core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/io.h>
  32. #include <linux/gfp.h>
  33. #include <asm/clkdev.h>
  34. #include <asm/system.h>
  35. #include <asm/irq.h>
  36. #include <asm/leds.h>
  37. #include <asm/hardware/arm_timer.h>
  38. #include <asm/hardware/icst.h>
  39. #include <asm/hardware/vic.h>
  40. #include <asm/mach-types.h>
  41. #include <asm/mach/arch.h>
  42. #include <asm/mach/flash.h>
  43. #include <asm/mach/irq.h>
  44. #include <asm/mach/time.h>
  45. #include <asm/mach/map.h>
  46. #include <mach/clkdev.h>
  47. #include <mach/hardware.h>
  48. #include <mach/platform.h>
  49. #include <plat/timer-sp.h>
  50. #include "core.h"
  51. /*
  52. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  53. * is the (PA >> 12).
  54. *
  55. * Setup a VA for the Versatile Vectored Interrupt Controller.
  56. */
  57. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  58. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  59. static void sic_mask_irq(unsigned int irq)
  60. {
  61. irq -= IRQ_SIC_START;
  62. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  63. }
  64. static void sic_unmask_irq(unsigned int irq)
  65. {
  66. irq -= IRQ_SIC_START;
  67. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  68. }
  69. static struct irq_chip sic_chip = {
  70. .name = "SIC",
  71. .ack = sic_mask_irq,
  72. .mask = sic_mask_irq,
  73. .unmask = sic_unmask_irq,
  74. };
  75. static void
  76. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  77. {
  78. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  79. if (status == 0) {
  80. do_bad_IRQ(irq, desc);
  81. return;
  82. }
  83. do {
  84. irq = ffs(status) - 1;
  85. status &= ~(1 << irq);
  86. irq += IRQ_SIC_START;
  87. generic_handle_irq(irq);
  88. } while (status);
  89. }
  90. #if 1
  91. #define IRQ_MMCI0A IRQ_VICSOURCE22
  92. #define IRQ_AACI IRQ_VICSOURCE24
  93. #define IRQ_ETH IRQ_VICSOURCE25
  94. #define PIC_MASK 0xFFD00000
  95. #else
  96. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  97. #define IRQ_AACI IRQ_SIC_AACI
  98. #define IRQ_ETH IRQ_SIC_ETH
  99. #define PIC_MASK 0
  100. #endif
  101. void __init versatile_init_irq(void)
  102. {
  103. unsigned int i;
  104. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  105. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  106. /* Do second interrupt controller */
  107. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  108. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  109. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  110. set_irq_chip(i, &sic_chip);
  111. set_irq_handler(i, handle_level_irq);
  112. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  113. }
  114. }
  115. /*
  116. * Interrupts on secondary controller from 0 to 8 are routed to
  117. * source 31 on PIC.
  118. * Interrupts from 21 to 31 are routed directly to the VIC on
  119. * the corresponding number on primary controller. This is controlled
  120. * by setting PIC_ENABLEx.
  121. */
  122. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  123. }
  124. static struct map_desc versatile_io_desc[] __initdata = {
  125. {
  126. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  127. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  132. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  133. .length = SZ_4K,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  137. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  138. .length = SZ_4K,
  139. .type = MT_DEVICE
  140. }, {
  141. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  142. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  143. .length = SZ_4K * 9,
  144. .type = MT_DEVICE
  145. },
  146. #ifdef CONFIG_MACH_VERSATILE_AB
  147. {
  148. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  149. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  150. .length = SZ_4K,
  151. .type = MT_DEVICE
  152. }, {
  153. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  154. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  155. .length = SZ_64M,
  156. .type = MT_DEVICE
  157. },
  158. #endif
  159. #ifdef CONFIG_DEBUG_LL
  160. {
  161. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  162. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  163. .length = SZ_4K,
  164. .type = MT_DEVICE
  165. },
  166. #endif
  167. #ifdef CONFIG_PCI
  168. {
  169. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  170. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  171. .length = SZ_4K,
  172. .type = MT_DEVICE
  173. }, {
  174. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  175. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  176. .length = VERSATILE_PCI_BASE_SIZE,
  177. .type = MT_DEVICE
  178. }, {
  179. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  180. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  181. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  182. .type = MT_DEVICE
  183. },
  184. #if 0
  185. {
  186. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  187. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  188. .length = SZ_16M,
  189. .type = MT_DEVICE
  190. }, {
  191. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  192. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  193. .length = SZ_16M,
  194. .type = MT_DEVICE
  195. }, {
  196. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  197. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  198. .length = SZ_16M,
  199. .type = MT_DEVICE
  200. },
  201. #endif
  202. #endif
  203. };
  204. void __init versatile_map_io(void)
  205. {
  206. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  207. }
  208. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  209. static int versatile_flash_init(void)
  210. {
  211. u32 val;
  212. val = __raw_readl(VERSATILE_FLASHCTRL);
  213. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  214. __raw_writel(val, VERSATILE_FLASHCTRL);
  215. return 0;
  216. }
  217. static void versatile_flash_exit(void)
  218. {
  219. u32 val;
  220. val = __raw_readl(VERSATILE_FLASHCTRL);
  221. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  222. __raw_writel(val, VERSATILE_FLASHCTRL);
  223. }
  224. static void versatile_flash_set_vpp(int on)
  225. {
  226. u32 val;
  227. val = __raw_readl(VERSATILE_FLASHCTRL);
  228. if (on)
  229. val |= VERSATILE_FLASHPROG_FLVPPEN;
  230. else
  231. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  232. __raw_writel(val, VERSATILE_FLASHCTRL);
  233. }
  234. static struct flash_platform_data versatile_flash_data = {
  235. .map_name = "cfi_probe",
  236. .width = 4,
  237. .init = versatile_flash_init,
  238. .exit = versatile_flash_exit,
  239. .set_vpp = versatile_flash_set_vpp,
  240. };
  241. static struct resource versatile_flash_resource = {
  242. .start = VERSATILE_FLASH_BASE,
  243. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  244. .flags = IORESOURCE_MEM,
  245. };
  246. static struct platform_device versatile_flash_device = {
  247. .name = "armflash",
  248. .id = 0,
  249. .dev = {
  250. .platform_data = &versatile_flash_data,
  251. },
  252. .num_resources = 1,
  253. .resource = &versatile_flash_resource,
  254. };
  255. static struct resource smc91x_resources[] = {
  256. [0] = {
  257. .start = VERSATILE_ETH_BASE,
  258. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  259. .flags = IORESOURCE_MEM,
  260. },
  261. [1] = {
  262. .start = IRQ_ETH,
  263. .end = IRQ_ETH,
  264. .flags = IORESOURCE_IRQ,
  265. },
  266. };
  267. static struct platform_device smc91x_device = {
  268. .name = "smc91x",
  269. .id = 0,
  270. .num_resources = ARRAY_SIZE(smc91x_resources),
  271. .resource = smc91x_resources,
  272. };
  273. static struct resource versatile_i2c_resource = {
  274. .start = VERSATILE_I2C_BASE,
  275. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  276. .flags = IORESOURCE_MEM,
  277. };
  278. static struct platform_device versatile_i2c_device = {
  279. .name = "versatile-i2c",
  280. .id = 0,
  281. .num_resources = 1,
  282. .resource = &versatile_i2c_resource,
  283. };
  284. static struct i2c_board_info versatile_i2c_board_info[] = {
  285. {
  286. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  287. },
  288. };
  289. static int __init versatile_i2c_init(void)
  290. {
  291. return i2c_register_board_info(0, versatile_i2c_board_info,
  292. ARRAY_SIZE(versatile_i2c_board_info));
  293. }
  294. arch_initcall(versatile_i2c_init);
  295. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  296. unsigned int mmc_status(struct device *dev)
  297. {
  298. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  299. u32 mask;
  300. if (adev->res.start == VERSATILE_MMCI0_BASE)
  301. mask = 1;
  302. else
  303. mask = 2;
  304. return readl(VERSATILE_SYSMCI) & mask;
  305. }
  306. static struct mmci_platform_data mmc0_plat_data = {
  307. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  308. .status = mmc_status,
  309. .gpio_wp = -1,
  310. .gpio_cd = -1,
  311. };
  312. /*
  313. * Clock handling
  314. */
  315. static const struct icst_params versatile_oscvco_params = {
  316. .ref = 24000000,
  317. .vco_max = ICST307_VCO_MAX,
  318. .vco_min = ICST307_VCO_MIN,
  319. .vd_min = 4 + 8,
  320. .vd_max = 511 + 8,
  321. .rd_min = 1 + 2,
  322. .rd_max = 127 + 2,
  323. .s2div = icst307_s2div,
  324. .idx2s = icst307_idx2s,
  325. };
  326. static void versatile_oscvco_set(struct clk *clk, struct icst_vco vco)
  327. {
  328. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  329. u32 val;
  330. val = readl(clk->vcoreg) & ~0x7ffff;
  331. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  332. writel(0xa05f, sys_lock);
  333. writel(val, clk->vcoreg);
  334. writel(0, sys_lock);
  335. }
  336. static const struct clk_ops osc4_clk_ops = {
  337. .round = icst_clk_round,
  338. .set = icst_clk_set,
  339. .setvco = versatile_oscvco_set,
  340. };
  341. static struct clk osc4_clk = {
  342. .ops = &osc4_clk_ops,
  343. .params = &versatile_oscvco_params,
  344. };
  345. /*
  346. * These are fixed clocks.
  347. */
  348. static struct clk ref24_clk = {
  349. .rate = 24000000,
  350. };
  351. static struct clk_lookup lookups[] = {
  352. { /* UART0 */
  353. .dev_id = "dev:f1",
  354. .clk = &ref24_clk,
  355. }, { /* UART1 */
  356. .dev_id = "dev:f2",
  357. .clk = &ref24_clk,
  358. }, { /* UART2 */
  359. .dev_id = "dev:f3",
  360. .clk = &ref24_clk,
  361. }, { /* UART3 */
  362. .dev_id = "fpga:09",
  363. .clk = &ref24_clk,
  364. }, { /* KMI0 */
  365. .dev_id = "fpga:06",
  366. .clk = &ref24_clk,
  367. }, { /* KMI1 */
  368. .dev_id = "fpga:07",
  369. .clk = &ref24_clk,
  370. }, { /* MMC0 */
  371. .dev_id = "fpga:05",
  372. .clk = &ref24_clk,
  373. }, { /* MMC1 */
  374. .dev_id = "fpga:0b",
  375. .clk = &ref24_clk,
  376. }, { /* CLCD */
  377. .dev_id = "dev:20",
  378. .clk = &osc4_clk,
  379. }
  380. };
  381. /*
  382. * CLCD support.
  383. */
  384. #define SYS_CLCD_MODE_MASK (3 << 0)
  385. #define SYS_CLCD_MODE_888 (0 << 0)
  386. #define SYS_CLCD_MODE_5551 (1 << 0)
  387. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  388. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  389. #define SYS_CLCD_NLCDIOON (1 << 2)
  390. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  391. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  392. #define SYS_CLCD_ID_MASK (0x1f << 8)
  393. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  394. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  395. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  396. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  397. #define SYS_CLCD_ID_VGA (0x1f << 8)
  398. static struct clcd_panel vga = {
  399. .mode = {
  400. .name = "VGA",
  401. .refresh = 60,
  402. .xres = 640,
  403. .yres = 480,
  404. .pixclock = 39721,
  405. .left_margin = 40,
  406. .right_margin = 24,
  407. .upper_margin = 32,
  408. .lower_margin = 11,
  409. .hsync_len = 96,
  410. .vsync_len = 2,
  411. .sync = 0,
  412. .vmode = FB_VMODE_NONINTERLACED,
  413. },
  414. .width = -1,
  415. .height = -1,
  416. .tim2 = TIM2_BCD | TIM2_IPC,
  417. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  418. .bpp = 16,
  419. };
  420. static struct clcd_panel sanyo_3_8_in = {
  421. .mode = {
  422. .name = "Sanyo QVGA",
  423. .refresh = 116,
  424. .xres = 320,
  425. .yres = 240,
  426. .pixclock = 100000,
  427. .left_margin = 6,
  428. .right_margin = 6,
  429. .upper_margin = 5,
  430. .lower_margin = 5,
  431. .hsync_len = 6,
  432. .vsync_len = 6,
  433. .sync = 0,
  434. .vmode = FB_VMODE_NONINTERLACED,
  435. },
  436. .width = -1,
  437. .height = -1,
  438. .tim2 = TIM2_BCD,
  439. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  440. .bpp = 16,
  441. };
  442. static struct clcd_panel sanyo_2_5_in = {
  443. .mode = {
  444. .name = "Sanyo QVGA Portrait",
  445. .refresh = 116,
  446. .xres = 240,
  447. .yres = 320,
  448. .pixclock = 100000,
  449. .left_margin = 20,
  450. .right_margin = 10,
  451. .upper_margin = 2,
  452. .lower_margin = 2,
  453. .hsync_len = 10,
  454. .vsync_len = 2,
  455. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  456. .vmode = FB_VMODE_NONINTERLACED,
  457. },
  458. .width = -1,
  459. .height = -1,
  460. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  461. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  462. .bpp = 16,
  463. };
  464. static struct clcd_panel epson_2_2_in = {
  465. .mode = {
  466. .name = "Epson QCIF",
  467. .refresh = 390,
  468. .xres = 176,
  469. .yres = 220,
  470. .pixclock = 62500,
  471. .left_margin = 3,
  472. .right_margin = 2,
  473. .upper_margin = 1,
  474. .lower_margin = 0,
  475. .hsync_len = 3,
  476. .vsync_len = 2,
  477. .sync = 0,
  478. .vmode = FB_VMODE_NONINTERLACED,
  479. },
  480. .width = -1,
  481. .height = -1,
  482. .tim2 = TIM2_BCD | TIM2_IPC,
  483. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  484. .bpp = 16,
  485. };
  486. /*
  487. * Detect which LCD panel is connected, and return the appropriate
  488. * clcd_panel structure. Note: we do not have any information on
  489. * the required timings for the 8.4in panel, so we presently assume
  490. * VGA timings.
  491. */
  492. static struct clcd_panel *versatile_clcd_panel(void)
  493. {
  494. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  495. struct clcd_panel *panel = &vga;
  496. u32 val;
  497. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  498. if (val == SYS_CLCD_ID_SANYO_3_8)
  499. panel = &sanyo_3_8_in;
  500. else if (val == SYS_CLCD_ID_SANYO_2_5)
  501. panel = &sanyo_2_5_in;
  502. else if (val == SYS_CLCD_ID_EPSON_2_2)
  503. panel = &epson_2_2_in;
  504. else if (val == SYS_CLCD_ID_VGA)
  505. panel = &vga;
  506. else {
  507. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  508. val);
  509. panel = &vga;
  510. }
  511. return panel;
  512. }
  513. /*
  514. * Disable all display connectors on the interface module.
  515. */
  516. static void versatile_clcd_disable(struct clcd_fb *fb)
  517. {
  518. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  519. u32 val;
  520. val = readl(sys_clcd);
  521. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  522. writel(val, sys_clcd);
  523. #ifdef CONFIG_MACH_VERSATILE_AB
  524. /*
  525. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  526. */
  527. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  528. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  529. unsigned long ctrl;
  530. ctrl = readl(versatile_ib2_ctrl);
  531. ctrl &= ~0x01;
  532. writel(ctrl, versatile_ib2_ctrl);
  533. }
  534. #endif
  535. }
  536. /*
  537. * Enable the relevant connector on the interface module.
  538. */
  539. static void versatile_clcd_enable(struct clcd_fb *fb)
  540. {
  541. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  542. u32 val;
  543. val = readl(sys_clcd);
  544. val &= ~SYS_CLCD_MODE_MASK;
  545. switch (fb->fb.var.green.length) {
  546. case 5:
  547. val |= SYS_CLCD_MODE_5551;
  548. break;
  549. case 6:
  550. val |= SYS_CLCD_MODE_565_RLSB;
  551. break;
  552. case 8:
  553. val |= SYS_CLCD_MODE_888;
  554. break;
  555. }
  556. /*
  557. * Set the MUX
  558. */
  559. writel(val, sys_clcd);
  560. /*
  561. * And now enable the PSUs
  562. */
  563. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  564. writel(val, sys_clcd);
  565. #ifdef CONFIG_MACH_VERSATILE_AB
  566. /*
  567. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  568. */
  569. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  570. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  571. unsigned long ctrl;
  572. ctrl = readl(versatile_ib2_ctrl);
  573. ctrl |= 0x01;
  574. writel(ctrl, versatile_ib2_ctrl);
  575. }
  576. #endif
  577. }
  578. static unsigned long framesize = SZ_1M;
  579. static int versatile_clcd_setup(struct clcd_fb *fb)
  580. {
  581. dma_addr_t dma;
  582. fb->panel = versatile_clcd_panel();
  583. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  584. &dma, GFP_KERNEL);
  585. if (!fb->fb.screen_base) {
  586. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  587. return -ENOMEM;
  588. }
  589. fb->fb.fix.smem_start = dma;
  590. fb->fb.fix.smem_len = framesize;
  591. return 0;
  592. }
  593. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  594. {
  595. return dma_mmap_writecombine(&fb->dev->dev, vma,
  596. fb->fb.screen_base,
  597. fb->fb.fix.smem_start,
  598. fb->fb.fix.smem_len);
  599. }
  600. static void versatile_clcd_remove(struct clcd_fb *fb)
  601. {
  602. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  603. fb->fb.screen_base, fb->fb.fix.smem_start);
  604. }
  605. static struct clcd_board clcd_plat_data = {
  606. .name = "Versatile",
  607. .check = clcdfb_check,
  608. .decode = clcdfb_decode,
  609. .disable = versatile_clcd_disable,
  610. .enable = versatile_clcd_enable,
  611. .setup = versatile_clcd_setup,
  612. .mmap = versatile_clcd_mmap,
  613. .remove = versatile_clcd_remove,
  614. };
  615. static struct pl061_platform_data gpio0_plat_data = {
  616. .gpio_base = 0,
  617. .irq_base = IRQ_GPIO0_START,
  618. };
  619. static struct pl061_platform_data gpio1_plat_data = {
  620. .gpio_base = 8,
  621. .irq_base = IRQ_GPIO1_START,
  622. };
  623. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  624. #define AACI_DMA { 0x80, 0x81 }
  625. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  626. #define MMCI0_DMA { 0x84, 0 }
  627. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  628. #define KMI0_DMA { 0, 0 }
  629. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  630. #define KMI1_DMA { 0, 0 }
  631. /*
  632. * These devices are connected directly to the multi-layer AHB switch
  633. */
  634. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  635. #define SMC_DMA { 0, 0 }
  636. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  637. #define MPMC_DMA { 0, 0 }
  638. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  639. #define CLCD_DMA { 0, 0 }
  640. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  641. #define DMAC_DMA { 0, 0 }
  642. /*
  643. * These devices are connected via the core APB bridge
  644. */
  645. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  646. #define SCTL_DMA { 0, 0 }
  647. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  648. #define WATCHDOG_DMA { 0, 0 }
  649. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  650. #define GPIO0_DMA { 0, 0 }
  651. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  652. #define GPIO1_DMA { 0, 0 }
  653. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  654. #define RTC_DMA { 0, 0 }
  655. /*
  656. * These devices are connected via the DMA APB bridge
  657. */
  658. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  659. #define SCI_DMA { 7, 6 }
  660. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  661. #define UART0_DMA { 15, 14 }
  662. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  663. #define UART1_DMA { 13, 12 }
  664. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  665. #define UART2_DMA { 11, 10 }
  666. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  667. #define SSP_DMA { 9, 8 }
  668. /* FPGA Primecells */
  669. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  670. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  671. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  672. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  673. /* DevChip Primecells */
  674. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  675. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  676. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  677. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  678. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  679. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  680. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  681. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  682. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  683. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  684. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  685. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  686. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  687. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  688. static struct amba_device *amba_devs[] __initdata = {
  689. &dmac_device,
  690. &uart0_device,
  691. &uart1_device,
  692. &uart2_device,
  693. &smc_device,
  694. &mpmc_device,
  695. &clcd_device,
  696. &sctl_device,
  697. &wdog_device,
  698. &gpio0_device,
  699. &gpio1_device,
  700. &rtc_device,
  701. &sci0_device,
  702. &ssp0_device,
  703. &aaci_device,
  704. &mmc0_device,
  705. &kmi0_device,
  706. &kmi1_device,
  707. };
  708. #ifdef CONFIG_LEDS
  709. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  710. static void versatile_leds_event(led_event_t ledevt)
  711. {
  712. unsigned long flags;
  713. u32 val;
  714. local_irq_save(flags);
  715. val = readl(VA_LEDS_BASE);
  716. switch (ledevt) {
  717. case led_idle_start:
  718. val = val & ~VERSATILE_SYS_LED0;
  719. break;
  720. case led_idle_end:
  721. val = val | VERSATILE_SYS_LED0;
  722. break;
  723. case led_timer:
  724. val = val ^ VERSATILE_SYS_LED1;
  725. break;
  726. case led_halted:
  727. val = 0;
  728. break;
  729. default:
  730. break;
  731. }
  732. writel(val, VA_LEDS_BASE);
  733. local_irq_restore(flags);
  734. }
  735. #endif /* CONFIG_LEDS */
  736. void __init versatile_init(void)
  737. {
  738. int i;
  739. osc4_clk.vcoreg = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
  740. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  741. platform_device_register(&versatile_flash_device);
  742. platform_device_register(&versatile_i2c_device);
  743. platform_device_register(&smc91x_device);
  744. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  745. struct amba_device *d = amba_devs[i];
  746. amba_device_register(d, &iomem_resource);
  747. }
  748. #ifdef CONFIG_LEDS
  749. leds_event = versatile_leds_event;
  750. #endif
  751. }
  752. /*
  753. * Where is the timer (VA)?
  754. */
  755. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  756. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  757. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  758. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  759. /*
  760. * Set up timer interrupt, and return the current time in seconds.
  761. */
  762. static void __init versatile_timer_init(void)
  763. {
  764. u32 val;
  765. /*
  766. * set clock frequency:
  767. * VERSATILE_REFCLK is 32KHz
  768. * VERSATILE_TIMCLK is 1MHz
  769. */
  770. val = readl(__io_address(VERSATILE_SCTL_BASE));
  771. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  772. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  773. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  774. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  775. __io_address(VERSATILE_SCTL_BASE));
  776. /*
  777. * Initialise to a known state (all timers off)
  778. */
  779. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  780. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  781. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  782. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  783. sp804_clocksource_init(TIMER3_VA_BASE);
  784. sp804_clockevents_init(TIMER0_VA_BASE, IRQ_TIMERINT0_1);
  785. }
  786. struct sys_timer versatile_timer = {
  787. .init = versatile_timer_init,
  788. };