rt2500usb.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Allow hardware encryption to be disabled.
  33. */
  34. static int modparam_nohwcrypt = 0;
  35. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  36. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  37. /*
  38. * Register access.
  39. * All access to the CSR registers will go through the methods
  40. * rt2500usb_register_read and rt2500usb_register_write.
  41. * BBP and RF register require indirect register access,
  42. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  43. * These indirect registers work with busy bits,
  44. * and we will try maximal REGISTER_BUSY_COUNT times to access
  45. * the register while taking a REGISTER_BUSY_DELAY us delay
  46. * between each attampt. When the busy bit is still set at that time,
  47. * the access attempt is considered to have failed,
  48. * and we will print an error.
  49. * If the csr_mutex is already held then the _lock variants must
  50. * be used instead.
  51. */
  52. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  53. const unsigned int offset,
  54. u16 *value)
  55. {
  56. __le16 reg;
  57. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  58. USB_VENDOR_REQUEST_IN, offset,
  59. &reg, sizeof(reg), REGISTER_TIMEOUT);
  60. *value = le16_to_cpu(reg);
  61. }
  62. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  63. const unsigned int offset,
  64. u16 *value)
  65. {
  66. __le16 reg;
  67. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  68. USB_VENDOR_REQUEST_IN, offset,
  69. &reg, sizeof(reg), REGISTER_TIMEOUT);
  70. *value = le16_to_cpu(reg);
  71. }
  72. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  73. const unsigned int offset,
  74. void *value, const u16 length)
  75. {
  76. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  77. USB_VENDOR_REQUEST_IN, offset,
  78. value, length,
  79. REGISTER_TIMEOUT16(length));
  80. }
  81. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  82. const unsigned int offset,
  83. u16 value)
  84. {
  85. __le16 reg = cpu_to_le16(value);
  86. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  87. USB_VENDOR_REQUEST_OUT, offset,
  88. &reg, sizeof(reg), REGISTER_TIMEOUT);
  89. }
  90. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  91. const unsigned int offset,
  92. u16 value)
  93. {
  94. __le16 reg = cpu_to_le16(value);
  95. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  96. USB_VENDOR_REQUEST_OUT, offset,
  97. &reg, sizeof(reg), REGISTER_TIMEOUT);
  98. }
  99. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  100. const unsigned int offset,
  101. void *value, const u16 length)
  102. {
  103. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  104. USB_VENDOR_REQUEST_OUT, offset,
  105. value, length,
  106. REGISTER_TIMEOUT16(length));
  107. }
  108. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  109. const unsigned int offset,
  110. struct rt2x00_field16 field,
  111. u16 *reg)
  112. {
  113. unsigned int i;
  114. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  115. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  116. if (!rt2x00_get_field16(*reg, field))
  117. return 1;
  118. udelay(REGISTER_BUSY_DELAY);
  119. }
  120. ERROR(rt2x00dev, "Indirect register access failed: "
  121. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  122. *reg = ~0;
  123. return 0;
  124. }
  125. #define WAIT_FOR_BBP(__dev, __reg) \
  126. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  127. #define WAIT_FOR_RF(__dev, __reg) \
  128. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  129. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  130. const unsigned int word, const u8 value)
  131. {
  132. u16 reg;
  133. mutex_lock(&rt2x00dev->csr_mutex);
  134. /*
  135. * Wait until the BBP becomes available, afterwards we
  136. * can safely write the new data into the register.
  137. */
  138. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  139. reg = 0;
  140. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  141. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  142. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  143. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  144. }
  145. mutex_unlock(&rt2x00dev->csr_mutex);
  146. }
  147. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  148. const unsigned int word, u8 *value)
  149. {
  150. u16 reg;
  151. mutex_lock(&rt2x00dev->csr_mutex);
  152. /*
  153. * Wait until the BBP becomes available, afterwards we
  154. * can safely write the read request into the register.
  155. * After the data has been written, we wait until hardware
  156. * returns the correct value, if at any time the register
  157. * doesn't become available in time, reg will be 0xffffffff
  158. * which means we return 0xff to the caller.
  159. */
  160. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  161. reg = 0;
  162. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  163. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  164. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  165. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  166. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  167. }
  168. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  169. mutex_unlock(&rt2x00dev->csr_mutex);
  170. }
  171. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  172. const unsigned int word, const u32 value)
  173. {
  174. u16 reg;
  175. mutex_lock(&rt2x00dev->csr_mutex);
  176. /*
  177. * Wait until the RF becomes available, afterwards we
  178. * can safely write the new data into the register.
  179. */
  180. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  181. reg = 0;
  182. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  183. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  184. reg = 0;
  185. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  186. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  187. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  188. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  189. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  190. rt2x00_rf_write(rt2x00dev, word, value);
  191. }
  192. mutex_unlock(&rt2x00dev->csr_mutex);
  193. }
  194. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  195. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  196. const unsigned int offset,
  197. u32 *value)
  198. {
  199. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  200. }
  201. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  202. const unsigned int offset,
  203. u32 value)
  204. {
  205. rt2500usb_register_write(rt2x00dev, offset, value);
  206. }
  207. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  208. .owner = THIS_MODULE,
  209. .csr = {
  210. .read = _rt2500usb_register_read,
  211. .write = _rt2500usb_register_write,
  212. .flags = RT2X00DEBUGFS_OFFSET,
  213. .word_base = CSR_REG_BASE,
  214. .word_size = sizeof(u16),
  215. .word_count = CSR_REG_SIZE / sizeof(u16),
  216. },
  217. .eeprom = {
  218. .read = rt2x00_eeprom_read,
  219. .write = rt2x00_eeprom_write,
  220. .word_base = EEPROM_BASE,
  221. .word_size = sizeof(u16),
  222. .word_count = EEPROM_SIZE / sizeof(u16),
  223. },
  224. .bbp = {
  225. .read = rt2500usb_bbp_read,
  226. .write = rt2500usb_bbp_write,
  227. .word_base = BBP_BASE,
  228. .word_size = sizeof(u8),
  229. .word_count = BBP_SIZE / sizeof(u8),
  230. },
  231. .rf = {
  232. .read = rt2x00_rf_read,
  233. .write = rt2500usb_rf_write,
  234. .word_base = RF_BASE,
  235. .word_size = sizeof(u32),
  236. .word_count = RF_SIZE / sizeof(u32),
  237. },
  238. };
  239. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  240. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  241. {
  242. u16 reg;
  243. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  244. return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
  245. }
  246. #ifdef CONFIG_RT2X00_LIB_LEDS
  247. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  248. enum led_brightness brightness)
  249. {
  250. struct rt2x00_led *led =
  251. container_of(led_cdev, struct rt2x00_led, led_dev);
  252. unsigned int enabled = brightness != LED_OFF;
  253. u16 reg;
  254. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  255. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  256. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  257. else if (led->type == LED_TYPE_ACTIVITY)
  258. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  259. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  260. }
  261. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  262. unsigned long *delay_on,
  263. unsigned long *delay_off)
  264. {
  265. struct rt2x00_led *led =
  266. container_of(led_cdev, struct rt2x00_led, led_dev);
  267. u16 reg;
  268. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  269. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  270. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  271. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  272. return 0;
  273. }
  274. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  275. struct rt2x00_led *led,
  276. enum led_type type)
  277. {
  278. led->rt2x00dev = rt2x00dev;
  279. led->type = type;
  280. led->led_dev.brightness_set = rt2500usb_brightness_set;
  281. led->led_dev.blink_set = rt2500usb_blink_set;
  282. led->flags = LED_INITIALIZED;
  283. }
  284. #endif /* CONFIG_RT2X00_LIB_LEDS */
  285. /*
  286. * Configuration handlers.
  287. */
  288. /*
  289. * rt2500usb does not differentiate between shared and pairwise
  290. * keys, so we should use the same function for both key types.
  291. */
  292. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  293. struct rt2x00lib_crypto *crypto,
  294. struct ieee80211_key_conf *key)
  295. {
  296. int timeout;
  297. u32 mask;
  298. u16 reg;
  299. if (crypto->cmd == SET_KEY) {
  300. /*
  301. * Pairwise key will always be entry 0, but this
  302. * could collide with a shared key on the same
  303. * position...
  304. */
  305. mask = TXRX_CSR0_KEY_ID.bit_mask;
  306. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  307. reg &= mask;
  308. if (reg && reg == mask)
  309. return -ENOSPC;
  310. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  311. key->hw_key_idx += reg ? ffz(reg) : 0;
  312. /*
  313. * The encryption key doesn't fit within the CSR cache,
  314. * this means we should allocate it seperately and use
  315. * rt2x00usb_vendor_request() to send the key to the hardware.
  316. */
  317. reg = KEY_ENTRY(key->hw_key_idx);
  318. timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
  319. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  320. USB_VENDOR_REQUEST_OUT, reg,
  321. crypto->key,
  322. sizeof(crypto->key),
  323. timeout);
  324. /*
  325. * The driver does not support the IV/EIV generation
  326. * in hardware. However it demands the data to be provided
  327. * both seperately as well as inside the frame.
  328. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  329. * to ensure rt2x00lib will not strip the data from the
  330. * frame after the copy, now we must tell mac80211
  331. * to generate the IV/EIV data.
  332. */
  333. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  334. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  335. }
  336. /*
  337. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  338. * a particular key is valid.
  339. */
  340. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  341. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  342. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  343. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  344. if (crypto->cmd == SET_KEY)
  345. mask |= 1 << key->hw_key_idx;
  346. else if (crypto->cmd == DISABLE_KEY)
  347. mask &= ~(1 << key->hw_key_idx);
  348. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  349. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  350. return 0;
  351. }
  352. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  353. const unsigned int filter_flags)
  354. {
  355. u16 reg;
  356. /*
  357. * Start configuration steps.
  358. * Note that the version error will always be dropped
  359. * and broadcast frames will always be accepted since
  360. * there is no filter for it at this time.
  361. */
  362. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  363. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  364. !(filter_flags & FIF_FCSFAIL));
  365. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  366. !(filter_flags & FIF_PLCPFAIL));
  367. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  368. !(filter_flags & FIF_CONTROL));
  369. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  370. !(filter_flags & FIF_PROMISC_IN_BSS));
  371. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  372. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  373. !rt2x00dev->intf_ap_count);
  374. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  375. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  376. !(filter_flags & FIF_ALLMULTI));
  377. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  378. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  379. }
  380. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  381. struct rt2x00_intf *intf,
  382. struct rt2x00intf_conf *conf,
  383. const unsigned int flags)
  384. {
  385. unsigned int bcn_preload;
  386. u16 reg;
  387. if (flags & CONFIG_UPDATE_TYPE) {
  388. /*
  389. * Enable beacon config
  390. */
  391. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  392. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  393. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  394. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  395. 2 * (conf->type != NL80211_IFTYPE_STATION));
  396. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  397. /*
  398. * Enable synchronisation.
  399. */
  400. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  401. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  402. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  403. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  404. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  405. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  406. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  407. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  408. }
  409. if (flags & CONFIG_UPDATE_MAC)
  410. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  411. (3 * sizeof(__le16)));
  412. if (flags & CONFIG_UPDATE_BSSID)
  413. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  414. (3 * sizeof(__le16)));
  415. }
  416. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  417. struct rt2x00lib_erp *erp)
  418. {
  419. u16 reg;
  420. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  421. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  422. !!erp->short_preamble);
  423. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  424. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  425. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  426. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
  427. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  428. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  429. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  430. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  431. }
  432. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  433. struct antenna_setup *ant)
  434. {
  435. u8 r2;
  436. u8 r14;
  437. u16 csr5;
  438. u16 csr6;
  439. /*
  440. * We should never come here because rt2x00lib is supposed
  441. * to catch this and send us the correct antenna explicitely.
  442. */
  443. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  444. ant->tx == ANTENNA_SW_DIVERSITY);
  445. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  446. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  447. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  448. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  449. /*
  450. * Configure the TX antenna.
  451. */
  452. switch (ant->tx) {
  453. case ANTENNA_HW_DIVERSITY:
  454. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  455. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  456. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  457. break;
  458. case ANTENNA_A:
  459. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  460. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  461. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  462. break;
  463. case ANTENNA_B:
  464. default:
  465. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  466. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  467. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  468. break;
  469. }
  470. /*
  471. * Configure the RX antenna.
  472. */
  473. switch (ant->rx) {
  474. case ANTENNA_HW_DIVERSITY:
  475. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  476. break;
  477. case ANTENNA_A:
  478. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  479. break;
  480. case ANTENNA_B:
  481. default:
  482. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  483. break;
  484. }
  485. /*
  486. * RT2525E and RT5222 need to flip TX I/Q
  487. */
  488. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  489. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  490. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  491. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  492. /*
  493. * RT2525E does not need RX I/Q Flip.
  494. */
  495. if (rt2x00_rf(rt2x00dev, RF2525E))
  496. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  497. } else {
  498. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  499. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  500. }
  501. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  502. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  503. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  504. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  505. }
  506. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  507. struct rf_channel *rf, const int txpower)
  508. {
  509. /*
  510. * Set TXpower.
  511. */
  512. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  513. /*
  514. * For RT2525E we should first set the channel to half band higher.
  515. */
  516. if (rt2x00_rf(rt2x00dev, RF2525E)) {
  517. static const u32 vals[] = {
  518. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  519. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  520. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  521. 0x00000902, 0x00000906
  522. };
  523. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  524. if (rf->rf4)
  525. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  526. }
  527. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  528. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  529. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  530. if (rf->rf4)
  531. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  532. }
  533. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  534. const int txpower)
  535. {
  536. u32 rf3;
  537. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  538. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  539. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  540. }
  541. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  542. struct rt2x00lib_conf *libconf)
  543. {
  544. enum dev_state state =
  545. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  546. STATE_SLEEP : STATE_AWAKE;
  547. u16 reg;
  548. if (state == STATE_SLEEP) {
  549. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  550. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  551. rt2x00dev->beacon_int - 20);
  552. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  553. libconf->conf->listen_interval - 1);
  554. /* We must first disable autowake before it can be enabled */
  555. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  556. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  557. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  558. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  559. } else {
  560. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  561. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  562. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  563. }
  564. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  565. }
  566. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  567. struct rt2x00lib_conf *libconf,
  568. const unsigned int flags)
  569. {
  570. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  571. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  572. libconf->conf->power_level);
  573. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  574. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  575. rt2500usb_config_txpower(rt2x00dev,
  576. libconf->conf->power_level);
  577. if (flags & IEEE80211_CONF_CHANGE_PS)
  578. rt2500usb_config_ps(rt2x00dev, libconf);
  579. }
  580. /*
  581. * Link tuning
  582. */
  583. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  584. struct link_qual *qual)
  585. {
  586. u16 reg;
  587. /*
  588. * Update FCS error count from register.
  589. */
  590. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  591. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  592. /*
  593. * Update False CCA count from register.
  594. */
  595. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  596. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  597. }
  598. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  599. struct link_qual *qual)
  600. {
  601. u16 eeprom;
  602. u16 value;
  603. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  604. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  605. rt2500usb_bbp_write(rt2x00dev, 24, value);
  606. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  607. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  608. rt2500usb_bbp_write(rt2x00dev, 25, value);
  609. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  610. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  611. rt2500usb_bbp_write(rt2x00dev, 61, value);
  612. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  613. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  614. rt2500usb_bbp_write(rt2x00dev, 17, value);
  615. qual->vgc_level = value;
  616. }
  617. /*
  618. * Initialization functions.
  619. */
  620. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  621. {
  622. u16 reg;
  623. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  624. USB_MODE_TEST, REGISTER_TIMEOUT);
  625. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  626. 0x00f0, REGISTER_TIMEOUT);
  627. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  628. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  629. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  630. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  631. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  632. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  633. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  634. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  635. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  636. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  637. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  638. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  639. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  640. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  641. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  642. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  643. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  644. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  645. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  646. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  647. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  648. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  649. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  650. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  651. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  652. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  653. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  654. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  655. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  656. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  657. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  658. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  659. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  660. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  661. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  662. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  663. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  664. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  665. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  666. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  667. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  668. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  669. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  670. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  671. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  672. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  673. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  674. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  675. return -EBUSY;
  676. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  677. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  678. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  679. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  680. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  681. if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
  682. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  683. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  684. } else {
  685. reg = 0;
  686. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  687. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  688. }
  689. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  690. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  691. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  692. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  693. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  694. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  695. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  696. rt2x00dev->rx->data_size);
  697. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  698. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  699. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  700. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  701. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  702. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  703. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  704. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  705. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  706. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  707. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  708. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  709. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  710. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  711. return 0;
  712. }
  713. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  714. {
  715. unsigned int i;
  716. u8 value;
  717. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  718. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  719. if ((value != 0xff) && (value != 0x00))
  720. return 0;
  721. udelay(REGISTER_BUSY_DELAY);
  722. }
  723. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  724. return -EACCES;
  725. }
  726. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  727. {
  728. unsigned int i;
  729. u16 eeprom;
  730. u8 value;
  731. u8 reg_id;
  732. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  733. return -EACCES;
  734. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  735. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  736. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  737. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  738. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  739. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  740. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  741. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  742. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  743. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  744. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  745. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  746. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  747. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  748. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  749. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  750. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  751. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  752. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  753. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  754. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  755. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  756. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  757. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  758. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  759. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  760. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  761. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  762. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  763. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  764. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  765. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  766. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  767. if (eeprom != 0xffff && eeprom != 0x0000) {
  768. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  769. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  770. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  771. }
  772. }
  773. return 0;
  774. }
  775. /*
  776. * Device state switch handlers.
  777. */
  778. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  779. enum dev_state state)
  780. {
  781. u16 reg;
  782. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  783. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  784. (state == STATE_RADIO_RX_OFF) ||
  785. (state == STATE_RADIO_RX_OFF_LINK));
  786. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  787. }
  788. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  789. {
  790. /*
  791. * Initialize all registers.
  792. */
  793. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  794. rt2500usb_init_bbp(rt2x00dev)))
  795. return -EIO;
  796. return 0;
  797. }
  798. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  799. {
  800. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  801. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  802. /*
  803. * Disable synchronisation.
  804. */
  805. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  806. rt2x00usb_disable_radio(rt2x00dev);
  807. }
  808. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  809. enum dev_state state)
  810. {
  811. u16 reg;
  812. u16 reg2;
  813. unsigned int i;
  814. char put_to_sleep;
  815. char bbp_state;
  816. char rf_state;
  817. put_to_sleep = (state != STATE_AWAKE);
  818. reg = 0;
  819. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  820. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  821. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  822. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  823. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  824. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  825. /*
  826. * Device is not guaranteed to be in the requested state yet.
  827. * We must wait until the register indicates that the
  828. * device has entered the correct state.
  829. */
  830. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  831. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  832. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  833. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  834. if (bbp_state == state && rf_state == state)
  835. return 0;
  836. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  837. msleep(30);
  838. }
  839. return -EBUSY;
  840. }
  841. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  842. enum dev_state state)
  843. {
  844. int retval = 0;
  845. switch (state) {
  846. case STATE_RADIO_ON:
  847. retval = rt2500usb_enable_radio(rt2x00dev);
  848. break;
  849. case STATE_RADIO_OFF:
  850. rt2500usb_disable_radio(rt2x00dev);
  851. break;
  852. case STATE_RADIO_RX_ON:
  853. case STATE_RADIO_RX_ON_LINK:
  854. case STATE_RADIO_RX_OFF:
  855. case STATE_RADIO_RX_OFF_LINK:
  856. rt2500usb_toggle_rx(rt2x00dev, state);
  857. break;
  858. case STATE_RADIO_IRQ_ON:
  859. case STATE_RADIO_IRQ_OFF:
  860. /* No support, but no error either */
  861. break;
  862. case STATE_DEEP_SLEEP:
  863. case STATE_SLEEP:
  864. case STATE_STANDBY:
  865. case STATE_AWAKE:
  866. retval = rt2500usb_set_state(rt2x00dev, state);
  867. break;
  868. default:
  869. retval = -ENOTSUPP;
  870. break;
  871. }
  872. if (unlikely(retval))
  873. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  874. state, retval);
  875. return retval;
  876. }
  877. /*
  878. * TX descriptor initialization
  879. */
  880. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  881. struct sk_buff *skb,
  882. struct txentry_desc *txdesc)
  883. {
  884. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  885. __le32 *txd = skbdesc->desc;
  886. u32 word;
  887. /*
  888. * Start writing the descriptor words.
  889. */
  890. rt2x00_desc_read(txd, 0, &word);
  891. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  892. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  893. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  894. rt2x00_set_field32(&word, TXD_W0_ACK,
  895. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  896. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  897. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  898. rt2x00_set_field32(&word, TXD_W0_OFDM,
  899. (txdesc->rate_mode == RATE_MODE_OFDM));
  900. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  901. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  902. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  903. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  904. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  905. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  906. rt2x00_desc_write(txd, 0, word);
  907. rt2x00_desc_read(txd, 1, &word);
  908. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  909. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  910. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  911. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  912. rt2x00_desc_write(txd, 1, word);
  913. rt2x00_desc_read(txd, 2, &word);
  914. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  915. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  916. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  917. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  918. rt2x00_desc_write(txd, 2, word);
  919. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  920. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  921. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  922. }
  923. }
  924. /*
  925. * TX data initialization
  926. */
  927. static void rt2500usb_beacondone(struct urb *urb);
  928. static void rt2500usb_write_beacon(struct queue_entry *entry,
  929. struct txentry_desc *txdesc)
  930. {
  931. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  932. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  933. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  934. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  935. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  936. int length;
  937. u16 reg, reg0;
  938. /*
  939. * Add the descriptor in front of the skb.
  940. */
  941. skb_push(entry->skb, entry->queue->desc_size);
  942. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  943. skbdesc->desc = entry->skb->data;
  944. /*
  945. * Disable beaconing while we are reloading the beacon data,
  946. * otherwise we might be sending out invalid data.
  947. */
  948. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  949. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  950. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  951. /*
  952. * USB devices cannot blindly pass the skb->len as the
  953. * length of the data to usb_fill_bulk_urb. Pass the skb
  954. * to the driver to determine what the length should be.
  955. */
  956. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  957. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  958. entry->skb->data, length, rt2500usb_beacondone,
  959. entry);
  960. /*
  961. * Second we need to create the guardian byte.
  962. * We only need a single byte, so lets recycle
  963. * the 'flags' field we are not using for beacons.
  964. */
  965. bcn_priv->guardian_data = 0;
  966. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  967. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  968. entry);
  969. /*
  970. * Send out the guardian byte.
  971. */
  972. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  973. /*
  974. * Enable beaconing again.
  975. */
  976. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  977. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  978. reg0 = reg;
  979. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  980. /*
  981. * Beacon generation will fail initially.
  982. * To prevent this we need to change the TXRX_CSR19
  983. * register several times (reg0 is the same as reg
  984. * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
  985. * and 1 in reg).
  986. */
  987. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  988. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  989. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  990. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  991. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  992. }
  993. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  994. {
  995. int length;
  996. /*
  997. * The length _must_ be a multiple of 2,
  998. * but it must _not_ be a multiple of the USB packet size.
  999. */
  1000. length = roundup(entry->skb->len, 2);
  1001. length += (2 * !(length % entry->queue->usb_maxpacket));
  1002. return length;
  1003. }
  1004. /*
  1005. * RX control handlers
  1006. */
  1007. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1008. struct rxdone_entry_desc *rxdesc)
  1009. {
  1010. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1011. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1012. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1013. __le32 *rxd =
  1014. (__le32 *)(entry->skb->data +
  1015. (entry_priv->urb->actual_length -
  1016. entry->queue->desc_size));
  1017. u32 word0;
  1018. u32 word1;
  1019. /*
  1020. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1021. * frame data in rt2x00usb.
  1022. */
  1023. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1024. rxd = (__le32 *)skbdesc->desc;
  1025. /*
  1026. * It is now safe to read the descriptor on all architectures.
  1027. */
  1028. rt2x00_desc_read(rxd, 0, &word0);
  1029. rt2x00_desc_read(rxd, 1, &word1);
  1030. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1031. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1032. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1033. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1034. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1035. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1036. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1037. if (rxdesc->cipher != CIPHER_NONE) {
  1038. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1039. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1040. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1041. /* ICV is located at the end of frame */
  1042. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1043. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1044. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1045. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1046. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1047. }
  1048. /*
  1049. * Obtain the status about this packet.
  1050. * When frame was received with an OFDM bitrate,
  1051. * the signal is the PLCP value. If it was received with
  1052. * a CCK bitrate the signal is the rate in 100kbit/s.
  1053. */
  1054. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1055. rxdesc->rssi =
  1056. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1057. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1058. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1059. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1060. else
  1061. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1062. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1063. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1064. /*
  1065. * Adjust the skb memory window to the frame boundaries.
  1066. */
  1067. skb_trim(entry->skb, rxdesc->size);
  1068. }
  1069. /*
  1070. * Interrupt functions.
  1071. */
  1072. static void rt2500usb_beacondone(struct urb *urb)
  1073. {
  1074. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1075. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1076. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1077. return;
  1078. /*
  1079. * Check if this was the guardian beacon,
  1080. * if that was the case we need to send the real beacon now.
  1081. * Otherwise we should free the sk_buffer, the device
  1082. * should be doing the rest of the work now.
  1083. */
  1084. if (bcn_priv->guardian_urb == urb) {
  1085. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1086. } else if (bcn_priv->urb == urb) {
  1087. dev_kfree_skb(entry->skb);
  1088. entry->skb = NULL;
  1089. }
  1090. }
  1091. /*
  1092. * Device probe functions.
  1093. */
  1094. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1095. {
  1096. u16 word;
  1097. u8 *mac;
  1098. u8 bbp;
  1099. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1100. /*
  1101. * Start validation of the data that has been read.
  1102. */
  1103. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1104. if (!is_valid_ether_addr(mac)) {
  1105. random_ether_addr(mac);
  1106. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1107. }
  1108. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1109. if (word == 0xffff) {
  1110. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1111. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1112. ANTENNA_SW_DIVERSITY);
  1113. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1114. ANTENNA_SW_DIVERSITY);
  1115. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1116. LED_MODE_DEFAULT);
  1117. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1118. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1119. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1120. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1121. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1122. }
  1123. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1124. if (word == 0xffff) {
  1125. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1126. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1127. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1128. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1129. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1130. }
  1131. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1132. if (word == 0xffff) {
  1133. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1134. DEFAULT_RSSI_OFFSET);
  1135. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1136. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1137. }
  1138. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1139. if (word == 0xffff) {
  1140. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1141. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1142. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1143. }
  1144. /*
  1145. * Switch lower vgc bound to current BBP R17 value,
  1146. * lower the value a bit for better quality.
  1147. */
  1148. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1149. bbp -= 6;
  1150. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1151. if (word == 0xffff) {
  1152. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1153. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1154. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1155. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1156. } else {
  1157. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1158. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1159. }
  1160. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1161. if (word == 0xffff) {
  1162. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1163. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1164. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1165. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1166. }
  1167. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1168. if (word == 0xffff) {
  1169. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1170. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1171. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1172. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1173. }
  1174. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1175. if (word == 0xffff) {
  1176. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1177. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1178. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1179. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1180. }
  1181. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1182. if (word == 0xffff) {
  1183. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1184. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1185. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1186. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1187. }
  1188. return 0;
  1189. }
  1190. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1191. {
  1192. u16 reg;
  1193. u16 value;
  1194. u16 eeprom;
  1195. /*
  1196. * Read EEPROM word for configuration.
  1197. */
  1198. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1199. /*
  1200. * Identify RF chipset.
  1201. */
  1202. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1203. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1204. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1205. if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
  1206. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1207. return -ENODEV;
  1208. }
  1209. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1210. !rt2x00_rf(rt2x00dev, RF2523) &&
  1211. !rt2x00_rf(rt2x00dev, RF2524) &&
  1212. !rt2x00_rf(rt2x00dev, RF2525) &&
  1213. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1214. !rt2x00_rf(rt2x00dev, RF5222)) {
  1215. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1216. return -ENODEV;
  1217. }
  1218. /*
  1219. * Identify default antenna configuration.
  1220. */
  1221. rt2x00dev->default_ant.tx =
  1222. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1223. rt2x00dev->default_ant.rx =
  1224. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1225. /*
  1226. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1227. * I am not 100% sure about this, but the legacy drivers do not
  1228. * indicate antenna swapping in software is required when
  1229. * diversity is enabled.
  1230. */
  1231. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1232. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1233. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1234. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1235. /*
  1236. * Store led mode, for correct led behaviour.
  1237. */
  1238. #ifdef CONFIG_RT2X00_LIB_LEDS
  1239. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1240. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1241. if (value == LED_MODE_TXRX_ACTIVITY ||
  1242. value == LED_MODE_DEFAULT ||
  1243. value == LED_MODE_ASUS)
  1244. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1245. LED_TYPE_ACTIVITY);
  1246. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1247. /*
  1248. * Detect if this device has an hardware controlled radio.
  1249. */
  1250. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1251. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1252. /*
  1253. * Check if the BBP tuning should be disabled.
  1254. */
  1255. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1256. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1257. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1258. /*
  1259. * Read the RSSI <-> dBm offset information.
  1260. */
  1261. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1262. rt2x00dev->rssi_offset =
  1263. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1264. return 0;
  1265. }
  1266. /*
  1267. * RF value list for RF2522
  1268. * Supports: 2.4 GHz
  1269. */
  1270. static const struct rf_channel rf_vals_bg_2522[] = {
  1271. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1272. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1273. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1274. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1275. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1276. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1277. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1278. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1279. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1280. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1281. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1282. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1283. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1284. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1285. };
  1286. /*
  1287. * RF value list for RF2523
  1288. * Supports: 2.4 GHz
  1289. */
  1290. static const struct rf_channel rf_vals_bg_2523[] = {
  1291. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1292. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1293. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1294. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1295. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1296. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1297. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1298. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1299. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1300. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1301. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1302. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1303. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1304. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1305. };
  1306. /*
  1307. * RF value list for RF2524
  1308. * Supports: 2.4 GHz
  1309. */
  1310. static const struct rf_channel rf_vals_bg_2524[] = {
  1311. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1312. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1313. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1314. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1315. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1316. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1317. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1318. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1319. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1320. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1321. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1322. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1323. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1324. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1325. };
  1326. /*
  1327. * RF value list for RF2525
  1328. * Supports: 2.4 GHz
  1329. */
  1330. static const struct rf_channel rf_vals_bg_2525[] = {
  1331. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1332. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1333. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1334. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1335. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1336. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1337. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1338. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1339. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1340. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1341. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1342. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1343. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1344. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1345. };
  1346. /*
  1347. * RF value list for RF2525e
  1348. * Supports: 2.4 GHz
  1349. */
  1350. static const struct rf_channel rf_vals_bg_2525e[] = {
  1351. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1352. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1353. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1354. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1355. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1356. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1357. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1358. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1359. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1360. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1361. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1362. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1363. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1364. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1365. };
  1366. /*
  1367. * RF value list for RF5222
  1368. * Supports: 2.4 GHz & 5.2 GHz
  1369. */
  1370. static const struct rf_channel rf_vals_5222[] = {
  1371. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1372. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1373. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1374. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1375. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1376. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1377. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1378. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1379. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1380. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1381. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1382. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1383. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1384. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1385. /* 802.11 UNI / HyperLan 2 */
  1386. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1387. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1388. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1389. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1390. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1391. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1392. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1393. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1394. /* 802.11 HyperLan 2 */
  1395. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1396. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1397. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1398. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1399. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1400. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1401. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1402. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1403. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1404. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1405. /* 802.11 UNII */
  1406. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1407. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1408. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1409. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1410. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1411. };
  1412. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1413. {
  1414. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1415. struct channel_info *info;
  1416. char *tx_power;
  1417. unsigned int i;
  1418. /*
  1419. * Initialize all hw fields.
  1420. */
  1421. rt2x00dev->hw->flags =
  1422. IEEE80211_HW_RX_INCLUDES_FCS |
  1423. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1424. IEEE80211_HW_SIGNAL_DBM |
  1425. IEEE80211_HW_SUPPORTS_PS |
  1426. IEEE80211_HW_PS_NULLFUNC_STACK;
  1427. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1428. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1429. rt2x00_eeprom_addr(rt2x00dev,
  1430. EEPROM_MAC_ADDR_0));
  1431. /*
  1432. * Initialize hw_mode information.
  1433. */
  1434. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1435. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1436. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1437. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1438. spec->channels = rf_vals_bg_2522;
  1439. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1440. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1441. spec->channels = rf_vals_bg_2523;
  1442. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1443. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1444. spec->channels = rf_vals_bg_2524;
  1445. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1446. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1447. spec->channels = rf_vals_bg_2525;
  1448. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1449. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1450. spec->channels = rf_vals_bg_2525e;
  1451. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1452. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1453. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1454. spec->channels = rf_vals_5222;
  1455. }
  1456. /*
  1457. * Create channel information array
  1458. */
  1459. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1460. if (!info)
  1461. return -ENOMEM;
  1462. spec->channels_info = info;
  1463. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1464. for (i = 0; i < 14; i++)
  1465. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1466. if (spec->num_channels > 14) {
  1467. for (i = 14; i < spec->num_channels; i++)
  1468. info[i].tx_power1 = DEFAULT_TXPOWER;
  1469. }
  1470. return 0;
  1471. }
  1472. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1473. {
  1474. int retval;
  1475. /*
  1476. * Allocate eeprom data.
  1477. */
  1478. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1479. if (retval)
  1480. return retval;
  1481. retval = rt2500usb_init_eeprom(rt2x00dev);
  1482. if (retval)
  1483. return retval;
  1484. /*
  1485. * Initialize hw specifications.
  1486. */
  1487. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1488. if (retval)
  1489. return retval;
  1490. /*
  1491. * This device requires the atim queue
  1492. */
  1493. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1494. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1495. if (!modparam_nohwcrypt) {
  1496. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1497. __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
  1498. }
  1499. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1500. /*
  1501. * Set the rssi offset.
  1502. */
  1503. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1504. return 0;
  1505. }
  1506. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1507. .tx = rt2x00mac_tx,
  1508. .start = rt2x00mac_start,
  1509. .stop = rt2x00mac_stop,
  1510. .add_interface = rt2x00mac_add_interface,
  1511. .remove_interface = rt2x00mac_remove_interface,
  1512. .config = rt2x00mac_config,
  1513. .configure_filter = rt2x00mac_configure_filter,
  1514. .set_tim = rt2x00mac_set_tim,
  1515. .set_key = rt2x00mac_set_key,
  1516. .get_stats = rt2x00mac_get_stats,
  1517. .bss_info_changed = rt2x00mac_bss_info_changed,
  1518. .conf_tx = rt2x00mac_conf_tx,
  1519. .rfkill_poll = rt2x00mac_rfkill_poll,
  1520. };
  1521. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1522. .probe_hw = rt2500usb_probe_hw,
  1523. .initialize = rt2x00usb_initialize,
  1524. .uninitialize = rt2x00usb_uninitialize,
  1525. .clear_entry = rt2x00usb_clear_entry,
  1526. .set_device_state = rt2500usb_set_device_state,
  1527. .rfkill_poll = rt2500usb_rfkill_poll,
  1528. .link_stats = rt2500usb_link_stats,
  1529. .reset_tuner = rt2500usb_reset_tuner,
  1530. .write_tx_desc = rt2500usb_write_tx_desc,
  1531. .write_tx_data = rt2x00usb_write_tx_data,
  1532. .write_beacon = rt2500usb_write_beacon,
  1533. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1534. .kick_tx_queue = rt2x00usb_kick_tx_queue,
  1535. .kill_tx_queue = rt2x00usb_kill_tx_queue,
  1536. .fill_rxdone = rt2500usb_fill_rxdone,
  1537. .config_shared_key = rt2500usb_config_key,
  1538. .config_pairwise_key = rt2500usb_config_key,
  1539. .config_filter = rt2500usb_config_filter,
  1540. .config_intf = rt2500usb_config_intf,
  1541. .config_erp = rt2500usb_config_erp,
  1542. .config_ant = rt2500usb_config_ant,
  1543. .config = rt2500usb_config,
  1544. };
  1545. static const struct data_queue_desc rt2500usb_queue_rx = {
  1546. .entry_num = RX_ENTRIES,
  1547. .data_size = DATA_FRAME_SIZE,
  1548. .desc_size = RXD_DESC_SIZE,
  1549. .priv_size = sizeof(struct queue_entry_priv_usb),
  1550. };
  1551. static const struct data_queue_desc rt2500usb_queue_tx = {
  1552. .entry_num = TX_ENTRIES,
  1553. .data_size = DATA_FRAME_SIZE,
  1554. .desc_size = TXD_DESC_SIZE,
  1555. .priv_size = sizeof(struct queue_entry_priv_usb),
  1556. };
  1557. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1558. .entry_num = BEACON_ENTRIES,
  1559. .data_size = MGMT_FRAME_SIZE,
  1560. .desc_size = TXD_DESC_SIZE,
  1561. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1562. };
  1563. static const struct data_queue_desc rt2500usb_queue_atim = {
  1564. .entry_num = ATIM_ENTRIES,
  1565. .data_size = DATA_FRAME_SIZE,
  1566. .desc_size = TXD_DESC_SIZE,
  1567. .priv_size = sizeof(struct queue_entry_priv_usb),
  1568. };
  1569. static const struct rt2x00_ops rt2500usb_ops = {
  1570. .name = KBUILD_MODNAME,
  1571. .max_sta_intf = 1,
  1572. .max_ap_intf = 1,
  1573. .eeprom_size = EEPROM_SIZE,
  1574. .rf_size = RF_SIZE,
  1575. .tx_queues = NUM_TX_QUEUES,
  1576. .extra_tx_headroom = TXD_DESC_SIZE,
  1577. .rx = &rt2500usb_queue_rx,
  1578. .tx = &rt2500usb_queue_tx,
  1579. .bcn = &rt2500usb_queue_bcn,
  1580. .atim = &rt2500usb_queue_atim,
  1581. .lib = &rt2500usb_rt2x00_ops,
  1582. .hw = &rt2500usb_mac80211_ops,
  1583. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1584. .debugfs = &rt2500usb_rt2x00debug,
  1585. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1586. };
  1587. /*
  1588. * rt2500usb module information.
  1589. */
  1590. static struct usb_device_id rt2500usb_device_table[] = {
  1591. /* ASUS */
  1592. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1593. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1594. /* Belkin */
  1595. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1596. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1597. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1598. /* Cisco Systems */
  1599. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1600. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1601. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1602. /* CNet */
  1603. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
  1604. /* Conceptronic */
  1605. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1606. /* D-LINK */
  1607. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1608. /* Gigabyte */
  1609. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1610. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1611. /* Hercules */
  1612. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1613. /* Melco */
  1614. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1615. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1616. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1617. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1618. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1619. /* MSI */
  1620. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1621. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1622. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1623. /* Ralink */
  1624. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1625. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1626. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1627. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1628. /* Sagem */
  1629. { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1630. /* Siemens */
  1631. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1632. /* SMC */
  1633. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1634. /* Spairon */
  1635. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1636. /* SURECOM */
  1637. { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
  1638. /* Trust */
  1639. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1640. /* VTech */
  1641. { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
  1642. /* Zinwell */
  1643. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1644. { 0, }
  1645. };
  1646. MODULE_AUTHOR(DRV_PROJECT);
  1647. MODULE_VERSION(DRV_VERSION);
  1648. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1649. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1650. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1651. MODULE_LICENSE("GPL");
  1652. static struct usb_driver rt2500usb_driver = {
  1653. .name = KBUILD_MODNAME,
  1654. .id_table = rt2500usb_device_table,
  1655. .probe = rt2x00usb_probe,
  1656. .disconnect = rt2x00usb_disconnect,
  1657. .suspend = rt2x00usb_suspend,
  1658. .resume = rt2x00usb_resume,
  1659. };
  1660. static int __init rt2500usb_init(void)
  1661. {
  1662. return usb_register(&rt2500usb_driver);
  1663. }
  1664. static void __exit rt2500usb_exit(void)
  1665. {
  1666. usb_deregister(&rt2500usb_driver);
  1667. }
  1668. module_init(rt2500usb_init);
  1669. module_exit(rt2500usb_exit);