kvm_main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "iodev.h"
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <asm/processor.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/pgtable.h>
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. DEFINE_SPINLOCK(kvm_lock);
  48. LIST_HEAD(vm_list);
  49. static cpumask_t cpus_hardware_enabled;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. static struct dentry *debugfs_dir;
  54. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  55. unsigned long arg);
  56. static inline int valid_vcpu(int n)
  57. {
  58. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  59. }
  60. /*
  61. * Switches to specified vcpu, until a matching vcpu_put()
  62. */
  63. void vcpu_load(struct kvm_vcpu *vcpu)
  64. {
  65. int cpu;
  66. mutex_lock(&vcpu->mutex);
  67. cpu = get_cpu();
  68. preempt_notifier_register(&vcpu->preempt_notifier);
  69. kvm_arch_vcpu_load(vcpu, cpu);
  70. put_cpu();
  71. }
  72. void vcpu_put(struct kvm_vcpu *vcpu)
  73. {
  74. preempt_disable();
  75. kvm_arch_vcpu_put(vcpu);
  76. preempt_notifier_unregister(&vcpu->preempt_notifier);
  77. preempt_enable();
  78. mutex_unlock(&vcpu->mutex);
  79. }
  80. static void ack_flush(void *_completed)
  81. {
  82. }
  83. void kvm_flush_remote_tlbs(struct kvm *kvm)
  84. {
  85. int i, cpu;
  86. cpumask_t cpus;
  87. struct kvm_vcpu *vcpu;
  88. cpus_clear(cpus);
  89. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  90. vcpu = kvm->vcpus[i];
  91. if (!vcpu)
  92. continue;
  93. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  94. continue;
  95. cpu = vcpu->cpu;
  96. if (cpu != -1 && cpu != raw_smp_processor_id())
  97. cpu_set(cpu, cpus);
  98. }
  99. if (cpus_empty(cpus))
  100. return;
  101. ++kvm->stat.remote_tlb_flush;
  102. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  103. }
  104. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  105. {
  106. struct page *page;
  107. int r;
  108. mutex_init(&vcpu->mutex);
  109. vcpu->cpu = -1;
  110. vcpu->kvm = kvm;
  111. vcpu->vcpu_id = id;
  112. init_waitqueue_head(&vcpu->wq);
  113. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  114. if (!page) {
  115. r = -ENOMEM;
  116. goto fail;
  117. }
  118. vcpu->run = page_address(page);
  119. r = kvm_arch_vcpu_init(vcpu);
  120. if (r < 0)
  121. goto fail_free_run;
  122. return 0;
  123. fail_free_run:
  124. free_page((unsigned long)vcpu->run);
  125. fail:
  126. return r;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  129. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  130. {
  131. kvm_arch_vcpu_uninit(vcpu);
  132. free_page((unsigned long)vcpu->run);
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  135. static struct kvm *kvm_create_vm(void)
  136. {
  137. struct kvm *kvm = kvm_arch_create_vm();
  138. if (IS_ERR(kvm))
  139. goto out;
  140. kvm->mm = current->mm;
  141. atomic_inc(&kvm->mm->mm_count);
  142. kvm_io_bus_init(&kvm->pio_bus);
  143. mutex_init(&kvm->lock);
  144. kvm_io_bus_init(&kvm->mmio_bus);
  145. spin_lock(&kvm_lock);
  146. list_add(&kvm->vm_list, &vm_list);
  147. spin_unlock(&kvm_lock);
  148. out:
  149. return kvm;
  150. }
  151. /*
  152. * Free any memory in @free but not in @dont.
  153. */
  154. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  155. struct kvm_memory_slot *dont)
  156. {
  157. if (!dont || free->rmap != dont->rmap)
  158. vfree(free->rmap);
  159. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  160. vfree(free->dirty_bitmap);
  161. free->npages = 0;
  162. free->dirty_bitmap = NULL;
  163. free->rmap = NULL;
  164. }
  165. void kvm_free_physmem(struct kvm *kvm)
  166. {
  167. int i;
  168. for (i = 0; i < kvm->nmemslots; ++i)
  169. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  170. }
  171. static void kvm_destroy_vm(struct kvm *kvm)
  172. {
  173. struct mm_struct *mm = kvm->mm;
  174. spin_lock(&kvm_lock);
  175. list_del(&kvm->vm_list);
  176. spin_unlock(&kvm_lock);
  177. kvm_io_bus_destroy(&kvm->pio_bus);
  178. kvm_io_bus_destroy(&kvm->mmio_bus);
  179. kvm_arch_destroy_vm(kvm);
  180. mmdrop(mm);
  181. }
  182. static int kvm_vm_release(struct inode *inode, struct file *filp)
  183. {
  184. struct kvm *kvm = filp->private_data;
  185. kvm_destroy_vm(kvm);
  186. return 0;
  187. }
  188. /*
  189. * Allocate some memory and give it an address in the guest physical address
  190. * space.
  191. *
  192. * Discontiguous memory is allowed, mostly for framebuffers.
  193. *
  194. * Must be called holding kvm->lock.
  195. */
  196. int __kvm_set_memory_region(struct kvm *kvm,
  197. struct kvm_userspace_memory_region *mem,
  198. int user_alloc)
  199. {
  200. int r;
  201. gfn_t base_gfn;
  202. unsigned long npages;
  203. unsigned long i;
  204. struct kvm_memory_slot *memslot;
  205. struct kvm_memory_slot old, new;
  206. r = -EINVAL;
  207. /* General sanity checks */
  208. if (mem->memory_size & (PAGE_SIZE - 1))
  209. goto out;
  210. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  211. goto out;
  212. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  213. goto out;
  214. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  215. goto out;
  216. memslot = &kvm->memslots[mem->slot];
  217. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  218. npages = mem->memory_size >> PAGE_SHIFT;
  219. if (!npages)
  220. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  221. new = old = *memslot;
  222. new.base_gfn = base_gfn;
  223. new.npages = npages;
  224. new.flags = mem->flags;
  225. /* Disallow changing a memory slot's size. */
  226. r = -EINVAL;
  227. if (npages && old.npages && npages != old.npages)
  228. goto out_free;
  229. /* Check for overlaps */
  230. r = -EEXIST;
  231. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  232. struct kvm_memory_slot *s = &kvm->memslots[i];
  233. if (s == memslot)
  234. continue;
  235. if (!((base_gfn + npages <= s->base_gfn) ||
  236. (base_gfn >= s->base_gfn + s->npages)))
  237. goto out_free;
  238. }
  239. /* Free page dirty bitmap if unneeded */
  240. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  241. new.dirty_bitmap = NULL;
  242. r = -ENOMEM;
  243. /* Allocate if a slot is being created */
  244. if (npages && !new.rmap) {
  245. new.rmap = vmalloc(npages * sizeof(struct page *));
  246. if (!new.rmap)
  247. goto out_free;
  248. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  249. new.user_alloc = user_alloc;
  250. new.userspace_addr = mem->userspace_addr;
  251. }
  252. /* Allocate page dirty bitmap if needed */
  253. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  254. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  255. new.dirty_bitmap = vmalloc(dirty_bytes);
  256. if (!new.dirty_bitmap)
  257. goto out_free;
  258. memset(new.dirty_bitmap, 0, dirty_bytes);
  259. }
  260. if (mem->slot >= kvm->nmemslots)
  261. kvm->nmemslots = mem->slot + 1;
  262. *memslot = new;
  263. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  264. if (r) {
  265. *memslot = old;
  266. goto out_free;
  267. }
  268. kvm_free_physmem_slot(&old, &new);
  269. return 0;
  270. out_free:
  271. kvm_free_physmem_slot(&new, &old);
  272. out:
  273. return r;
  274. }
  275. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  276. int kvm_set_memory_region(struct kvm *kvm,
  277. struct kvm_userspace_memory_region *mem,
  278. int user_alloc)
  279. {
  280. int r;
  281. mutex_lock(&kvm->lock);
  282. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  283. mutex_unlock(&kvm->lock);
  284. return r;
  285. }
  286. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  287. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  288. struct
  289. kvm_userspace_memory_region *mem,
  290. int user_alloc)
  291. {
  292. if (mem->slot >= KVM_MEMORY_SLOTS)
  293. return -EINVAL;
  294. return kvm_set_memory_region(kvm, mem, user_alloc);
  295. }
  296. int kvm_get_dirty_log(struct kvm *kvm,
  297. struct kvm_dirty_log *log, int *is_dirty)
  298. {
  299. struct kvm_memory_slot *memslot;
  300. int r, i;
  301. int n;
  302. unsigned long any = 0;
  303. r = -EINVAL;
  304. if (log->slot >= KVM_MEMORY_SLOTS)
  305. goto out;
  306. memslot = &kvm->memslots[log->slot];
  307. r = -ENOENT;
  308. if (!memslot->dirty_bitmap)
  309. goto out;
  310. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  311. for (i = 0; !any && i < n/sizeof(long); ++i)
  312. any = memslot->dirty_bitmap[i];
  313. r = -EFAULT;
  314. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  315. goto out;
  316. if (any)
  317. *is_dirty = 1;
  318. r = 0;
  319. out:
  320. return r;
  321. }
  322. int is_error_page(struct page *page)
  323. {
  324. return page == bad_page;
  325. }
  326. EXPORT_SYMBOL_GPL(is_error_page);
  327. static inline unsigned long bad_hva(void)
  328. {
  329. return PAGE_OFFSET;
  330. }
  331. int kvm_is_error_hva(unsigned long addr)
  332. {
  333. return addr == bad_hva();
  334. }
  335. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  336. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  337. {
  338. int i;
  339. for (i = 0; i < kvm->nmemslots; ++i) {
  340. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  341. if (gfn >= memslot->base_gfn
  342. && gfn < memslot->base_gfn + memslot->npages)
  343. return memslot;
  344. }
  345. return NULL;
  346. }
  347. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  348. {
  349. gfn = unalias_gfn(kvm, gfn);
  350. return __gfn_to_memslot(kvm, gfn);
  351. }
  352. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  353. {
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  357. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  358. if (gfn >= memslot->base_gfn
  359. && gfn < memslot->base_gfn + memslot->npages)
  360. return 1;
  361. }
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  365. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  366. {
  367. struct kvm_memory_slot *slot;
  368. gfn = unalias_gfn(kvm, gfn);
  369. slot = __gfn_to_memslot(kvm, gfn);
  370. if (!slot)
  371. return bad_hva();
  372. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  373. }
  374. /*
  375. * Requires current->mm->mmap_sem to be held
  376. */
  377. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  378. {
  379. struct page *page[1];
  380. unsigned long addr;
  381. int npages;
  382. might_sleep();
  383. addr = gfn_to_hva(kvm, gfn);
  384. if (kvm_is_error_hva(addr)) {
  385. get_page(bad_page);
  386. return bad_page;
  387. }
  388. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  389. NULL);
  390. if (npages != 1) {
  391. get_page(bad_page);
  392. return bad_page;
  393. }
  394. return page[0];
  395. }
  396. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  397. {
  398. struct page *page;
  399. down_read(&current->mm->mmap_sem);
  400. page = __gfn_to_page(kvm, gfn);
  401. up_read(&current->mm->mmap_sem);
  402. return page;
  403. }
  404. EXPORT_SYMBOL_GPL(gfn_to_page);
  405. void kvm_release_page_clean(struct page *page)
  406. {
  407. put_page(page);
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  410. void kvm_release_page_dirty(struct page *page)
  411. {
  412. if (!PageReserved(page))
  413. SetPageDirty(page);
  414. put_page(page);
  415. }
  416. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  417. static int next_segment(unsigned long len, int offset)
  418. {
  419. if (len > PAGE_SIZE - offset)
  420. return PAGE_SIZE - offset;
  421. else
  422. return len;
  423. }
  424. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  425. int len)
  426. {
  427. int r;
  428. unsigned long addr;
  429. addr = gfn_to_hva(kvm, gfn);
  430. if (kvm_is_error_hva(addr))
  431. return -EFAULT;
  432. r = copy_from_user(data, (void __user *)addr + offset, len);
  433. if (r)
  434. return -EFAULT;
  435. return 0;
  436. }
  437. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  438. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  439. {
  440. gfn_t gfn = gpa >> PAGE_SHIFT;
  441. int seg;
  442. int offset = offset_in_page(gpa);
  443. int ret;
  444. while ((seg = next_segment(len, offset)) != 0) {
  445. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  446. if (ret < 0)
  447. return ret;
  448. offset = 0;
  449. len -= seg;
  450. data += seg;
  451. ++gfn;
  452. }
  453. return 0;
  454. }
  455. EXPORT_SYMBOL_GPL(kvm_read_guest);
  456. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  457. int offset, int len)
  458. {
  459. int r;
  460. unsigned long addr;
  461. addr = gfn_to_hva(kvm, gfn);
  462. if (kvm_is_error_hva(addr))
  463. return -EFAULT;
  464. r = copy_to_user((void __user *)addr + offset, data, len);
  465. if (r)
  466. return -EFAULT;
  467. mark_page_dirty(kvm, gfn);
  468. return 0;
  469. }
  470. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  471. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  472. unsigned long len)
  473. {
  474. gfn_t gfn = gpa >> PAGE_SHIFT;
  475. int seg;
  476. int offset = offset_in_page(gpa);
  477. int ret;
  478. while ((seg = next_segment(len, offset)) != 0) {
  479. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  480. if (ret < 0)
  481. return ret;
  482. offset = 0;
  483. len -= seg;
  484. data += seg;
  485. ++gfn;
  486. }
  487. return 0;
  488. }
  489. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  490. {
  491. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  494. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  495. {
  496. gfn_t gfn = gpa >> PAGE_SHIFT;
  497. int seg;
  498. int offset = offset_in_page(gpa);
  499. int ret;
  500. while ((seg = next_segment(len, offset)) != 0) {
  501. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  502. if (ret < 0)
  503. return ret;
  504. offset = 0;
  505. len -= seg;
  506. ++gfn;
  507. }
  508. return 0;
  509. }
  510. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  511. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  512. {
  513. struct kvm_memory_slot *memslot;
  514. gfn = unalias_gfn(kvm, gfn);
  515. memslot = __gfn_to_memslot(kvm, gfn);
  516. if (memslot && memslot->dirty_bitmap) {
  517. unsigned long rel_gfn = gfn - memslot->base_gfn;
  518. /* avoid RMW */
  519. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  520. set_bit(rel_gfn, memslot->dirty_bitmap);
  521. }
  522. }
  523. /*
  524. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  525. */
  526. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  527. {
  528. DECLARE_WAITQUEUE(wait, current);
  529. add_wait_queue(&vcpu->wq, &wait);
  530. /*
  531. * We will block until either an interrupt or a signal wakes us up
  532. */
  533. while (!kvm_cpu_has_interrupt(vcpu)
  534. && !signal_pending(current)
  535. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  536. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  537. set_current_state(TASK_INTERRUPTIBLE);
  538. vcpu_put(vcpu);
  539. schedule();
  540. vcpu_load(vcpu);
  541. }
  542. __set_current_state(TASK_RUNNING);
  543. remove_wait_queue(&vcpu->wq, &wait);
  544. }
  545. void kvm_resched(struct kvm_vcpu *vcpu)
  546. {
  547. if (!need_resched())
  548. return;
  549. cond_resched();
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_resched);
  552. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  553. unsigned long address,
  554. int *type)
  555. {
  556. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  557. unsigned long pgoff;
  558. struct page *page;
  559. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  560. if (pgoff == 0)
  561. page = virt_to_page(vcpu->run);
  562. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  563. page = virt_to_page(vcpu->pio_data);
  564. else
  565. return NOPAGE_SIGBUS;
  566. get_page(page);
  567. if (type != NULL)
  568. *type = VM_FAULT_MINOR;
  569. return page;
  570. }
  571. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  572. .nopage = kvm_vcpu_nopage,
  573. };
  574. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  575. {
  576. vma->vm_ops = &kvm_vcpu_vm_ops;
  577. return 0;
  578. }
  579. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  580. {
  581. struct kvm_vcpu *vcpu = filp->private_data;
  582. fput(vcpu->kvm->filp);
  583. return 0;
  584. }
  585. static struct file_operations kvm_vcpu_fops = {
  586. .release = kvm_vcpu_release,
  587. .unlocked_ioctl = kvm_vcpu_ioctl,
  588. .compat_ioctl = kvm_vcpu_ioctl,
  589. .mmap = kvm_vcpu_mmap,
  590. };
  591. /*
  592. * Allocates an inode for the vcpu.
  593. */
  594. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  595. {
  596. int fd, r;
  597. struct inode *inode;
  598. struct file *file;
  599. r = anon_inode_getfd(&fd, &inode, &file,
  600. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  601. if (r)
  602. return r;
  603. atomic_inc(&vcpu->kvm->filp->f_count);
  604. return fd;
  605. }
  606. /*
  607. * Creates some virtual cpus. Good luck creating more than one.
  608. */
  609. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  610. {
  611. int r;
  612. struct kvm_vcpu *vcpu;
  613. if (!valid_vcpu(n))
  614. return -EINVAL;
  615. vcpu = kvm_arch_vcpu_create(kvm, n);
  616. if (IS_ERR(vcpu))
  617. return PTR_ERR(vcpu);
  618. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  619. r = kvm_arch_vcpu_setup(vcpu);
  620. if (r)
  621. goto vcpu_destroy;
  622. mutex_lock(&kvm->lock);
  623. if (kvm->vcpus[n]) {
  624. r = -EEXIST;
  625. mutex_unlock(&kvm->lock);
  626. goto vcpu_destroy;
  627. }
  628. kvm->vcpus[n] = vcpu;
  629. mutex_unlock(&kvm->lock);
  630. /* Now it's all set up, let userspace reach it */
  631. r = create_vcpu_fd(vcpu);
  632. if (r < 0)
  633. goto unlink;
  634. return r;
  635. unlink:
  636. mutex_lock(&kvm->lock);
  637. kvm->vcpus[n] = NULL;
  638. mutex_unlock(&kvm->lock);
  639. vcpu_destroy:
  640. kvm_arch_vcpu_destroy(vcpu);
  641. return r;
  642. }
  643. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  644. {
  645. if (sigset) {
  646. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  647. vcpu->sigset_active = 1;
  648. vcpu->sigset = *sigset;
  649. } else
  650. vcpu->sigset_active = 0;
  651. return 0;
  652. }
  653. static long kvm_vcpu_ioctl(struct file *filp,
  654. unsigned int ioctl, unsigned long arg)
  655. {
  656. struct kvm_vcpu *vcpu = filp->private_data;
  657. void __user *argp = (void __user *)arg;
  658. int r;
  659. if (vcpu->kvm->mm != current->mm)
  660. return -EIO;
  661. switch (ioctl) {
  662. case KVM_RUN:
  663. r = -EINVAL;
  664. if (arg)
  665. goto out;
  666. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  667. break;
  668. case KVM_GET_REGS: {
  669. struct kvm_regs kvm_regs;
  670. memset(&kvm_regs, 0, sizeof kvm_regs);
  671. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  672. if (r)
  673. goto out;
  674. r = -EFAULT;
  675. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  676. goto out;
  677. r = 0;
  678. break;
  679. }
  680. case KVM_SET_REGS: {
  681. struct kvm_regs kvm_regs;
  682. r = -EFAULT;
  683. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  684. goto out;
  685. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  686. if (r)
  687. goto out;
  688. r = 0;
  689. break;
  690. }
  691. case KVM_GET_SREGS: {
  692. struct kvm_sregs kvm_sregs;
  693. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  694. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  695. if (r)
  696. goto out;
  697. r = -EFAULT;
  698. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  699. goto out;
  700. r = 0;
  701. break;
  702. }
  703. case KVM_SET_SREGS: {
  704. struct kvm_sregs kvm_sregs;
  705. r = -EFAULT;
  706. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  707. goto out;
  708. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  709. if (r)
  710. goto out;
  711. r = 0;
  712. break;
  713. }
  714. case KVM_TRANSLATE: {
  715. struct kvm_translation tr;
  716. r = -EFAULT;
  717. if (copy_from_user(&tr, argp, sizeof tr))
  718. goto out;
  719. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  720. if (r)
  721. goto out;
  722. r = -EFAULT;
  723. if (copy_to_user(argp, &tr, sizeof tr))
  724. goto out;
  725. r = 0;
  726. break;
  727. }
  728. case KVM_DEBUG_GUEST: {
  729. struct kvm_debug_guest dbg;
  730. r = -EFAULT;
  731. if (copy_from_user(&dbg, argp, sizeof dbg))
  732. goto out;
  733. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  734. if (r)
  735. goto out;
  736. r = 0;
  737. break;
  738. }
  739. case KVM_SET_SIGNAL_MASK: {
  740. struct kvm_signal_mask __user *sigmask_arg = argp;
  741. struct kvm_signal_mask kvm_sigmask;
  742. sigset_t sigset, *p;
  743. p = NULL;
  744. if (argp) {
  745. r = -EFAULT;
  746. if (copy_from_user(&kvm_sigmask, argp,
  747. sizeof kvm_sigmask))
  748. goto out;
  749. r = -EINVAL;
  750. if (kvm_sigmask.len != sizeof sigset)
  751. goto out;
  752. r = -EFAULT;
  753. if (copy_from_user(&sigset, sigmask_arg->sigset,
  754. sizeof sigset))
  755. goto out;
  756. p = &sigset;
  757. }
  758. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  759. break;
  760. }
  761. case KVM_GET_FPU: {
  762. struct kvm_fpu fpu;
  763. memset(&fpu, 0, sizeof fpu);
  764. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  765. if (r)
  766. goto out;
  767. r = -EFAULT;
  768. if (copy_to_user(argp, &fpu, sizeof fpu))
  769. goto out;
  770. r = 0;
  771. break;
  772. }
  773. case KVM_SET_FPU: {
  774. struct kvm_fpu fpu;
  775. r = -EFAULT;
  776. if (copy_from_user(&fpu, argp, sizeof fpu))
  777. goto out;
  778. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  779. if (r)
  780. goto out;
  781. r = 0;
  782. break;
  783. }
  784. default:
  785. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  786. }
  787. out:
  788. return r;
  789. }
  790. static long kvm_vm_ioctl(struct file *filp,
  791. unsigned int ioctl, unsigned long arg)
  792. {
  793. struct kvm *kvm = filp->private_data;
  794. void __user *argp = (void __user *)arg;
  795. int r;
  796. if (kvm->mm != current->mm)
  797. return -EIO;
  798. switch (ioctl) {
  799. case KVM_CREATE_VCPU:
  800. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  801. if (r < 0)
  802. goto out;
  803. break;
  804. case KVM_SET_USER_MEMORY_REGION: {
  805. struct kvm_userspace_memory_region kvm_userspace_mem;
  806. r = -EFAULT;
  807. if (copy_from_user(&kvm_userspace_mem, argp,
  808. sizeof kvm_userspace_mem))
  809. goto out;
  810. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  811. if (r)
  812. goto out;
  813. break;
  814. }
  815. case KVM_GET_DIRTY_LOG: {
  816. struct kvm_dirty_log log;
  817. r = -EFAULT;
  818. if (copy_from_user(&log, argp, sizeof log))
  819. goto out;
  820. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  821. if (r)
  822. goto out;
  823. break;
  824. }
  825. default:
  826. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  827. }
  828. out:
  829. return r;
  830. }
  831. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  832. unsigned long address,
  833. int *type)
  834. {
  835. struct kvm *kvm = vma->vm_file->private_data;
  836. unsigned long pgoff;
  837. struct page *page;
  838. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  839. if (!kvm_is_visible_gfn(kvm, pgoff))
  840. return NOPAGE_SIGBUS;
  841. /* current->mm->mmap_sem is already held so call lockless version */
  842. page = __gfn_to_page(kvm, pgoff);
  843. if (is_error_page(page)) {
  844. kvm_release_page_clean(page);
  845. return NOPAGE_SIGBUS;
  846. }
  847. if (type != NULL)
  848. *type = VM_FAULT_MINOR;
  849. return page;
  850. }
  851. static struct vm_operations_struct kvm_vm_vm_ops = {
  852. .nopage = kvm_vm_nopage,
  853. };
  854. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  855. {
  856. vma->vm_ops = &kvm_vm_vm_ops;
  857. return 0;
  858. }
  859. static struct file_operations kvm_vm_fops = {
  860. .release = kvm_vm_release,
  861. .unlocked_ioctl = kvm_vm_ioctl,
  862. .compat_ioctl = kvm_vm_ioctl,
  863. .mmap = kvm_vm_mmap,
  864. };
  865. static int kvm_dev_ioctl_create_vm(void)
  866. {
  867. int fd, r;
  868. struct inode *inode;
  869. struct file *file;
  870. struct kvm *kvm;
  871. kvm = kvm_create_vm();
  872. if (IS_ERR(kvm))
  873. return PTR_ERR(kvm);
  874. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  875. if (r) {
  876. kvm_destroy_vm(kvm);
  877. return r;
  878. }
  879. kvm->filp = file;
  880. return fd;
  881. }
  882. static long kvm_dev_ioctl(struct file *filp,
  883. unsigned int ioctl, unsigned long arg)
  884. {
  885. void __user *argp = (void __user *)arg;
  886. long r = -EINVAL;
  887. switch (ioctl) {
  888. case KVM_GET_API_VERSION:
  889. r = -EINVAL;
  890. if (arg)
  891. goto out;
  892. r = KVM_API_VERSION;
  893. break;
  894. case KVM_CREATE_VM:
  895. r = -EINVAL;
  896. if (arg)
  897. goto out;
  898. r = kvm_dev_ioctl_create_vm();
  899. break;
  900. case KVM_CHECK_EXTENSION:
  901. r = kvm_dev_ioctl_check_extension((long)argp);
  902. break;
  903. case KVM_GET_VCPU_MMAP_SIZE:
  904. r = -EINVAL;
  905. if (arg)
  906. goto out;
  907. r = 2 * PAGE_SIZE;
  908. break;
  909. default:
  910. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  911. }
  912. out:
  913. return r;
  914. }
  915. static struct file_operations kvm_chardev_ops = {
  916. .unlocked_ioctl = kvm_dev_ioctl,
  917. .compat_ioctl = kvm_dev_ioctl,
  918. };
  919. static struct miscdevice kvm_dev = {
  920. KVM_MINOR,
  921. "kvm",
  922. &kvm_chardev_ops,
  923. };
  924. static void hardware_enable(void *junk)
  925. {
  926. int cpu = raw_smp_processor_id();
  927. if (cpu_isset(cpu, cpus_hardware_enabled))
  928. return;
  929. cpu_set(cpu, cpus_hardware_enabled);
  930. kvm_arch_hardware_enable(NULL);
  931. }
  932. static void hardware_disable(void *junk)
  933. {
  934. int cpu = raw_smp_processor_id();
  935. if (!cpu_isset(cpu, cpus_hardware_enabled))
  936. return;
  937. cpu_clear(cpu, cpus_hardware_enabled);
  938. decache_vcpus_on_cpu(cpu);
  939. kvm_arch_hardware_disable(NULL);
  940. }
  941. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  942. void *v)
  943. {
  944. int cpu = (long)v;
  945. val &= ~CPU_TASKS_FROZEN;
  946. switch (val) {
  947. case CPU_DYING:
  948. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  949. cpu);
  950. hardware_disable(NULL);
  951. break;
  952. case CPU_UP_CANCELED:
  953. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  954. cpu);
  955. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  956. break;
  957. case CPU_ONLINE:
  958. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  959. cpu);
  960. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  961. break;
  962. }
  963. return NOTIFY_OK;
  964. }
  965. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  966. void *v)
  967. {
  968. if (val == SYS_RESTART) {
  969. /*
  970. * Some (well, at least mine) BIOSes hang on reboot if
  971. * in vmx root mode.
  972. */
  973. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  974. on_each_cpu(hardware_disable, NULL, 0, 1);
  975. }
  976. return NOTIFY_OK;
  977. }
  978. static struct notifier_block kvm_reboot_notifier = {
  979. .notifier_call = kvm_reboot,
  980. .priority = 0,
  981. };
  982. void kvm_io_bus_init(struct kvm_io_bus *bus)
  983. {
  984. memset(bus, 0, sizeof(*bus));
  985. }
  986. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  987. {
  988. int i;
  989. for (i = 0; i < bus->dev_count; i++) {
  990. struct kvm_io_device *pos = bus->devs[i];
  991. kvm_iodevice_destructor(pos);
  992. }
  993. }
  994. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  995. {
  996. int i;
  997. for (i = 0; i < bus->dev_count; i++) {
  998. struct kvm_io_device *pos = bus->devs[i];
  999. if (pos->in_range(pos, addr))
  1000. return pos;
  1001. }
  1002. return NULL;
  1003. }
  1004. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1005. {
  1006. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1007. bus->devs[bus->dev_count++] = dev;
  1008. }
  1009. static struct notifier_block kvm_cpu_notifier = {
  1010. .notifier_call = kvm_cpu_hotplug,
  1011. .priority = 20, /* must be > scheduler priority */
  1012. };
  1013. static u64 vm_stat_get(void *_offset)
  1014. {
  1015. unsigned offset = (long)_offset;
  1016. u64 total = 0;
  1017. struct kvm *kvm;
  1018. spin_lock(&kvm_lock);
  1019. list_for_each_entry(kvm, &vm_list, vm_list)
  1020. total += *(u32 *)((void *)kvm + offset);
  1021. spin_unlock(&kvm_lock);
  1022. return total;
  1023. }
  1024. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1025. static u64 vcpu_stat_get(void *_offset)
  1026. {
  1027. unsigned offset = (long)_offset;
  1028. u64 total = 0;
  1029. struct kvm *kvm;
  1030. struct kvm_vcpu *vcpu;
  1031. int i;
  1032. spin_lock(&kvm_lock);
  1033. list_for_each_entry(kvm, &vm_list, vm_list)
  1034. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1035. vcpu = kvm->vcpus[i];
  1036. if (vcpu)
  1037. total += *(u32 *)((void *)vcpu + offset);
  1038. }
  1039. spin_unlock(&kvm_lock);
  1040. return total;
  1041. }
  1042. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1043. static struct file_operations *stat_fops[] = {
  1044. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1045. [KVM_STAT_VM] = &vm_stat_fops,
  1046. };
  1047. static void kvm_init_debug(void)
  1048. {
  1049. struct kvm_stats_debugfs_item *p;
  1050. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1051. for (p = debugfs_entries; p->name; ++p)
  1052. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1053. (void *)(long)p->offset,
  1054. stat_fops[p->kind]);
  1055. }
  1056. static void kvm_exit_debug(void)
  1057. {
  1058. struct kvm_stats_debugfs_item *p;
  1059. for (p = debugfs_entries; p->name; ++p)
  1060. debugfs_remove(p->dentry);
  1061. debugfs_remove(debugfs_dir);
  1062. }
  1063. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1064. {
  1065. hardware_disable(NULL);
  1066. return 0;
  1067. }
  1068. static int kvm_resume(struct sys_device *dev)
  1069. {
  1070. hardware_enable(NULL);
  1071. return 0;
  1072. }
  1073. static struct sysdev_class kvm_sysdev_class = {
  1074. .name = "kvm",
  1075. .suspend = kvm_suspend,
  1076. .resume = kvm_resume,
  1077. };
  1078. static struct sys_device kvm_sysdev = {
  1079. .id = 0,
  1080. .cls = &kvm_sysdev_class,
  1081. };
  1082. struct page *bad_page;
  1083. static inline
  1084. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1085. {
  1086. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1087. }
  1088. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1089. {
  1090. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1091. kvm_arch_vcpu_load(vcpu, cpu);
  1092. }
  1093. static void kvm_sched_out(struct preempt_notifier *pn,
  1094. struct task_struct *next)
  1095. {
  1096. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1097. kvm_arch_vcpu_put(vcpu);
  1098. }
  1099. int kvm_init(void *opaque, unsigned int vcpu_size,
  1100. struct module *module)
  1101. {
  1102. int r;
  1103. int cpu;
  1104. kvm_init_debug();
  1105. r = kvm_arch_init(opaque);
  1106. if (r)
  1107. goto out_fail;
  1108. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1109. if (bad_page == NULL) {
  1110. r = -ENOMEM;
  1111. goto out;
  1112. }
  1113. r = kvm_arch_hardware_setup();
  1114. if (r < 0)
  1115. goto out_free_0;
  1116. for_each_online_cpu(cpu) {
  1117. smp_call_function_single(cpu,
  1118. kvm_arch_check_processor_compat,
  1119. &r, 0, 1);
  1120. if (r < 0)
  1121. goto out_free_1;
  1122. }
  1123. on_each_cpu(hardware_enable, NULL, 0, 1);
  1124. r = register_cpu_notifier(&kvm_cpu_notifier);
  1125. if (r)
  1126. goto out_free_2;
  1127. register_reboot_notifier(&kvm_reboot_notifier);
  1128. r = sysdev_class_register(&kvm_sysdev_class);
  1129. if (r)
  1130. goto out_free_3;
  1131. r = sysdev_register(&kvm_sysdev);
  1132. if (r)
  1133. goto out_free_4;
  1134. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1135. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1136. __alignof__(struct kvm_vcpu),
  1137. 0, NULL);
  1138. if (!kvm_vcpu_cache) {
  1139. r = -ENOMEM;
  1140. goto out_free_5;
  1141. }
  1142. kvm_chardev_ops.owner = module;
  1143. r = misc_register(&kvm_dev);
  1144. if (r) {
  1145. printk(KERN_ERR "kvm: misc device register failed\n");
  1146. goto out_free;
  1147. }
  1148. kvm_preempt_ops.sched_in = kvm_sched_in;
  1149. kvm_preempt_ops.sched_out = kvm_sched_out;
  1150. return 0;
  1151. out_free:
  1152. kmem_cache_destroy(kvm_vcpu_cache);
  1153. out_free_5:
  1154. sysdev_unregister(&kvm_sysdev);
  1155. out_free_4:
  1156. sysdev_class_unregister(&kvm_sysdev_class);
  1157. out_free_3:
  1158. unregister_reboot_notifier(&kvm_reboot_notifier);
  1159. unregister_cpu_notifier(&kvm_cpu_notifier);
  1160. out_free_2:
  1161. on_each_cpu(hardware_disable, NULL, 0, 1);
  1162. out_free_1:
  1163. kvm_arch_hardware_unsetup();
  1164. out_free_0:
  1165. __free_page(bad_page);
  1166. out:
  1167. kvm_arch_exit();
  1168. kvm_exit_debug();
  1169. out_fail:
  1170. return r;
  1171. }
  1172. EXPORT_SYMBOL_GPL(kvm_init);
  1173. void kvm_exit(void)
  1174. {
  1175. misc_deregister(&kvm_dev);
  1176. kmem_cache_destroy(kvm_vcpu_cache);
  1177. sysdev_unregister(&kvm_sysdev);
  1178. sysdev_class_unregister(&kvm_sysdev_class);
  1179. unregister_reboot_notifier(&kvm_reboot_notifier);
  1180. unregister_cpu_notifier(&kvm_cpu_notifier);
  1181. on_each_cpu(hardware_disable, NULL, 0, 1);
  1182. kvm_arch_hardware_unsetup();
  1183. kvm_arch_exit();
  1184. kvm_exit_debug();
  1185. __free_page(bad_page);
  1186. }
  1187. EXPORT_SYMBOL_GPL(kvm_exit);