. if (!is_rmap_spte(*spte))
  444. return count;
  445. gfn = unalias_gfn(vcpu->kvm, gfn);
  446. sp = page_header(__pa(spte));
  447. sp->gfns[spte - sp->spt] = gfn;
  448. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  449. if (!*rmapp) {
  450. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  451. *rmapp = (unsigned long)spte;
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  454. desc = mmu_alloc_rmap_desc(vcpu);
  455. desc->sptes[0] = (u64 *)*rmapp;
  456. desc->sptes[1] = spte;
  457. *rmapp = (unsigned long)desc | 1;
  458. } else {
  459. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  460. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  461. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  462. desc = desc->more;
  463. count += RMAP_EXT;
  464. }
  465. if (desc->sptes[RMAP_EXT-1]) {
  466. desc->more = mmu_alloc_rmap_desc(vcpu);
  467. desc = desc->more;
  468. }
  469. for (i = 0; desc->sptes[i]; ++i)
  470. ;
  471. desc->sptes[i] = spte;
  472. }
  473. return count;
  474. }
  475. static void rmap_desc_remove_entry(unsigned long *rmapp,
  476. struct kvm_rmap_desc *desc,
  477. int i,
  478. struct kvm_rmap_desc *prev_desc)
  479. {
  480. int j;
  481. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  482. ;
  483. desc->sptes[i] = desc->sptes[j];
  484. desc->sptes[j] = NULL;
  485. if (j != 0)
  486. return;
  487. if (!prev_desc && !desc->more)
  488. *rmapp = (unsigned long)desc->sptes[0];
  489. else
  490. if (prev_desc)
  491. prev_desc->more = desc->more;
  492. else
  493. *rmapp = (unsigned long)desc->more | 1;
  494. mmu_free_rmap_desc(desc);
  495. }
  496. static void rmap_remove(struct kvm *kvm, u64 *spte)
  497. {
  498. struct kvm_rmap_desc *desc;
  499. struct kvm_rmap_desc *prev_desc;
  500. struct kvm_mmu_page *sp;
  501. pfn_t pfn;
  502. unsigned long *rmapp;
  503. int i;
  504. if (!is_rmap_spte(*spte))
  505. return;
  506. sp = page_header(__pa(spte));
  507. pfn = spte_to_pfn(*spte);
  508. if (*spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (is_writable_pte(*spte))
  511. kvm_set_pfn_dirty(pfn);
  512. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  513. if (!*rmapp) {
  514. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  515. BUG();
  516. } else if (!(*rmapp & 1)) {
  517. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  518. if ((u64 *)*rmapp != spte) {
  519. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  520. spte, *spte);
  521. BUG();
  522. }
  523. *rmapp = 0;
  524. } else {
  525. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  526. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  527. prev_desc = NULL;
  528. while (desc) {
  529. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  530. if (desc->sptes[i] == spte) {
  531. rmap_desc_remove_entry(rmapp,
  532. desc, i,
  533. prev_desc);
  534. return;
  535. }
  536. prev_desc = desc;
  537. desc = desc->more;
  538. }
  539. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. BUG();
  541. }
  542. }
  543. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  544. {
  545. struct kvm_rmap_desc *desc;
  546. u64 *prev_spte;
  547. int i;
  548. if (!*rmapp)
  549. return NULL;
  550. else if (!(*rmapp & 1)) {
  551. if (!spte)
  552. return (u64 *)*rmapp;
  553. return NULL;
  554. }
  555. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  556. prev_spte = NULL;
  557. while (desc) {
  558. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  559. if (prev_spte == spte)
  560. return desc->sptes[i];
  561. prev_spte = desc->sptes[i];
  562. }
  563. desc = desc->more;
  564. }
  565. return NULL;
  566. }
  567. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  568. {
  569. unsigned long *rmapp;
  570. u64 *spte;
  571. int i, write_protected = 0;
  572. gfn = unalias_gfn(kvm, gfn);
  573. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  574. spte = rmap_next(kvm, rmapp, NULL);
  575. while (spte) {
  576. BUG_ON(!spte);
  577. BUG_ON(!(*spte & PT_PRESENT_MASK));
  578. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  579. if (is_writable_pte(*spte)) {
  580. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  581. write_protected = 1;
  582. }
  583. spte = rmap_next(kvm, rmapp, spte);
  584. }
  585. if (write_protected) {
  586. pfn_t pfn;
  587. spte = rmap_next(kvm, rmapp, NULL);
  588. pfn = spte_to_pfn(*spte);
  589. kvm_set_pfn_dirty(pfn);
  590. }
  591. /* check for huge page mappings */
  592. for (i = PT_DIRECTORY_LEVEL;
  593. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  594. rmapp = gfn_to_rmap(kvm, gfn, i);
  595. spte = rmap_next(kvm, rmapp, NULL);
  596. while (spte) {
  597. BUG_ON(!spte);
  598. BUG_ON(!(*spte & PT_PRESENT_MASK));
  599. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  600. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  601. if (is_writable_pte(*spte)) {
  602. rmap_remove(kvm, spte);
  603. --kvm->stat.lpages;
  604. __set_spte(spte, shadow_trap_nonpresent_pte);
  605. spte = NULL;
  606. write_protected = 1;
  607. }
  608. spte = rmap_next(kvm, rmapp, spte);
  609. }
  610. }
  611. return write_protected;
  612. }
  613. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  614. unsigned long data)
  615. {
  616. u64 *spte;
  617. int need_tlb_flush = 0;
  618. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  619. BUG_ON(!(*spte & PT_PRESENT_MASK));
  620. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  621. rmap_remove(kvm, spte);
  622. __set_spte(spte, shadow_trap_nonpresent_pte);
  623. need_tlb_flush = 1;
  624. }
  625. return need_tlb_flush;
  626. }
  627. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  628. unsigned long data)
  629. {
  630. int need_flush = 0;
  631. u64 *spte, new_spte;
  632. pte_t *ptep = (pte_t *)data;
  633. pfn_t new_pfn;
  634. WARN_ON(pte_huge(*ptep));
  635. new_pfn = pte_pfn(*ptep);
  636. spte = rmap_next(kvm, rmapp, NULL);
  637. while (spte) {
  638. BUG_ON(!is_shadow_present_pte(*spte));
  639. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  640. need_flush = 1;
  641. if (pte_write(*ptep)) {
  642. rmap_remove(kvm, spte);
  643. __set_spte(spte, shadow_trap_nonpresent_pte);
  644. spte = rmap_next(kvm, rmapp, NULL);
  645. } else {
  646. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  647. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  648. new_spte &= ~PT_WRITABLE_MASK;
  649. new_spte &= ~SPTE_HOST_WRITEABLE;
  650. if (is_writable_pte(*spte))
  651. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  652. __set_spte(spte, new_spte);
  653. spte = rmap_next(kvm, rmapp, spte);
  654. }
  655. }
  656. if (need_flush)
  657. kvm_flush_remote_tlbs(kvm);
  658. return 0;
  659. }
  660. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  661. unsigned long data,
  662. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  663. unsigned long data))
  664. {
  665. int i, j;
  666. int ret;
  667. int retval = 0;
  668. struct kvm_memslots *slots;
  669. slots = kvm_memslots(kvm);
  670. for (i = 0; i < slots->nmemslots; i++) {
  671. struct kvm_memory_slot *memslot = &slots->memslots[i];
  672. unsigned long start = memslot->userspace_addr;
  673. unsigned long end;
  674. end = start + (memslot->npages << PAGE_SHIFT);
  675. if (hva >= start && hva < end) {
  676. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  677. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  678. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  679. int idx = gfn_offset;
  680. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  681. ret |= handler(kvm,
  682. &memslot->lpage_info[j][idx].rmap_pde,
  683. data);
  684. }
  685. trace_kvm_age_page(hva, memslot, ret);
  686. retval |= ret;
  687. }
  688. }
  689. return retval;
  690. }
  691. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  692. {
  693. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  694. }
  695. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  696. {
  697. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  698. }
  699. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  700. unsigned long data)
  701. {
  702. u64 *spte;
  703. int young = 0;
  704. /*
  705. * Emulate the accessed bit for EPT, by checking if this page has
  706. * an EPT mapping, and clearing it if it does. On the next access,
  707. * a new EPT mapping will be established.
  708. * This has some overhead, but not as much as the cost of swapping
  709. * out actively used pages or breaking up actively used hugepages.
  710. */
  711. if (!shadow_accessed_mask)
  712. return kvm_unmap_rmapp(kvm, rmapp, data);
  713. spte = rmap_next(kvm, rmapp, NULL);
  714. while (spte) {
  715. int _young;
  716. u64 _spte = *spte;
  717. BUG_ON(!(_spte & PT_PRESENT_MASK));
  718. _young = _spte & PT_ACCESSED_MASK;
  719. if (_young) {
  720. young = 1;
  721. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  722. }
  723. spte = rmap_next(kvm, rmapp, spte);
  724. }
  725. return young;
  726. }
  727. #define RMAP_RECYCLE_THRESHOLD 1000
  728. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  729. {
  730. unsigned long *rmapp;
  731. struct kvm_mmu_page *sp;
  732. sp = page_header(__pa(spte));
  733. gfn = unalias_gfn(vcpu->kvm, gfn);
  734. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  735. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  736. kvm_flush_remote_tlbs(vcpu->kvm);
  737. }
  738. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  739. {
  740. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  741. }
  742. #ifdef MMU_DEBUG
  743. static int is_empty_shadow_page(u64 *spt)
  744. {
  745. u64 *pos;
  746. u64 *end;
  747. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  748. if (is_shadow_present_pte(*pos)) {
  749. printk(KERN_ERR "%s: %p %llx\n", __func__,
  750. pos, *pos);
  751. return 0;
  752. }
  753. return 1;
  754. }
  755. #endif
  756. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  757. {
  758. ASSERT(is_empty_shadow_page(sp->spt));
  759. list_del(&sp->link);
  760. __free_page(virt_to_page(sp->spt));
  761. __free_page(virt_to_page(sp->gfns));
  762. kmem_cache_free(mmu_page_header_cache, sp);
  763. ++kvm->arch.n_free_mmu_pages;
  764. }
  765. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  766. {
  767. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  768. }
  769. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  770. u64 *parent_pte)
  771. {
  772. struct kvm_mmu_page *sp;
  773. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  774. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  775. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  776. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  777. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  778. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  779. sp->multimapped = 0;
  780. sp->parent_pte = parent_pte;
  781. --vcpu->kvm->arch.n_free_mmu_pages;
  782. return sp;
  783. }
  784. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  785. struct kvm_mmu_page *sp, u64 *parent_pte)
  786. {
  787. struct kvm_pte_chain *pte_chain;
  788. struct hlist_node *node;
  789. int i;
  790. if (!parent_pte)
  791. return;
  792. if (!sp->multimapped) {
  793. u64 *old = sp->parent_pte;
  794. if (!old) {
  795. sp->parent_pte = parent_pte;
  796. return;
  797. }
  798. sp->multimapped = 1;
  799. pte_chain = mmu_alloc_pte_chain(vcpu);
  800. INIT_HLIST_HEAD(&sp->parent_ptes);
  801. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  802. pte_chain->parent_ptes[0] = old;
  803. }
  804. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  805. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  806. continue;
  807. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  808. if (!pte_chain->parent_ptes[i]) {
  809. pte_chain->parent_ptes[i] = parent_pte;
  810. return;
  811. }
  812. }
  813. pte_chain = mmu_alloc_pte_chain(vcpu);
  814. BUG_ON(!pte_chain);
  815. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  816. pte_chain->parent_ptes[0] = parent_pte;
  817. }
  818. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  819. u64 *parent_pte)
  820. {
  821. struct kvm_pte_chain *pte_chain;
  822. struct hlist_node *node;
  823. int i;
  824. if (!sp->multimapped) {
  825. BUG_ON(sp->parent_pte != parent_pte);
  826. sp->parent_pte = NULL;
  827. return;
  828. }
  829. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  830. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  831. if (!pte_chain->parent_ptes[i])
  832. break;
  833. if (pte_chain->parent_ptes[i] != parent_pte)
  834. continue;
  835. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  836. && pte_chain->parent_ptes[i + 1]) {
  837. pte_chain->parent_ptes[i]
  838. = pte_chain->parent_ptes[i + 1];
  839. ++i;
  840. }
  841. pte_chain->parent_ptes[i] = NULL;
  842. if (i == 0) {
  843. hlist_del(&pte_chain->link);
  844. mmu_free_pte_chain(pte_chain);
  845. if (hlist_empty(&sp->parent_ptes)) {
  846. sp->multimapped = 0;
  847. sp->parent_pte = NULL;
  848. }
  849. }
  850. return;
  851. }
  852. BUG();
  853. }
  854. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  855. {
  856. struct kvm_pte_chain *pte_chain;
  857. struct hlist_node *node;
  858. struct kvm_mmu_page *parent_sp;
  859. int i;
  860. if (!sp->multimapped && sp->parent_pte) {
  861. parent_sp = page_header(__pa(sp->parent_pte));
  862. fn(parent_sp);
  863. mmu_parent_walk(parent_sp, fn);
  864. return;
  865. }
  866. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  867. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  868. if (!pte_chain->parent_ptes[i])
  869. break;
  870. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  871. fn(parent_sp);
  872. mmu_parent_walk(parent_sp, fn);
  873. }
  874. }
  875. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  876. {
  877. unsigned int index;
  878. struct kvm_mmu_page *sp = page_header(__pa(spte));
  879. index = spte - sp->spt;
  880. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  881. sp->unsync_children++;
  882. WARN_ON(!sp->unsync_children);
  883. }
  884. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  885. {
  886. struct kvm_pte_chain *pte_chain;
  887. struct hlist_node *node;
  888. int i;
  889. if (!sp->parent_pte)
  890. return;
  891. if (!sp->multimapped) {
  892. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  893. return;
  894. }
  895. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  896. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  897. if (!pte_chain->parent_ptes[i])
  898. break;
  899. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  900. }
  901. }
  902. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  903. {
  904. kvm_mmu_update_parents_unsync(sp);
  905. return 1;
  906. }
  907. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  908. {
  909. mmu_parent_walk(sp, unsync_walk_fn);
  910. kvm_mmu_update_parents_unsync(sp);
  911. }
  912. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  913. struct kvm_mmu_page *sp)
  914. {
  915. int i;
  916. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  917. sp->spt[i] = shadow_trap_nonpresent_pte;
  918. }
  919. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  920. struct kvm_mmu_page *sp)
  921. {
  922. return 1;
  923. }
  924. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  925. {
  926. }
  927. #define KVM_PAGE_ARRAY_NR 16
  928. struct kvm_mmu_pages {
  929. struct mmu_page_and_offset {
  930. struct kvm_mmu_page *sp;
  931. unsigned int idx;
  932. } page[KVM_PAGE_ARRAY_NR];
  933. unsigned int nr;
  934. };
  935. #define for_each_unsync_children(bitmap, idx) \
  936. for (idx = find_first_bit(bitmap, 512); \
  937. idx < 512; \
  938. idx = find_next_bit(bitmap, 512, idx+1))
  939. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  940. int idx)
  941. {
  942. int i;
  943. if (sp->unsync)
  944. for (i=0; i < pvec->nr; i++)
  945. if (pvec->page[i].sp == sp)
  946. return 0;
  947. pvec->page[pvec->nr].sp = sp;
  948. pvec->page[pvec->nr].idx = idx;
  949. pvec->nr++;
  950. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  951. }
  952. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  953. struct kvm_mmu_pages *pvec)
  954. {
  955. int i, ret, nr_unsync_leaf = 0;
  956. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  957. u64 ent = sp->spt[i];
  958. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  959. struct kvm_mmu_page *child;
  960. child = page_header(ent & PT64_BASE_ADDR_MASK);
  961. if (child->unsync_children) {
  962. if (mmu_pages_add(pvec, child, i))
  963. return -ENOSPC;
  964. ret = __mmu_unsync_walk(child, pvec);
  965. if (!ret)
  966. __clear_bit(i, sp->unsync_child_bitmap);
  967. else if (ret > 0)
  968. nr_unsync_leaf += ret;
  969. else
  970. return ret;
  971. }
  972. if (child->unsync) {
  973. nr_unsync_leaf++;
  974. if (mmu_pages_add(pvec, child, i))
  975. return -ENOSPC;
  976. }
  977. }
  978. }
  979. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  980. sp->unsync_children = 0;
  981. return nr_unsync_leaf;
  982. }
  983. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  984. struct kvm_mmu_pages *pvec)
  985. {
  986. if (!sp->unsync_children)
  987. return 0;
  988. mmu_pages_add(pvec, sp, 0);
  989. return __mmu_unsync_walk(sp, pvec);
  990. }
  991. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  992. {
  993. unsigned index;
  994. struct hlist_head *bucket;
  995. struct kvm_mmu_page *sp;
  996. struct hlist_node *node;
  997. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  998. index = kvm_page_table_hashfn(gfn);
  999. bucket = &kvm->arch.mmu_page_hash[index];
  1000. hlist_for_each_entry(sp, node, bucket, hash_link)
  1001. if (sp->gfn == gfn && !sp->role.direct
  1002. && !sp->role.invalid) {
  1003. pgprintk("%s: found role %x\n",
  1004. __func__, sp->role.word);
  1005. return sp;
  1006. }
  1007. return NULL;
  1008. }
  1009. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1010. {
  1011. WARN_ON(!sp->unsync);
  1012. trace_kvm_mmu_sync_page(sp);
  1013. sp->unsync = 0;
  1014. --kvm->stat.mmu_unsync;
  1015. }
  1016. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1017. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1018. bool clear_unsync)
  1019. {
  1020. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1021. kvm_mmu_zap_page(vcpu->kvm, sp);
  1022. return 1;
  1023. }
  1024. if (clear_unsync) {
  1025. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1026. kvm_flush_remote_tlbs(vcpu->kvm);
  1027. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1028. }
  1029. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1030. kvm_mmu_zap_page(vcpu->kvm, sp);
  1031. return 1;
  1032. }
  1033. kvm_mmu_flush_tlb(vcpu);
  1034. return 0;
  1035. }
  1036. static void mmu_convert_notrap(struct kvm_mmu_page *sp);
  1037. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1038. struct kvm_mmu_page *sp)
  1039. {
  1040. int ret;
  1041. ret = __kvm_sync_page(vcpu, sp, false);
  1042. if (!ret)
  1043. mmu_convert_notrap(sp);
  1044. return ret;
  1045. }
  1046. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1047. {
  1048. return __kvm_sync_page(vcpu, sp, true);
  1049. }
  1050. struct mmu_page_path {
  1051. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1052. unsigned int idx[PT64_ROOT_LEVEL-1];
  1053. };
  1054. #define for_each_sp(pvec, sp, parents, i) \
  1055. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1056. sp = pvec.page[i].sp; \
  1057. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1058. i = mmu_pages_next(&pvec, &parents, i))
  1059. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1060. struct mmu_page_path *parents,
  1061. int i)
  1062. {
  1063. int n;
  1064. for (n = i+1; n < pvec->nr; n++) {
  1065. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1066. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1067. parents->idx[0] = pvec->page[n].idx;
  1068. return n;
  1069. }
  1070. parents->parent[sp->role.level-2] = sp;
  1071. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1072. }
  1073. return n;
  1074. }
  1075. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1076. {
  1077. struct kvm_mmu_page *sp;
  1078. unsigned int level = 0;
  1079. do {
  1080. unsigned int idx = parents->idx[level];
  1081. sp = parents->parent[level];
  1082. if (!sp)
  1083. return;
  1084. --sp->unsync_children;
  1085. WARN_ON((int)sp->unsync_children < 0);
  1086. __clear_bit(idx, sp->unsync_child_bitmap);
  1087. level++;
  1088. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1089. }
  1090. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1091. struct mmu_page_path *parents,
  1092. struct kvm_mmu_pages *pvec)
  1093. {
  1094. parents->parent[parent->role.level-1] = NULL;
  1095. pvec->nr = 0;
  1096. }
  1097. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1098. struct kvm_mmu_page *parent)
  1099. {
  1100. int i;
  1101. struct kvm_mmu_page *sp;
  1102. struct mmu_page_path parents;
  1103. struct kvm_mmu_pages pages;
  1104. kvm_mmu_pages_init(parent, &parents, &pages);
  1105. while (mmu_unsync_walk(parent, &pages)) {
  1106. int protected = 0;
  1107. for_each_sp(pages, sp, parents, i)
  1108. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1109. if (protected)
  1110. kvm_flush_remote_tlbs(vcpu->kvm);
  1111. for_each_sp(pages, sp, parents, i) {
  1112. kvm_sync_page(vcpu, sp);
  1113. mmu_pages_clear_parents(&parents);
  1114. }
  1115. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1116. kvm_mmu_pages_init(parent, &parents, &pages);
  1117. }
  1118. }
  1119. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1120. gfn_t gfn,
  1121. gva_t gaddr,
  1122. unsigned level,
  1123. int direct,
  1124. unsigned access,
  1125. u64 *parent_pte)
  1126. {
  1127. union kvm_mmu_page_role role;
  1128. unsigned index;
  1129. unsigned quadrant;
  1130. struct hlist_head *bucket;
  1131. struct kvm_mmu_page *sp, *unsync_sp = NULL;
  1132. struct hlist_node *node, *tmp;
  1133. role = vcpu->arch.mmu.base_role;
  1134. role.level = level;
  1135. role.direct = direct;
  1136. if (role.direct)
  1137. role.cr4_pae = 0;
  1138. role.access = access;
  1139. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1140. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1141. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1142. role.quadrant = quadrant;
  1143. }
  1144. index = kvm_page_table_hashfn(gfn);
  1145. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1146. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1147. if (sp->gfn == gfn) {
  1148. if (sp->unsync)
  1149. unsync_sp = sp;
  1150. if (sp->role.word != role.word)
  1151. continue;
  1152. if (!direct && unsync_sp &&
  1153. kvm_sync_page_transient(vcpu, unsync_sp)) {
  1154. unsync_sp = NULL;
  1155. break;
  1156. }
  1157. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1158. if (sp->unsync_children) {
  1159. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1160. kvm_mmu_mark_parents_unsync(sp);
  1161. } else if (sp->unsync)
  1162. kvm_mmu_mark_parents_unsync(sp);
  1163. trace_kvm_mmu_get_page(sp, false);
  1164. return sp;
  1165. }
  1166. if (!direct && unsync_sp)
  1167. kvm_sync_page(vcpu, unsync_sp);
  1168. ++vcpu->kvm->stat.mmu_cache_miss;
  1169. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1170. if (!sp)
  1171. return sp;
  1172. sp->gfn = gfn;
  1173. sp->role = role;
  1174. hlist_add_head(&sp->hash_link, bucket);
  1175. if (!direct) {
  1176. if (rmap_write_protect(vcpu->kvm, gfn))
  1177. kvm_flush_remote_tlbs(vcpu->kvm);
  1178. account_shadowed(vcpu->kvm, gfn);
  1179. }
  1180. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1181. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1182. else
  1183. nonpaging_prefetch_page(vcpu, sp);
  1184. trace_kvm_mmu_get_page(sp, true);
  1185. return sp;
  1186. }
  1187. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1188. struct kvm_vcpu *vcpu, u64 addr)
  1189. {
  1190. iterator->addr = addr;
  1191. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1192. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1193. if (iterator->level == PT32E_ROOT_LEVEL) {
  1194. iterator->shadow_addr
  1195. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1196. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1197. --iterator->level;
  1198. if (!iterator->shadow_addr)
  1199. iterator->level = 0;
  1200. }
  1201. }
  1202. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1203. {
  1204. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1205. return false;
  1206. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1207. if (is_large_pte(*iterator->sptep))
  1208. return false;
  1209. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1210. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1211. return true;
  1212. }
  1213. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1214. {
  1215. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1216. --iterator->level;
  1217. }
  1218. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1219. struct kvm_mmu_page *sp)
  1220. {
  1221. unsigned i;
  1222. u64 *pt;
  1223. u64 ent;
  1224. pt = sp->spt;
  1225. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1226. ent = pt[i];
  1227. if (is_shadow_present_pte(ent)) {
  1228. if (!is_last_spte(ent, sp->role.level)) {
  1229. ent &= PT64_BASE_ADDR_MASK;
  1230. mmu_page_remove_parent_pte(page_header(ent),
  1231. &pt[i]);
  1232. } else {
  1233. if (is_large_pte(ent))
  1234. --kvm->stat.lpages;
  1235. rmap_remove(kvm, &pt[i]);
  1236. }
  1237. }
  1238. pt[i] = shadow_trap_nonpresent_pte;
  1239. }
  1240. }
  1241. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1242. {
  1243. mmu_page_remove_parent_pte(sp, parent_pte);
  1244. }
  1245. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1246. {
  1247. int i;
  1248. struct kvm_vcpu *vcpu;
  1249. kvm_for_each_vcpu(i, vcpu, kvm)
  1250. vcpu->arch.last_pte_updated = NULL;
  1251. }
  1252. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1253. {
  1254. u64 *parent_pte;
  1255. while (sp->multimapped || sp->parent_pte) {
  1256. if (!sp->multimapped)
  1257. parent_pte = sp->parent_pte;
  1258. else {
  1259. struct kvm_pte_chain *chain;
  1260. chain = container_of(sp->parent_ptes.first,
  1261. struct kvm_pte_chain, link);
  1262. parent_pte = chain->parent_ptes[0];
  1263. }
  1264. BUG_ON(!parent_pte);
  1265. kvm_mmu_put_page(sp, parent_pte);
  1266. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1267. }
  1268. }
  1269. static int mmu_zap_unsync_children(struct kvm *kvm,
  1270. struct kvm_mmu_page *parent)
  1271. {
  1272. int i, zapped = 0;
  1273. struct mmu_page_path parents;
  1274. struct kvm_mmu_pages pages;
  1275. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1276. return 0;
  1277. kvm_mmu_pages_init(parent, &parents, &pages);
  1278. while (mmu_unsync_walk(parent, &pages)) {
  1279. struct kvm_mmu_page *sp;
  1280. for_each_sp(pages, sp, parents, i) {
  1281. kvm_mmu_zap_page(kvm, sp);
  1282. mmu_pages_clear_parents(&parents);
  1283. zapped++;
  1284. }
  1285. kvm_mmu_pages_init(parent, &parents, &pages);
  1286. }
  1287. return zapped;
  1288. }
  1289. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1290. {
  1291. int ret;
  1292. trace_kvm_mmu_zap_page(sp);
  1293. ++kvm->stat.mmu_shadow_zapped;
  1294. ret = mmu_zap_unsync_children(kvm, sp);
  1295. kvm_mmu_page_unlink_children(kvm, sp);
  1296. kvm_mmu_unlink_parents(kvm, sp);
  1297. kvm_flush_remote_tlbs(kvm);
  1298. if (!sp->role.invalid && !sp->role.direct)
  1299. unaccount_shadowed(kvm, sp->gfn);
  1300. if (sp->unsync)
  1301. kvm_unlink_unsync_page(kvm, sp);
  1302. if (!sp->root_count) {
  1303. /* Count self */
  1304. ret++;
  1305. hlist_del(&sp->hash_link);
  1306. kvm_mmu_free_page(kvm, sp);
  1307. } else {
  1308. sp->role.invalid = 1;
  1309. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1310. kvm_reload_remote_mmus(kvm);
  1311. }
  1312. kvm_mmu_reset_last_pte_updated(kvm);
  1313. return ret;
  1314. }
  1315. /*
  1316. * Changing the number of mmu pages allocated to the vm
  1317. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1318. */
  1319. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1320. {
  1321. int used_pages;
  1322. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1323. used_pages = max(0, used_pages);
  1324. /*
  1325. * If we set the number of mmu pages to be smaller be than the
  1326. * number of actived pages , we must to free some mmu pages before we
  1327. * change the value
  1328. */
  1329. if (used_pages > kvm_nr_mmu_pages) {
  1330. while (used_pages > kvm_nr_mmu_pages &&
  1331. !list_empty(&kvm->arch.active_mmu_pages)) {
  1332. struct kvm_mmu_page *page;
  1333. page = container_of(kvm->arch.active_mmu_pages.prev,
  1334. struct kvm_mmu_page, link);
  1335. used_pages -= kvm_mmu_zap_page(kvm, page);
  1336. }
  1337. kvm_nr_mmu_pages = used_pages;
  1338. kvm->arch.n_free_mmu_pages = 0;
  1339. }
  1340. else
  1341. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1342. - kvm->arch.n_alloc_mmu_pages;
  1343. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1344. }
  1345. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1346. {
  1347. unsigned index;
  1348. struct hlist_head *bucket;
  1349. struct kvm_mmu_page *sp;
  1350. struct hlist_node *node, *n;
  1351. int r;
  1352. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1353. r = 0;
  1354. index = kvm_page_table_hashfn(gfn);
  1355. bucket = &kvm->arch.mmu_page_hash[index];
  1356. restart:
  1357. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1358. if (sp->gfn == gfn && !sp->role.direct) {
  1359. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1360. sp->role.word);
  1361. r = 1;
  1362. if (kvm_mmu_zap_page(kvm, sp))
  1363. goto restart;
  1364. }
  1365. return r;
  1366. }
  1367. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1368. {
  1369. unsigned index;
  1370. struct hlist_head *bucket;
  1371. struct kvm_mmu_page *sp;
  1372. struct hlist_node *node, *nn;
  1373. index = kvm_page_table_hashfn(gfn);
  1374. bucket = &kvm->arch.mmu_page_hash[index];
  1375. restart:
  1376. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1377. if (sp->gfn == gfn && !sp->role.direct
  1378. && !sp->role.invalid) {
  1379. pgprintk("%s: zap %lx %x\n",
  1380. __func__, gfn, sp->role.word);
  1381. if (kvm_mmu_zap_page(kvm, sp))
  1382. goto restart;
  1383. }
  1384. }
  1385. }
  1386. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1387. {
  1388. int slot = memslot_id(kvm, gfn);
  1389. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1390. __set_bit(slot, sp->slot_bitmap);
  1391. }
  1392. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1393. {
  1394. int i;
  1395. u64 *pt = sp->spt;
  1396. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1397. return;
  1398. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1399. if (pt[i] == shadow_notrap_nonpresent_pte)
  1400. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1401. }
  1402. }
  1403. /*
  1404. * The function is based on mtrr_type_lookup() in
  1405. * arch/x86/kernel/cpu/mtrr/generic.c
  1406. */
  1407. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1408. u64 start, u64 end)
  1409. {
  1410. int i;
  1411. u64 base, mask;
  1412. u8 prev_match, curr_match;
  1413. int num_var_ranges = KVM_NR_VAR_MTRR;
  1414. if (!mtrr_state->enabled)
  1415. return 0xFF;
  1416. /* Make end inclusive end, instead of exclusive */
  1417. end--;
  1418. /* Look in fixed ranges. Just return the type as per start */
  1419. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1420. int idx;
  1421. if (start < 0x80000) {
  1422. idx = 0;
  1423. idx += (start >> 16);
  1424. return mtrr_state->fixed_ranges[idx];
  1425. } else if (start < 0xC0000) {
  1426. idx = 1 * 8;
  1427. idx += ((start - 0x80000) >> 14);
  1428. return mtrr_state->fixed_ranges[idx];
  1429. } else if (start < 0x1000000) {
  1430. idx = 3 * 8;
  1431. idx += ((start - 0xC0000) >> 12);
  1432. return mtrr_state->fixed_ranges[idx];
  1433. }
  1434. }
  1435. /*
  1436. * Look in variable ranges
  1437. * Look of multiple ranges matching this address and pick type
  1438. * as per MTRR precedence
  1439. */
  1440. if (!(mtrr_state->enabled & 2))
  1441. return mtrr_state->def_type;
  1442. prev_match = 0xFF;
  1443. for (i = 0; i < num_var_ranges; ++i) {
  1444. unsigned short start_state, end_state;
  1445. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1446. continue;
  1447. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1448. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1449. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1450. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1451. start_state = ((start & mask) == (base & mask));
  1452. end_state = ((end & mask) == (base & mask));
  1453. if (start_state != end_state)
  1454. return 0xFE;
  1455. if ((start & mask) != (base & mask))
  1456. continue;
  1457. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1458. if (prev_match == 0xFF) {
  1459. prev_match = curr_match;
  1460. continue;
  1461. }
  1462. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1463. curr_match == MTRR_TYPE_UNCACHABLE)
  1464. return MTRR_TYPE_UNCACHABLE;
  1465. if ((prev_match == MTRR_TYPE_WRBACK &&
  1466. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1467. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1468. curr_match == MTRR_TYPE_WRBACK)) {
  1469. prev_match = MTRR_TYPE_WRTHROUGH;
  1470. curr_match = MTRR_TYPE_WRTHROUGH;
  1471. }
  1472. if (prev_match != curr_match)
  1473. return MTRR_TYPE_UNCACHABLE;
  1474. }
  1475. if (prev_match != 0xFF)
  1476. return prev_match;
  1477. return mtrr_state->def_type;
  1478. }
  1479. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1480. {
  1481. u8 mtrr;
  1482. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1483. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1484. if (mtrr == 0xfe || mtrr == 0xff)
  1485. mtrr = MTRR_TYPE_WRBACK;
  1486. return mtrr;
  1487. }
  1488. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1489. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1490. {
  1491. unsigned index;
  1492. struct hlist_head *bucket;
  1493. struct kvm_mmu_page *s;
  1494. struct hlist_node *node, *n;
  1495. index = kvm_page_table_hashfn(sp->gfn);
  1496. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1497. /* don't unsync if pagetable is shadowed with multiple roles */
  1498. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1499. if (s->gfn != sp->gfn || s->role.direct)
  1500. continue;
  1501. if (s->role.word != sp->role.word)
  1502. return 1;
  1503. }
  1504. trace_kvm_mmu_unsync_page(sp);
  1505. ++vcpu->kvm->stat.mmu_unsync;
  1506. sp->unsync = 1;
  1507. kvm_mmu_mark_parents_unsync(sp);
  1508. mmu_convert_notrap(sp);
  1509. return 0;
  1510. }
  1511. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1512. bool can_unsync)
  1513. {
  1514. struct kvm_mmu_page *shadow;
  1515. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1516. if (shadow) {
  1517. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1518. return 1;
  1519. if (shadow->unsync)
  1520. return 0;
  1521. if (can_unsync && oos_shadow)
  1522. return kvm_unsync_page(vcpu, shadow);
  1523. return 1;
  1524. }
  1525. return 0;
  1526. }
  1527. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1528. unsigned pte_access, int user_fault,
  1529. int write_fault, int dirty, int level,
  1530. gfn_t gfn, pfn_t pfn, bool speculative,
  1531. bool can_unsync, bool reset_host_protection)
  1532. {
  1533. u64 spte;
  1534. int ret = 0;
  1535. /*
  1536. * We don't set the accessed bit, since we sometimes want to see
  1537. * whether the guest actually used the pte (in order to detect
  1538. * demand paging).
  1539. */
  1540. spte = shadow_base_present_pte | shadow_dirty_mask;
  1541. if (!speculative)
  1542. spte |= shadow_accessed_mask;
  1543. if (!dirty)
  1544. pte_access &= ~ACC_WRITE_MASK;
  1545. if (pte_access & ACC_EXEC_MASK)
  1546. spte |= shadow_x_mask;
  1547. else
  1548. spte |= shadow_nx_mask;
  1549. if (pte_access & ACC_USER_MASK)
  1550. spte |= shadow_user_mask;
  1551. if (level > PT_PAGE_TABLE_LEVEL)
  1552. spte |= PT_PAGE_SIZE_MASK;
  1553. if (tdp_enabled)
  1554. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1555. kvm_is_mmio_pfn(pfn));
  1556. if (reset_host_protection)
  1557. spte |= SPTE_HOST_WRITEABLE;
  1558. spte |= (u64)pfn << PAGE_SHIFT;
  1559. if ((pte_access & ACC_WRITE_MASK)
  1560. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1561. if (level > PT_PAGE_TABLE_LEVEL &&
  1562. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1563. ret = 1;
  1564. rmap_remove(vcpu->kvm, sptep);
  1565. spte = shadow_trap_nonpresent_pte;
  1566. goto set_pte;
  1567. }
  1568. spte |= PT_WRITABLE_MASK;
  1569. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1570. spte &= ~PT_USER_MASK;
  1571. /*
  1572. * Optimization: for pte sync, if spte was writable the hash
  1573. * lookup is unnecessary (and expensive). Write protection
  1574. * is responsibility of mmu_get_page / kvm_sync_page.
  1575. * Same reasoning can be applied to dirty page accounting.
  1576. */
  1577. if (!can_unsync && is_writable_pte(*sptep))
  1578. goto set_pte;
  1579. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1580. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1581. __func__, gfn);
  1582. ret = 1;
  1583. pte_access &= ~ACC_WRITE_MASK;
  1584. if (is_writable_pte(spte))
  1585. spte &= ~PT_WRITABLE_MASK;
  1586. }
  1587. }
  1588. if (pte_access & ACC_WRITE_MASK)
  1589. mark_page_dirty(vcpu->kvm, gfn);
  1590. set_pte:
  1591. __set_spte(sptep, spte);
  1592. return ret;
  1593. }
  1594. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1595. unsigned pt_access, unsigned pte_access,
  1596. int user_fault, int write_fault, int dirty,
  1597. int *ptwrite, int level, gfn_t gfn,
  1598. pfn_t pfn, bool speculative,
  1599. bool reset_host_protection)
  1600. {
  1601. int was_rmapped = 0;
  1602. int was_writable = is_writable_pte(*sptep);
  1603. int rmap_count;
  1604. pgprintk("%s: spte %llx access %x write_fault %d"
  1605. " user_fault %d gfn %lx\n",
  1606. __func__, *sptep, pt_access,
  1607. write_fault, user_fault, gfn);
  1608. if (is_rmap_spte(*sptep)) {
  1609. /*
  1610. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1611. * the parent of the now unreachable PTE.
  1612. */
  1613. if (level > PT_PAGE_TABLE_LEVEL &&
  1614. !is_large_pte(*sptep)) {
  1615. struct kvm_mmu_page *child;
  1616. u64 pte = *sptep;
  1617. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1618. mmu_page_remove_parent_pte(child, sptep);
  1619. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1620. kvm_flush_remote_tlbs(vcpu->kvm);
  1621. } else if (pfn != spte_to_pfn(*sptep)) {
  1622. pgprintk("hfn old %lx new %lx\n",
  1623. spte_to_pfn(*sptep), pfn);
  1624. rmap_remove(vcpu->kvm, sptep);
  1625. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1626. kvm_flush_remote_tlbs(vcpu->kvm);
  1627. } else
  1628. was_rmapped = 1;
  1629. }
  1630. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1631. dirty, level, gfn, pfn, speculative, true,
  1632. reset_host_protection)) {
  1633. if (write_fault)
  1634. *ptwrite = 1;
  1635. kvm_x86_ops->tlb_flush(vcpu);
  1636. }
  1637. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1638. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1639. is_large_pte(*sptep)? "2MB" : "4kB",
  1640. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1641. *sptep, sptep);
  1642. if (!was_rmapped && is_large_pte(*sptep))
  1643. ++vcpu->kvm->stat.lpages;
  1644. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1645. if (!was_rmapped) {
  1646. rmap_count = rmap_add(vcpu, sptep, gfn);
  1647. kvm_release_pfn_clean(pfn);
  1648. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1649. rmap_recycle(vcpu, sptep, gfn);
  1650. } else {
  1651. if (was_writable)
  1652. kvm_release_pfn_dirty(pfn);
  1653. else
  1654. kvm_release_pfn_clean(pfn);
  1655. }
  1656. if (speculative) {
  1657. vcpu->arch.last_pte_updated = sptep;
  1658. vcpu->arch.last_pte_gfn = gfn;
  1659. }
  1660. }
  1661. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1662. {
  1663. }
  1664. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1665. int level, gfn_t gfn, pfn_t pfn)
  1666. {
  1667. struct kvm_shadow_walk_iterator iterator;
  1668. struct kvm_mmu_page *sp;
  1669. int pt_write = 0;
  1670. gfn_t pseudo_gfn;
  1671. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1672. if (iterator.level == level) {
  1673. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1674. 0, write, 1, &pt_write,
  1675. level, gfn, pfn, false, true);
  1676. ++vcpu->stat.pf_fixed;
  1677. break;
  1678. }
  1679. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1680. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1681. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1682. iterator.level - 1,
  1683. 1, ACC_ALL, iterator.sptep);
  1684. if (!sp) {
  1685. pgprintk("nonpaging_map: ENOMEM\n");
  1686. kvm_release_pfn_clean(pfn);
  1687. return -ENOMEM;
  1688. }
  1689. __set_spte(iterator.sptep,
  1690. __pa(sp->spt)
  1691. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1692. | shadow_user_mask | shadow_x_mask);
  1693. }
  1694. }
  1695. return pt_write;
  1696. }
  1697. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1698. {
  1699. char buf[1];
  1700. void __user *hva;
  1701. int r;
  1702. /* Touch the page, so send SIGBUS */
  1703. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1704. r = copy_from_user(buf, hva, 1);
  1705. }
  1706. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1707. {
  1708. kvm_release_pfn_clean(pfn);
  1709. if (is_hwpoison_pfn(pfn)) {
  1710. kvm_send_hwpoison_signal(kvm, gfn);
  1711. return 0;
  1712. }
  1713. return 1;
  1714. }
  1715. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1716. {
  1717. int r;
  1718. int level;
  1719. pfn_t pfn;
  1720. unsigned long mmu_seq;
  1721. level = mapping_level(vcpu, gfn);
  1722. /*
  1723. * This path builds a PAE pagetable - so we can map 2mb pages at
  1724. * maximum. Therefore check if the level is larger than that.
  1725. */
  1726. if (level > PT_DIRECTORY_LEVEL)
  1727. level = PT_DIRECTORY_LEVEL;
  1728. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1729. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1730. smp_rmb();
  1731. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1732. /* mmio */
  1733. if (is_error_pfn(pfn))
  1734. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1735. spin_lock(&vcpu->kvm->mmu_lock);
  1736. if (mmu_notifier_retry(vcpu, mmu_seq))
  1737. goto out_unlock;
  1738. kvm_mmu_free_some_pages(vcpu);
  1739. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1740. spin_unlock(&vcpu->kvm->mmu_lock);
  1741. return r;
  1742. out_unlock:
  1743. spin_unlock(&vcpu->kvm->mmu_lock);
  1744. kvm_release_pfn_clean(pfn);
  1745. return 0;
  1746. }
  1747. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1748. {
  1749. int i;
  1750. struct kvm_mmu_page *sp;
  1751. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1752. return;
  1753. spin_lock(&vcpu->kvm->mmu_lock);
  1754. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1755. hpa_t root = vcpu->arch.mmu.root_hpa;
  1756. sp = page_header(root);
  1757. --sp->root_count;
  1758. if (!sp->root_count && sp->role.invalid)
  1759. kvm_mmu_zap_page(vcpu->kvm, sp);
  1760. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1761. spin_unlock(&vcpu->kvm->mmu_lock);
  1762. return;
  1763. }
  1764. for (i = 0; i < 4; ++i) {
  1765. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1766. if (root) {
  1767. root &= PT64_BASE_ADDR_MASK;
  1768. sp = page_header(root);
  1769. --sp->root_count;
  1770. if (!sp->root_count && sp->role.invalid)
  1771. kvm_mmu_zap_page(vcpu->kvm, sp);
  1772. }
  1773. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1774. }
  1775. spin_unlock(&vcpu->kvm->mmu_lock);
  1776. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1777. }
  1778. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1779. {
  1780. int ret = 0;
  1781. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1782. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1783. ret = 1;
  1784. }
  1785. return ret;
  1786. }
  1787. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1788. {
  1789. int i;
  1790. gfn_t root_gfn;
  1791. struct kvm_mmu_page *sp;
  1792. int direct = 0;
  1793. u64 pdptr;
  1794. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1795. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1796. hpa_t root = vcpu->arch.mmu.root_hpa;
  1797. ASSERT(!VALID_PAGE(root));
  1798. if (mmu_check_root(vcpu, root_gfn))
  1799. return 1;
  1800. if (tdp_enabled) {
  1801. direct = 1;
  1802. root_gfn = 0;
  1803. }
  1804. spin_lock(&vcpu->kvm->mmu_lock);
  1805. kvm_mmu_free_some_pages(vcpu);
  1806. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1807. PT64_ROOT_LEVEL, direct,
  1808. ACC_ALL, NULL);
  1809. root = __pa(sp->spt);
  1810. ++sp->root_count;
  1811. spin_unlock(&vcpu->kvm->mmu_lock);
  1812. vcpu->arch.mmu.root_hpa = root;
  1813. return 0;
  1814. }
  1815. direct = !is_paging(vcpu);
  1816. for (i = 0; i < 4; ++i) {
  1817. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1818. ASSERT(!VALID_PAGE(root));
  1819. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1820. pdptr = kvm_pdptr_read(vcpu, i);
  1821. if (!is_present_gpte(pdptr)) {
  1822. vcpu->arch.mmu.pae_root[i] = 0;
  1823. continue;
  1824. }
  1825. root_gfn = pdptr >> PAGE_SHIFT;
  1826. } else if (vcpu->arch.mmu.root_level == 0)
  1827. root_gfn = 0;
  1828. if (mmu_check_root(vcpu, root_gfn))
  1829. return 1;
  1830. if (tdp_enabled) {
  1831. direct = 1;
  1832. root_gfn = i << 30;
  1833. }
  1834. spin_lock(&vcpu->kvm->mmu_lock);
  1835. kvm_mmu_free_some_pages(vcpu);
  1836. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1837. PT32_ROOT_LEVEL, direct,
  1838. ACC_ALL, NULL);
  1839. root = __pa(sp->spt);
  1840. ++sp->root_count;
  1841. spin_unlock(&vcpu->kvm->mmu_lock);
  1842. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1843. }
  1844. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1845. return 0;
  1846. }
  1847. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1848. {
  1849. int i;
  1850. struct kvm_mmu_page *sp;
  1851. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1852. return;
  1853. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1854. hpa_t root = vcpu->arch.mmu.root_hpa;
  1855. sp = page_header(root);
  1856. mmu_sync_children(vcpu, sp);
  1857. return;
  1858. }
  1859. for (i = 0; i < 4; ++i) {
  1860. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1861. if (root && VALID_PAGE(root)) {
  1862. root &= PT64_BASE_ADDR_MASK;
  1863. sp = page_header(root);
  1864. mmu_sync_children(vcpu, sp);
  1865. }
  1866. }
  1867. }
  1868. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1869. {
  1870. spin_lock(&vcpu->kvm->mmu_lock);
  1871. mmu_sync_roots(vcpu);
  1872. spin_unlock(&vcpu->kvm->mmu_lock);
  1873. }
  1874. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1875. u32 access, u32 *error)
  1876. {
  1877. if (error)
  1878. *error = 0;
  1879. return vaddr;
  1880. }
  1881. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1882. u32 error_code)
  1883. {
  1884. gfn_t gfn;
  1885. int r;
  1886. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1887. r = mmu_topup_memory_caches(vcpu);
  1888. if (r)
  1889. return r;
  1890. ASSERT(vcpu);
  1891. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1892. gfn = gva >> PAGE_SHIFT;
  1893. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1894. error_code & PFERR_WRITE_MASK, gfn);
  1895. }
  1896. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1897. u32 error_code)
  1898. {
  1899. pfn_t pfn;
  1900. int r;
  1901. int level;
  1902. gfn_t gfn = gpa >> PAGE_SHIFT;
  1903. unsigned long mmu_seq;
  1904. ASSERT(vcpu);
  1905. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1906. r = mmu_topup_memory_caches(vcpu);
  1907. if (r)
  1908. return r;
  1909. level = mapping_level(vcpu, gfn);
  1910. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1911. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1912. smp_rmb();
  1913. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1914. if (is_error_pfn(pfn))
  1915. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1916. spin_lock(&vcpu->kvm->mmu_lock);
  1917. if (mmu_notifier_retry(vcpu, mmu_seq))
  1918. goto out_unlock;
  1919. kvm_mmu_free_some_pages(vcpu);
  1920. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1921. level, gfn, pfn);
  1922. spin_unlock(&vcpu->kvm->mmu_lock);
  1923. return r;
  1924. out_unlock:
  1925. spin_unlock(&vcpu->kvm->mmu_lock);
  1926. kvm_release_pfn_clean(pfn);
  1927. return 0;
  1928. }
  1929. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1930. {
  1931. mmu_free_roots(vcpu);
  1932. }
  1933. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1934. {
  1935. struct kvm_mmu *context = &vcpu->arch.mmu;
  1936. context->new_cr3 = nonpaging_new_cr3;
  1937. context->page_fault = nonpaging_page_fault;
  1938. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1939. context->free = nonpaging_free;
  1940. context->prefetch_page = nonpaging_prefetch_page;
  1941. context->sync_page = nonpaging_sync_page;
  1942. context->invlpg = nonpaging_invlpg;
  1943. context->root_level = 0;
  1944. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1945. context->root_hpa = INVALID_PAGE;
  1946. return 0;
  1947. }
  1948. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1949. {
  1950. ++vcpu->stat.tlb_flush;
  1951. kvm_x86_ops->tlb_flush(vcpu);
  1952. }
  1953. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1954. {
  1955. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1956. mmu_free_roots(vcpu);
  1957. }
  1958. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1959. u64 addr,
  1960. u32 err_code)
  1961. {
  1962. kvm_inject_page_fault(vcpu, addr, err_code);
  1963. }
  1964. static void paging_free(struct kvm_vcpu *vcpu)
  1965. {
  1966. nonpaging_free(vcpu);
  1967. }
  1968. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1969. {
  1970. int bit7;
  1971. bit7 = (gpte >> 7) & 1;
  1972. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1973. }
  1974. #define PTTYPE 64
  1975. #include "paging_tmpl.h"
  1976. #undef PTTYPE
  1977. #define PTTYPE 32
  1978. #include "paging_tmpl.h"
  1979. #undef PTTYPE
  1980. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1981. {
  1982. struct kvm_mmu *context = &vcpu->arch.mmu;
  1983. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1984. u64 exb_bit_rsvd = 0;
  1985. if (!is_nx(vcpu))
  1986. exb_bit_rsvd = rsvd_bits(63, 63);
  1987. switch (level) {
  1988. case PT32_ROOT_LEVEL:
  1989. /* no rsvd bits for 2 level 4K page table entries */
  1990. context->rsvd_bits_mask[0][1] = 0;
  1991. context->rsvd_bits_mask[0][0] = 0;
  1992. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1993. if (!is_pse(vcpu)) {
  1994. context->rsvd_bits_mask[1][1] = 0;
  1995. break;
  1996. }
  1997. if (is_cpuid_PSE36())
  1998. /* 36bits PSE 4MB page */
  1999. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2000. else
  2001. /* 32 bits PSE 4MB page */
  2002. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2003. break;
  2004. case PT32E_ROOT_LEVEL:
  2005. context->rsvd_bits_mask[0][2] =
  2006. rsvd_bits(maxphyaddr, 63) |
  2007. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2008. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2009. rsvd_bits(maxphyaddr, 62); /* PDE */
  2010. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2011. rsvd_bits(maxphyaddr, 62); /* PTE */
  2012. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2013. rsvd_bits(maxphyaddr, 62) |
  2014. rsvd_bits(13, 20); /* large page */
  2015. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2016. break;
  2017. case PT64_ROOT_LEVEL:
  2018. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2019. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2020. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2021. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2022. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2023. rsvd_bits(maxphyaddr, 51);
  2024. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2025. rsvd_bits(maxphyaddr, 51);
  2026. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2027. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2028. rsvd_bits(maxphyaddr, 51) |
  2029. rsvd_bits(13, 29);
  2030. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2031. rsvd_bits(maxphyaddr, 51) |
  2032. rsvd_bits(13, 20); /* large page */
  2033. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2034. break;
  2035. }
  2036. }
  2037. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2038. {
  2039. struct kvm_mmu *context = &vcpu->arch.mmu;
  2040. ASSERT(is_pae(vcpu));
  2041. context->new_cr3 = paging_new_cr3;
  2042. context->page_fault = paging64_page_fault;
  2043. context->gva_to_gpa = paging64_gva_to_gpa;
  2044. context->prefetch_page = paging64_prefetch_page;
  2045. context->sync_page = paging64_sync_page;
  2046. context->invlpg = paging64_invlpg;
  2047. context->free = paging_free;
  2048. context->root_level = level;
  2049. context->shadow_root_level = level;
  2050. context->root_hpa = INVALID_PAGE;
  2051. return 0;
  2052. }
  2053. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2054. {
  2055. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2056. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2057. }
  2058. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2059. {
  2060. struct kvm_mmu *context = &vcpu->arch.mmu;
  2061. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2062. context->new_cr3 = paging_new_cr3;
  2063. context->page_fault = paging32_page_fault;
  2064. context->gva_to_gpa = paging32_gva_to_gpa;
  2065. context->free = paging_free;
  2066. context->prefetch_page = paging32_prefetch_page;
  2067. context->sync_page = paging32_sync_page;
  2068. context->invlpg = paging32_invlpg;
  2069. context->root_level = PT32_ROOT_LEVEL;
  2070. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2071. context->root_hpa = INVALID_PAGE;
  2072. return 0;
  2073. }
  2074. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2075. {
  2076. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2077. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2078. }
  2079. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2080. {
  2081. struct kvm_mmu *context = &vcpu->arch.mmu;
  2082. context->new_cr3 = nonpaging_new_cr3;
  2083. context->page_fault = tdp_page_fault;
  2084. context->free = nonpaging_free;
  2085. context->prefetch_page = nonpaging_prefetch_page;
  2086. context->sync_page = nonpaging_sync_page;
  2087. context->invlpg = nonpaging_invlpg;
  2088. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2089. context->root_hpa = INVALID_PAGE;
  2090. if (!is_paging(vcpu)) {
  2091. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2092. context->root_level = 0;
  2093. } else if (is_long_mode(vcpu)) {
  2094. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2095. context->gva_to_gpa = paging64_gva_to_gpa;
  2096. context->root_level = PT64_ROOT_LEVEL;
  2097. } else if (is_pae(vcpu)) {
  2098. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2099. context->gva_to_gpa = paging64_gva_to_gpa;
  2100. context->root_level = PT32E_ROOT_LEVEL;
  2101. } else {
  2102. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2103. context->gva_to_gpa = paging32_gva_to_gpa;
  2104. context->root_level = PT32_ROOT_LEVEL;
  2105. }
  2106. return 0;
  2107. }
  2108. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2109. {
  2110. int r;
  2111. ASSERT(vcpu);
  2112. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2113. if (!is_paging(vcpu))
  2114. r = nonpaging_init_context(vcpu);
  2115. else if (is_long_mode(vcpu))
  2116. r = paging64_init_context(vcpu);
  2117. else if (is_pae(vcpu))
  2118. r = paging32E_init_context(vcpu);
  2119. else
  2120. r = paging32_init_context(vcpu);
  2121. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2122. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2123. return r;
  2124. }
  2125. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2126. {
  2127. vcpu->arch.update_pte.pfn = bad_pfn;
  2128. if (tdp_enabled)
  2129. return init_kvm_tdp_mmu(vcpu);
  2130. else
  2131. return init_kvm_softmmu(vcpu);
  2132. }
  2133. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2134. {
  2135. ASSERT(vcpu);
  2136. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2137. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2138. vcpu->arch.mmu.free(vcpu);
  2139. }
  2140. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2141. {
  2142. destroy_kvm_mmu(vcpu);
  2143. return init_kvm_mmu(vcpu);
  2144. }
  2145. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2146. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2147. {
  2148. int r;
  2149. r = mmu_topup_memory_caches(vcpu);
  2150. if (r)
  2151. goto out;
  2152. r = mmu_alloc_roots(vcpu);
  2153. spin_lock(&vcpu->kvm->mmu_lock);
  2154. mmu_sync_roots(vcpu);
  2155. spin_unlock(&vcpu->kvm->mmu_lock);
  2156. if (r)
  2157. goto out;
  2158. /* set_cr3() should ensure TLB has been flushed */
  2159. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2160. out:
  2161. return r;
  2162. }
  2163. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2164. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2165. {
  2166. mmu_free_roots(vcpu);
  2167. }
  2168. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2169. struct kvm_mmu_page *sp,
  2170. u64 *spte)
  2171. {
  2172. u64 pte;
  2173. struct kvm_mmu_page *child;
  2174. pte = *spte;
  2175. if (is_shadow_present_pte(pte)) {
  2176. if (is_last_spte(pte, sp->role.level))
  2177. rmap_remove(vcpu->kvm, spte);
  2178. else {
  2179. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2180. mmu_page_remove_parent_pte(child, spte);
  2181. }
  2182. }
  2183. __set_spte(spte, shadow_trap_nonpresent_pte);
  2184. if (is_large_pte(pte))
  2185. --vcpu->kvm->stat.lpages;
  2186. }
  2187. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2188. struct kvm_mmu_page *sp,
  2189. u64 *spte,
  2190. const void *new)
  2191. {
  2192. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2193. ++vcpu->kvm->stat.mmu_pde_zapped;
  2194. return;
  2195. }
  2196. ++vcpu->kvm->stat.mmu_pte_updated;
  2197. if (!sp->role.cr4_pae)
  2198. paging32_update_pte(vcpu, sp, spte, new);
  2199. else
  2200. paging64_update_pte(vcpu, sp, spte, new);
  2201. }
  2202. static bool need_remote_flush(u64 old, u64 new)
  2203. {
  2204. if (!is_shadow_present_pte(old))
  2205. return false;
  2206. if (!is_shadow_present_pte(new))
  2207. return true;
  2208. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2209. return true;
  2210. old ^= PT64_NX_MASK;
  2211. new ^= PT64_NX_MASK;
  2212. return (old & ~new & PT64_PERM_MASK) != 0;
  2213. }
  2214. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2215. {
  2216. if (need_remote_flush(old, new))
  2217. kvm_flush_remote_tlbs(vcpu->kvm);
  2218. else
  2219. kvm_mmu_flush_tlb(vcpu);
  2220. }
  2221. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2222. {
  2223. u64 *spte = vcpu->arch.last_pte_updated;
  2224. return !!(spte && (*spte & shadow_accessed_mask));
  2225. }
  2226. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2227. u64 gpte)
  2228. {
  2229. gfn_t gfn;
  2230. pfn_t pfn;
  2231. if (!is_present_gpte(gpte))
  2232. return;
  2233. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2234. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2235. smp_rmb();
  2236. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2237. if (is_error_pfn(pfn)) {
  2238. kvm_release_pfn_clean(pfn);
  2239. return;
  2240. }
  2241. vcpu->arch.update_pte.gfn = gfn;
  2242. vcpu->arch.update_pte.pfn = pfn;
  2243. }
  2244. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2245. {
  2246. u64 *spte = vcpu->arch.last_pte_updated;
  2247. if (spte
  2248. && vcpu->arch.last_pte_gfn == gfn
  2249. && shadow_accessed_mask
  2250. && !(*spte & shadow_accessed_mask)
  2251. && is_shadow_present_pte(*spte))
  2252. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2253. }
  2254. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2255. const u8 *new, int bytes,
  2256. bool guest_initiated)
  2257. {
  2258. gfn_t gfn = gpa >> PAGE_SHIFT;
  2259. struct kvm_mmu_page *sp;
  2260. struct hlist_node *node, *n;
  2261. struct hlist_head *bucket;
  2262. unsigned index;
  2263. u64 entry, gentry;
  2264. u64 *spte;
  2265. unsigned offset = offset_in_page(gpa);
  2266. unsigned pte_size;
  2267. unsigned page_offset;
  2268. unsigned misaligned;
  2269. unsigned quadrant;
  2270. int level;
  2271. int flooded = 0;
  2272. int npte;
  2273. int r;
  2274. int invlpg_counter;
  2275. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2276. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2277. /*
  2278. * Assume that the pte write on a page table of the same type
  2279. * as the current vcpu paging mode. This is nearly always true
  2280. * (might be false while changing modes). Note it is verified later
  2281. * by update_pte().
  2282. */
  2283. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2284. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2285. if (is_pae(vcpu)) {
  2286. gpa &= ~(gpa_t)7;
  2287. bytes = 8;
  2288. }
  2289. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2290. if (r)
  2291. gentry = 0;
  2292. new = (const u8 *)&gentry;
  2293. }
  2294. switch (bytes) {
  2295. case 4:
  2296. gentry = *(const u32 *)new;
  2297. break;
  2298. case 8:
  2299. gentry = *(const u64 *)new;
  2300. break;
  2301. default:
  2302. gentry = 0;
  2303. break;
  2304. }
  2305. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2306. spin_lock(&vcpu->kvm->mmu_lock);
  2307. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2308. gentry = 0;
  2309. kvm_mmu_access_page(vcpu, gfn);
  2310. kvm_mmu_free_some_pages(vcpu);
  2311. ++vcpu->kvm->stat.mmu_pte_write;
  2312. kvm_mmu_audit(vcpu, "pre pte write");
  2313. if (guest_initiated) {
  2314. if (gfn == vcpu->arch.last_pt_write_gfn
  2315. && !last_updated_pte_accessed(vcpu)) {
  2316. ++vcpu->arch.last_pt_write_count;
  2317. if (vcpu->arch.last_pt_write_count >= 3)
  2318. flooded = 1;
  2319. } else {
  2320. vcpu->arch.last_pt_write_gfn = gfn;
  2321. vcpu->arch.last_pt_write_count = 1;
  2322. vcpu->arch.last_pte_updated = NULL;
  2323. }
  2324. }
  2325. index = kvm_page_table_hashfn(gfn);
  2326. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2327. restart:
  2328. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2329. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2330. continue;
  2331. pte_size = sp->role.cr4_pae ? 8 : 4;
  2332. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2333. misaligned |= bytes < 4;
  2334. if (misaligned || flooded) {
  2335. /*
  2336. * Misaligned accesses are too much trouble to fix
  2337. * up; also, they usually indicate a page is not used
  2338. * as a page table.
  2339. *
  2340. * If we're seeing too many writes to a page,
  2341. * it may no longer be a page table, or we may be
  2342. * forking, in which case it is better to unmap the
  2343. * page.
  2344. */
  2345. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2346. gpa, bytes, sp->role.word);
  2347. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2348. goto restart;
  2349. ++vcpu->kvm->stat.mmu_flooded;
  2350. continue;
  2351. }
  2352. page_offset = offset;
  2353. level = sp->role.level;
  2354. npte = 1;
  2355. if (!sp->role.cr4_pae) {
  2356. page_offset <<= 1; /* 32->64 */
  2357. /*
  2358. * A 32-bit pde maps 4MB while the shadow pdes map
  2359. * only 2MB. So we need to double the offset again
  2360. * and zap two pdes instead of one.
  2361. */
  2362. if (level == PT32_ROOT_LEVEL) {
  2363. page_offset &= ~7; /* kill rounding error */
  2364. page_offset <<= 1;
  2365. npte = 2;
  2366. }
  2367. quadrant = page_offset >> PAGE_SHIFT;
  2368. page_offset &= ~PAGE_MASK;
  2369. if (quadrant != sp->role.quadrant)
  2370. continue;
  2371. }
  2372. spte = &sp->spt[page_offset / sizeof(*spte)];
  2373. while (npte--) {
  2374. entry = *spte;
  2375. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2376. if (gentry)
  2377. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2378. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2379. ++spte;
  2380. }
  2381. }
  2382. kvm_mmu_audit(vcpu, "post pte write");
  2383. spin_unlock(&vcpu->kvm->mmu_lock);
  2384. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2385. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2386. vcpu->arch.update_pte.pfn = bad_pfn;
  2387. }
  2388. }
  2389. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2390. {
  2391. gpa_t gpa;
  2392. int r;
  2393. if (tdp_enabled)
  2394. return 0;
  2395. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2396. spin_lock(&vcpu->kvm->mmu_lock);
  2397. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2398. spin_unlock(&vcpu->kvm->mmu_lock);
  2399. return r;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2402. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2403. {
  2404. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2405. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2406. struct kvm_mmu_page *sp;
  2407. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2408. struct kvm_mmu_page, link);
  2409. kvm_mmu_zap_page(vcpu->kvm, sp);
  2410. ++vcpu->kvm->stat.mmu_recycled;
  2411. }
  2412. }
  2413. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2414. {
  2415. int r;
  2416. enum emulation_result er;
  2417. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2418. if (r < 0)
  2419. goto out;
  2420. if (!r) {
  2421. r = 1;
  2422. goto out;
  2423. }
  2424. r = mmu_topup_memory_caches(vcpu);
  2425. if (r)
  2426. goto out;
  2427. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2428. switch (er) {
  2429. case EMULATE_DONE:
  2430. return 1;
  2431. case EMULATE_DO_MMIO:
  2432. ++vcpu->stat.mmio_exits;
  2433. /* fall through */
  2434. case EMULATE_FAIL:
  2435. return 0;
  2436. default:
  2437. BUG();
  2438. }
  2439. out:
  2440. return r;
  2441. }
  2442. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2443. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2444. {
  2445. vcpu->arch.mmu.invlpg(vcpu, gva);
  2446. kvm_mmu_flush_tlb(vcpu);
  2447. ++vcpu->stat.invlpg;
  2448. }
  2449. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2450. void kvm_enable_tdp(void)
  2451. {
  2452. tdp_enabled = true;
  2453. }
  2454. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2455. void kvm_disable_tdp(void)
  2456. {
  2457. tdp_enabled = false;
  2458. }
  2459. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2460. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2461. {
  2462. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2463. }
  2464. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2465. {
  2466. struct page *page;
  2467. int i;
  2468. ASSERT(vcpu);
  2469. /*
  2470. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2471. * Therefore we need to allocate shadow page tables in the first
  2472. * 4GB of memory, which happens to fit the DMA32 zone.
  2473. */
  2474. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2475. if (!page)
  2476. return -ENOMEM;
  2477. vcpu->arch.mmu.pae_root = page_address(page);
  2478. for (i = 0; i < 4; ++i)
  2479. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2480. return 0;
  2481. }
  2482. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2483. {
  2484. ASSERT(vcpu);
  2485. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2486. return alloc_mmu_pages(vcpu);
  2487. }
  2488. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2489. {
  2490. ASSERT(vcpu);
  2491. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2492. return init_kvm_mmu(vcpu);
  2493. }
  2494. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2495. {
  2496. ASSERT(vcpu);
  2497. destroy_kvm_mmu(vcpu);
  2498. free_mmu_pages(vcpu);
  2499. mmu_free_memory_caches(vcpu);
  2500. }
  2501. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2502. {
  2503. struct kvm_mmu_page *sp;
  2504. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2505. int i;
  2506. u64 *pt;
  2507. if (!test_bit(slot, sp->slot_bitmap))
  2508. continue;
  2509. pt = sp->spt;
  2510. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2511. /* avoid RMW */
  2512. if (pt[i] & PT_WRITABLE_MASK)
  2513. pt[i] &= ~PT_WRITABLE_MASK;
  2514. }
  2515. kvm_flush_remote_tlbs(kvm);
  2516. }
  2517. void kvm_mmu_zap_all(struct kvm *kvm)
  2518. {
  2519. struct kvm_mmu_page *sp, *node;
  2520. spin_lock(&kvm->mmu_lock);
  2521. restart:
  2522. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2523. if (kvm_mmu_zap_page(kvm, sp))
  2524. goto restart;
  2525. spin_unlock(&kvm->mmu_lock);
  2526. kvm_flush_remote_tlbs(kvm);
  2527. }
  2528. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
  2529. {
  2530. struct kvm_mmu_page *page;
  2531. page = container_of(kvm->arch.active_mmu_pages.prev,
  2532. struct kvm_mmu_page, link);
  2533. return kvm_mmu_zap_page(kvm, page);
  2534. }
  2535. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2536. {
  2537. struct kvm *kvm;
  2538. struct kvm *kvm_freed = NULL;
  2539. int cache_count = 0;
  2540. spin_lock(&kvm_lock);
  2541. list_for_each_entry(kvm, &vm_list, vm_list) {
  2542. int npages, idx, freed_pages;
  2543. idx = srcu_read_lock(&kvm->srcu);
  2544. spin_lock(&kvm->mmu_lock);
  2545. npages = kvm->arch.n_alloc_mmu_pages -
  2546. kvm->arch.n_free_mmu_pages;
  2547. cache_count += npages;
  2548. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2549. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
  2550. cache_count -= freed_pages;
  2551. kvm_freed = kvm;
  2552. }
  2553. nr_to_scan--;
  2554. spin_unlock(&kvm->mmu_lock);
  2555. srcu_read_unlock(&kvm->srcu, idx);
  2556. }
  2557. if (kvm_freed)
  2558. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2559. spin_unlock(&kvm_lock);
  2560. return cache_count;
  2561. }
  2562. static struct shrinker mmu_shrinker = {
  2563. .shrink = mmu_shrink,
  2564. .seeks = DEFAULT_SEEKS * 10,
  2565. };
  2566. static void mmu_destroy_caches(void)
  2567. {
  2568. if (pte_chain_cache)
  2569. kmem_cache_destroy(pte_chain_cache);
  2570. if (rmap_desc_cache)
  2571. kmem_cache_destroy(rmap_desc_cache);
  2572. if (mmu_page_header_cache)
  2573. kmem_cache_destroy(mmu_page_header_cache);
  2574. }
  2575. void kvm_mmu_module_exit(void)
  2576. {
  2577. mmu_destroy_caches();
  2578. unregister_shrinker(&mmu_shrinker);
  2579. }
  2580. int kvm_mmu_module_init(void)
  2581. {
  2582. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2583. sizeof(struct kvm_pte_chain),
  2584. 0, 0, NULL);
  2585. if (!pte_chain_cache)
  2586. goto nomem;
  2587. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2588. sizeof(struct kvm_rmap_desc),
  2589. 0, 0, NULL);
  2590. if (!rmap_desc_cache)
  2591. goto nomem;
  2592. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2593. sizeof(struct kvm_mmu_page),
  2594. 0, 0, NULL);
  2595. if (!mmu_page_header_cache)
  2596. goto nomem;
  2597. register_shrinker(&mmu_shrinker);
  2598. return 0;
  2599. nomem:
  2600. mmu_destroy_caches();
  2601. return -ENOMEM;
  2602. }
  2603. /*
  2604. * Caculate mmu pages needed for kvm.
  2605. */
  2606. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2607. {
  2608. int i;
  2609. unsigned int nr_mmu_pages;
  2610. unsigned int nr_pages = 0;
  2611. struct kvm_memslots *slots;
  2612. slots = kvm_memslots(kvm);
  2613. for (i = 0; i < slots->nmemslots; i++)
  2614. nr_pages += slots->memslots[i].npages;
  2615. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2616. nr_mmu_pages = max(nr_mmu_pages,
  2617. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2618. return nr_mmu_pages;
  2619. }
  2620. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2621. unsigned len)
  2622. {
  2623. if (len > buffer->len)
  2624. return NULL;
  2625. return buffer->ptr;
  2626. }
  2627. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2628. unsigned len)
  2629. {
  2630. void *ret;
  2631. ret = pv_mmu_peek_buffer(buffer, len);
  2632. if (!ret)
  2633. return ret;
  2634. buffer->ptr += len;
  2635. buffer->len -= len;
  2636. buffer->processed += len;
  2637. return ret;
  2638. }
  2639. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2640. gpa_t addr, gpa_t value)
  2641. {
  2642. int bytes = 8;
  2643. int r;
  2644. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2645. bytes = 4;
  2646. r = mmu_topup_memory_caches(vcpu);
  2647. if (r)
  2648. return r;
  2649. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2650. return -EFAULT;
  2651. return 1;
  2652. }
  2653. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2654. {
  2655. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2656. return 1;
  2657. }
  2658. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2659. {
  2660. spin_lock(&vcpu->kvm->mmu_lock);
  2661. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2662. spin_unlock(&vcpu->kvm->mmu_lock);
  2663. return 1;
  2664. }
  2665. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2666. struct kvm_pv_mmu_op_buffer *buffer)
  2667. {
  2668. struct kvm_mmu_op_header *header;
  2669. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2670. if (!header)
  2671. return 0;
  2672. switch (header->op) {
  2673. case KVM_MMU_OP_WRITE_PTE: {
  2674. struct kvm_mmu_op_write_pte *wpte;
  2675. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2676. if (!wpte)
  2677. return 0;
  2678. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2679. wpte->pte_val);
  2680. }
  2681. case KVM_MMU_OP_FLUSH_TLB: {
  2682. struct kvm_mmu_op_flush_tlb *ftlb;
  2683. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2684. if (!ftlb)
  2685. return 0;
  2686. return kvm_pv_mmu_flush_tlb(vcpu);
  2687. }
  2688. case KVM_MMU_OP_RELEASE_PT: {
  2689. struct kvm_mmu_op_release_pt *rpt;
  2690. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2691. if (!rpt)
  2692. return 0;
  2693. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2694. }
  2695. default: return 0;
  2696. }
  2697. }
  2698. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2699. gpa_t addr, unsigned long *ret)
  2700. {
  2701. int r;
  2702. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2703. buffer->ptr = buffer->buf;
  2704. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2705. buffer->processed = 0;
  2706. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2707. if (r)
  2708. goto out;
  2709. while (buffer->len) {
  2710. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2711. if (r < 0)
  2712. goto out;
  2713. if (r == 0)
  2714. break;
  2715. }
  2716. r = 1;
  2717. out:
  2718. *ret = buffer->processed;
  2719. return r;
  2720. }
  2721. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2722. {
  2723. struct kvm_shadow_walk_iterator iterator;
  2724. int nr_sptes = 0;
  2725. spin_lock(&vcpu->kvm->mmu_lock);
  2726. for_each_shadow_entry(vcpu, addr, iterator) {
  2727. sptes[iterator.level-1] = *iterator.sptep;
  2728. nr_sptes++;
  2729. if (!is_shadow_present_pte(*iterator.sptep))
  2730. break;
  2731. }
  2732. spin_unlock(&vcpu->kvm->mmu_lock);
  2733. return nr_sptes;
  2734. }
  2735. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2736. #ifdef AUDIT
  2737. static const char *audit_msg;
  2738. static gva_t canonicalize(gva_t gva)
  2739. {
  2740. #ifdef CONFIG_X86_64
  2741. gva = (long long)(gva << 16) >> 16;
  2742. #endif
  2743. return gva;
  2744. }
  2745. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2746. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2747. inspect_spte_fn fn)
  2748. {
  2749. int i;
  2750. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2751. u64 ent = sp->spt[i];
  2752. if (is_shadow_present_pte(ent)) {
  2753. if (!is_last_spte(ent, sp->role.level)) {
  2754. struct kvm_mmu_page *child;
  2755. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2756. __mmu_spte_walk(kvm, child, fn);
  2757. } else
  2758. fn(kvm, &sp->spt[i]);
  2759. }
  2760. }
  2761. }
  2762. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2763. {
  2764. int i;
  2765. struct kvm_mmu_page *sp;
  2766. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2767. return;
  2768. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2769. hpa_t root = vcpu->arch.mmu.root_hpa;
  2770. sp = page_header(root);
  2771. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2772. return;
  2773. }
  2774. for (i = 0; i < 4; ++i) {
  2775. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2776. if (root && VALID_PAGE(root)) {
  2777. root &= PT64_BASE_ADDR_MASK;
  2778. sp = page_header(root);
  2779. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2780. }
  2781. }
  2782. return;
  2783. }
  2784. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2785. gva_t va, int level)
  2786. {
  2787. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2788. int i;
  2789. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2790. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2791. u64 ent = pt[i];
  2792. if (ent == shadow_trap_nonpresent_pte)
  2793. continue;
  2794. va = canonicalize(va);
  2795. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2796. audit_mappings_page(vcpu, ent, va, level - 1);
  2797. else {
  2798. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2799. gfn_t gfn = gpa >> PAGE_SHIFT;
  2800. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2801. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2802. if (is_error_pfn(pfn)) {
  2803. kvm_release_pfn_clean(pfn);
  2804. continue;
  2805. }
  2806. if (is_shadow_present_pte(ent)
  2807. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2808. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2809. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2810. audit_msg, vcpu->arch.mmu.root_level,
  2811. va, gpa, hpa, ent,
  2812. is_shadow_present_pte(ent));
  2813. else if (ent == shadow_notrap_nonpresent_pte
  2814. && !is_error_hpa(hpa))
  2815. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2816. " valid guest gva %lx\n", audit_msg, va);
  2817. kvm_release_pfn_clean(pfn);
  2818. }
  2819. }
  2820. }
  2821. static void audit_mappings(struct kvm_vcpu *vcpu)
  2822. {
  2823. unsigned i;
  2824. if (vcpu->arch.mmu.root_level == 4)
  2825. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2826. else
  2827. for (i = 0; i < 4; ++i)
  2828. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2829. audit_mappings_page(vcpu,
  2830. vcpu->arch.mmu.pae_root[i],
  2831. i << 30,
  2832. 2);
  2833. }
  2834. static int count_rmaps(struct kvm_vcpu *vcpu)
  2835. {
  2836. struct kvm *kvm = vcpu->kvm;
  2837. struct kvm_memslots *slots;
  2838. int nmaps = 0;
  2839. int i, j, k, idx;
  2840. idx = srcu_read_lock(&kvm->srcu);
  2841. slots = kvm_memslots(kvm);
  2842. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2843. struct kvm_memory_slot *m = &slots->memslots[i];
  2844. struct kvm_rmap_desc *d;
  2845. for (j = 0; j < m->npages; ++j) {
  2846. unsigned long *rmapp = &m->rmap[j];
  2847. if (!*rmapp)
  2848. continue;
  2849. if (!(*rmapp & 1)) {
  2850. ++nmaps;
  2851. continue;
  2852. }
  2853. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2854. while (d) {
  2855. for (k = 0; k < RMAP_EXT; ++k)
  2856. if (d->sptes[k])
  2857. ++nmaps;
  2858. else
  2859. break;
  2860. d = d->more;
  2861. }
  2862. }
  2863. }
  2864. srcu_read_unlock(&kvm->srcu, idx);
  2865. return nmaps;
  2866. }
  2867. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2868. {
  2869. unsigned long *rmapp;
  2870. struct kvm_mmu_page *rev_sp;
  2871. gfn_t gfn;
  2872. if (*sptep & PT_WRITABLE_MASK) {
  2873. rev_sp = page_header(__pa(sptep));
  2874. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2875. if (!gfn_to_memslot(kvm, gfn)) {
  2876. if (!printk_ratelimit())
  2877. return;
  2878. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2879. audit_msg, gfn);
  2880. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2881. audit_msg, (long int)(sptep - rev_sp->spt),
  2882. rev_sp->gfn);
  2883. dump_stack();
  2884. return;
  2885. }
  2886. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2887. rev_sp->role.level);
  2888. if (!*rmapp) {
  2889. if (!printk_ratelimit())
  2890. return;
  2891. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2892. audit_msg, *sptep);
  2893. dump_stack();
  2894. }
  2895. }
  2896. }
  2897. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2898. {
  2899. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2900. }
  2901. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2902. {
  2903. struct kvm_mmu_page *sp;
  2904. int i;
  2905. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2906. u64 *pt = sp->spt;
  2907. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2908. continue;
  2909. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2910. u64 ent = pt[i];
  2911. if (!(ent & PT_PRESENT_MASK))
  2912. continue;
  2913. if (!(ent & PT_WRITABLE_MASK))
  2914. continue;
  2915. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2916. }
  2917. }
  2918. return;
  2919. }
  2920. static void audit_rmap(struct kvm_vcpu *vcpu)
  2921. {
  2922. check_writable_mappings_rmap(vcpu);
  2923. count_rmaps(vcpu);
  2924. }
  2925. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2926. {
  2927. struct kvm_mmu_page *sp;
  2928. struct kvm_memory_slot *slot;
  2929. unsigned long *rmapp;
  2930. u64 *spte;
  2931. gfn_t gfn;
  2932. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2933. if (sp->role.direct)
  2934. continue;
  2935. if (sp->unsync)
  2936. continue;
  2937. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2938. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2939. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2940. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2941. while (spte) {
  2942. if (*spte & PT_WRITABLE_MASK)
  2943. printk(KERN_ERR "%s: (%s) shadow page has "
  2944. "writable mappings: gfn %lx role %x\n",
  2945. __func__, audit_msg, sp->gfn,
  2946. sp->role.word);
  2947. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2948. }
  2949. }
  2950. }
  2951. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2952. {
  2953. int olddbg = dbg;
  2954. dbg = 0;
  2955. audit_msg = msg;
  2956. audit_rmap(vcpu);
  2957. audit_write_protection(vcpu);
  2958. if (strcmp("pre pte write", audit_msg) != 0)
  2959. audit_mappings(vcpu);
  2960. audit_writable_sptes_have_rmaps(vcpu);
  2961. dbg = olddbg;
  2962. }
  2963. #endif