rt2500pci.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  104. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  105. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  107. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  113. {
  114. struct rt2x00_dev *rt2x00dev = eeprom->data;
  115. u32 reg;
  116. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  117. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  118. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  119. eeprom->reg_data_clock =
  120. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  121. eeprom->reg_chip_select =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  123. }
  124. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  125. {
  126. struct rt2x00_dev *rt2x00dev = eeprom->data;
  127. u32 reg = 0;
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  131. !!eeprom->reg_data_clock);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  133. !!eeprom->reg_chip_select);
  134. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  135. }
  136. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  137. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  138. .owner = THIS_MODULE,
  139. .csr = {
  140. .read = rt2x00pci_register_read,
  141. .write = rt2x00pci_register_write,
  142. .flags = RT2X00DEBUGFS_OFFSET,
  143. .word_base = CSR_REG_BASE,
  144. .word_size = sizeof(u32),
  145. .word_count = CSR_REG_SIZE / sizeof(u32),
  146. },
  147. .eeprom = {
  148. .read = rt2x00_eeprom_read,
  149. .write = rt2x00_eeprom_write,
  150. .word_base = EEPROM_BASE,
  151. .word_size = sizeof(u16),
  152. .word_count = EEPROM_SIZE / sizeof(u16),
  153. },
  154. .bbp = {
  155. .read = rt2500pci_bbp_read,
  156. .write = rt2500pci_bbp_write,
  157. .word_base = BBP_BASE,
  158. .word_size = sizeof(u8),
  159. .word_count = BBP_SIZE / sizeof(u8),
  160. },
  161. .rf = {
  162. .read = rt2x00_rf_read,
  163. .write = rt2500pci_rf_write,
  164. .word_base = RF_BASE,
  165. .word_size = sizeof(u32),
  166. .word_count = RF_SIZE / sizeof(u32),
  167. },
  168. };
  169. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  170. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  171. {
  172. u32 reg;
  173. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  174. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  175. }
  176. #ifdef CONFIG_RT2X00_LIB_LEDS
  177. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  178. enum led_brightness brightness)
  179. {
  180. struct rt2x00_led *led =
  181. container_of(led_cdev, struct rt2x00_led, led_dev);
  182. unsigned int enabled = brightness != LED_OFF;
  183. u32 reg;
  184. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  185. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  186. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  187. else if (led->type == LED_TYPE_ACTIVITY)
  188. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  189. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  190. }
  191. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  192. unsigned long *delay_on,
  193. unsigned long *delay_off)
  194. {
  195. struct rt2x00_led *led =
  196. container_of(led_cdev, struct rt2x00_led, led_dev);
  197. u32 reg;
  198. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  199. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  200. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  201. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  202. return 0;
  203. }
  204. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  205. struct rt2x00_led *led,
  206. enum led_type type)
  207. {
  208. led->rt2x00dev = rt2x00dev;
  209. led->type = type;
  210. led->led_dev.brightness_set = rt2500pci_brightness_set;
  211. led->led_dev.blink_set = rt2500pci_blink_set;
  212. led->flags = LED_INITIALIZED;
  213. }
  214. #endif /* CONFIG_RT2X00_LIB_LEDS */
  215. /*
  216. * Configuration handlers.
  217. */
  218. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  219. const unsigned int filter_flags)
  220. {
  221. u32 reg;
  222. /*
  223. * Start configuration steps.
  224. * Note that the version error will always be dropped
  225. * and broadcast frames will always be accepted since
  226. * there is no filter for it at this time.
  227. */
  228. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  230. !(filter_flags & FIF_FCSFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  232. !(filter_flags & FIF_PLCPFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  234. !(filter_flags & FIF_CONTROL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  236. !(filter_flags & FIF_PROMISC_IN_BSS));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  238. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  239. !rt2x00dev->intf_ap_count);
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  241. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  242. !(filter_flags & FIF_ALLMULTI));
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  244. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  245. }
  246. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  247. struct rt2x00_intf *intf,
  248. struct rt2x00intf_conf *conf,
  249. const unsigned int flags)
  250. {
  251. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  252. unsigned int bcn_preload;
  253. u32 reg;
  254. if (flags & CONFIG_UPDATE_TYPE) {
  255. /*
  256. * Enable beacon config
  257. */
  258. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  259. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  260. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  261. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  262. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  263. /*
  264. * Enable synchronisation.
  265. */
  266. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  267. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  268. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  269. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  270. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  271. }
  272. if (flags & CONFIG_UPDATE_MAC)
  273. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  274. conf->mac, sizeof(conf->mac));
  275. if (flags & CONFIG_UPDATE_BSSID)
  276. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  277. conf->bssid, sizeof(conf->bssid));
  278. }
  279. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  280. struct rt2x00lib_erp *erp)
  281. {
  282. int preamble_mask;
  283. u32 reg;
  284. /*
  285. * When short preamble is enabled, we should set bit 0x08
  286. */
  287. preamble_mask = erp->short_preamble << 3;
  288. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  289. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  290. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  291. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  292. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  293. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  294. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  295. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  296. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  297. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  298. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  299. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  300. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  301. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  302. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  303. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  304. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  305. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  306. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  307. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  308. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  309. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  310. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  311. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  312. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  313. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  314. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  315. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  316. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  317. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  318. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  319. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
  320. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
  321. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  322. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  323. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  324. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  325. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  326. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  327. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  328. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  329. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  330. }
  331. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  332. struct antenna_setup *ant)
  333. {
  334. u32 reg;
  335. u8 r14;
  336. u8 r2;
  337. /*
  338. * We should never come here because rt2x00lib is supposed
  339. * to catch this and send us the correct antenna explicitely.
  340. */
  341. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  342. ant->tx == ANTENNA_SW_DIVERSITY);
  343. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  344. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  345. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  346. /*
  347. * Configure the TX antenna.
  348. */
  349. switch (ant->tx) {
  350. case ANTENNA_A:
  351. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  352. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  353. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  354. break;
  355. case ANTENNA_B:
  356. default:
  357. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  358. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  359. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  360. break;
  361. }
  362. /*
  363. * Configure the RX antenna.
  364. */
  365. switch (ant->rx) {
  366. case ANTENNA_A:
  367. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  368. break;
  369. case ANTENNA_B:
  370. default:
  371. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  372. break;
  373. }
  374. /*
  375. * RT2525E and RT5222 need to flip TX I/Q
  376. */
  377. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  378. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  379. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  380. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  381. /*
  382. * RT2525E does not need RX I/Q Flip.
  383. */
  384. if (rt2x00_rf(rt2x00dev, RF2525E))
  385. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  386. } else {
  387. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  388. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  389. }
  390. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  391. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  392. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  393. }
  394. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  395. struct rf_channel *rf, const int txpower)
  396. {
  397. u8 r70;
  398. /*
  399. * Set TXpower.
  400. */
  401. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  402. /*
  403. * Switch on tuning bits.
  404. * For RT2523 devices we do not need to update the R1 register.
  405. */
  406. if (!rt2x00_rf(rt2x00dev, RF2523))
  407. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  408. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  409. /*
  410. * For RT2525 we should first set the channel to half band higher.
  411. */
  412. if (rt2x00_rf(rt2x00dev, RF2525)) {
  413. static const u32 vals[] = {
  414. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  415. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  416. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  417. 0x00080d2e, 0x00080d3a
  418. };
  419. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  420. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  421. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  422. if (rf->rf4)
  423. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  424. }
  425. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  426. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  427. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  428. if (rf->rf4)
  429. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  430. /*
  431. * Channel 14 requires the Japan filter bit to be set.
  432. */
  433. r70 = 0x46;
  434. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  435. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  436. msleep(1);
  437. /*
  438. * Switch off tuning bits.
  439. * For RT2523 devices we do not need to update the R1 register.
  440. */
  441. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  442. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  443. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  444. }
  445. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  446. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  447. /*
  448. * Clear false CRC during channel switch.
  449. */
  450. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  451. }
  452. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  453. const int txpower)
  454. {
  455. u32 rf3;
  456. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  457. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  458. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  459. }
  460. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  461. struct rt2x00lib_conf *libconf)
  462. {
  463. u32 reg;
  464. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  465. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  466. libconf->conf->long_frame_max_tx_count);
  467. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  468. libconf->conf->short_frame_max_tx_count);
  469. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  470. }
  471. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  472. struct rt2x00lib_conf *libconf)
  473. {
  474. enum dev_state state =
  475. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  476. STATE_SLEEP : STATE_AWAKE;
  477. u32 reg;
  478. if (state == STATE_SLEEP) {
  479. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  480. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  481. (rt2x00dev->beacon_int - 20) * 16);
  482. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  483. libconf->conf->listen_interval - 1);
  484. /* We must first disable autowake before it can be enabled */
  485. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  486. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  487. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  488. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  489. } else {
  490. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  491. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  492. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  493. }
  494. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  495. }
  496. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  497. struct rt2x00lib_conf *libconf,
  498. const unsigned int flags)
  499. {
  500. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  501. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  502. libconf->conf->power_level);
  503. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  504. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  505. rt2500pci_config_txpower(rt2x00dev,
  506. libconf->conf->power_level);
  507. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  508. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  509. if (flags & IEEE80211_CONF_CHANGE_PS)
  510. rt2500pci_config_ps(rt2x00dev, libconf);
  511. }
  512. /*
  513. * Link tuning
  514. */
  515. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  516. struct link_qual *qual)
  517. {
  518. u32 reg;
  519. /*
  520. * Update FCS error count from register.
  521. */
  522. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  523. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  524. /*
  525. * Update False CCA count from register.
  526. */
  527. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  528. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  529. }
  530. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  531. struct link_qual *qual, u8 vgc_level)
  532. {
  533. if (qual->vgc_level_reg != vgc_level) {
  534. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  535. qual->vgc_level_reg = vgc_level;
  536. }
  537. }
  538. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  539. struct link_qual *qual)
  540. {
  541. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  542. }
  543. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  544. struct link_qual *qual, const u32 count)
  545. {
  546. /*
  547. * To prevent collisions with MAC ASIC on chipsets
  548. * up to version C the link tuning should halt after 20
  549. * seconds while being associated.
  550. */
  551. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  552. rt2x00dev->intf_associated && count > 20)
  553. return;
  554. /*
  555. * Chipset versions C and lower should directly continue
  556. * to the dynamic CCA tuning. Chipset version D and higher
  557. * should go straight to dynamic CCA tuning when they
  558. * are not associated.
  559. */
  560. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  561. !rt2x00dev->intf_associated)
  562. goto dynamic_cca_tune;
  563. /*
  564. * A too low RSSI will cause too much false CCA which will
  565. * then corrupt the R17 tuning. To remidy this the tuning should
  566. * be stopped (While making sure the R17 value will not exceed limits)
  567. */
  568. if (qual->rssi < -80 && count > 20) {
  569. if (qual->vgc_level_reg >= 0x41)
  570. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  571. return;
  572. }
  573. /*
  574. * Special big-R17 for short distance
  575. */
  576. if (qual->rssi >= -58) {
  577. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  578. return;
  579. }
  580. /*
  581. * Special mid-R17 for middle distance
  582. */
  583. if (qual->rssi >= -74) {
  584. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  585. return;
  586. }
  587. /*
  588. * Leave short or middle distance condition, restore r17
  589. * to the dynamic tuning range.
  590. */
  591. if (qual->vgc_level_reg >= 0x41) {
  592. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  593. return;
  594. }
  595. dynamic_cca_tune:
  596. /*
  597. * R17 is inside the dynamic tuning range,
  598. * start tuning the link based on the false cca counter.
  599. */
  600. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
  601. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  602. qual->vgc_level = qual->vgc_level_reg;
  603. } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
  604. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  605. qual->vgc_level = qual->vgc_level_reg;
  606. }
  607. }
  608. /*
  609. * Initialization functions.
  610. */
  611. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  612. {
  613. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  614. u32 word;
  615. if (entry->queue->qid == QID_RX) {
  616. rt2x00_desc_read(entry_priv->desc, 0, &word);
  617. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  618. } else {
  619. rt2x00_desc_read(entry_priv->desc, 0, &word);
  620. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  621. rt2x00_get_field32(word, TXD_W0_VALID));
  622. }
  623. }
  624. static void rt2500pci_clear_entry(struct queue_entry *entry)
  625. {
  626. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  627. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  628. u32 word;
  629. if (entry->queue->qid == QID_RX) {
  630. rt2x00_desc_read(entry_priv->desc, 1, &word);
  631. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  632. rt2x00_desc_write(entry_priv->desc, 1, word);
  633. rt2x00_desc_read(entry_priv->desc, 0, &word);
  634. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  635. rt2x00_desc_write(entry_priv->desc, 0, word);
  636. } else {
  637. rt2x00_desc_read(entry_priv->desc, 0, &word);
  638. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  639. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  640. rt2x00_desc_write(entry_priv->desc, 0, word);
  641. }
  642. }
  643. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  644. {
  645. struct queue_entry_priv_pci *entry_priv;
  646. u32 reg;
  647. /*
  648. * Initialize registers.
  649. */
  650. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  651. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  652. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  653. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  654. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  655. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  656. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  657. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  658. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  659. entry_priv->desc_dma);
  660. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  661. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  662. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  663. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  664. entry_priv->desc_dma);
  665. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  666. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  667. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  668. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  669. entry_priv->desc_dma);
  670. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  671. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  672. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  673. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  674. entry_priv->desc_dma);
  675. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  676. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  677. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  678. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  679. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  680. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  681. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  682. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  683. entry_priv->desc_dma);
  684. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  685. return 0;
  686. }
  687. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  688. {
  689. u32 reg;
  690. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  691. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  692. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  693. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  694. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  695. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  696. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  697. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  698. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  699. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  700. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  701. rt2x00dev->rx->data_size / 128);
  702. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  703. /*
  704. * Always use CWmin and CWmax set in descriptor.
  705. */
  706. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  707. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  708. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  709. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  710. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  711. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  712. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  713. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  714. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  715. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  716. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  717. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  718. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  719. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  720. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  721. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  722. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  723. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  724. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  725. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  726. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  727. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  728. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  729. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  730. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  731. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  732. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  733. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  734. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  735. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  736. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  737. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  738. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  739. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  740. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  741. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  742. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  743. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  744. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  745. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  746. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  747. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  748. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  749. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  750. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  751. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  752. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  753. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  754. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  755. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  756. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  757. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  758. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  759. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  760. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  761. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  762. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  763. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  764. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  765. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  766. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  767. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  768. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  769. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  770. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  771. return -EBUSY;
  772. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  773. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  774. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  775. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  776. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  777. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  778. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  779. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  780. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  781. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  782. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  783. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  784. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  785. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  786. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  787. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  788. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  789. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  790. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  791. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  792. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  793. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  794. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  795. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  796. /*
  797. * We must clear the FCS and FIFO error count.
  798. * These registers are cleared on read,
  799. * so we may pass a useless variable to store the value.
  800. */
  801. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  802. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  803. return 0;
  804. }
  805. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  806. {
  807. unsigned int i;
  808. u8 value;
  809. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  810. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  811. if ((value != 0xff) && (value != 0x00))
  812. return 0;
  813. udelay(REGISTER_BUSY_DELAY);
  814. }
  815. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  816. return -EACCES;
  817. }
  818. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  819. {
  820. unsigned int i;
  821. u16 eeprom;
  822. u8 reg_id;
  823. u8 value;
  824. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  825. return -EACCES;
  826. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  827. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  828. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  829. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  830. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  831. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  832. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  833. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  834. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  835. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  836. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  837. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  838. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  839. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  840. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  841. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  842. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  843. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  844. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  845. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  846. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  847. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  848. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  849. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  850. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  851. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  852. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  853. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  854. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  855. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  856. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  857. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  858. if (eeprom != 0xffff && eeprom != 0x0000) {
  859. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  860. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  861. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  862. }
  863. }
  864. return 0;
  865. }
  866. /*
  867. * Device state switch handlers.
  868. */
  869. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  870. enum dev_state state)
  871. {
  872. u32 reg;
  873. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  874. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  875. (state == STATE_RADIO_RX_OFF) ||
  876. (state == STATE_RADIO_RX_OFF_LINK));
  877. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  878. }
  879. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  880. enum dev_state state)
  881. {
  882. int mask = (state == STATE_RADIO_IRQ_OFF);
  883. u32 reg;
  884. /*
  885. * When interrupts are being enabled, the interrupt registers
  886. * should clear the register to assure a clean state.
  887. */
  888. if (state == STATE_RADIO_IRQ_ON) {
  889. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  890. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  891. }
  892. /*
  893. * Only toggle the interrupts bits we are going to use.
  894. * Non-checked interrupt bits are disabled by default.
  895. */
  896. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  897. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  898. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  899. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  900. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  901. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  902. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  903. }
  904. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  905. {
  906. /*
  907. * Initialize all registers.
  908. */
  909. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  910. rt2500pci_init_registers(rt2x00dev) ||
  911. rt2500pci_init_bbp(rt2x00dev)))
  912. return -EIO;
  913. return 0;
  914. }
  915. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  916. {
  917. /*
  918. * Disable power
  919. */
  920. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  921. }
  922. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  923. enum dev_state state)
  924. {
  925. u32 reg;
  926. unsigned int i;
  927. char put_to_sleep;
  928. char bbp_state;
  929. char rf_state;
  930. put_to_sleep = (state != STATE_AWAKE);
  931. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  932. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  933. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  934. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  935. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  936. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  937. /*
  938. * Device is not guaranteed to be in the requested state yet.
  939. * We must wait until the register indicates that the
  940. * device has entered the correct state.
  941. */
  942. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  943. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  944. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  945. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  946. if (bbp_state == state && rf_state == state)
  947. return 0;
  948. msleep(10);
  949. }
  950. return -EBUSY;
  951. }
  952. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  953. enum dev_state state)
  954. {
  955. int retval = 0;
  956. switch (state) {
  957. case STATE_RADIO_ON:
  958. retval = rt2500pci_enable_radio(rt2x00dev);
  959. break;
  960. case STATE_RADIO_OFF:
  961. rt2500pci_disable_radio(rt2x00dev);
  962. break;
  963. case STATE_RADIO_RX_ON:
  964. case STATE_RADIO_RX_ON_LINK:
  965. case STATE_RADIO_RX_OFF:
  966. case STATE_RADIO_RX_OFF_LINK:
  967. rt2500pci_toggle_rx(rt2x00dev, state);
  968. break;
  969. case STATE_RADIO_IRQ_ON:
  970. case STATE_RADIO_IRQ_OFF:
  971. rt2500pci_toggle_irq(rt2x00dev, state);
  972. break;
  973. case STATE_DEEP_SLEEP:
  974. case STATE_SLEEP:
  975. case STATE_STANDBY:
  976. case STATE_AWAKE:
  977. retval = rt2500pci_set_state(rt2x00dev, state);
  978. break;
  979. default:
  980. retval = -ENOTSUPP;
  981. break;
  982. }
  983. if (unlikely(retval))
  984. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  985. state, retval);
  986. return retval;
  987. }
  988. /*
  989. * TX descriptor initialization
  990. */
  991. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  992. struct sk_buff *skb,
  993. struct txentry_desc *txdesc)
  994. {
  995. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  996. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  997. __le32 *txd = skbdesc->desc;
  998. u32 word;
  999. /*
  1000. * Start writing the descriptor words.
  1001. */
  1002. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1003. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1004. rt2x00_desc_write(entry_priv->desc, 1, word);
  1005. rt2x00_desc_read(txd, 2, &word);
  1006. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1007. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1008. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1009. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1010. rt2x00_desc_write(txd, 2, word);
  1011. rt2x00_desc_read(txd, 3, &word);
  1012. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1013. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1014. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1015. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1016. rt2x00_desc_write(txd, 3, word);
  1017. rt2x00_desc_read(txd, 10, &word);
  1018. rt2x00_set_field32(&word, TXD_W10_RTS,
  1019. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1020. rt2x00_desc_write(txd, 10, word);
  1021. /*
  1022. * Writing TXD word 0 must the last to prevent a race condition with
  1023. * the device, whereby the device may take hold of the TXD before we
  1024. * finished updating it.
  1025. */
  1026. rt2x00_desc_read(txd, 0, &word);
  1027. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1028. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1029. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1030. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1031. rt2x00_set_field32(&word, TXD_W0_ACK,
  1032. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1033. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1034. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1035. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1036. (txdesc->rate_mode == RATE_MODE_OFDM));
  1037. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1038. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1039. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1040. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1041. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1042. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1043. rt2x00_desc_write(txd, 0, word);
  1044. }
  1045. /*
  1046. * TX data initialization
  1047. */
  1048. static void rt2500pci_write_beacon(struct queue_entry *entry,
  1049. struct txentry_desc *txdesc)
  1050. {
  1051. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1052. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1053. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1054. u32 word;
  1055. u32 reg;
  1056. /*
  1057. * Disable beaconing while we are reloading the beacon data,
  1058. * otherwise we might be sending out invalid data.
  1059. */
  1060. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1061. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1062. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1063. /*
  1064. * Replace rt2x00lib allocated descriptor with the
  1065. * pointer to the _real_ hardware descriptor.
  1066. * After that, map the beacon to DMA and update the
  1067. * descriptor.
  1068. */
  1069. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  1070. skbdesc->desc = entry_priv->desc;
  1071. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  1072. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1073. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1074. rt2x00_desc_write(entry_priv->desc, 1, word);
  1075. /*
  1076. * Enable beaconing again.
  1077. */
  1078. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1079. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1080. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1081. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1082. }
  1083. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1084. const enum data_queue_qid queue)
  1085. {
  1086. u32 reg;
  1087. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1088. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1089. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1090. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1091. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1092. }
  1093. static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  1094. const enum data_queue_qid qid)
  1095. {
  1096. u32 reg;
  1097. if (qid == QID_BEACON) {
  1098. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  1099. } else {
  1100. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1101. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  1102. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1103. }
  1104. }
  1105. /*
  1106. * RX control handlers
  1107. */
  1108. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1109. struct rxdone_entry_desc *rxdesc)
  1110. {
  1111. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1112. u32 word0;
  1113. u32 word2;
  1114. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1115. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1116. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1117. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1118. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1119. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1120. /*
  1121. * Obtain the status about this packet.
  1122. * When frame was received with an OFDM bitrate,
  1123. * the signal is the PLCP value. If it was received with
  1124. * a CCK bitrate the signal is the rate in 100kbit/s.
  1125. */
  1126. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1127. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1128. entry->queue->rt2x00dev->rssi_offset;
  1129. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1130. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1131. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1132. else
  1133. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1134. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1135. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1136. }
  1137. /*
  1138. * Interrupt functions.
  1139. */
  1140. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1141. const enum data_queue_qid queue_idx)
  1142. {
  1143. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1144. struct queue_entry_priv_pci *entry_priv;
  1145. struct queue_entry *entry;
  1146. struct txdone_entry_desc txdesc;
  1147. u32 word;
  1148. while (!rt2x00queue_empty(queue)) {
  1149. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1150. entry_priv = entry->priv_data;
  1151. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1152. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1153. !rt2x00_get_field32(word, TXD_W0_VALID))
  1154. break;
  1155. /*
  1156. * Obtain the status about this packet.
  1157. */
  1158. txdesc.flags = 0;
  1159. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1160. case 0: /* Success */
  1161. case 1: /* Success with retry */
  1162. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1163. break;
  1164. case 2: /* Failure, excessive retries */
  1165. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1166. /* Don't break, this is a failed frame! */
  1167. default: /* Failure */
  1168. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1169. }
  1170. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1171. rt2x00lib_txdone(entry, &txdesc);
  1172. }
  1173. }
  1174. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1175. {
  1176. struct rt2x00_dev *rt2x00dev = dev_instance;
  1177. u32 reg;
  1178. /*
  1179. * Get the interrupt sources & saved to local variable.
  1180. * Write register value back to clear pending interrupts.
  1181. */
  1182. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1183. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1184. if (!reg)
  1185. return IRQ_NONE;
  1186. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1187. return IRQ_HANDLED;
  1188. /*
  1189. * Handle interrupts, walk through all bits
  1190. * and run the tasks, the bits are checked in order of
  1191. * priority.
  1192. */
  1193. /*
  1194. * 1 - Beacon timer expired interrupt.
  1195. */
  1196. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1197. rt2x00lib_beacondone(rt2x00dev);
  1198. /*
  1199. * 2 - Rx ring done interrupt.
  1200. */
  1201. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1202. rt2x00pci_rxdone(rt2x00dev);
  1203. /*
  1204. * 3 - Atim ring transmit done interrupt.
  1205. */
  1206. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1207. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1208. /*
  1209. * 4 - Priority ring transmit done interrupt.
  1210. */
  1211. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1212. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1213. /*
  1214. * 5 - Tx ring transmit done interrupt.
  1215. */
  1216. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1217. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1218. return IRQ_HANDLED;
  1219. }
  1220. /*
  1221. * Device probe functions.
  1222. */
  1223. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1224. {
  1225. struct eeprom_93cx6 eeprom;
  1226. u32 reg;
  1227. u16 word;
  1228. u8 *mac;
  1229. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1230. eeprom.data = rt2x00dev;
  1231. eeprom.register_read = rt2500pci_eepromregister_read;
  1232. eeprom.register_write = rt2500pci_eepromregister_write;
  1233. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1234. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1235. eeprom.reg_data_in = 0;
  1236. eeprom.reg_data_out = 0;
  1237. eeprom.reg_data_clock = 0;
  1238. eeprom.reg_chip_select = 0;
  1239. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1240. EEPROM_SIZE / sizeof(u16));
  1241. /*
  1242. * Start validation of the data that has been read.
  1243. */
  1244. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1245. if (!is_valid_ether_addr(mac)) {
  1246. random_ether_addr(mac);
  1247. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1248. }
  1249. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1250. if (word == 0xffff) {
  1251. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1252. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1253. ANTENNA_SW_DIVERSITY);
  1254. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1255. ANTENNA_SW_DIVERSITY);
  1256. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1257. LED_MODE_DEFAULT);
  1258. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1259. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1260. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1261. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1262. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1263. }
  1264. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1265. if (word == 0xffff) {
  1266. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1267. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1268. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1269. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1270. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1271. }
  1272. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1273. if (word == 0xffff) {
  1274. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1275. DEFAULT_RSSI_OFFSET);
  1276. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1277. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1278. }
  1279. return 0;
  1280. }
  1281. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1282. {
  1283. u32 reg;
  1284. u16 value;
  1285. u16 eeprom;
  1286. /*
  1287. * Read EEPROM word for configuration.
  1288. */
  1289. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1290. /*
  1291. * Identify RF chipset.
  1292. */
  1293. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1294. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1295. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1296. rt2x00_get_field32(reg, CSR0_REVISION));
  1297. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1298. !rt2x00_rf(rt2x00dev, RF2523) &&
  1299. !rt2x00_rf(rt2x00dev, RF2524) &&
  1300. !rt2x00_rf(rt2x00dev, RF2525) &&
  1301. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1302. !rt2x00_rf(rt2x00dev, RF5222)) {
  1303. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1304. return -ENODEV;
  1305. }
  1306. /*
  1307. * Identify default antenna configuration.
  1308. */
  1309. rt2x00dev->default_ant.tx =
  1310. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1311. rt2x00dev->default_ant.rx =
  1312. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1313. /*
  1314. * Store led mode, for correct led behaviour.
  1315. */
  1316. #ifdef CONFIG_RT2X00_LIB_LEDS
  1317. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1318. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1319. if (value == LED_MODE_TXRX_ACTIVITY ||
  1320. value == LED_MODE_DEFAULT ||
  1321. value == LED_MODE_ASUS)
  1322. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1323. LED_TYPE_ACTIVITY);
  1324. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1325. /*
  1326. * Detect if this device has an hardware controlled radio.
  1327. */
  1328. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1329. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1330. /*
  1331. * Check if the BBP tuning should be enabled.
  1332. */
  1333. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1334. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1335. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1336. /*
  1337. * Read the RSSI <-> dBm offset information.
  1338. */
  1339. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1340. rt2x00dev->rssi_offset =
  1341. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1342. return 0;
  1343. }
  1344. /*
  1345. * RF value list for RF2522
  1346. * Supports: 2.4 GHz
  1347. */
  1348. static const struct rf_channel rf_vals_bg_2522[] = {
  1349. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1350. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1351. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1352. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1353. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1354. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1355. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1356. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1357. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1358. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1359. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1360. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1361. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1362. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1363. };
  1364. /*
  1365. * RF value list for RF2523
  1366. * Supports: 2.4 GHz
  1367. */
  1368. static const struct rf_channel rf_vals_bg_2523[] = {
  1369. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1370. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1371. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1372. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1373. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1374. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1375. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1376. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1377. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1378. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1379. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1380. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1381. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1382. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1383. };
  1384. /*
  1385. * RF value list for RF2524
  1386. * Supports: 2.4 GHz
  1387. */
  1388. static const struct rf_channel rf_vals_bg_2524[] = {
  1389. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1390. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1391. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1392. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1393. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1394. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1395. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1396. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1397. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1398. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1399. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1400. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1401. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1402. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1403. };
  1404. /*
  1405. * RF value list for RF2525
  1406. * Supports: 2.4 GHz
  1407. */
  1408. static const struct rf_channel rf_vals_bg_2525[] = {
  1409. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1410. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1411. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1412. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1413. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1414. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1415. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1416. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1417. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1418. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1419. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1420. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1421. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1422. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1423. };
  1424. /*
  1425. * RF value list for RF2525e
  1426. * Supports: 2.4 GHz
  1427. */
  1428. static const struct rf_channel rf_vals_bg_2525e[] = {
  1429. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1430. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1431. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1432. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1433. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1434. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1435. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1436. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1437. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1438. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1439. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1440. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1441. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1442. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1443. };
  1444. /*
  1445. * RF value list for RF5222
  1446. * Supports: 2.4 GHz & 5.2 GHz
  1447. */
  1448. static const struct rf_channel rf_vals_5222[] = {
  1449. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1450. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1451. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1452. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1453. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1454. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1455. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1456. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1457. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1458. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1459. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1460. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1461. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1462. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1463. /* 802.11 UNI / HyperLan 2 */
  1464. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1465. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1466. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1467. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1468. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1469. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1470. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1471. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1472. /* 802.11 HyperLan 2 */
  1473. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1474. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1475. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1476. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1477. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1478. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1479. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1480. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1481. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1482. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1483. /* 802.11 UNII */
  1484. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1485. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1486. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1487. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1488. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1489. };
  1490. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1491. {
  1492. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1493. struct channel_info *info;
  1494. char *tx_power;
  1495. unsigned int i;
  1496. /*
  1497. * Initialize all hw fields.
  1498. */
  1499. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1500. IEEE80211_HW_SIGNAL_DBM |
  1501. IEEE80211_HW_SUPPORTS_PS |
  1502. IEEE80211_HW_PS_NULLFUNC_STACK;
  1503. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1504. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1505. rt2x00_eeprom_addr(rt2x00dev,
  1506. EEPROM_MAC_ADDR_0));
  1507. /*
  1508. * Initialize hw_mode information.
  1509. */
  1510. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1511. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1512. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1513. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1514. spec->channels = rf_vals_bg_2522;
  1515. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1516. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1517. spec->channels = rf_vals_bg_2523;
  1518. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1519. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1520. spec->channels = rf_vals_bg_2524;
  1521. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1522. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1523. spec->channels = rf_vals_bg_2525;
  1524. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1525. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1526. spec->channels = rf_vals_bg_2525e;
  1527. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1528. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1529. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1530. spec->channels = rf_vals_5222;
  1531. }
  1532. /*
  1533. * Create channel information array
  1534. */
  1535. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1536. if (!info)
  1537. return -ENOMEM;
  1538. spec->channels_info = info;
  1539. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1540. for (i = 0; i < 14; i++)
  1541. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1542. if (spec->num_channels > 14) {
  1543. for (i = 14; i < spec->num_channels; i++)
  1544. info[i].tx_power1 = DEFAULT_TXPOWER;
  1545. }
  1546. return 0;
  1547. }
  1548. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1549. {
  1550. int retval;
  1551. /*
  1552. * Allocate eeprom data.
  1553. */
  1554. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1555. if (retval)
  1556. return retval;
  1557. retval = rt2500pci_init_eeprom(rt2x00dev);
  1558. if (retval)
  1559. return retval;
  1560. /*
  1561. * Initialize hw specifications.
  1562. */
  1563. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1564. if (retval)
  1565. return retval;
  1566. /*
  1567. * This device requires the atim queue and DMA-mapped skbs.
  1568. */
  1569. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1570. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1571. /*
  1572. * Set the rssi offset.
  1573. */
  1574. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1575. return 0;
  1576. }
  1577. /*
  1578. * IEEE80211 stack callback functions.
  1579. */
  1580. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1581. {
  1582. struct rt2x00_dev *rt2x00dev = hw->priv;
  1583. u64 tsf;
  1584. u32 reg;
  1585. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1586. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1587. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1588. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1589. return tsf;
  1590. }
  1591. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1592. {
  1593. struct rt2x00_dev *rt2x00dev = hw->priv;
  1594. u32 reg;
  1595. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1596. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1597. }
  1598. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1599. .tx = rt2x00mac_tx,
  1600. .start = rt2x00mac_start,
  1601. .stop = rt2x00mac_stop,
  1602. .add_interface = rt2x00mac_add_interface,
  1603. .remove_interface = rt2x00mac_remove_interface,
  1604. .config = rt2x00mac_config,
  1605. .configure_filter = rt2x00mac_configure_filter,
  1606. .set_tim = rt2x00mac_set_tim,
  1607. .get_stats = rt2x00mac_get_stats,
  1608. .bss_info_changed = rt2x00mac_bss_info_changed,
  1609. .conf_tx = rt2x00mac_conf_tx,
  1610. .get_tsf = rt2500pci_get_tsf,
  1611. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1612. .rfkill_poll = rt2x00mac_rfkill_poll,
  1613. };
  1614. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1615. .irq_handler = rt2500pci_interrupt,
  1616. .probe_hw = rt2500pci_probe_hw,
  1617. .initialize = rt2x00pci_initialize,
  1618. .uninitialize = rt2x00pci_uninitialize,
  1619. .get_entry_state = rt2500pci_get_entry_state,
  1620. .clear_entry = rt2500pci_clear_entry,
  1621. .set_device_state = rt2500pci_set_device_state,
  1622. .rfkill_poll = rt2500pci_rfkill_poll,
  1623. .link_stats = rt2500pci_link_stats,
  1624. .reset_tuner = rt2500pci_reset_tuner,
  1625. .link_tuner = rt2500pci_link_tuner,
  1626. .write_tx_desc = rt2500pci_write_tx_desc,
  1627. .write_tx_data = rt2x00pci_write_tx_data,
  1628. .write_beacon = rt2500pci_write_beacon,
  1629. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1630. .kill_tx_queue = rt2500pci_kill_tx_queue,
  1631. .fill_rxdone = rt2500pci_fill_rxdone,
  1632. .config_filter = rt2500pci_config_filter,
  1633. .config_intf = rt2500pci_config_intf,
  1634. .config_erp = rt2500pci_config_erp,
  1635. .config_ant = rt2500pci_config_ant,
  1636. .config = rt2500pci_config,
  1637. };
  1638. static const struct data_queue_desc rt2500pci_queue_rx = {
  1639. .entry_num = RX_ENTRIES,
  1640. .data_size = DATA_FRAME_SIZE,
  1641. .desc_size = RXD_DESC_SIZE,
  1642. .priv_size = sizeof(struct queue_entry_priv_pci),
  1643. };
  1644. static const struct data_queue_desc rt2500pci_queue_tx = {
  1645. .entry_num = TX_ENTRIES,
  1646. .data_size = DATA_FRAME_SIZE,
  1647. .desc_size = TXD_DESC_SIZE,
  1648. .priv_size = sizeof(struct queue_entry_priv_pci),
  1649. };
  1650. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1651. .entry_num = BEACON_ENTRIES,
  1652. .data_size = MGMT_FRAME_SIZE,
  1653. .desc_size = TXD_DESC_SIZE,
  1654. .priv_size = sizeof(struct queue_entry_priv_pci),
  1655. };
  1656. static const struct data_queue_desc rt2500pci_queue_atim = {
  1657. .entry_num = ATIM_ENTRIES,
  1658. .data_size = DATA_FRAME_SIZE,
  1659. .desc_size = TXD_DESC_SIZE,
  1660. .priv_size = sizeof(struct queue_entry_priv_pci),
  1661. };
  1662. static const struct rt2x00_ops rt2500pci_ops = {
  1663. .name = KBUILD_MODNAME,
  1664. .max_sta_intf = 1,
  1665. .max_ap_intf = 1,
  1666. .eeprom_size = EEPROM_SIZE,
  1667. .rf_size = RF_SIZE,
  1668. .tx_queues = NUM_TX_QUEUES,
  1669. .extra_tx_headroom = 0,
  1670. .rx = &rt2500pci_queue_rx,
  1671. .tx = &rt2500pci_queue_tx,
  1672. .bcn = &rt2500pci_queue_bcn,
  1673. .atim = &rt2500pci_queue_atim,
  1674. .lib = &rt2500pci_rt2x00_ops,
  1675. .hw = &rt2500pci_mac80211_ops,
  1676. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1677. .debugfs = &rt2500pci_rt2x00debug,
  1678. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1679. };
  1680. /*
  1681. * RT2500pci module information.
  1682. */
  1683. static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
  1684. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1685. { 0, }
  1686. };
  1687. MODULE_AUTHOR(DRV_PROJECT);
  1688. MODULE_VERSION(DRV_VERSION);
  1689. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1690. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1691. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1692. MODULE_LICENSE("GPL");
  1693. static struct pci_driver rt2500pci_driver = {
  1694. .name = KBUILD_MODNAME,
  1695. .id_table = rt2500pci_device_table,
  1696. .probe = rt2x00pci_probe,
  1697. .remove = __devexit_p(rt2x00pci_remove),
  1698. .suspend = rt2x00pci_suspend,
  1699. .resume = rt2x00pci_resume,
  1700. };
  1701. static int __init rt2500pci_init(void)
  1702. {
  1703. return pci_register_driver(&rt2500pci_driver);
  1704. }
  1705. static void __exit rt2500pci_exit(void)
  1706. {
  1707. pci_unregister_driver(&rt2500pci_driver);
  1708. }
  1709. module_init(rt2500pci_init);
  1710. module_exit(rt2500pci_exit);