kvm_main.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/mman.h>
  44. #include <asm/processor.h>
  45. #include <asm/msr.h>
  46. #include <asm/io.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/desc.h>
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. static DEFINE_SPINLOCK(kvm_lock);
  52. static LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kvm_x86_ops *kvm_x86_ops;
  55. struct kmem_cache *kvm_vcpu_cache;
  56. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  57. static __read_mostly struct preempt_ops kvm_preempt_ops;
  58. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  59. static struct kvm_stats_debugfs_item {
  60. const char *name;
  61. int offset;
  62. struct dentry *dentry;
  63. } debugfs_entries[] = {
  64. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  65. { "pf_guest", STAT_OFFSET(pf_guest) },
  66. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  67. { "invlpg", STAT_OFFSET(invlpg) },
  68. { "exits", STAT_OFFSET(exits) },
  69. { "io_exits", STAT_OFFSET(io_exits) },
  70. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  71. { "signal_exits", STAT_OFFSET(signal_exits) },
  72. { "irq_window", STAT_OFFSET(irq_window_exits) },
  73. { "halt_exits", STAT_OFFSET(halt_exits) },
  74. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  75. { "request_irq", STAT_OFFSET(request_irq_exits) },
  76. { "irq_exits", STAT_OFFSET(irq_exits) },
  77. { "light_exits", STAT_OFFSET(light_exits) },
  78. { "efer_reload", STAT_OFFSET(efer_reload) },
  79. { NULL }
  80. };
  81. static struct dentry *debugfs_dir;
  82. #define CR0_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  84. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  85. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  86. #define CR4_RESERVED_BITS \
  87. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  88. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  89. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  90. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  91. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  92. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  93. #ifdef CONFIG_X86_64
  94. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  95. struct segment_descriptor_64 {
  96. struct segment_descriptor s;
  97. u32 base_higher;
  98. u32 pad_zero;
  99. };
  100. #endif
  101. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  102. unsigned long arg);
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct segment_descriptor *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  119. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  120. ((unsigned long)d->base_high << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long) \
  124. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. static inline int valid_vcpu(int n)
  130. {
  131. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  132. }
  133. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  134. {
  135. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  136. return;
  137. vcpu->guest_fpu_loaded = 1;
  138. fx_save(&vcpu->host_fx_image);
  139. fx_restore(&vcpu->guest_fx_image);
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  142. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  143. {
  144. if (!vcpu->guest_fpu_loaded)
  145. return;
  146. vcpu->guest_fpu_loaded = 0;
  147. fx_save(&vcpu->guest_fx_image);
  148. fx_restore(&vcpu->host_fx_image);
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put()
  153. */
  154. void vcpu_load(struct kvm_vcpu *vcpu)
  155. {
  156. int cpu;
  157. mutex_lock(&vcpu->mutex);
  158. cpu = get_cpu();
  159. preempt_notifier_register(&vcpu->preempt_notifier);
  160. kvm_arch_vcpu_load(vcpu, cpu);
  161. put_cpu();
  162. }
  163. void vcpu_put(struct kvm_vcpu *vcpu)
  164. {
  165. preempt_disable();
  166. kvm_arch_vcpu_put(vcpu);
  167. preempt_notifier_unregister(&vcpu->preempt_notifier);
  168. preempt_enable();
  169. mutex_unlock(&vcpu->mutex);
  170. }
  171. static void ack_flush(void *_completed)
  172. {
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int i, cpu;
  177. cpumask_t cpus;
  178. struct kvm_vcpu *vcpu;
  179. cpus_clear(cpus);
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. cpu_set(cpu, cpus);
  189. }
  190. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  191. }
  192. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  193. {
  194. struct page *page;
  195. int r;
  196. mutex_init(&vcpu->mutex);
  197. vcpu->cpu = -1;
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. vcpu->kvm = kvm;
  200. vcpu->vcpu_id = id;
  201. if (!irqchip_in_kernel(kvm) || id == 0)
  202. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  203. else
  204. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  205. init_waitqueue_head(&vcpu->wq);
  206. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  207. if (!page) {
  208. r = -ENOMEM;
  209. goto fail;
  210. }
  211. vcpu->run = page_address(page);
  212. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  213. if (!page) {
  214. r = -ENOMEM;
  215. goto fail_free_run;
  216. }
  217. vcpu->pio_data = page_address(page);
  218. r = kvm_mmu_create(vcpu);
  219. if (r < 0)
  220. goto fail_free_pio_data;
  221. if (irqchip_in_kernel(kvm)) {
  222. r = kvm_create_lapic(vcpu);
  223. if (r < 0)
  224. goto fail_mmu_destroy;
  225. }
  226. return 0;
  227. fail_mmu_destroy:
  228. kvm_mmu_destroy(vcpu);
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return r;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_free_lapic(vcpu);
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. /*
  260. * Free any memory in @free but not in @dont.
  261. */
  262. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  263. struct kvm_memory_slot *dont)
  264. {
  265. if (!dont || free->rmap != dont->rmap)
  266. vfree(free->rmap);
  267. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  268. vfree(free->dirty_bitmap);
  269. free->npages = 0;
  270. free->dirty_bitmap = NULL;
  271. free->rmap = NULL;
  272. }
  273. static void kvm_free_physmem(struct kvm *kvm)
  274. {
  275. int i;
  276. for (i = 0; i < kvm->nmemslots; ++i)
  277. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  278. }
  279. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  280. {
  281. int i;
  282. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  283. if (vcpu->pio.guest_pages[i]) {
  284. kvm_release_page(vcpu->pio.guest_pages[i]);
  285. vcpu->pio.guest_pages[i] = NULL;
  286. }
  287. }
  288. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  289. {
  290. vcpu_load(vcpu);
  291. kvm_mmu_unload(vcpu);
  292. vcpu_put(vcpu);
  293. }
  294. static void kvm_free_vcpus(struct kvm *kvm)
  295. {
  296. unsigned int i;
  297. /*
  298. * Unpin any mmu pages first.
  299. */
  300. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  301. if (kvm->vcpus[i])
  302. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  303. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  304. if (kvm->vcpus[i]) {
  305. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  306. kvm->vcpus[i] = NULL;
  307. }
  308. }
  309. }
  310. static void kvm_destroy_vm(struct kvm *kvm)
  311. {
  312. spin_lock(&kvm_lock);
  313. list_del(&kvm->vm_list);
  314. spin_unlock(&kvm_lock);
  315. kvm_io_bus_destroy(&kvm->pio_bus);
  316. kvm_io_bus_destroy(&kvm->mmio_bus);
  317. kfree(kvm->vpic);
  318. kfree(kvm->vioapic);
  319. kvm_free_vcpus(kvm);
  320. kvm_free_physmem(kvm);
  321. kfree(kvm);
  322. }
  323. static int kvm_vm_release(struct inode *inode, struct file *filp)
  324. {
  325. struct kvm *kvm = filp->private_data;
  326. kvm_destroy_vm(kvm);
  327. return 0;
  328. }
  329. static void inject_gp(struct kvm_vcpu *vcpu)
  330. {
  331. kvm_x86_ops->inject_gp(vcpu, 0);
  332. }
  333. /*
  334. * Load the pae pdptrs. Return true is they are all valid.
  335. */
  336. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  337. {
  338. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  339. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  340. int i;
  341. int ret;
  342. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  343. mutex_lock(&vcpu->kvm->lock);
  344. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  345. offset * sizeof(u64), sizeof(pdpte));
  346. if (ret < 0) {
  347. ret = 0;
  348. goto out;
  349. }
  350. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  351. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  352. ret = 0;
  353. goto out;
  354. }
  355. }
  356. ret = 1;
  357. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  358. out:
  359. mutex_unlock(&vcpu->kvm->lock);
  360. return ret;
  361. }
  362. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  363. {
  364. if (cr0 & CR0_RESERVED_BITS) {
  365. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  366. cr0, vcpu->cr0);
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  371. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  376. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  377. "and a clear PE flag\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  382. #ifdef CONFIG_X86_64
  383. if ((vcpu->shadow_efer & EFER_LME)) {
  384. int cs_db, cs_l;
  385. if (!is_pae(vcpu)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  387. "in long mode while PAE is disabled\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  392. if (cs_l) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while CS.L == 1\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  402. "reserved bits\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. }
  407. kvm_x86_ops->set_cr0(vcpu, cr0);
  408. vcpu->cr0 = cr0;
  409. mutex_lock(&vcpu->kvm->lock);
  410. kvm_mmu_reset_context(vcpu);
  411. mutex_unlock(&vcpu->kvm->lock);
  412. return;
  413. }
  414. EXPORT_SYMBOL_GPL(set_cr0);
  415. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  416. {
  417. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  418. }
  419. EXPORT_SYMBOL_GPL(lmsw);
  420. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  421. {
  422. if (cr4 & CR4_RESERVED_BITS) {
  423. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  424. inject_gp(vcpu);
  425. return;
  426. }
  427. if (is_long_mode(vcpu)) {
  428. if (!(cr4 & X86_CR4_PAE)) {
  429. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  430. "in long mode\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  435. && !load_pdptrs(vcpu, vcpu->cr3)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (cr4 & X86_CR4_VMXE) {
  441. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  442. inject_gp(vcpu);
  443. return;
  444. }
  445. kvm_x86_ops->set_cr4(vcpu, cr4);
  446. vcpu->cr4 = cr4;
  447. mutex_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. mutex_unlock(&vcpu->kvm->lock);
  450. }
  451. EXPORT_SYMBOL_GPL(set_cr4);
  452. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  453. {
  454. if (is_long_mode(vcpu)) {
  455. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  456. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. } else {
  461. if (is_pae(vcpu)) {
  462. if (cr3 & CR3_PAE_RESERVED_BITS) {
  463. printk(KERN_DEBUG
  464. "set_cr3: #GP, reserved bits\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  469. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  470. "reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. }
  475. /*
  476. * We don't check reserved bits in nonpae mode, because
  477. * this isn't enforced, and VMware depends on this.
  478. */
  479. }
  480. mutex_lock(&vcpu->kvm->lock);
  481. /*
  482. * Does the new cr3 value map to physical memory? (Note, we
  483. * catch an invalid cr3 even in real-mode, because it would
  484. * cause trouble later on when we turn on paging anyway.)
  485. *
  486. * A real CPU would silently accept an invalid cr3 and would
  487. * attempt to use it - with largely undefined (and often hard
  488. * to debug) behavior on the guest side.
  489. */
  490. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  491. inject_gp(vcpu);
  492. else {
  493. vcpu->cr3 = cr3;
  494. vcpu->mmu.new_cr3(vcpu);
  495. }
  496. mutex_unlock(&vcpu->kvm->lock);
  497. }
  498. EXPORT_SYMBOL_GPL(set_cr3);
  499. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  500. {
  501. if (cr8 & CR8_RESERVED_BITS) {
  502. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  503. inject_gp(vcpu);
  504. return;
  505. }
  506. if (irqchip_in_kernel(vcpu->kvm))
  507. kvm_lapic_set_tpr(vcpu, cr8);
  508. else
  509. vcpu->cr8 = cr8;
  510. }
  511. EXPORT_SYMBOL_GPL(set_cr8);
  512. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  513. {
  514. if (irqchip_in_kernel(vcpu->kvm))
  515. return kvm_lapic_get_cr8(vcpu);
  516. else
  517. return vcpu->cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(get_cr8);
  520. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  521. {
  522. if (irqchip_in_kernel(vcpu->kvm))
  523. return vcpu->apic_base;
  524. else
  525. return vcpu->apic_base;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  528. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  529. {
  530. /* TODO: reserve bits check */
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_base(vcpu, data);
  533. else
  534. vcpu->apic_base = data;
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  537. void fx_init(struct kvm_vcpu *vcpu)
  538. {
  539. unsigned after_mxcsr_mask;
  540. /* Initialize guest FPU by resetting ours and saving into guest's */
  541. preempt_disable();
  542. fx_save(&vcpu->host_fx_image);
  543. fpu_init();
  544. fx_save(&vcpu->guest_fx_image);
  545. fx_restore(&vcpu->host_fx_image);
  546. preempt_enable();
  547. vcpu->cr0 |= X86_CR0_ET;
  548. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  549. vcpu->guest_fx_image.mxcsr = 0x1f80;
  550. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  551. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  552. }
  553. EXPORT_SYMBOL_GPL(fx_init);
  554. /*
  555. * Allocate some memory and give it an address in the guest physical address
  556. * space.
  557. *
  558. * Discontiguous memory is allowed, mostly for framebuffers.
  559. */
  560. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  561. struct
  562. kvm_userspace_memory_region *mem,
  563. int user_alloc)
  564. {
  565. int r;
  566. gfn_t base_gfn;
  567. unsigned long npages;
  568. unsigned long i;
  569. struct kvm_memory_slot *memslot;
  570. struct kvm_memory_slot old, new;
  571. r = -EINVAL;
  572. /* General sanity checks */
  573. if (mem->memory_size & (PAGE_SIZE - 1))
  574. goto out;
  575. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  576. goto out;
  577. if (mem->slot >= KVM_MEMORY_SLOTS)
  578. goto out;
  579. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  580. goto out;
  581. memslot = &kvm->memslots[mem->slot];
  582. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  583. npages = mem->memory_size >> PAGE_SHIFT;
  584. if (!npages)
  585. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  586. mutex_lock(&kvm->lock);
  587. new = old = *memslot;
  588. new.base_gfn = base_gfn;
  589. new.npages = npages;
  590. new.flags = mem->flags;
  591. /* Disallow changing a memory slot's size. */
  592. r = -EINVAL;
  593. if (npages && old.npages && npages != old.npages)
  594. goto out_unlock;
  595. /* Check for overlaps */
  596. r = -EEXIST;
  597. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  598. struct kvm_memory_slot *s = &kvm->memslots[i];
  599. if (s == memslot)
  600. continue;
  601. if (!((base_gfn + npages <= s->base_gfn) ||
  602. (base_gfn >= s->base_gfn + s->npages)))
  603. goto out_unlock;
  604. }
  605. /* Free page dirty bitmap if unneeded */
  606. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  607. new.dirty_bitmap = NULL;
  608. r = -ENOMEM;
  609. /* Allocate if a slot is being created */
  610. if (npages && !new.rmap) {
  611. new.rmap = vmalloc(npages * sizeof(struct page *));
  612. if (!new.rmap)
  613. goto out_unlock;
  614. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  615. if (user_alloc)
  616. new.userspace_addr = mem->userspace_addr;
  617. else {
  618. down_write(&current->mm->mmap_sem);
  619. new.userspace_addr = do_mmap(NULL, 0,
  620. npages * PAGE_SIZE,
  621. PROT_READ | PROT_WRITE,
  622. MAP_SHARED | MAP_ANONYMOUS,
  623. 0);
  624. up_write(&current->mm->mmap_sem);
  625. if (IS_ERR((void *)new.userspace_addr))
  626. goto out_unlock;
  627. }
  628. }
  629. /* Allocate page dirty bitmap if needed */
  630. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  631. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  632. new.dirty_bitmap = vmalloc(dirty_bytes);
  633. if (!new.dirty_bitmap)
  634. goto out_unlock;
  635. memset(new.dirty_bitmap, 0, dirty_bytes);
  636. }
  637. if (mem->slot >= kvm->nmemslots)
  638. kvm->nmemslots = mem->slot + 1;
  639. if (!kvm->n_requested_mmu_pages) {
  640. unsigned int n_pages;
  641. if (npages) {
  642. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  643. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  644. n_pages);
  645. } else {
  646. unsigned int nr_mmu_pages;
  647. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  648. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  649. nr_mmu_pages = max(nr_mmu_pages,
  650. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  651. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  652. }
  653. }
  654. *memslot = new;
  655. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  656. kvm_flush_remote_tlbs(kvm);
  657. mutex_unlock(&kvm->lock);
  658. kvm_free_physmem_slot(&old, &new);
  659. return 0;
  660. out_unlock:
  661. mutex_unlock(&kvm->lock);
  662. kvm_free_physmem_slot(&new, &old);
  663. out:
  664. return r;
  665. }
  666. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  667. u32 kvm_nr_mmu_pages)
  668. {
  669. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  670. return -EINVAL;
  671. mutex_lock(&kvm->lock);
  672. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  673. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  674. mutex_unlock(&kvm->lock);
  675. return 0;
  676. }
  677. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  678. {
  679. return kvm->n_alloc_mmu_pages;
  680. }
  681. /*
  682. * Get (and clear) the dirty memory log for a memory slot.
  683. */
  684. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  685. struct kvm_dirty_log *log)
  686. {
  687. struct kvm_memory_slot *memslot;
  688. int r, i;
  689. int n;
  690. unsigned long any = 0;
  691. mutex_lock(&kvm->lock);
  692. r = -EINVAL;
  693. if (log->slot >= KVM_MEMORY_SLOTS)
  694. goto out;
  695. memslot = &kvm->memslots[log->slot];
  696. r = -ENOENT;
  697. if (!memslot->dirty_bitmap)
  698. goto out;
  699. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  700. for (i = 0; !any && i < n/sizeof(long); ++i)
  701. any = memslot->dirty_bitmap[i];
  702. r = -EFAULT;
  703. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  704. goto out;
  705. /* If nothing is dirty, don't bother messing with page tables. */
  706. if (any) {
  707. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  708. kvm_flush_remote_tlbs(kvm);
  709. memset(memslot->dirty_bitmap, 0, n);
  710. }
  711. r = 0;
  712. out:
  713. mutex_unlock(&kvm->lock);
  714. return r;
  715. }
  716. /*
  717. * Set a new alias region. Aliases map a portion of physical memory into
  718. * another portion. This is useful for memory windows, for example the PC
  719. * VGA region.
  720. */
  721. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  722. struct kvm_memory_alias *alias)
  723. {
  724. int r, n;
  725. struct kvm_mem_alias *p;
  726. r = -EINVAL;
  727. /* General sanity checks */
  728. if (alias->memory_size & (PAGE_SIZE - 1))
  729. goto out;
  730. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  731. goto out;
  732. if (alias->slot >= KVM_ALIAS_SLOTS)
  733. goto out;
  734. if (alias->guest_phys_addr + alias->memory_size
  735. < alias->guest_phys_addr)
  736. goto out;
  737. if (alias->target_phys_addr + alias->memory_size
  738. < alias->target_phys_addr)
  739. goto out;
  740. mutex_lock(&kvm->lock);
  741. p = &kvm->aliases[alias->slot];
  742. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  743. p->npages = alias->memory_size >> PAGE_SHIFT;
  744. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  745. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  746. if (kvm->aliases[n - 1].npages)
  747. break;
  748. kvm->naliases = n;
  749. kvm_mmu_zap_all(kvm);
  750. mutex_unlock(&kvm->lock);
  751. return 0;
  752. out:
  753. return r;
  754. }
  755. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  756. {
  757. int r;
  758. r = 0;
  759. switch (chip->chip_id) {
  760. case KVM_IRQCHIP_PIC_MASTER:
  761. memcpy(&chip->chip.pic,
  762. &pic_irqchip(kvm)->pics[0],
  763. sizeof(struct kvm_pic_state));
  764. break;
  765. case KVM_IRQCHIP_PIC_SLAVE:
  766. memcpy(&chip->chip.pic,
  767. &pic_irqchip(kvm)->pics[1],
  768. sizeof(struct kvm_pic_state));
  769. break;
  770. case KVM_IRQCHIP_IOAPIC:
  771. memcpy(&chip->chip.ioapic,
  772. ioapic_irqchip(kvm),
  773. sizeof(struct kvm_ioapic_state));
  774. break;
  775. default:
  776. r = -EINVAL;
  777. break;
  778. }
  779. return r;
  780. }
  781. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  782. {
  783. int r;
  784. r = 0;
  785. switch (chip->chip_id) {
  786. case KVM_IRQCHIP_PIC_MASTER:
  787. memcpy(&pic_irqchip(kvm)->pics[0],
  788. &chip->chip.pic,
  789. sizeof(struct kvm_pic_state));
  790. break;
  791. case KVM_IRQCHIP_PIC_SLAVE:
  792. memcpy(&pic_irqchip(kvm)->pics[1],
  793. &chip->chip.pic,
  794. sizeof(struct kvm_pic_state));
  795. break;
  796. case KVM_IRQCHIP_IOAPIC:
  797. memcpy(ioapic_irqchip(kvm),
  798. &chip->chip.ioapic,
  799. sizeof(struct kvm_ioapic_state));
  800. break;
  801. default:
  802. r = -EINVAL;
  803. break;
  804. }
  805. kvm_pic_update_irq(pic_irqchip(kvm));
  806. return r;
  807. }
  808. int is_error_page(struct page *page)
  809. {
  810. return page == bad_page;
  811. }
  812. EXPORT_SYMBOL_GPL(is_error_page);
  813. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  814. {
  815. int i;
  816. struct kvm_mem_alias *alias;
  817. for (i = 0; i < kvm->naliases; ++i) {
  818. alias = &kvm->aliases[i];
  819. if (gfn >= alias->base_gfn
  820. && gfn < alias->base_gfn + alias->npages)
  821. return alias->target_gfn + gfn - alias->base_gfn;
  822. }
  823. return gfn;
  824. }
  825. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  826. {
  827. int i;
  828. for (i = 0; i < kvm->nmemslots; ++i) {
  829. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  830. if (gfn >= memslot->base_gfn
  831. && gfn < memslot->base_gfn + memslot->npages)
  832. return memslot;
  833. }
  834. return NULL;
  835. }
  836. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  837. {
  838. gfn = unalias_gfn(kvm, gfn);
  839. return __gfn_to_memslot(kvm, gfn);
  840. }
  841. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  842. {
  843. struct kvm_memory_slot *slot;
  844. struct page *page[1];
  845. int npages;
  846. gfn = unalias_gfn(kvm, gfn);
  847. slot = __gfn_to_memslot(kvm, gfn);
  848. if (!slot) {
  849. get_page(bad_page);
  850. return bad_page;
  851. }
  852. down_read(&current->mm->mmap_sem);
  853. npages = get_user_pages(current, current->mm,
  854. slot->userspace_addr
  855. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  856. 1, 1, page, NULL);
  857. up_read(&current->mm->mmap_sem);
  858. if (npages != 1) {
  859. get_page(bad_page);
  860. return bad_page;
  861. }
  862. return page[0];
  863. }
  864. EXPORT_SYMBOL_GPL(gfn_to_page);
  865. void kvm_release_page(struct page *page)
  866. {
  867. if (!PageReserved(page))
  868. SetPageDirty(page);
  869. put_page(page);
  870. }
  871. EXPORT_SYMBOL_GPL(kvm_release_page);
  872. static int next_segment(unsigned long len, int offset)
  873. {
  874. if (len > PAGE_SIZE - offset)
  875. return PAGE_SIZE - offset;
  876. else
  877. return len;
  878. }
  879. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  880. int len)
  881. {
  882. void *page_virt;
  883. struct page *page;
  884. page = gfn_to_page(kvm, gfn);
  885. if (is_error_page(page)) {
  886. kvm_release_page(page);
  887. return -EFAULT;
  888. }
  889. page_virt = kmap_atomic(page, KM_USER0);
  890. memcpy(data, page_virt + offset, len);
  891. kunmap_atomic(page_virt, KM_USER0);
  892. kvm_release_page(page);
  893. return 0;
  894. }
  895. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  896. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  897. {
  898. gfn_t gfn = gpa >> PAGE_SHIFT;
  899. int seg;
  900. int offset = offset_in_page(gpa);
  901. int ret;
  902. while ((seg = next_segment(len, offset)) != 0) {
  903. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  904. if (ret < 0)
  905. return ret;
  906. offset = 0;
  907. len -= seg;
  908. data += seg;
  909. ++gfn;
  910. }
  911. return 0;
  912. }
  913. EXPORT_SYMBOL_GPL(kvm_read_guest);
  914. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  915. int offset, int len)
  916. {
  917. void *page_virt;
  918. struct page *page;
  919. page = gfn_to_page(kvm, gfn);
  920. if (is_error_page(page)) {
  921. kvm_release_page(page);
  922. return -EFAULT;
  923. }
  924. page_virt = kmap_atomic(page, KM_USER0);
  925. memcpy(page_virt + offset, data, len);
  926. kunmap_atomic(page_virt, KM_USER0);
  927. mark_page_dirty(kvm, gfn);
  928. kvm_release_page(page);
  929. return 0;
  930. }
  931. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  932. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  933. unsigned long len)
  934. {
  935. gfn_t gfn = gpa >> PAGE_SHIFT;
  936. int seg;
  937. int offset = offset_in_page(gpa);
  938. int ret;
  939. while ((seg = next_segment(len, offset)) != 0) {
  940. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  941. if (ret < 0)
  942. return ret;
  943. offset = 0;
  944. len -= seg;
  945. data += seg;
  946. ++gfn;
  947. }
  948. return 0;
  949. }
  950. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  951. {
  952. void *page_virt;
  953. struct page *page;
  954. page = gfn_to_page(kvm, gfn);
  955. if (is_error_page(page)) {
  956. kvm_release_page(page);
  957. return -EFAULT;
  958. }
  959. page_virt = kmap_atomic(page, KM_USER0);
  960. memset(page_virt + offset, 0, len);
  961. kunmap_atomic(page_virt, KM_USER0);
  962. kvm_release_page(page);
  963. return 0;
  964. }
  965. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  966. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  967. {
  968. gfn_t gfn = gpa >> PAGE_SHIFT;
  969. int seg;
  970. int offset = offset_in_page(gpa);
  971. int ret;
  972. while ((seg = next_segment(len, offset)) != 0) {
  973. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  974. if (ret < 0)
  975. return ret;
  976. offset = 0;
  977. len -= seg;
  978. ++gfn;
  979. }
  980. return 0;
  981. }
  982. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  983. /* WARNING: Does not work on aliased pages. */
  984. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  985. {
  986. struct kvm_memory_slot *memslot;
  987. memslot = __gfn_to_memslot(kvm, gfn);
  988. if (memslot && memslot->dirty_bitmap) {
  989. unsigned long rel_gfn = gfn - memslot->base_gfn;
  990. /* avoid RMW */
  991. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  992. set_bit(rel_gfn, memslot->dirty_bitmap);
  993. }
  994. }
  995. int emulator_read_std(unsigned long addr,
  996. void *val,
  997. unsigned int bytes,
  998. struct kvm_vcpu *vcpu)
  999. {
  1000. void *data = val;
  1001. while (bytes) {
  1002. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1003. unsigned offset = addr & (PAGE_SIZE-1);
  1004. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1005. int ret;
  1006. if (gpa == UNMAPPED_GVA)
  1007. return X86EMUL_PROPAGATE_FAULT;
  1008. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1009. if (ret < 0)
  1010. return X86EMUL_UNHANDLEABLE;
  1011. bytes -= tocopy;
  1012. data += tocopy;
  1013. addr += tocopy;
  1014. }
  1015. return X86EMUL_CONTINUE;
  1016. }
  1017. EXPORT_SYMBOL_GPL(emulator_read_std);
  1018. static int emulator_write_std(unsigned long addr,
  1019. const void *val,
  1020. unsigned int bytes,
  1021. struct kvm_vcpu *vcpu)
  1022. {
  1023. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1024. return X86EMUL_UNHANDLEABLE;
  1025. }
  1026. /*
  1027. * Only apic need an MMIO device hook, so shortcut now..
  1028. */
  1029. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1030. gpa_t addr)
  1031. {
  1032. struct kvm_io_device *dev;
  1033. if (vcpu->apic) {
  1034. dev = &vcpu->apic->dev;
  1035. if (dev->in_range(dev, addr))
  1036. return dev;
  1037. }
  1038. return NULL;
  1039. }
  1040. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1041. gpa_t addr)
  1042. {
  1043. struct kvm_io_device *dev;
  1044. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1045. if (dev == NULL)
  1046. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1047. return dev;
  1048. }
  1049. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1050. gpa_t addr)
  1051. {
  1052. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1053. }
  1054. static int emulator_read_emulated(unsigned long addr,
  1055. void *val,
  1056. unsigned int bytes,
  1057. struct kvm_vcpu *vcpu)
  1058. {
  1059. struct kvm_io_device *mmio_dev;
  1060. gpa_t gpa;
  1061. if (vcpu->mmio_read_completed) {
  1062. memcpy(val, vcpu->mmio_data, bytes);
  1063. vcpu->mmio_read_completed = 0;
  1064. return X86EMUL_CONTINUE;
  1065. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1066. == X86EMUL_CONTINUE)
  1067. return X86EMUL_CONTINUE;
  1068. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1069. if (gpa == UNMAPPED_GVA)
  1070. return X86EMUL_PROPAGATE_FAULT;
  1071. /*
  1072. * Is this MMIO handled locally?
  1073. */
  1074. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1075. if (mmio_dev) {
  1076. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1077. return X86EMUL_CONTINUE;
  1078. }
  1079. vcpu->mmio_needed = 1;
  1080. vcpu->mmio_phys_addr = gpa;
  1081. vcpu->mmio_size = bytes;
  1082. vcpu->mmio_is_write = 0;
  1083. return X86EMUL_UNHANDLEABLE;
  1084. }
  1085. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1086. const void *val, int bytes)
  1087. {
  1088. int ret;
  1089. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1090. if (ret < 0)
  1091. return 0;
  1092. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1093. return 1;
  1094. }
  1095. static int emulator_write_emulated_onepage(unsigned long addr,
  1096. const void *val,
  1097. unsigned int bytes,
  1098. struct kvm_vcpu *vcpu)
  1099. {
  1100. struct kvm_io_device *mmio_dev;
  1101. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1102. if (gpa == UNMAPPED_GVA) {
  1103. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1104. return X86EMUL_PROPAGATE_FAULT;
  1105. }
  1106. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1107. return X86EMUL_CONTINUE;
  1108. /*
  1109. * Is this MMIO handled locally?
  1110. */
  1111. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1112. if (mmio_dev) {
  1113. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1114. return X86EMUL_CONTINUE;
  1115. }
  1116. vcpu->mmio_needed = 1;
  1117. vcpu->mmio_phys_addr = gpa;
  1118. vcpu->mmio_size = bytes;
  1119. vcpu->mmio_is_write = 1;
  1120. memcpy(vcpu->mmio_data, val, bytes);
  1121. return X86EMUL_CONTINUE;
  1122. }
  1123. int emulator_write_emulated(unsigned long addr,
  1124. const void *val,
  1125. unsigned int bytes,
  1126. struct kvm_vcpu *vcpu)
  1127. {
  1128. /* Crossing a page boundary? */
  1129. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1130. int rc, now;
  1131. now = -addr & ~PAGE_MASK;
  1132. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1133. if (rc != X86EMUL_CONTINUE)
  1134. return rc;
  1135. addr += now;
  1136. val += now;
  1137. bytes -= now;
  1138. }
  1139. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1140. }
  1141. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1142. static int emulator_cmpxchg_emulated(unsigned long addr,
  1143. const void *old,
  1144. const void *new,
  1145. unsigned int bytes,
  1146. struct kvm_vcpu *vcpu)
  1147. {
  1148. static int reported;
  1149. if (!reported) {
  1150. reported = 1;
  1151. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1152. }
  1153. return emulator_write_emulated(addr, new, bytes, vcpu);
  1154. }
  1155. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1156. {
  1157. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1158. }
  1159. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1160. {
  1161. return X86EMUL_CONTINUE;
  1162. }
  1163. int emulate_clts(struct kvm_vcpu *vcpu)
  1164. {
  1165. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1166. return X86EMUL_CONTINUE;
  1167. }
  1168. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1169. {
  1170. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1171. switch (dr) {
  1172. case 0 ... 3:
  1173. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1174. return X86EMUL_CONTINUE;
  1175. default:
  1176. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1177. return X86EMUL_UNHANDLEABLE;
  1178. }
  1179. }
  1180. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1181. {
  1182. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1183. int exception;
  1184. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1185. if (exception) {
  1186. /* FIXME: better handling */
  1187. return X86EMUL_UNHANDLEABLE;
  1188. }
  1189. return X86EMUL_CONTINUE;
  1190. }
  1191. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1192. {
  1193. static int reported;
  1194. u8 opcodes[4];
  1195. unsigned long rip = vcpu->rip;
  1196. unsigned long rip_linear;
  1197. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1198. if (reported)
  1199. return;
  1200. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1201. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1202. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1203. reported = 1;
  1204. }
  1205. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1206. struct x86_emulate_ops emulate_ops = {
  1207. .read_std = emulator_read_std,
  1208. .write_std = emulator_write_std,
  1209. .read_emulated = emulator_read_emulated,
  1210. .write_emulated = emulator_write_emulated,
  1211. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1212. };
  1213. int emulate_instruction(struct kvm_vcpu *vcpu,
  1214. struct kvm_run *run,
  1215. unsigned long cr2,
  1216. u16 error_code,
  1217. int no_decode)
  1218. {
  1219. int r;
  1220. vcpu->mmio_fault_cr2 = cr2;
  1221. kvm_x86_ops->cache_regs(vcpu);
  1222. vcpu->mmio_is_write = 0;
  1223. vcpu->pio.string = 0;
  1224. if (!no_decode) {
  1225. int cs_db, cs_l;
  1226. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1227. vcpu->emulate_ctxt.vcpu = vcpu;
  1228. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1229. vcpu->emulate_ctxt.cr2 = cr2;
  1230. vcpu->emulate_ctxt.mode =
  1231. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1232. ? X86EMUL_MODE_REAL : cs_l
  1233. ? X86EMUL_MODE_PROT64 : cs_db
  1234. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1235. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1236. vcpu->emulate_ctxt.cs_base = 0;
  1237. vcpu->emulate_ctxt.ds_base = 0;
  1238. vcpu->emulate_ctxt.es_base = 0;
  1239. vcpu->emulate_ctxt.ss_base = 0;
  1240. } else {
  1241. vcpu->emulate_ctxt.cs_base =
  1242. get_segment_base(vcpu, VCPU_SREG_CS);
  1243. vcpu->emulate_ctxt.ds_base =
  1244. get_segment_base(vcpu, VCPU_SREG_DS);
  1245. vcpu->emulate_ctxt.es_base =
  1246. get_segment_base(vcpu, VCPU_SREG_ES);
  1247. vcpu->emulate_ctxt.ss_base =
  1248. get_segment_base(vcpu, VCPU_SREG_SS);
  1249. }
  1250. vcpu->emulate_ctxt.gs_base =
  1251. get_segment_base(vcpu, VCPU_SREG_GS);
  1252. vcpu->emulate_ctxt.fs_base =
  1253. get_segment_base(vcpu, VCPU_SREG_FS);
  1254. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1255. if (r) {
  1256. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1257. return EMULATE_DONE;
  1258. return EMULATE_FAIL;
  1259. }
  1260. }
  1261. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1262. if (vcpu->pio.string)
  1263. return EMULATE_DO_MMIO;
  1264. if ((r || vcpu->mmio_is_write) && run) {
  1265. run->exit_reason = KVM_EXIT_MMIO;
  1266. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1267. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1268. run->mmio.len = vcpu->mmio_size;
  1269. run->mmio.is_write = vcpu->mmio_is_write;
  1270. }
  1271. if (r) {
  1272. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1273. return EMULATE_DONE;
  1274. if (!vcpu->mmio_needed) {
  1275. kvm_report_emulation_failure(vcpu, "mmio");
  1276. return EMULATE_FAIL;
  1277. }
  1278. return EMULATE_DO_MMIO;
  1279. }
  1280. kvm_x86_ops->decache_regs(vcpu);
  1281. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1282. if (vcpu->mmio_is_write) {
  1283. vcpu->mmio_needed = 0;
  1284. return EMULATE_DO_MMIO;
  1285. }
  1286. return EMULATE_DONE;
  1287. }
  1288. EXPORT_SYMBOL_GPL(emulate_instruction);
  1289. /*
  1290. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1291. */
  1292. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1293. {
  1294. DECLARE_WAITQUEUE(wait, current);
  1295. add_wait_queue(&vcpu->wq, &wait);
  1296. /*
  1297. * We will block until either an interrupt or a signal wakes us up
  1298. */
  1299. while (!kvm_cpu_has_interrupt(vcpu)
  1300. && !signal_pending(current)
  1301. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1302. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1303. set_current_state(TASK_INTERRUPTIBLE);
  1304. vcpu_put(vcpu);
  1305. schedule();
  1306. vcpu_load(vcpu);
  1307. }
  1308. __set_current_state(TASK_RUNNING);
  1309. remove_wait_queue(&vcpu->wq, &wait);
  1310. }
  1311. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1312. {
  1313. ++vcpu->stat.halt_exits;
  1314. if (irqchip_in_kernel(vcpu->kvm)) {
  1315. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1316. kvm_vcpu_block(vcpu);
  1317. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1318. return -EINTR;
  1319. return 1;
  1320. } else {
  1321. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1322. return 0;
  1323. }
  1324. }
  1325. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1326. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1327. {
  1328. unsigned long nr, a0, a1, a2, a3, ret;
  1329. kvm_x86_ops->cache_regs(vcpu);
  1330. nr = vcpu->regs[VCPU_REGS_RAX];
  1331. a0 = vcpu->regs[VCPU_REGS_RBX];
  1332. a1 = vcpu->regs[VCPU_REGS_RCX];
  1333. a2 = vcpu->regs[VCPU_REGS_RDX];
  1334. a3 = vcpu->regs[VCPU_REGS_RSI];
  1335. if (!is_long_mode(vcpu)) {
  1336. nr &= 0xFFFFFFFF;
  1337. a0 &= 0xFFFFFFFF;
  1338. a1 &= 0xFFFFFFFF;
  1339. a2 &= 0xFFFFFFFF;
  1340. a3 &= 0xFFFFFFFF;
  1341. }
  1342. switch (nr) {
  1343. default:
  1344. ret = -KVM_ENOSYS;
  1345. break;
  1346. }
  1347. vcpu->regs[VCPU_REGS_RAX] = ret;
  1348. kvm_x86_ops->decache_regs(vcpu);
  1349. return 0;
  1350. }
  1351. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1352. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1353. {
  1354. char instruction[3];
  1355. int ret = 0;
  1356. mutex_lock(&vcpu->kvm->lock);
  1357. /*
  1358. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1359. * to ensure that the updated hypercall appears atomically across all
  1360. * VCPUs.
  1361. */
  1362. kvm_mmu_zap_all(vcpu->kvm);
  1363. kvm_x86_ops->cache_regs(vcpu);
  1364. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1365. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1366. != X86EMUL_CONTINUE)
  1367. ret = -EFAULT;
  1368. mutex_unlock(&vcpu->kvm->lock);
  1369. return ret;
  1370. }
  1371. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1372. {
  1373. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1374. }
  1375. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1376. {
  1377. struct descriptor_table dt = { limit, base };
  1378. kvm_x86_ops->set_gdt(vcpu, &dt);
  1379. }
  1380. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1381. {
  1382. struct descriptor_table dt = { limit, base };
  1383. kvm_x86_ops->set_idt(vcpu, &dt);
  1384. }
  1385. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1386. unsigned long *rflags)
  1387. {
  1388. lmsw(vcpu, msw);
  1389. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1390. }
  1391. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1392. {
  1393. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1394. switch (cr) {
  1395. case 0:
  1396. return vcpu->cr0;
  1397. case 2:
  1398. return vcpu->cr2;
  1399. case 3:
  1400. return vcpu->cr3;
  1401. case 4:
  1402. return vcpu->cr4;
  1403. default:
  1404. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1405. return 0;
  1406. }
  1407. }
  1408. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1409. unsigned long *rflags)
  1410. {
  1411. switch (cr) {
  1412. case 0:
  1413. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1414. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1415. break;
  1416. case 2:
  1417. vcpu->cr2 = val;
  1418. break;
  1419. case 3:
  1420. set_cr3(vcpu, val);
  1421. break;
  1422. case 4:
  1423. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1424. break;
  1425. default:
  1426. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1427. }
  1428. }
  1429. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1430. {
  1431. u64 data;
  1432. switch (msr) {
  1433. case 0xc0010010: /* SYSCFG */
  1434. case 0xc0010015: /* HWCR */
  1435. case MSR_IA32_PLATFORM_ID:
  1436. case MSR_IA32_P5_MC_ADDR:
  1437. case MSR_IA32_P5_MC_TYPE:
  1438. case MSR_IA32_MC0_CTL:
  1439. case MSR_IA32_MCG_STATUS:
  1440. case MSR_IA32_MCG_CAP:
  1441. case MSR_IA32_MC0_MISC:
  1442. case MSR_IA32_MC0_MISC+4:
  1443. case MSR_IA32_MC0_MISC+8:
  1444. case MSR_IA32_MC0_MISC+12:
  1445. case MSR_IA32_MC0_MISC+16:
  1446. case MSR_IA32_UCODE_REV:
  1447. case MSR_IA32_PERF_STATUS:
  1448. case MSR_IA32_EBL_CR_POWERON:
  1449. /* MTRR registers */
  1450. case 0xfe:
  1451. case 0x200 ... 0x2ff:
  1452. data = 0;
  1453. break;
  1454. case 0xcd: /* fsb frequency */
  1455. data = 3;
  1456. break;
  1457. case MSR_IA32_APICBASE:
  1458. data = kvm_get_apic_base(vcpu);
  1459. break;
  1460. case MSR_IA32_MISC_ENABLE:
  1461. data = vcpu->ia32_misc_enable_msr;
  1462. break;
  1463. #ifdef CONFIG_X86_64
  1464. case MSR_EFER:
  1465. data = vcpu->shadow_efer;
  1466. break;
  1467. #endif
  1468. default:
  1469. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1470. return 1;
  1471. }
  1472. *pdata = data;
  1473. return 0;
  1474. }
  1475. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1476. /*
  1477. * Reads an msr value (of 'msr_index') into 'pdata'.
  1478. * Returns 0 on success, non-0 otherwise.
  1479. * Assumes vcpu_load() was already called.
  1480. */
  1481. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1482. {
  1483. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1484. }
  1485. #ifdef CONFIG_X86_64
  1486. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1487. {
  1488. if (efer & EFER_RESERVED_BITS) {
  1489. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1490. efer);
  1491. inject_gp(vcpu);
  1492. return;
  1493. }
  1494. if (is_paging(vcpu)
  1495. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1496. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1497. inject_gp(vcpu);
  1498. return;
  1499. }
  1500. kvm_x86_ops->set_efer(vcpu, efer);
  1501. efer &= ~EFER_LMA;
  1502. efer |= vcpu->shadow_efer & EFER_LMA;
  1503. vcpu->shadow_efer = efer;
  1504. }
  1505. #endif
  1506. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1507. {
  1508. switch (msr) {
  1509. #ifdef CONFIG_X86_64
  1510. case MSR_EFER:
  1511. set_efer(vcpu, data);
  1512. break;
  1513. #endif
  1514. case MSR_IA32_MC0_STATUS:
  1515. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1516. __FUNCTION__, data);
  1517. break;
  1518. case MSR_IA32_MCG_STATUS:
  1519. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1520. __FUNCTION__, data);
  1521. break;
  1522. case MSR_IA32_UCODE_REV:
  1523. case MSR_IA32_UCODE_WRITE:
  1524. case 0x200 ... 0x2ff: /* MTRRs */
  1525. break;
  1526. case MSR_IA32_APICBASE:
  1527. kvm_set_apic_base(vcpu, data);
  1528. break;
  1529. case MSR_IA32_MISC_ENABLE:
  1530. vcpu->ia32_misc_enable_msr = data;
  1531. break;
  1532. default:
  1533. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1534. return 1;
  1535. }
  1536. return 0;
  1537. }
  1538. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1539. /*
  1540. * Writes msr value into into the appropriate "register".
  1541. * Returns 0 on success, non-0 otherwise.
  1542. * Assumes vcpu_load() was already called.
  1543. */
  1544. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1545. {
  1546. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1547. }
  1548. void kvm_resched(struct kvm_vcpu *vcpu)
  1549. {
  1550. if (!need_resched())
  1551. return;
  1552. cond_resched();
  1553. }
  1554. EXPORT_SYMBOL_GPL(kvm_resched);
  1555. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1556. {
  1557. int i;
  1558. u32 function;
  1559. struct kvm_cpuid_entry *e, *best;
  1560. kvm_x86_ops->cache_regs(vcpu);
  1561. function = vcpu->regs[VCPU_REGS_RAX];
  1562. vcpu->regs[VCPU_REGS_RAX] = 0;
  1563. vcpu->regs[VCPU_REGS_RBX] = 0;
  1564. vcpu->regs[VCPU_REGS_RCX] = 0;
  1565. vcpu->regs[VCPU_REGS_RDX] = 0;
  1566. best = NULL;
  1567. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1568. e = &vcpu->cpuid_entries[i];
  1569. if (e->function == function) {
  1570. best = e;
  1571. break;
  1572. }
  1573. /*
  1574. * Both basic or both extended?
  1575. */
  1576. if (((e->function ^ function) & 0x80000000) == 0)
  1577. if (!best || e->function > best->function)
  1578. best = e;
  1579. }
  1580. if (best) {
  1581. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1582. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1583. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1584. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1585. }
  1586. kvm_x86_ops->decache_regs(vcpu);
  1587. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1588. }
  1589. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1590. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1591. {
  1592. void *p = vcpu->pio_data;
  1593. void *q;
  1594. unsigned bytes;
  1595. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1596. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1597. PAGE_KERNEL);
  1598. if (!q) {
  1599. free_pio_guest_pages(vcpu);
  1600. return -ENOMEM;
  1601. }
  1602. q += vcpu->pio.guest_page_offset;
  1603. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1604. if (vcpu->pio.in)
  1605. memcpy(q, p, bytes);
  1606. else
  1607. memcpy(p, q, bytes);
  1608. q -= vcpu->pio.guest_page_offset;
  1609. vunmap(q);
  1610. free_pio_guest_pages(vcpu);
  1611. return 0;
  1612. }
  1613. static int complete_pio(struct kvm_vcpu *vcpu)
  1614. {
  1615. struct kvm_pio_request *io = &vcpu->pio;
  1616. long delta;
  1617. int r;
  1618. kvm_x86_ops->cache_regs(vcpu);
  1619. if (!io->string) {
  1620. if (io->in)
  1621. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1622. io->size);
  1623. } else {
  1624. if (io->in) {
  1625. r = pio_copy_data(vcpu);
  1626. if (r) {
  1627. kvm_x86_ops->cache_regs(vcpu);
  1628. return r;
  1629. }
  1630. }
  1631. delta = 1;
  1632. if (io->rep) {
  1633. delta *= io->cur_count;
  1634. /*
  1635. * The size of the register should really depend on
  1636. * current address size.
  1637. */
  1638. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1639. }
  1640. if (io->down)
  1641. delta = -delta;
  1642. delta *= io->size;
  1643. if (io->in)
  1644. vcpu->regs[VCPU_REGS_RDI] += delta;
  1645. else
  1646. vcpu->regs[VCPU_REGS_RSI] += delta;
  1647. }
  1648. kvm_x86_ops->decache_regs(vcpu);
  1649. io->count -= io->cur_count;
  1650. io->cur_count = 0;
  1651. return 0;
  1652. }
  1653. static void kernel_pio(struct kvm_io_device *pio_dev,
  1654. struct kvm_vcpu *vcpu,
  1655. void *pd)
  1656. {
  1657. /* TODO: String I/O for in kernel device */
  1658. mutex_lock(&vcpu->kvm->lock);
  1659. if (vcpu->pio.in)
  1660. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1661. vcpu->pio.size,
  1662. pd);
  1663. else
  1664. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1665. vcpu->pio.size,
  1666. pd);
  1667. mutex_unlock(&vcpu->kvm->lock);
  1668. }
  1669. static void pio_string_write(struct kvm_io_device *pio_dev,
  1670. struct kvm_vcpu *vcpu)
  1671. {
  1672. struct kvm_pio_request *io = &vcpu->pio;
  1673. void *pd = vcpu->pio_data;
  1674. int i;
  1675. mutex_lock(&vcpu->kvm->lock);
  1676. for (i = 0; i < io->cur_count; i++) {
  1677. kvm_iodevice_write(pio_dev, io->port,
  1678. io->size,
  1679. pd);
  1680. pd += io->size;
  1681. }
  1682. mutex_unlock(&vcpu->kvm->lock);
  1683. }
  1684. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1685. int size, unsigned port)
  1686. {
  1687. struct kvm_io_device *pio_dev;
  1688. vcpu->run->exit_reason = KVM_EXIT_IO;
  1689. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1690. vcpu->run->io.size = vcpu->pio.size = size;
  1691. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1692. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1693. vcpu->run->io.port = vcpu->pio.port = port;
  1694. vcpu->pio.in = in;
  1695. vcpu->pio.string = 0;
  1696. vcpu->pio.down = 0;
  1697. vcpu->pio.guest_page_offset = 0;
  1698. vcpu->pio.rep = 0;
  1699. kvm_x86_ops->cache_regs(vcpu);
  1700. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1701. kvm_x86_ops->decache_regs(vcpu);
  1702. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1703. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1704. if (pio_dev) {
  1705. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1706. complete_pio(vcpu);
  1707. return 1;
  1708. }
  1709. return 0;
  1710. }
  1711. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1712. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1713. int size, unsigned long count, int down,
  1714. gva_t address, int rep, unsigned port)
  1715. {
  1716. unsigned now, in_page;
  1717. int i, ret = 0;
  1718. int nr_pages = 1;
  1719. struct page *page;
  1720. struct kvm_io_device *pio_dev;
  1721. vcpu->run->exit_reason = KVM_EXIT_IO;
  1722. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1723. vcpu->run->io.size = vcpu->pio.size = size;
  1724. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1725. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1726. vcpu->run->io.port = vcpu->pio.port = port;
  1727. vcpu->pio.in = in;
  1728. vcpu->pio.string = 1;
  1729. vcpu->pio.down = down;
  1730. vcpu->pio.guest_page_offset = offset_in_page(address);
  1731. vcpu->pio.rep = rep;
  1732. if (!count) {
  1733. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1734. return 1;
  1735. }
  1736. if (!down)
  1737. in_page = PAGE_SIZE - offset_in_page(address);
  1738. else
  1739. in_page = offset_in_page(address) + size;
  1740. now = min(count, (unsigned long)in_page / size);
  1741. if (!now) {
  1742. /*
  1743. * String I/O straddles page boundary. Pin two guest pages
  1744. * so that we satisfy atomicity constraints. Do just one
  1745. * transaction to avoid complexity.
  1746. */
  1747. nr_pages = 2;
  1748. now = 1;
  1749. }
  1750. if (down) {
  1751. /*
  1752. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1753. */
  1754. pr_unimpl(vcpu, "guest string pio down\n");
  1755. inject_gp(vcpu);
  1756. return 1;
  1757. }
  1758. vcpu->run->io.count = now;
  1759. vcpu->pio.cur_count = now;
  1760. if (vcpu->pio.cur_count == vcpu->pio.count)
  1761. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1762. for (i = 0; i < nr_pages; ++i) {
  1763. mutex_lock(&vcpu->kvm->lock);
  1764. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1765. vcpu->pio.guest_pages[i] = page;
  1766. mutex_unlock(&vcpu->kvm->lock);
  1767. if (!page) {
  1768. inject_gp(vcpu);
  1769. free_pio_guest_pages(vcpu);
  1770. return 1;
  1771. }
  1772. }
  1773. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1774. if (!vcpu->pio.in) {
  1775. /* string PIO write */
  1776. ret = pio_copy_data(vcpu);
  1777. if (ret >= 0 && pio_dev) {
  1778. pio_string_write(pio_dev, vcpu);
  1779. complete_pio(vcpu);
  1780. if (vcpu->pio.count == 0)
  1781. ret = 1;
  1782. }
  1783. } else if (pio_dev)
  1784. pr_unimpl(vcpu, "no string pio read support yet, "
  1785. "port %x size %d count %ld\n",
  1786. port, size, count);
  1787. return ret;
  1788. }
  1789. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1790. /*
  1791. * Check if userspace requested an interrupt window, and that the
  1792. * interrupt window is open.
  1793. *
  1794. * No need to exit to userspace if we already have an interrupt queued.
  1795. */
  1796. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1797. struct kvm_run *kvm_run)
  1798. {
  1799. return (!vcpu->irq_summary &&
  1800. kvm_run->request_interrupt_window &&
  1801. vcpu->interrupt_window_open &&
  1802. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1803. }
  1804. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1805. struct kvm_run *kvm_run)
  1806. {
  1807. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1808. kvm_run->cr8 = get_cr8(vcpu);
  1809. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1810. if (irqchip_in_kernel(vcpu->kvm))
  1811. kvm_run->ready_for_interrupt_injection = 1;
  1812. else
  1813. kvm_run->ready_for_interrupt_injection =
  1814. (vcpu->interrupt_window_open &&
  1815. vcpu->irq_summary == 0);
  1816. }
  1817. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1818. {
  1819. int r;
  1820. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1821. pr_debug("vcpu %d received sipi with vector # %x\n",
  1822. vcpu->vcpu_id, vcpu->sipi_vector);
  1823. kvm_lapic_reset(vcpu);
  1824. r = kvm_x86_ops->vcpu_reset(vcpu);
  1825. if (r)
  1826. return r;
  1827. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1828. }
  1829. preempted:
  1830. if (vcpu->guest_debug.enabled)
  1831. kvm_x86_ops->guest_debug_pre(vcpu);
  1832. again:
  1833. r = kvm_mmu_reload(vcpu);
  1834. if (unlikely(r))
  1835. goto out;
  1836. kvm_inject_pending_timer_irqs(vcpu);
  1837. preempt_disable();
  1838. kvm_x86_ops->prepare_guest_switch(vcpu);
  1839. kvm_load_guest_fpu(vcpu);
  1840. local_irq_disable();
  1841. if (signal_pending(current)) {
  1842. local_irq_enable();
  1843. preempt_enable();
  1844. r = -EINTR;
  1845. kvm_run->exit_reason = KVM_EXIT_INTR;
  1846. ++vcpu->stat.signal_exits;
  1847. goto out;
  1848. }
  1849. if (irqchip_in_kernel(vcpu->kvm))
  1850. kvm_x86_ops->inject_pending_irq(vcpu);
  1851. else if (!vcpu->mmio_read_completed)
  1852. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1853. vcpu->guest_mode = 1;
  1854. kvm_guest_enter();
  1855. if (vcpu->requests)
  1856. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1857. kvm_x86_ops->tlb_flush(vcpu);
  1858. kvm_x86_ops->run(vcpu, kvm_run);
  1859. vcpu->guest_mode = 0;
  1860. local_irq_enable();
  1861. ++vcpu->stat.exits;
  1862. /*
  1863. * We must have an instruction between local_irq_enable() and
  1864. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1865. * the interrupt shadow. The stat.exits increment will do nicely.
  1866. * But we need to prevent reordering, hence this barrier():
  1867. */
  1868. barrier();
  1869. kvm_guest_exit();
  1870. preempt_enable();
  1871. /*
  1872. * Profile KVM exit RIPs:
  1873. */
  1874. if (unlikely(prof_on == KVM_PROFILING)) {
  1875. kvm_x86_ops->cache_regs(vcpu);
  1876. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1877. }
  1878. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1879. if (r > 0) {
  1880. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1881. r = -EINTR;
  1882. kvm_run->exit_reason = KVM_EXIT_INTR;
  1883. ++vcpu->stat.request_irq_exits;
  1884. goto out;
  1885. }
  1886. if (!need_resched()) {
  1887. ++vcpu->stat.light_exits;
  1888. goto again;
  1889. }
  1890. }
  1891. out:
  1892. if (r > 0) {
  1893. kvm_resched(vcpu);
  1894. goto preempted;
  1895. }
  1896. post_kvm_run_save(vcpu, kvm_run);
  1897. return r;
  1898. }
  1899. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1900. {
  1901. int r;
  1902. sigset_t sigsaved;
  1903. vcpu_load(vcpu);
  1904. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1905. kvm_vcpu_block(vcpu);
  1906. vcpu_put(vcpu);
  1907. return -EAGAIN;
  1908. }
  1909. if (vcpu->sigset_active)
  1910. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1911. /* re-sync apic's tpr */
  1912. if (!irqchip_in_kernel(vcpu->kvm))
  1913. set_cr8(vcpu, kvm_run->cr8);
  1914. if (vcpu->pio.cur_count) {
  1915. r = complete_pio(vcpu);
  1916. if (r)
  1917. goto out;
  1918. }
  1919. #if CONFIG_HAS_IOMEM
  1920. if (vcpu->mmio_needed) {
  1921. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1922. vcpu->mmio_read_completed = 1;
  1923. vcpu->mmio_needed = 0;
  1924. r = emulate_instruction(vcpu, kvm_run,
  1925. vcpu->mmio_fault_cr2, 0, 1);
  1926. if (r == EMULATE_DO_MMIO) {
  1927. /*
  1928. * Read-modify-write. Back to userspace.
  1929. */
  1930. r = 0;
  1931. goto out;
  1932. }
  1933. }
  1934. #endif
  1935. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1936. kvm_x86_ops->cache_regs(vcpu);
  1937. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1938. kvm_x86_ops->decache_regs(vcpu);
  1939. }
  1940. r = __vcpu_run(vcpu, kvm_run);
  1941. out:
  1942. if (vcpu->sigset_active)
  1943. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1944. vcpu_put(vcpu);
  1945. return r;
  1946. }
  1947. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1948. struct kvm_regs *regs)
  1949. {
  1950. vcpu_load(vcpu);
  1951. kvm_x86_ops->cache_regs(vcpu);
  1952. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1953. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1954. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1955. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1956. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1957. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1958. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1959. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1960. #ifdef CONFIG_X86_64
  1961. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1962. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1963. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1964. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1965. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1966. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1967. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1968. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1969. #endif
  1970. regs->rip = vcpu->rip;
  1971. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1972. /*
  1973. * Don't leak debug flags in case they were set for guest debugging
  1974. */
  1975. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1976. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1977. vcpu_put(vcpu);
  1978. return 0;
  1979. }
  1980. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1981. struct kvm_regs *regs)
  1982. {
  1983. vcpu_load(vcpu);
  1984. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1985. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1986. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1987. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1988. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1989. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1990. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1991. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1992. #ifdef CONFIG_X86_64
  1993. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1994. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1995. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1996. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1997. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1998. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1999. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2000. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2001. #endif
  2002. vcpu->rip = regs->rip;
  2003. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2004. kvm_x86_ops->decache_regs(vcpu);
  2005. vcpu_put(vcpu);
  2006. return 0;
  2007. }
  2008. static void get_segment(struct kvm_vcpu *vcpu,
  2009. struct kvm_segment *var, int seg)
  2010. {
  2011. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2012. }
  2013. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2014. struct kvm_sregs *sregs)
  2015. {
  2016. struct descriptor_table dt;
  2017. int pending_vec;
  2018. vcpu_load(vcpu);
  2019. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2020. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2021. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2022. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2023. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2024. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2025. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2026. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2027. kvm_x86_ops->get_idt(vcpu, &dt);
  2028. sregs->idt.limit = dt.limit;
  2029. sregs->idt.base = dt.base;
  2030. kvm_x86_ops->get_gdt(vcpu, &dt);
  2031. sregs->gdt.limit = dt.limit;
  2032. sregs->gdt.base = dt.base;
  2033. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2034. sregs->cr0 = vcpu->cr0;
  2035. sregs->cr2 = vcpu->cr2;
  2036. sregs->cr3 = vcpu->cr3;
  2037. sregs->cr4 = vcpu->cr4;
  2038. sregs->cr8 = get_cr8(vcpu);
  2039. sregs->efer = vcpu->shadow_efer;
  2040. sregs->apic_base = kvm_get_apic_base(vcpu);
  2041. if (irqchip_in_kernel(vcpu->kvm)) {
  2042. memset(sregs->interrupt_bitmap, 0,
  2043. sizeof sregs->interrupt_bitmap);
  2044. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2045. if (pending_vec >= 0)
  2046. set_bit(pending_vec,
  2047. (unsigned long *)sregs->interrupt_bitmap);
  2048. } else
  2049. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2050. sizeof sregs->interrupt_bitmap);
  2051. vcpu_put(vcpu);
  2052. return 0;
  2053. }
  2054. static void set_segment(struct kvm_vcpu *vcpu,
  2055. struct kvm_segment *var, int seg)
  2056. {
  2057. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2058. }
  2059. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2060. struct kvm_sregs *sregs)
  2061. {
  2062. int mmu_reset_needed = 0;
  2063. int i, pending_vec, max_bits;
  2064. struct descriptor_table dt;
  2065. vcpu_load(vcpu);
  2066. dt.limit = sregs->idt.limit;
  2067. dt.base = sregs->idt.base;
  2068. kvm_x86_ops->set_idt(vcpu, &dt);
  2069. dt.limit = sregs->gdt.limit;
  2070. dt.base = sregs->gdt.base;
  2071. kvm_x86_ops->set_gdt(vcpu, &dt);
  2072. vcpu->cr2 = sregs->cr2;
  2073. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2074. vcpu->cr3 = sregs->cr3;
  2075. set_cr8(vcpu, sregs->cr8);
  2076. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2077. #ifdef CONFIG_X86_64
  2078. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2079. #endif
  2080. kvm_set_apic_base(vcpu, sregs->apic_base);
  2081. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2082. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2083. vcpu->cr0 = sregs->cr0;
  2084. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2085. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2086. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2087. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2088. load_pdptrs(vcpu, vcpu->cr3);
  2089. if (mmu_reset_needed)
  2090. kvm_mmu_reset_context(vcpu);
  2091. if (!irqchip_in_kernel(vcpu->kvm)) {
  2092. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2093. sizeof vcpu->irq_pending);
  2094. vcpu->irq_summary = 0;
  2095. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2096. if (vcpu->irq_pending[i])
  2097. __set_bit(i, &vcpu->irq_summary);
  2098. } else {
  2099. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2100. pending_vec = find_first_bit(
  2101. (const unsigned long *)sregs->interrupt_bitmap,
  2102. max_bits);
  2103. /* Only pending external irq is handled here */
  2104. if (pending_vec < max_bits) {
  2105. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2106. pr_debug("Set back pending irq %d\n",
  2107. pending_vec);
  2108. }
  2109. }
  2110. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2111. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2112. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2113. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2114. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2115. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2116. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2117. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2118. vcpu_put(vcpu);
  2119. return 0;
  2120. }
  2121. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2122. {
  2123. struct kvm_segment cs;
  2124. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2125. *db = cs.db;
  2126. *l = cs.l;
  2127. }
  2128. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2129. /*
  2130. * Translate a guest virtual address to a guest physical address.
  2131. */
  2132. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2133. struct kvm_translation *tr)
  2134. {
  2135. unsigned long vaddr = tr->linear_address;
  2136. gpa_t gpa;
  2137. vcpu_load(vcpu);
  2138. mutex_lock(&vcpu->kvm->lock);
  2139. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2140. tr->physical_address = gpa;
  2141. tr->valid = gpa != UNMAPPED_GVA;
  2142. tr->writeable = 1;
  2143. tr->usermode = 0;
  2144. mutex_unlock(&vcpu->kvm->lock);
  2145. vcpu_put(vcpu);
  2146. return 0;
  2147. }
  2148. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2149. struct kvm_interrupt *irq)
  2150. {
  2151. if (irq->irq < 0 || irq->irq >= 256)
  2152. return -EINVAL;
  2153. if (irqchip_in_kernel(vcpu->kvm))
  2154. return -ENXIO;
  2155. vcpu_load(vcpu);
  2156. set_bit(irq->irq, vcpu->irq_pending);
  2157. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2158. vcpu_put(vcpu);
  2159. return 0;
  2160. }
  2161. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2162. struct kvm_debug_guest *dbg)
  2163. {
  2164. int r;
  2165. vcpu_load(vcpu);
  2166. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2167. vcpu_put(vcpu);
  2168. return r;
  2169. }
  2170. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2171. unsigned long address,
  2172. int *type)
  2173. {
  2174. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2175. unsigned long pgoff;
  2176. struct page *page;
  2177. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2178. if (pgoff == 0)
  2179. page = virt_to_page(vcpu->run);
  2180. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2181. page = virt_to_page(vcpu->pio_data);
  2182. else
  2183. return NOPAGE_SIGBUS;
  2184. get_page(page);
  2185. if (type != NULL)
  2186. *type = VM_FAULT_MINOR;
  2187. return page;
  2188. }
  2189. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2190. .nopage = kvm_vcpu_nopage,
  2191. };
  2192. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2193. {
  2194. vma->vm_ops = &kvm_vcpu_vm_ops;
  2195. return 0;
  2196. }
  2197. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2198. {
  2199. struct kvm_vcpu *vcpu = filp->private_data;
  2200. fput(vcpu->kvm->filp);
  2201. return 0;
  2202. }
  2203. static struct file_operations kvm_vcpu_fops = {
  2204. .release = kvm_vcpu_release,
  2205. .unlocked_ioctl = kvm_vcpu_ioctl,
  2206. .compat_ioctl = kvm_vcpu_ioctl,
  2207. .mmap = kvm_vcpu_mmap,
  2208. };
  2209. /*
  2210. * Allocates an inode for the vcpu.
  2211. */
  2212. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2213. {
  2214. int fd, r;
  2215. struct inode *inode;
  2216. struct file *file;
  2217. r = anon_inode_getfd(&fd, &inode, &file,
  2218. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2219. if (r)
  2220. return r;
  2221. atomic_inc(&vcpu->kvm->filp->f_count);
  2222. return fd;
  2223. }
  2224. /*
  2225. * Creates some virtual cpus. Good luck creating more than one.
  2226. */
  2227. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2228. {
  2229. int r;
  2230. struct kvm_vcpu *vcpu;
  2231. if (!valid_vcpu(n))
  2232. return -EINVAL;
  2233. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2234. if (IS_ERR(vcpu))
  2235. return PTR_ERR(vcpu);
  2236. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2237. /* We do fxsave: this must be aligned. */
  2238. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2239. vcpu_load(vcpu);
  2240. r = kvm_x86_ops->vcpu_reset(vcpu);
  2241. if (r == 0)
  2242. r = kvm_mmu_setup(vcpu);
  2243. vcpu_put(vcpu);
  2244. if (r < 0)
  2245. goto free_vcpu;
  2246. mutex_lock(&kvm->lock);
  2247. if (kvm->vcpus[n]) {
  2248. r = -EEXIST;
  2249. mutex_unlock(&kvm->lock);
  2250. goto mmu_unload;
  2251. }
  2252. kvm->vcpus[n] = vcpu;
  2253. mutex_unlock(&kvm->lock);
  2254. /* Now it's all set up, let userspace reach it */
  2255. r = create_vcpu_fd(vcpu);
  2256. if (r < 0)
  2257. goto unlink;
  2258. return r;
  2259. unlink:
  2260. mutex_lock(&kvm->lock);
  2261. kvm->vcpus[n] = NULL;
  2262. mutex_unlock(&kvm->lock);
  2263. mmu_unload:
  2264. vcpu_load(vcpu);
  2265. kvm_mmu_unload(vcpu);
  2266. vcpu_put(vcpu);
  2267. free_vcpu:
  2268. kvm_x86_ops->vcpu_free(vcpu);
  2269. return r;
  2270. }
  2271. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2272. {
  2273. if (sigset) {
  2274. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2275. vcpu->sigset_active = 1;
  2276. vcpu->sigset = *sigset;
  2277. } else
  2278. vcpu->sigset_active = 0;
  2279. return 0;
  2280. }
  2281. /*
  2282. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2283. * we have asm/x86/processor.h
  2284. */
  2285. struct fxsave {
  2286. u16 cwd;
  2287. u16 swd;
  2288. u16 twd;
  2289. u16 fop;
  2290. u64 rip;
  2291. u64 rdp;
  2292. u32 mxcsr;
  2293. u32 mxcsr_mask;
  2294. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2295. #ifdef CONFIG_X86_64
  2296. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2297. #else
  2298. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2299. #endif
  2300. };
  2301. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2302. {
  2303. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2304. vcpu_load(vcpu);
  2305. memcpy(fpu->fpr, fxsave->st_space, 128);
  2306. fpu->fcw = fxsave->cwd;
  2307. fpu->fsw = fxsave->swd;
  2308. fpu->ftwx = fxsave->twd;
  2309. fpu->last_opcode = fxsave->fop;
  2310. fpu->last_ip = fxsave->rip;
  2311. fpu->last_dp = fxsave->rdp;
  2312. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2313. vcpu_put(vcpu);
  2314. return 0;
  2315. }
  2316. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2317. {
  2318. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2319. vcpu_load(vcpu);
  2320. memcpy(fxsave->st_space, fpu->fpr, 128);
  2321. fxsave->cwd = fpu->fcw;
  2322. fxsave->swd = fpu->fsw;
  2323. fxsave->twd = fpu->ftwx;
  2324. fxsave->fop = fpu->last_opcode;
  2325. fxsave->rip = fpu->last_ip;
  2326. fxsave->rdp = fpu->last_dp;
  2327. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2328. vcpu_put(vcpu);
  2329. return 0;
  2330. }
  2331. static long kvm_vcpu_ioctl(struct file *filp,
  2332. unsigned int ioctl, unsigned long arg)
  2333. {
  2334. struct kvm_vcpu *vcpu = filp->private_data;
  2335. void __user *argp = (void __user *)arg;
  2336. int r;
  2337. switch (ioctl) {
  2338. case KVM_RUN:
  2339. r = -EINVAL;
  2340. if (arg)
  2341. goto out;
  2342. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2343. break;
  2344. case KVM_GET_REGS: {
  2345. struct kvm_regs kvm_regs;
  2346. memset(&kvm_regs, 0, sizeof kvm_regs);
  2347. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2348. if (r)
  2349. goto out;
  2350. r = -EFAULT;
  2351. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2352. goto out;
  2353. r = 0;
  2354. break;
  2355. }
  2356. case KVM_SET_REGS: {
  2357. struct kvm_regs kvm_regs;
  2358. r = -EFAULT;
  2359. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2360. goto out;
  2361. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2362. if (r)
  2363. goto out;
  2364. r = 0;
  2365. break;
  2366. }
  2367. case KVM_GET_SREGS: {
  2368. struct kvm_sregs kvm_sregs;
  2369. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2370. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2371. if (r)
  2372. goto out;
  2373. r = -EFAULT;
  2374. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2375. goto out;
  2376. r = 0;
  2377. break;
  2378. }
  2379. case KVM_SET_SREGS: {
  2380. struct kvm_sregs kvm_sregs;
  2381. r = -EFAULT;
  2382. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2383. goto out;
  2384. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2385. if (r)
  2386. goto out;
  2387. r = 0;
  2388. break;
  2389. }
  2390. case KVM_TRANSLATE: {
  2391. struct kvm_translation tr;
  2392. r = -EFAULT;
  2393. if (copy_from_user(&tr, argp, sizeof tr))
  2394. goto out;
  2395. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2396. if (r)
  2397. goto out;
  2398. r = -EFAULT;
  2399. if (copy_to_user(argp, &tr, sizeof tr))
  2400. goto out;
  2401. r = 0;
  2402. break;
  2403. }
  2404. case KVM_INTERRUPT: {
  2405. struct kvm_interrupt irq;
  2406. r = -EFAULT;
  2407. if (copy_from_user(&irq, argp, sizeof irq))
  2408. goto out;
  2409. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2410. if (r)
  2411. goto out;
  2412. r = 0;
  2413. break;
  2414. }
  2415. case KVM_DEBUG_GUEST: {
  2416. struct kvm_debug_guest dbg;
  2417. r = -EFAULT;
  2418. if (copy_from_user(&dbg, argp, sizeof dbg))
  2419. goto out;
  2420. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2421. if (r)
  2422. goto out;
  2423. r = 0;
  2424. break;
  2425. }
  2426. case KVM_SET_SIGNAL_MASK: {
  2427. struct kvm_signal_mask __user *sigmask_arg = argp;
  2428. struct kvm_signal_mask kvm_sigmask;
  2429. sigset_t sigset, *p;
  2430. p = NULL;
  2431. if (argp) {
  2432. r = -EFAULT;
  2433. if (copy_from_user(&kvm_sigmask, argp,
  2434. sizeof kvm_sigmask))
  2435. goto out;
  2436. r = -EINVAL;
  2437. if (kvm_sigmask.len != sizeof sigset)
  2438. goto out;
  2439. r = -EFAULT;
  2440. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2441. sizeof sigset))
  2442. goto out;
  2443. p = &sigset;
  2444. }
  2445. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2446. break;
  2447. }
  2448. case KVM_GET_FPU: {
  2449. struct kvm_fpu fpu;
  2450. memset(&fpu, 0, sizeof fpu);
  2451. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2452. if (r)
  2453. goto out;
  2454. r = -EFAULT;
  2455. if (copy_to_user(argp, &fpu, sizeof fpu))
  2456. goto out;
  2457. r = 0;
  2458. break;
  2459. }
  2460. case KVM_SET_FPU: {
  2461. struct kvm_fpu fpu;
  2462. r = -EFAULT;
  2463. if (copy_from_user(&fpu, argp, sizeof fpu))
  2464. goto out;
  2465. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2466. if (r)
  2467. goto out;
  2468. r = 0;
  2469. break;
  2470. }
  2471. default:
  2472. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2473. }
  2474. out:
  2475. return r;
  2476. }
  2477. static long kvm_vm_ioctl(struct file *filp,
  2478. unsigned int ioctl, unsigned long arg)
  2479. {
  2480. struct kvm *kvm = filp->private_data;
  2481. void __user *argp = (void __user *)arg;
  2482. int r = -EINVAL;
  2483. switch (ioctl) {
  2484. case KVM_CREATE_VCPU:
  2485. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2486. if (r < 0)
  2487. goto out;
  2488. break;
  2489. case KVM_SET_MEMORY_REGION: {
  2490. struct kvm_memory_region kvm_mem;
  2491. struct kvm_userspace_memory_region kvm_userspace_mem;
  2492. r = -EFAULT;
  2493. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2494. goto out;
  2495. kvm_userspace_mem.slot = kvm_mem.slot;
  2496. kvm_userspace_mem.flags = kvm_mem.flags;
  2497. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2498. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2499. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2500. if (r)
  2501. goto out;
  2502. break;
  2503. }
  2504. case KVM_SET_USER_MEMORY_REGION: {
  2505. struct kvm_userspace_memory_region kvm_userspace_mem;
  2506. r = -EFAULT;
  2507. if (copy_from_user(&kvm_userspace_mem, argp,
  2508. sizeof kvm_userspace_mem))
  2509. goto out;
  2510. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2511. if (r)
  2512. goto out;
  2513. break;
  2514. }
  2515. case KVM_SET_NR_MMU_PAGES:
  2516. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2517. if (r)
  2518. goto out;
  2519. break;
  2520. case KVM_GET_NR_MMU_PAGES:
  2521. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2522. break;
  2523. case KVM_GET_DIRTY_LOG: {
  2524. struct kvm_dirty_log log;
  2525. r = -EFAULT;
  2526. if (copy_from_user(&log, argp, sizeof log))
  2527. goto out;
  2528. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2529. if (r)
  2530. goto out;
  2531. break;
  2532. }
  2533. case KVM_SET_MEMORY_ALIAS: {
  2534. struct kvm_memory_alias alias;
  2535. r = -EFAULT;
  2536. if (copy_from_user(&alias, argp, sizeof alias))
  2537. goto out;
  2538. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2539. if (r)
  2540. goto out;
  2541. break;
  2542. }
  2543. case KVM_CREATE_IRQCHIP:
  2544. r = -ENOMEM;
  2545. kvm->vpic = kvm_create_pic(kvm);
  2546. if (kvm->vpic) {
  2547. r = kvm_ioapic_init(kvm);
  2548. if (r) {
  2549. kfree(kvm->vpic);
  2550. kvm->vpic = NULL;
  2551. goto out;
  2552. }
  2553. } else
  2554. goto out;
  2555. break;
  2556. case KVM_IRQ_LINE: {
  2557. struct kvm_irq_level irq_event;
  2558. r = -EFAULT;
  2559. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2560. goto out;
  2561. if (irqchip_in_kernel(kvm)) {
  2562. mutex_lock(&kvm->lock);
  2563. if (irq_event.irq < 16)
  2564. kvm_pic_set_irq(pic_irqchip(kvm),
  2565. irq_event.irq,
  2566. irq_event.level);
  2567. kvm_ioapic_set_irq(kvm->vioapic,
  2568. irq_event.irq,
  2569. irq_event.level);
  2570. mutex_unlock(&kvm->lock);
  2571. r = 0;
  2572. }
  2573. break;
  2574. }
  2575. case KVM_GET_IRQCHIP: {
  2576. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2577. struct kvm_irqchip chip;
  2578. r = -EFAULT;
  2579. if (copy_from_user(&chip, argp, sizeof chip))
  2580. goto out;
  2581. r = -ENXIO;
  2582. if (!irqchip_in_kernel(kvm))
  2583. goto out;
  2584. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2585. if (r)
  2586. goto out;
  2587. r = -EFAULT;
  2588. if (copy_to_user(argp, &chip, sizeof chip))
  2589. goto out;
  2590. r = 0;
  2591. break;
  2592. }
  2593. case KVM_SET_IRQCHIP: {
  2594. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2595. struct kvm_irqchip chip;
  2596. r = -EFAULT;
  2597. if (copy_from_user(&chip, argp, sizeof chip))
  2598. goto out;
  2599. r = -ENXIO;
  2600. if (!irqchip_in_kernel(kvm))
  2601. goto out;
  2602. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2603. if (r)
  2604. goto out;
  2605. r = 0;
  2606. break;
  2607. }
  2608. default:
  2609. ;
  2610. }
  2611. out:
  2612. return r;
  2613. }
  2614. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2615. unsigned long address,
  2616. int *type)
  2617. {
  2618. struct kvm *kvm = vma->vm_file->private_data;
  2619. unsigned long pgoff;
  2620. struct page *page;
  2621. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2622. page = gfn_to_page(kvm, pgoff);
  2623. if (is_error_page(page)) {
  2624. kvm_release_page(page);
  2625. return NOPAGE_SIGBUS;
  2626. }
  2627. if (type != NULL)
  2628. *type = VM_FAULT_MINOR;
  2629. return page;
  2630. }
  2631. static struct vm_operations_struct kvm_vm_vm_ops = {
  2632. .nopage = kvm_vm_nopage,
  2633. };
  2634. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2635. {
  2636. vma->vm_ops = &kvm_vm_vm_ops;
  2637. return 0;
  2638. }
  2639. static struct file_operations kvm_vm_fops = {
  2640. .release = kvm_vm_release,
  2641. .unlocked_ioctl = kvm_vm_ioctl,
  2642. .compat_ioctl = kvm_vm_ioctl,
  2643. .mmap = kvm_vm_mmap,
  2644. };
  2645. static int kvm_dev_ioctl_create_vm(void)
  2646. {
  2647. int fd, r;
  2648. struct inode *inode;
  2649. struct file *file;
  2650. struct kvm *kvm;
  2651. kvm = kvm_create_vm();
  2652. if (IS_ERR(kvm))
  2653. return PTR_ERR(kvm);
  2654. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2655. if (r) {
  2656. kvm_destroy_vm(kvm);
  2657. return r;
  2658. }
  2659. kvm->filp = file;
  2660. return fd;
  2661. }
  2662. static long kvm_dev_ioctl(struct file *filp,
  2663. unsigned int ioctl, unsigned long arg)
  2664. {
  2665. void __user *argp = (void __user *)arg;
  2666. long r = -EINVAL;
  2667. switch (ioctl) {
  2668. case KVM_GET_API_VERSION:
  2669. r = -EINVAL;
  2670. if (arg)
  2671. goto out;
  2672. r = KVM_API_VERSION;
  2673. break;
  2674. case KVM_CREATE_VM:
  2675. r = -EINVAL;
  2676. if (arg)
  2677. goto out;
  2678. r = kvm_dev_ioctl_create_vm();
  2679. break;
  2680. case KVM_CHECK_EXTENSION: {
  2681. int ext = (long)argp;
  2682. switch (ext) {
  2683. case KVM_CAP_IRQCHIP:
  2684. case KVM_CAP_HLT:
  2685. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2686. case KVM_CAP_USER_MEMORY:
  2687. r = 1;
  2688. break;
  2689. default:
  2690. r = 0;
  2691. break;
  2692. }
  2693. break;
  2694. }
  2695. case KVM_GET_VCPU_MMAP_SIZE:
  2696. r = -EINVAL;
  2697. if (arg)
  2698. goto out;
  2699. r = 2 * PAGE_SIZE;
  2700. break;
  2701. default:
  2702. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2703. }
  2704. out:
  2705. return r;
  2706. }
  2707. static struct file_operations kvm_chardev_ops = {
  2708. .unlocked_ioctl = kvm_dev_ioctl,
  2709. .compat_ioctl = kvm_dev_ioctl,
  2710. };
  2711. static struct miscdevice kvm_dev = {
  2712. KVM_MINOR,
  2713. "kvm",
  2714. &kvm_chardev_ops,
  2715. };
  2716. /*
  2717. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2718. * cached on it.
  2719. */
  2720. static void decache_vcpus_on_cpu(int cpu)
  2721. {
  2722. struct kvm *vm;
  2723. struct kvm_vcpu *vcpu;
  2724. int i;
  2725. spin_lock(&kvm_lock);
  2726. list_for_each_entry(vm, &vm_list, vm_list)
  2727. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2728. vcpu = vm->vcpus[i];
  2729. if (!vcpu)
  2730. continue;
  2731. /*
  2732. * If the vcpu is locked, then it is running on some
  2733. * other cpu and therefore it is not cached on the
  2734. * cpu in question.
  2735. *
  2736. * If it's not locked, check the last cpu it executed
  2737. * on.
  2738. */
  2739. if (mutex_trylock(&vcpu->mutex)) {
  2740. if (vcpu->cpu == cpu) {
  2741. kvm_x86_ops->vcpu_decache(vcpu);
  2742. vcpu->cpu = -1;
  2743. }
  2744. mutex_unlock(&vcpu->mutex);
  2745. }
  2746. }
  2747. spin_unlock(&kvm_lock);
  2748. }
  2749. static void hardware_enable(void *junk)
  2750. {
  2751. int cpu = raw_smp_processor_id();
  2752. if (cpu_isset(cpu, cpus_hardware_enabled))
  2753. return;
  2754. cpu_set(cpu, cpus_hardware_enabled);
  2755. kvm_x86_ops->hardware_enable(NULL);
  2756. }
  2757. static void hardware_disable(void *junk)
  2758. {
  2759. int cpu = raw_smp_processor_id();
  2760. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2761. return;
  2762. cpu_clear(cpu, cpus_hardware_enabled);
  2763. decache_vcpus_on_cpu(cpu);
  2764. kvm_x86_ops->hardware_disable(NULL);
  2765. }
  2766. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2767. void *v)
  2768. {
  2769. int cpu = (long)v;
  2770. switch (val) {
  2771. case CPU_DYING:
  2772. case CPU_DYING_FROZEN:
  2773. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2774. cpu);
  2775. hardware_disable(NULL);
  2776. break;
  2777. case CPU_UP_CANCELED:
  2778. case CPU_UP_CANCELED_FROZEN:
  2779. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2780. cpu);
  2781. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2782. break;
  2783. case CPU_ONLINE:
  2784. case CPU_ONLINE_FROZEN:
  2785. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2786. cpu);
  2787. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2788. break;
  2789. }
  2790. return NOTIFY_OK;
  2791. }
  2792. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2793. void *v)
  2794. {
  2795. if (val == SYS_RESTART) {
  2796. /*
  2797. * Some (well, at least mine) BIOSes hang on reboot if
  2798. * in vmx root mode.
  2799. */
  2800. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2801. on_each_cpu(hardware_disable, NULL, 0, 1);
  2802. }
  2803. return NOTIFY_OK;
  2804. }
  2805. static struct notifier_block kvm_reboot_notifier = {
  2806. .notifier_call = kvm_reboot,
  2807. .priority = 0,
  2808. };
  2809. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2810. {
  2811. memset(bus, 0, sizeof(*bus));
  2812. }
  2813. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2814. {
  2815. int i;
  2816. for (i = 0; i < bus->dev_count; i++) {
  2817. struct kvm_io_device *pos = bus->devs[i];
  2818. kvm_iodevice_destructor(pos);
  2819. }
  2820. }
  2821. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2822. {
  2823. int i;
  2824. for (i = 0; i < bus->dev_count; i++) {
  2825. struct kvm_io_device *pos = bus->devs[i];
  2826. if (pos->in_range(pos, addr))
  2827. return pos;
  2828. }
  2829. return NULL;
  2830. }
  2831. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2832. {
  2833. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2834. bus->devs[bus->dev_count++] = dev;
  2835. }
  2836. static struct notifier_block kvm_cpu_notifier = {
  2837. .notifier_call = kvm_cpu_hotplug,
  2838. .priority = 20, /* must be > scheduler priority */
  2839. };
  2840. static u64 stat_get(void *_offset)
  2841. {
  2842. unsigned offset = (long)_offset;
  2843. u64 total = 0;
  2844. struct kvm *kvm;
  2845. struct kvm_vcpu *vcpu;
  2846. int i;
  2847. spin_lock(&kvm_lock);
  2848. list_for_each_entry(kvm, &vm_list, vm_list)
  2849. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2850. vcpu = kvm->vcpus[i];
  2851. if (vcpu)
  2852. total += *(u32 *)((void *)vcpu + offset);
  2853. }
  2854. spin_unlock(&kvm_lock);
  2855. return total;
  2856. }
  2857. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2858. static __init void kvm_init_debug(void)
  2859. {
  2860. struct kvm_stats_debugfs_item *p;
  2861. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2862. for (p = debugfs_entries; p->name; ++p)
  2863. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2864. (void *)(long)p->offset,
  2865. &stat_fops);
  2866. }
  2867. static void kvm_exit_debug(void)
  2868. {
  2869. struct kvm_stats_debugfs_item *p;
  2870. for (p = debugfs_entries; p->name; ++p)
  2871. debugfs_remove(p->dentry);
  2872. debugfs_remove(debugfs_dir);
  2873. }
  2874. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2875. {
  2876. hardware_disable(NULL);
  2877. return 0;
  2878. }
  2879. static int kvm_resume(struct sys_device *dev)
  2880. {
  2881. hardware_enable(NULL);
  2882. return 0;
  2883. }
  2884. static struct sysdev_class kvm_sysdev_class = {
  2885. .name = "kvm",
  2886. .suspend = kvm_suspend,
  2887. .resume = kvm_resume,
  2888. };
  2889. static struct sys_device kvm_sysdev = {
  2890. .id = 0,
  2891. .cls = &kvm_sysdev_class,
  2892. };
  2893. struct page *bad_page;
  2894. static inline
  2895. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2896. {
  2897. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2898. }
  2899. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2900. {
  2901. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2902. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2903. }
  2904. static void kvm_sched_out(struct preempt_notifier *pn,
  2905. struct task_struct *next)
  2906. {
  2907. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2908. kvm_x86_ops->vcpu_put(vcpu);
  2909. }
  2910. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2911. struct module *module)
  2912. {
  2913. int r;
  2914. int cpu;
  2915. if (kvm_x86_ops) {
  2916. printk(KERN_ERR "kvm: already loaded the other module\n");
  2917. return -EEXIST;
  2918. }
  2919. if (!ops->cpu_has_kvm_support()) {
  2920. printk(KERN_ERR "kvm: no hardware support\n");
  2921. return -EOPNOTSUPP;
  2922. }
  2923. if (ops->disabled_by_bios()) {
  2924. printk(KERN_ERR "kvm: disabled by bios\n");
  2925. return -EOPNOTSUPP;
  2926. }
  2927. kvm_x86_ops = ops;
  2928. r = kvm_x86_ops->hardware_setup();
  2929. if (r < 0)
  2930. goto out;
  2931. for_each_online_cpu(cpu) {
  2932. smp_call_function_single(cpu,
  2933. kvm_x86_ops->check_processor_compatibility,
  2934. &r, 0, 1);
  2935. if (r < 0)
  2936. goto out_free_0;
  2937. }
  2938. on_each_cpu(hardware_enable, NULL, 0, 1);
  2939. r = register_cpu_notifier(&kvm_cpu_notifier);
  2940. if (r)
  2941. goto out_free_1;
  2942. register_reboot_notifier(&kvm_reboot_notifier);
  2943. r = sysdev_class_register(&kvm_sysdev_class);
  2944. if (r)
  2945. goto out_free_2;
  2946. r = sysdev_register(&kvm_sysdev);
  2947. if (r)
  2948. goto out_free_3;
  2949. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2950. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2951. __alignof__(struct kvm_vcpu), 0, 0);
  2952. if (!kvm_vcpu_cache) {
  2953. r = -ENOMEM;
  2954. goto out_free_4;
  2955. }
  2956. kvm_chardev_ops.owner = module;
  2957. r = misc_register(&kvm_dev);
  2958. if (r) {
  2959. printk(KERN_ERR "kvm: misc device register failed\n");
  2960. goto out_free;
  2961. }
  2962. kvm_preempt_ops.sched_in = kvm_sched_in;
  2963. kvm_preempt_ops.sched_out = kvm_sched_out;
  2964. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2965. return 0;
  2966. out_free:
  2967. kmem_cache_destroy(kvm_vcpu_cache);
  2968. out_free_4:
  2969. sysdev_unregister(&kvm_sysdev);
  2970. out_free_3:
  2971. sysdev_class_unregister(&kvm_sysdev_class);
  2972. out_free_2:
  2973. unregister_reboot_notifier(&kvm_reboot_notifier);
  2974. unregister_cpu_notifier(&kvm_cpu_notifier);
  2975. out_free_1:
  2976. on_each_cpu(hardware_disable, NULL, 0, 1);
  2977. out_free_0:
  2978. kvm_x86_ops->hardware_unsetup();
  2979. out:
  2980. kvm_x86_ops = NULL;
  2981. return r;
  2982. }
  2983. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2984. void kvm_exit_x86(void)
  2985. {
  2986. misc_deregister(&kvm_dev);
  2987. kmem_cache_destroy(kvm_vcpu_cache);
  2988. sysdev_unregister(&kvm_sysdev);
  2989. sysdev_class_unregister(&kvm_sysdev_class);
  2990. unregister_reboot_notifier(&kvm_reboot_notifier);
  2991. unregister_cpu_notifier(&kvm_cpu_notifier);
  2992. on_each_cpu(hardware_disable, NULL, 0, 1);
  2993. kvm_x86_ops->hardware_unsetup();
  2994. kvm_x86_ops = NULL;
  2995. }
  2996. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2997. static __init int kvm_init(void)
  2998. {
  2999. int r;
  3000. r = kvm_mmu_module_init();
  3001. if (r)
  3002. goto out4;
  3003. kvm_init_debug();
  3004. kvm_arch_init();
  3005. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3006. if (bad_page == NULL) {
  3007. r = -ENOMEM;
  3008. goto out;
  3009. }
  3010. return 0;
  3011. out:
  3012. kvm_exit_debug();
  3013. kvm_mmu_module_exit();
  3014. out4:
  3015. return r;
  3016. }
  3017. static __exit void kvm_exit(void)
  3018. {
  3019. kvm_exit_debug();
  3020. __free_page(bad_page);
  3021. kvm_mmu_module_exit();
  3022. }
  3023. module_init(kvm_init)
  3024. module_exit(kvm_exit)