sock.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
  137. int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(cgrp, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(cgrp);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(cgrp);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. struct static_key memcg_socket_limit_enabled;
  175. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  176. /*
  177. * Make lock validator output more readable. (we pre-construct these
  178. * strings build-time, so that runtime initialization of socket
  179. * locks is fast):
  180. */
  181. static const char *const af_family_key_strings[AF_MAX+1] = {
  182. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  183. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  184. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  185. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  186. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  187. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  188. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  189. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  190. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  191. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  192. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  193. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  194. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  195. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  196. };
  197. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  198. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  199. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  200. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  201. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  202. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  203. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  204. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  205. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  206. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  207. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  208. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  209. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  210. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  211. "slock-AF_NFC" , "slock-AF_MAX"
  212. };
  213. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  214. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  215. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  216. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  217. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  218. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  219. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  220. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  221. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  222. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  223. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  224. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  225. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  226. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  227. "clock-AF_NFC" , "clock-AF_MAX"
  228. };
  229. /*
  230. * sk_callback_lock locking rules are per-address-family,
  231. * so split the lock classes by using a per-AF key:
  232. */
  233. static struct lock_class_key af_callback_keys[AF_MAX];
  234. /* Take into consideration the size of the struct sk_buff overhead in the
  235. * determination of these values, since that is non-constant across
  236. * platforms. This makes socket queueing behavior and performance
  237. * not depend upon such differences.
  238. */
  239. #define _SK_MEM_PACKETS 256
  240. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  241. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  243. /* Run time adjustable parameters. */
  244. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  245. EXPORT_SYMBOL(sysctl_wmem_max);
  246. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_rmem_max);
  248. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  249. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  250. /* Maximal space eaten by iovec or ancillary data plus some space */
  251. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  252. EXPORT_SYMBOL(sysctl_optmem_max);
  253. #if defined(CONFIG_CGROUPS)
  254. #if !defined(CONFIG_NET_CLS_CGROUP)
  255. int net_cls_subsys_id = -1;
  256. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  257. #endif
  258. #if !defined(CONFIG_NETPRIO_CGROUP)
  259. int net_prio_subsys_id = -1;
  260. EXPORT_SYMBOL_GPL(net_prio_subsys_id);
  261. #endif
  262. #endif
  263. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  264. {
  265. struct timeval tv;
  266. if (optlen < sizeof(tv))
  267. return -EINVAL;
  268. if (copy_from_user(&tv, optval, sizeof(tv)))
  269. return -EFAULT;
  270. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  271. return -EDOM;
  272. if (tv.tv_sec < 0) {
  273. static int warned __read_mostly;
  274. *timeo_p = 0;
  275. if (warned < 10 && net_ratelimit()) {
  276. warned++;
  277. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  278. __func__, current->comm, task_pid_nr(current));
  279. }
  280. return 0;
  281. }
  282. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  283. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  284. return 0;
  285. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  286. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  287. return 0;
  288. }
  289. static void sock_warn_obsolete_bsdism(const char *name)
  290. {
  291. static int warned;
  292. static char warncomm[TASK_COMM_LEN];
  293. if (strcmp(warncomm, current->comm) && warned < 5) {
  294. strcpy(warncomm, current->comm);
  295. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  296. warncomm, name);
  297. warned++;
  298. }
  299. }
  300. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  301. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  302. {
  303. if (sk->sk_flags & flags) {
  304. sk->sk_flags &= ~flags;
  305. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  306. net_disable_timestamp();
  307. }
  308. }
  309. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  310. {
  311. int err;
  312. int skb_len;
  313. unsigned long flags;
  314. struct sk_buff_head *list = &sk->sk_receive_queue;
  315. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  316. atomic_inc(&sk->sk_drops);
  317. trace_sock_rcvqueue_full(sk, skb);
  318. return -ENOMEM;
  319. }
  320. err = sk_filter(sk, skb);
  321. if (err)
  322. return err;
  323. if (!sk_rmem_schedule(sk, skb->truesize)) {
  324. atomic_inc(&sk->sk_drops);
  325. return -ENOBUFS;
  326. }
  327. skb->dev = NULL;
  328. skb_set_owner_r(skb, sk);
  329. /* Cache the SKB length before we tack it onto the receive
  330. * queue. Once it is added it no longer belongs to us and
  331. * may be freed by other threads of control pulling packets
  332. * from the queue.
  333. */
  334. skb_len = skb->len;
  335. /* we escape from rcu protected region, make sure we dont leak
  336. * a norefcounted dst
  337. */
  338. skb_dst_force(skb);
  339. spin_lock_irqsave(&list->lock, flags);
  340. skb->dropcount = atomic_read(&sk->sk_drops);
  341. __skb_queue_tail(list, skb);
  342. spin_unlock_irqrestore(&list->lock, flags);
  343. if (!sock_flag(sk, SOCK_DEAD))
  344. sk->sk_data_ready(sk, skb_len);
  345. return 0;
  346. }
  347. EXPORT_SYMBOL(sock_queue_rcv_skb);
  348. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  349. {
  350. int rc = NET_RX_SUCCESS;
  351. if (sk_filter(sk, skb))
  352. goto discard_and_relse;
  353. skb->dev = NULL;
  354. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  355. atomic_inc(&sk->sk_drops);
  356. goto discard_and_relse;
  357. }
  358. if (nested)
  359. bh_lock_sock_nested(sk);
  360. else
  361. bh_lock_sock(sk);
  362. if (!sock_owned_by_user(sk)) {
  363. /*
  364. * trylock + unlock semantics:
  365. */
  366. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  367. rc = sk_backlog_rcv(sk, skb);
  368. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  369. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  370. bh_unlock_sock(sk);
  371. atomic_inc(&sk->sk_drops);
  372. goto discard_and_relse;
  373. }
  374. bh_unlock_sock(sk);
  375. out:
  376. sock_put(sk);
  377. return rc;
  378. discard_and_relse:
  379. kfree_skb(skb);
  380. goto out;
  381. }
  382. EXPORT_SYMBOL(sk_receive_skb);
  383. void sk_reset_txq(struct sock *sk)
  384. {
  385. sk_tx_queue_clear(sk);
  386. }
  387. EXPORT_SYMBOL(sk_reset_txq);
  388. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  389. {
  390. struct dst_entry *dst = __sk_dst_get(sk);
  391. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  392. sk_tx_queue_clear(sk);
  393. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  394. dst_release(dst);
  395. return NULL;
  396. }
  397. return dst;
  398. }
  399. EXPORT_SYMBOL(__sk_dst_check);
  400. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  401. {
  402. struct dst_entry *dst = sk_dst_get(sk);
  403. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  404. sk_dst_reset(sk);
  405. dst_release(dst);
  406. return NULL;
  407. }
  408. return dst;
  409. }
  410. EXPORT_SYMBOL(sk_dst_check);
  411. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  412. {
  413. int ret = -ENOPROTOOPT;
  414. #ifdef CONFIG_NETDEVICES
  415. struct net *net = sock_net(sk);
  416. char devname[IFNAMSIZ];
  417. int index;
  418. /* Sorry... */
  419. ret = -EPERM;
  420. if (!capable(CAP_NET_RAW))
  421. goto out;
  422. ret = -EINVAL;
  423. if (optlen < 0)
  424. goto out;
  425. /* Bind this socket to a particular device like "eth0",
  426. * as specified in the passed interface name. If the
  427. * name is "" or the option length is zero the socket
  428. * is not bound.
  429. */
  430. if (optlen > IFNAMSIZ - 1)
  431. optlen = IFNAMSIZ - 1;
  432. memset(devname, 0, sizeof(devname));
  433. ret = -EFAULT;
  434. if (copy_from_user(devname, optval, optlen))
  435. goto out;
  436. index = 0;
  437. if (devname[0] != '\0') {
  438. struct net_device *dev;
  439. rcu_read_lock();
  440. dev = dev_get_by_name_rcu(net, devname);
  441. if (dev)
  442. index = dev->ifindex;
  443. rcu_read_unlock();
  444. ret = -ENODEV;
  445. if (!dev)
  446. goto out;
  447. }
  448. lock_sock(sk);
  449. sk->sk_bound_dev_if = index;
  450. sk_dst_reset(sk);
  451. release_sock(sk);
  452. ret = 0;
  453. out:
  454. #endif
  455. return ret;
  456. }
  457. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  458. {
  459. if (valbool)
  460. sock_set_flag(sk, bit);
  461. else
  462. sock_reset_flag(sk, bit);
  463. }
  464. /*
  465. * This is meant for all protocols to use and covers goings on
  466. * at the socket level. Everything here is generic.
  467. */
  468. int sock_setsockopt(struct socket *sock, int level, int optname,
  469. char __user *optval, unsigned int optlen)
  470. {
  471. struct sock *sk = sock->sk;
  472. int val;
  473. int valbool;
  474. struct linger ling;
  475. int ret = 0;
  476. /*
  477. * Options without arguments
  478. */
  479. if (optname == SO_BINDTODEVICE)
  480. return sock_bindtodevice(sk, optval, optlen);
  481. if (optlen < sizeof(int))
  482. return -EINVAL;
  483. if (get_user(val, (int __user *)optval))
  484. return -EFAULT;
  485. valbool = val ? 1 : 0;
  486. lock_sock(sk);
  487. switch (optname) {
  488. case SO_DEBUG:
  489. if (val && !capable(CAP_NET_ADMIN))
  490. ret = -EACCES;
  491. else
  492. sock_valbool_flag(sk, SOCK_DBG, valbool);
  493. break;
  494. case SO_REUSEADDR:
  495. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  496. break;
  497. case SO_TYPE:
  498. case SO_PROTOCOL:
  499. case SO_DOMAIN:
  500. case SO_ERROR:
  501. ret = -ENOPROTOOPT;
  502. break;
  503. case SO_DONTROUTE:
  504. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  505. break;
  506. case SO_BROADCAST:
  507. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  508. break;
  509. case SO_SNDBUF:
  510. /* Don't error on this BSD doesn't and if you think
  511. * about it this is right. Otherwise apps have to
  512. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  513. * are treated in BSD as hints
  514. */
  515. val = min_t(u32, val, sysctl_wmem_max);
  516. set_sndbuf:
  517. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  518. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  519. /* Wake up sending tasks if we upped the value. */
  520. sk->sk_write_space(sk);
  521. break;
  522. case SO_SNDBUFFORCE:
  523. if (!capable(CAP_NET_ADMIN)) {
  524. ret = -EPERM;
  525. break;
  526. }
  527. goto set_sndbuf;
  528. case SO_RCVBUF:
  529. /* Don't error on this BSD doesn't and if you think
  530. * about it this is right. Otherwise apps have to
  531. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  532. * are treated in BSD as hints
  533. */
  534. val = min_t(u32, val, sysctl_rmem_max);
  535. set_rcvbuf:
  536. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  537. /*
  538. * We double it on the way in to account for
  539. * "struct sk_buff" etc. overhead. Applications
  540. * assume that the SO_RCVBUF setting they make will
  541. * allow that much actual data to be received on that
  542. * socket.
  543. *
  544. * Applications are unaware that "struct sk_buff" and
  545. * other overheads allocate from the receive buffer
  546. * during socket buffer allocation.
  547. *
  548. * And after considering the possible alternatives,
  549. * returning the value we actually used in getsockopt
  550. * is the most desirable behavior.
  551. */
  552. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  553. break;
  554. case SO_RCVBUFFORCE:
  555. if (!capable(CAP_NET_ADMIN)) {
  556. ret = -EPERM;
  557. break;
  558. }
  559. goto set_rcvbuf;
  560. case SO_KEEPALIVE:
  561. #ifdef CONFIG_INET
  562. if (sk->sk_protocol == IPPROTO_TCP)
  563. tcp_set_keepalive(sk, valbool);
  564. #endif
  565. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  566. break;
  567. case SO_OOBINLINE:
  568. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  569. break;
  570. case SO_NO_CHECK:
  571. sk->sk_no_check = valbool;
  572. break;
  573. case SO_PRIORITY:
  574. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  575. sk->sk_priority = val;
  576. else
  577. ret = -EPERM;
  578. break;
  579. case SO_LINGER:
  580. if (optlen < sizeof(ling)) {
  581. ret = -EINVAL; /* 1003.1g */
  582. break;
  583. }
  584. if (copy_from_user(&ling, optval, sizeof(ling))) {
  585. ret = -EFAULT;
  586. break;
  587. }
  588. if (!ling.l_onoff)
  589. sock_reset_flag(sk, SOCK_LINGER);
  590. else {
  591. #if (BITS_PER_LONG == 32)
  592. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  593. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  594. else
  595. #endif
  596. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  597. sock_set_flag(sk, SOCK_LINGER);
  598. }
  599. break;
  600. case SO_BSDCOMPAT:
  601. sock_warn_obsolete_bsdism("setsockopt");
  602. break;
  603. case SO_PASSCRED:
  604. if (valbool)
  605. set_bit(SOCK_PASSCRED, &sock->flags);
  606. else
  607. clear_bit(SOCK_PASSCRED, &sock->flags);
  608. break;
  609. case SO_TIMESTAMP:
  610. case SO_TIMESTAMPNS:
  611. if (valbool) {
  612. if (optname == SO_TIMESTAMP)
  613. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  614. else
  615. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  616. sock_set_flag(sk, SOCK_RCVTSTAMP);
  617. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  618. } else {
  619. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  620. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  621. }
  622. break;
  623. case SO_TIMESTAMPING:
  624. if (val & ~SOF_TIMESTAMPING_MASK) {
  625. ret = -EINVAL;
  626. break;
  627. }
  628. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  629. val & SOF_TIMESTAMPING_TX_HARDWARE);
  630. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  631. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  632. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  633. val & SOF_TIMESTAMPING_RX_HARDWARE);
  634. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  635. sock_enable_timestamp(sk,
  636. SOCK_TIMESTAMPING_RX_SOFTWARE);
  637. else
  638. sock_disable_timestamp(sk,
  639. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  640. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  641. val & SOF_TIMESTAMPING_SOFTWARE);
  642. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  643. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  644. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  645. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  646. break;
  647. case SO_RCVLOWAT:
  648. if (val < 0)
  649. val = INT_MAX;
  650. sk->sk_rcvlowat = val ? : 1;
  651. break;
  652. case SO_RCVTIMEO:
  653. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  654. break;
  655. case SO_SNDTIMEO:
  656. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  657. break;
  658. case SO_ATTACH_FILTER:
  659. ret = -EINVAL;
  660. if (optlen == sizeof(struct sock_fprog)) {
  661. struct sock_fprog fprog;
  662. ret = -EFAULT;
  663. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  664. break;
  665. ret = sk_attach_filter(&fprog, sk);
  666. }
  667. break;
  668. case SO_DETACH_FILTER:
  669. ret = sk_detach_filter(sk);
  670. break;
  671. case SO_PASSSEC:
  672. if (valbool)
  673. set_bit(SOCK_PASSSEC, &sock->flags);
  674. else
  675. clear_bit(SOCK_PASSSEC, &sock->flags);
  676. break;
  677. case SO_MARK:
  678. if (!capable(CAP_NET_ADMIN))
  679. ret = -EPERM;
  680. else
  681. sk->sk_mark = val;
  682. break;
  683. /* We implement the SO_SNDLOWAT etc to
  684. not be settable (1003.1g 5.3) */
  685. case SO_RXQ_OVFL:
  686. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  687. break;
  688. case SO_WIFI_STATUS:
  689. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  690. break;
  691. case SO_PEEK_OFF:
  692. if (sock->ops->set_peek_off)
  693. sock->ops->set_peek_off(sk, val);
  694. else
  695. ret = -EOPNOTSUPP;
  696. break;
  697. case SO_NOFCS:
  698. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  699. break;
  700. default:
  701. ret = -ENOPROTOOPT;
  702. break;
  703. }
  704. release_sock(sk);
  705. return ret;
  706. }
  707. EXPORT_SYMBOL(sock_setsockopt);
  708. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  709. struct ucred *ucred)
  710. {
  711. ucred->pid = pid_vnr(pid);
  712. ucred->uid = ucred->gid = -1;
  713. if (cred) {
  714. struct user_namespace *current_ns = current_user_ns();
  715. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  716. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  717. }
  718. }
  719. EXPORT_SYMBOL_GPL(cred_to_ucred);
  720. int sock_getsockopt(struct socket *sock, int level, int optname,
  721. char __user *optval, int __user *optlen)
  722. {
  723. struct sock *sk = sock->sk;
  724. union {
  725. int val;
  726. struct linger ling;
  727. struct timeval tm;
  728. } v;
  729. int lv = sizeof(int);
  730. int len;
  731. if (get_user(len, optlen))
  732. return -EFAULT;
  733. if (len < 0)
  734. return -EINVAL;
  735. memset(&v, 0, sizeof(v));
  736. switch (optname) {
  737. case SO_DEBUG:
  738. v.val = sock_flag(sk, SOCK_DBG);
  739. break;
  740. case SO_DONTROUTE:
  741. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  742. break;
  743. case SO_BROADCAST:
  744. v.val = sock_flag(sk, SOCK_BROADCAST);
  745. break;
  746. case SO_SNDBUF:
  747. v.val = sk->sk_sndbuf;
  748. break;
  749. case SO_RCVBUF:
  750. v.val = sk->sk_rcvbuf;
  751. break;
  752. case SO_REUSEADDR:
  753. v.val = sk->sk_reuse;
  754. break;
  755. case SO_KEEPALIVE:
  756. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  757. break;
  758. case SO_TYPE:
  759. v.val = sk->sk_type;
  760. break;
  761. case SO_PROTOCOL:
  762. v.val = sk->sk_protocol;
  763. break;
  764. case SO_DOMAIN:
  765. v.val = sk->sk_family;
  766. break;
  767. case SO_ERROR:
  768. v.val = -sock_error(sk);
  769. if (v.val == 0)
  770. v.val = xchg(&sk->sk_err_soft, 0);
  771. break;
  772. case SO_OOBINLINE:
  773. v.val = sock_flag(sk, SOCK_URGINLINE);
  774. break;
  775. case SO_NO_CHECK:
  776. v.val = sk->sk_no_check;
  777. break;
  778. case SO_PRIORITY:
  779. v.val = sk->sk_priority;
  780. break;
  781. case SO_LINGER:
  782. lv = sizeof(v.ling);
  783. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  784. v.ling.l_linger = sk->sk_lingertime / HZ;
  785. break;
  786. case SO_BSDCOMPAT:
  787. sock_warn_obsolete_bsdism("getsockopt");
  788. break;
  789. case SO_TIMESTAMP:
  790. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  791. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  792. break;
  793. case SO_TIMESTAMPNS:
  794. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  795. break;
  796. case SO_TIMESTAMPING:
  797. v.val = 0;
  798. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  799. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  800. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  801. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  802. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  803. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  804. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  805. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  806. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  807. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  808. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  809. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  810. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  811. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  812. break;
  813. case SO_RCVTIMEO:
  814. lv = sizeof(struct timeval);
  815. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  816. v.tm.tv_sec = 0;
  817. v.tm.tv_usec = 0;
  818. } else {
  819. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  820. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  821. }
  822. break;
  823. case SO_SNDTIMEO:
  824. lv = sizeof(struct timeval);
  825. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  826. v.tm.tv_sec = 0;
  827. v.tm.tv_usec = 0;
  828. } else {
  829. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  830. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  831. }
  832. break;
  833. case SO_RCVLOWAT:
  834. v.val = sk->sk_rcvlowat;
  835. break;
  836. case SO_SNDLOWAT:
  837. v.val = 1;
  838. break;
  839. case SO_PASSCRED:
  840. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  841. break;
  842. case SO_PEERCRED:
  843. {
  844. struct ucred peercred;
  845. if (len > sizeof(peercred))
  846. len = sizeof(peercred);
  847. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  848. if (copy_to_user(optval, &peercred, len))
  849. return -EFAULT;
  850. goto lenout;
  851. }
  852. case SO_PEERNAME:
  853. {
  854. char address[128];
  855. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  856. return -ENOTCONN;
  857. if (lv < len)
  858. return -EINVAL;
  859. if (copy_to_user(optval, address, len))
  860. return -EFAULT;
  861. goto lenout;
  862. }
  863. /* Dubious BSD thing... Probably nobody even uses it, but
  864. * the UNIX standard wants it for whatever reason... -DaveM
  865. */
  866. case SO_ACCEPTCONN:
  867. v.val = sk->sk_state == TCP_LISTEN;
  868. break;
  869. case SO_PASSSEC:
  870. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  871. break;
  872. case SO_PEERSEC:
  873. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  874. case SO_MARK:
  875. v.val = sk->sk_mark;
  876. break;
  877. case SO_RXQ_OVFL:
  878. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  879. break;
  880. case SO_WIFI_STATUS:
  881. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  882. break;
  883. case SO_PEEK_OFF:
  884. if (!sock->ops->set_peek_off)
  885. return -EOPNOTSUPP;
  886. v.val = sk->sk_peek_off;
  887. break;
  888. case SO_NOFCS:
  889. v.val = sock_flag(sk, SOCK_NOFCS);
  890. break;
  891. default:
  892. return -ENOPROTOOPT;
  893. }
  894. if (len > lv)
  895. len = lv;
  896. if (copy_to_user(optval, &v, len))
  897. return -EFAULT;
  898. lenout:
  899. if (put_user(len, optlen))
  900. return -EFAULT;
  901. return 0;
  902. }
  903. /*
  904. * Initialize an sk_lock.
  905. *
  906. * (We also register the sk_lock with the lock validator.)
  907. */
  908. static inline void sock_lock_init(struct sock *sk)
  909. {
  910. sock_lock_init_class_and_name(sk,
  911. af_family_slock_key_strings[sk->sk_family],
  912. af_family_slock_keys + sk->sk_family,
  913. af_family_key_strings[sk->sk_family],
  914. af_family_keys + sk->sk_family);
  915. }
  916. /*
  917. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  918. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  919. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  920. */
  921. static void sock_copy(struct sock *nsk, const struct sock *osk)
  922. {
  923. #ifdef CONFIG_SECURITY_NETWORK
  924. void *sptr = nsk->sk_security;
  925. #endif
  926. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  927. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  928. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  929. #ifdef CONFIG_SECURITY_NETWORK
  930. nsk->sk_security = sptr;
  931. security_sk_clone(osk, nsk);
  932. #endif
  933. }
  934. /*
  935. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  936. * un-modified. Special care is taken when initializing object to zero.
  937. */
  938. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  939. {
  940. if (offsetof(struct sock, sk_node.next) != 0)
  941. memset(sk, 0, offsetof(struct sock, sk_node.next));
  942. memset(&sk->sk_node.pprev, 0,
  943. size - offsetof(struct sock, sk_node.pprev));
  944. }
  945. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  946. {
  947. unsigned long nulls1, nulls2;
  948. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  949. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  950. if (nulls1 > nulls2)
  951. swap(nulls1, nulls2);
  952. if (nulls1 != 0)
  953. memset((char *)sk, 0, nulls1);
  954. memset((char *)sk + nulls1 + sizeof(void *), 0,
  955. nulls2 - nulls1 - sizeof(void *));
  956. memset((char *)sk + nulls2 + sizeof(void *), 0,
  957. size - nulls2 - sizeof(void *));
  958. }
  959. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  960. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  961. int family)
  962. {
  963. struct sock *sk;
  964. struct kmem_cache *slab;
  965. slab = prot->slab;
  966. if (slab != NULL) {
  967. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  968. if (!sk)
  969. return sk;
  970. if (priority & __GFP_ZERO) {
  971. if (prot->clear_sk)
  972. prot->clear_sk(sk, prot->obj_size);
  973. else
  974. sk_prot_clear_nulls(sk, prot->obj_size);
  975. }
  976. } else
  977. sk = kmalloc(prot->obj_size, priority);
  978. if (sk != NULL) {
  979. kmemcheck_annotate_bitfield(sk, flags);
  980. if (security_sk_alloc(sk, family, priority))
  981. goto out_free;
  982. if (!try_module_get(prot->owner))
  983. goto out_free_sec;
  984. sk_tx_queue_clear(sk);
  985. }
  986. return sk;
  987. out_free_sec:
  988. security_sk_free(sk);
  989. out_free:
  990. if (slab != NULL)
  991. kmem_cache_free(slab, sk);
  992. else
  993. kfree(sk);
  994. return NULL;
  995. }
  996. static void sk_prot_free(struct proto *prot, struct sock *sk)
  997. {
  998. struct kmem_cache *slab;
  999. struct module *owner;
  1000. owner = prot->owner;
  1001. slab = prot->slab;
  1002. security_sk_free(sk);
  1003. if (slab != NULL)
  1004. kmem_cache_free(slab, sk);
  1005. else
  1006. kfree(sk);
  1007. module_put(owner);
  1008. }
  1009. #ifdef CONFIG_CGROUPS
  1010. void sock_update_classid(struct sock *sk)
  1011. {
  1012. u32 classid;
  1013. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1014. classid = task_cls_classid(current);
  1015. rcu_read_unlock();
  1016. if (classid && classid != sk->sk_classid)
  1017. sk->sk_classid = classid;
  1018. }
  1019. EXPORT_SYMBOL(sock_update_classid);
  1020. void sock_update_netprioidx(struct sock *sk)
  1021. {
  1022. if (in_interrupt())
  1023. return;
  1024. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1025. }
  1026. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1027. #endif
  1028. /**
  1029. * sk_alloc - All socket objects are allocated here
  1030. * @net: the applicable net namespace
  1031. * @family: protocol family
  1032. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1033. * @prot: struct proto associated with this new sock instance
  1034. */
  1035. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1036. struct proto *prot)
  1037. {
  1038. struct sock *sk;
  1039. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1040. if (sk) {
  1041. sk->sk_family = family;
  1042. /*
  1043. * See comment in struct sock definition to understand
  1044. * why we need sk_prot_creator -acme
  1045. */
  1046. sk->sk_prot = sk->sk_prot_creator = prot;
  1047. sock_lock_init(sk);
  1048. sock_net_set(sk, get_net(net));
  1049. atomic_set(&sk->sk_wmem_alloc, 1);
  1050. sock_update_classid(sk);
  1051. sock_update_netprioidx(sk);
  1052. }
  1053. return sk;
  1054. }
  1055. EXPORT_SYMBOL(sk_alloc);
  1056. static void __sk_free(struct sock *sk)
  1057. {
  1058. struct sk_filter *filter;
  1059. if (sk->sk_destruct)
  1060. sk->sk_destruct(sk);
  1061. filter = rcu_dereference_check(sk->sk_filter,
  1062. atomic_read(&sk->sk_wmem_alloc) == 0);
  1063. if (filter) {
  1064. sk_filter_uncharge(sk, filter);
  1065. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1066. }
  1067. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1068. if (atomic_read(&sk->sk_omem_alloc))
  1069. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1070. __func__, atomic_read(&sk->sk_omem_alloc));
  1071. if (sk->sk_peer_cred)
  1072. put_cred(sk->sk_peer_cred);
  1073. put_pid(sk->sk_peer_pid);
  1074. put_net(sock_net(sk));
  1075. sk_prot_free(sk->sk_prot_creator, sk);
  1076. }
  1077. void sk_free(struct sock *sk)
  1078. {
  1079. /*
  1080. * We subtract one from sk_wmem_alloc and can know if
  1081. * some packets are still in some tx queue.
  1082. * If not null, sock_wfree() will call __sk_free(sk) later
  1083. */
  1084. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1085. __sk_free(sk);
  1086. }
  1087. EXPORT_SYMBOL(sk_free);
  1088. /*
  1089. * Last sock_put should drop reference to sk->sk_net. It has already
  1090. * been dropped in sk_change_net. Taking reference to stopping namespace
  1091. * is not an option.
  1092. * Take reference to a socket to remove it from hash _alive_ and after that
  1093. * destroy it in the context of init_net.
  1094. */
  1095. void sk_release_kernel(struct sock *sk)
  1096. {
  1097. if (sk == NULL || sk->sk_socket == NULL)
  1098. return;
  1099. sock_hold(sk);
  1100. sock_release(sk->sk_socket);
  1101. release_net(sock_net(sk));
  1102. sock_net_set(sk, get_net(&init_net));
  1103. sock_put(sk);
  1104. }
  1105. EXPORT_SYMBOL(sk_release_kernel);
  1106. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1107. {
  1108. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1109. sock_update_memcg(newsk);
  1110. }
  1111. /**
  1112. * sk_clone_lock - clone a socket, and lock its clone
  1113. * @sk: the socket to clone
  1114. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1115. *
  1116. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1117. */
  1118. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1119. {
  1120. struct sock *newsk;
  1121. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1122. if (newsk != NULL) {
  1123. struct sk_filter *filter;
  1124. sock_copy(newsk, sk);
  1125. /* SANITY */
  1126. get_net(sock_net(newsk));
  1127. sk_node_init(&newsk->sk_node);
  1128. sock_lock_init(newsk);
  1129. bh_lock_sock(newsk);
  1130. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1131. newsk->sk_backlog.len = 0;
  1132. atomic_set(&newsk->sk_rmem_alloc, 0);
  1133. /*
  1134. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1135. */
  1136. atomic_set(&newsk->sk_wmem_alloc, 1);
  1137. atomic_set(&newsk->sk_omem_alloc, 0);
  1138. skb_queue_head_init(&newsk->sk_receive_queue);
  1139. skb_queue_head_init(&newsk->sk_write_queue);
  1140. #ifdef CONFIG_NET_DMA
  1141. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1142. #endif
  1143. spin_lock_init(&newsk->sk_dst_lock);
  1144. rwlock_init(&newsk->sk_callback_lock);
  1145. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1146. af_callback_keys + newsk->sk_family,
  1147. af_family_clock_key_strings[newsk->sk_family]);
  1148. newsk->sk_dst_cache = NULL;
  1149. newsk->sk_wmem_queued = 0;
  1150. newsk->sk_forward_alloc = 0;
  1151. newsk->sk_send_head = NULL;
  1152. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1153. sock_reset_flag(newsk, SOCK_DONE);
  1154. skb_queue_head_init(&newsk->sk_error_queue);
  1155. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1156. if (filter != NULL)
  1157. sk_filter_charge(newsk, filter);
  1158. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1159. /* It is still raw copy of parent, so invalidate
  1160. * destructor and make plain sk_free() */
  1161. newsk->sk_destruct = NULL;
  1162. bh_unlock_sock(newsk);
  1163. sk_free(newsk);
  1164. newsk = NULL;
  1165. goto out;
  1166. }
  1167. newsk->sk_err = 0;
  1168. newsk->sk_priority = 0;
  1169. /*
  1170. * Before updating sk_refcnt, we must commit prior changes to memory
  1171. * (Documentation/RCU/rculist_nulls.txt for details)
  1172. */
  1173. smp_wmb();
  1174. atomic_set(&newsk->sk_refcnt, 2);
  1175. /*
  1176. * Increment the counter in the same struct proto as the master
  1177. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1178. * is the same as sk->sk_prot->socks, as this field was copied
  1179. * with memcpy).
  1180. *
  1181. * This _changes_ the previous behaviour, where
  1182. * tcp_create_openreq_child always was incrementing the
  1183. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1184. * to be taken into account in all callers. -acme
  1185. */
  1186. sk_refcnt_debug_inc(newsk);
  1187. sk_set_socket(newsk, NULL);
  1188. newsk->sk_wq = NULL;
  1189. sk_update_clone(sk, newsk);
  1190. if (newsk->sk_prot->sockets_allocated)
  1191. sk_sockets_allocated_inc(newsk);
  1192. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1193. net_enable_timestamp();
  1194. }
  1195. out:
  1196. return newsk;
  1197. }
  1198. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1199. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1200. {
  1201. __sk_dst_set(sk, dst);
  1202. sk->sk_route_caps = dst->dev->features;
  1203. if (sk->sk_route_caps & NETIF_F_GSO)
  1204. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1205. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1206. if (sk_can_gso(sk)) {
  1207. if (dst->header_len) {
  1208. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1209. } else {
  1210. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1211. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1212. }
  1213. }
  1214. }
  1215. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1216. void __init sk_init(void)
  1217. {
  1218. if (totalram_pages <= 4096) {
  1219. sysctl_wmem_max = 32767;
  1220. sysctl_rmem_max = 32767;
  1221. sysctl_wmem_default = 32767;
  1222. sysctl_rmem_default = 32767;
  1223. } else if (totalram_pages >= 131072) {
  1224. sysctl_wmem_max = 131071;
  1225. sysctl_rmem_max = 131071;
  1226. }
  1227. }
  1228. /*
  1229. * Simple resource managers for sockets.
  1230. */
  1231. /*
  1232. * Write buffer destructor automatically called from kfree_skb.
  1233. */
  1234. void sock_wfree(struct sk_buff *skb)
  1235. {
  1236. struct sock *sk = skb->sk;
  1237. unsigned int len = skb->truesize;
  1238. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1239. /*
  1240. * Keep a reference on sk_wmem_alloc, this will be released
  1241. * after sk_write_space() call
  1242. */
  1243. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1244. sk->sk_write_space(sk);
  1245. len = 1;
  1246. }
  1247. /*
  1248. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1249. * could not do because of in-flight packets
  1250. */
  1251. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1252. __sk_free(sk);
  1253. }
  1254. EXPORT_SYMBOL(sock_wfree);
  1255. /*
  1256. * Read buffer destructor automatically called from kfree_skb.
  1257. */
  1258. void sock_rfree(struct sk_buff *skb)
  1259. {
  1260. struct sock *sk = skb->sk;
  1261. unsigned int len = skb->truesize;
  1262. atomic_sub(len, &sk->sk_rmem_alloc);
  1263. sk_mem_uncharge(sk, len);
  1264. }
  1265. EXPORT_SYMBOL(sock_rfree);
  1266. int sock_i_uid(struct sock *sk)
  1267. {
  1268. int uid;
  1269. read_lock_bh(&sk->sk_callback_lock);
  1270. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1271. read_unlock_bh(&sk->sk_callback_lock);
  1272. return uid;
  1273. }
  1274. EXPORT_SYMBOL(sock_i_uid);
  1275. unsigned long sock_i_ino(struct sock *sk)
  1276. {
  1277. unsigned long ino;
  1278. read_lock_bh(&sk->sk_callback_lock);
  1279. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1280. read_unlock_bh(&sk->sk_callback_lock);
  1281. return ino;
  1282. }
  1283. EXPORT_SYMBOL(sock_i_ino);
  1284. /*
  1285. * Allocate a skb from the socket's send buffer.
  1286. */
  1287. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1288. gfp_t priority)
  1289. {
  1290. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1291. struct sk_buff *skb = alloc_skb(size, priority);
  1292. if (skb) {
  1293. skb_set_owner_w(skb, sk);
  1294. return skb;
  1295. }
  1296. }
  1297. return NULL;
  1298. }
  1299. EXPORT_SYMBOL(sock_wmalloc);
  1300. /*
  1301. * Allocate a skb from the socket's receive buffer.
  1302. */
  1303. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1304. gfp_t priority)
  1305. {
  1306. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1307. struct sk_buff *skb = alloc_skb(size, priority);
  1308. if (skb) {
  1309. skb_set_owner_r(skb, sk);
  1310. return skb;
  1311. }
  1312. }
  1313. return NULL;
  1314. }
  1315. /*
  1316. * Allocate a memory block from the socket's option memory buffer.
  1317. */
  1318. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1319. {
  1320. if ((unsigned int)size <= sysctl_optmem_max &&
  1321. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1322. void *mem;
  1323. /* First do the add, to avoid the race if kmalloc
  1324. * might sleep.
  1325. */
  1326. atomic_add(size, &sk->sk_omem_alloc);
  1327. mem = kmalloc(size, priority);
  1328. if (mem)
  1329. return mem;
  1330. atomic_sub(size, &sk->sk_omem_alloc);
  1331. }
  1332. return NULL;
  1333. }
  1334. EXPORT_SYMBOL(sock_kmalloc);
  1335. /*
  1336. * Free an option memory block.
  1337. */
  1338. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1339. {
  1340. kfree(mem);
  1341. atomic_sub(size, &sk->sk_omem_alloc);
  1342. }
  1343. EXPORT_SYMBOL(sock_kfree_s);
  1344. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1345. I think, these locks should be removed for datagram sockets.
  1346. */
  1347. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1348. {
  1349. DEFINE_WAIT(wait);
  1350. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1351. for (;;) {
  1352. if (!timeo)
  1353. break;
  1354. if (signal_pending(current))
  1355. break;
  1356. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1357. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1358. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1359. break;
  1360. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1361. break;
  1362. if (sk->sk_err)
  1363. break;
  1364. timeo = schedule_timeout(timeo);
  1365. }
  1366. finish_wait(sk_sleep(sk), &wait);
  1367. return timeo;
  1368. }
  1369. /*
  1370. * Generic send/receive buffer handlers
  1371. */
  1372. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1373. unsigned long data_len, int noblock,
  1374. int *errcode)
  1375. {
  1376. struct sk_buff *skb;
  1377. gfp_t gfp_mask;
  1378. long timeo;
  1379. int err;
  1380. gfp_mask = sk->sk_allocation;
  1381. if (gfp_mask & __GFP_WAIT)
  1382. gfp_mask |= __GFP_REPEAT;
  1383. timeo = sock_sndtimeo(sk, noblock);
  1384. while (1) {
  1385. err = sock_error(sk);
  1386. if (err != 0)
  1387. goto failure;
  1388. err = -EPIPE;
  1389. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1390. goto failure;
  1391. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1392. skb = alloc_skb(header_len, gfp_mask);
  1393. if (skb) {
  1394. int npages;
  1395. int i;
  1396. /* No pages, we're done... */
  1397. if (!data_len)
  1398. break;
  1399. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1400. skb->truesize += data_len;
  1401. skb_shinfo(skb)->nr_frags = npages;
  1402. for (i = 0; i < npages; i++) {
  1403. struct page *page;
  1404. page = alloc_pages(sk->sk_allocation, 0);
  1405. if (!page) {
  1406. err = -ENOBUFS;
  1407. skb_shinfo(skb)->nr_frags = i;
  1408. kfree_skb(skb);
  1409. goto failure;
  1410. }
  1411. __skb_fill_page_desc(skb, i,
  1412. page, 0,
  1413. (data_len >= PAGE_SIZE ?
  1414. PAGE_SIZE :
  1415. data_len));
  1416. data_len -= PAGE_SIZE;
  1417. }
  1418. /* Full success... */
  1419. break;
  1420. }
  1421. err = -ENOBUFS;
  1422. goto failure;
  1423. }
  1424. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1425. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1426. err = -EAGAIN;
  1427. if (!timeo)
  1428. goto failure;
  1429. if (signal_pending(current))
  1430. goto interrupted;
  1431. timeo = sock_wait_for_wmem(sk, timeo);
  1432. }
  1433. skb_set_owner_w(skb, sk);
  1434. return skb;
  1435. interrupted:
  1436. err = sock_intr_errno(timeo);
  1437. failure:
  1438. *errcode = err;
  1439. return NULL;
  1440. }
  1441. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1442. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1443. int noblock, int *errcode)
  1444. {
  1445. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1446. }
  1447. EXPORT_SYMBOL(sock_alloc_send_skb);
  1448. static void __lock_sock(struct sock *sk)
  1449. __releases(&sk->sk_lock.slock)
  1450. __acquires(&sk->sk_lock.slock)
  1451. {
  1452. DEFINE_WAIT(wait);
  1453. for (;;) {
  1454. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1455. TASK_UNINTERRUPTIBLE);
  1456. spin_unlock_bh(&sk->sk_lock.slock);
  1457. schedule();
  1458. spin_lock_bh(&sk->sk_lock.slock);
  1459. if (!sock_owned_by_user(sk))
  1460. break;
  1461. }
  1462. finish_wait(&sk->sk_lock.wq, &wait);
  1463. }
  1464. static void __release_sock(struct sock *sk)
  1465. __releases(&sk->sk_lock.slock)
  1466. __acquires(&sk->sk_lock.slock)
  1467. {
  1468. struct sk_buff *skb = sk->sk_backlog.head;
  1469. do {
  1470. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1471. bh_unlock_sock(sk);
  1472. do {
  1473. struct sk_buff *next = skb->next;
  1474. prefetch(next);
  1475. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1476. skb->next = NULL;
  1477. sk_backlog_rcv(sk, skb);
  1478. /*
  1479. * We are in process context here with softirqs
  1480. * disabled, use cond_resched_softirq() to preempt.
  1481. * This is safe to do because we've taken the backlog
  1482. * queue private:
  1483. */
  1484. cond_resched_softirq();
  1485. skb = next;
  1486. } while (skb != NULL);
  1487. bh_lock_sock(sk);
  1488. } while ((skb = sk->sk_backlog.head) != NULL);
  1489. /*
  1490. * Doing the zeroing here guarantee we can not loop forever
  1491. * while a wild producer attempts to flood us.
  1492. */
  1493. sk->sk_backlog.len = 0;
  1494. }
  1495. /**
  1496. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1497. * @sk: sock to wait on
  1498. * @timeo: for how long
  1499. *
  1500. * Now socket state including sk->sk_err is changed only under lock,
  1501. * hence we may omit checks after joining wait queue.
  1502. * We check receive queue before schedule() only as optimization;
  1503. * it is very likely that release_sock() added new data.
  1504. */
  1505. int sk_wait_data(struct sock *sk, long *timeo)
  1506. {
  1507. int rc;
  1508. DEFINE_WAIT(wait);
  1509. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1510. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1511. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1512. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1513. finish_wait(sk_sleep(sk), &wait);
  1514. return rc;
  1515. }
  1516. EXPORT_SYMBOL(sk_wait_data);
  1517. /**
  1518. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1519. * @sk: socket
  1520. * @size: memory size to allocate
  1521. * @kind: allocation type
  1522. *
  1523. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1524. * rmem allocation. This function assumes that protocols which have
  1525. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1526. */
  1527. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1528. {
  1529. struct proto *prot = sk->sk_prot;
  1530. int amt = sk_mem_pages(size);
  1531. long allocated;
  1532. int parent_status = UNDER_LIMIT;
  1533. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1534. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1535. /* Under limit. */
  1536. if (parent_status == UNDER_LIMIT &&
  1537. allocated <= sk_prot_mem_limits(sk, 0)) {
  1538. sk_leave_memory_pressure(sk);
  1539. return 1;
  1540. }
  1541. /* Under pressure. (we or our parents) */
  1542. if ((parent_status > SOFT_LIMIT) ||
  1543. allocated > sk_prot_mem_limits(sk, 1))
  1544. sk_enter_memory_pressure(sk);
  1545. /* Over hard limit (we or our parents) */
  1546. if ((parent_status == OVER_LIMIT) ||
  1547. (allocated > sk_prot_mem_limits(sk, 2)))
  1548. goto suppress_allocation;
  1549. /* guarantee minimum buffer size under pressure */
  1550. if (kind == SK_MEM_RECV) {
  1551. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1552. return 1;
  1553. } else { /* SK_MEM_SEND */
  1554. if (sk->sk_type == SOCK_STREAM) {
  1555. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1556. return 1;
  1557. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1558. prot->sysctl_wmem[0])
  1559. return 1;
  1560. }
  1561. if (sk_has_memory_pressure(sk)) {
  1562. int alloc;
  1563. if (!sk_under_memory_pressure(sk))
  1564. return 1;
  1565. alloc = sk_sockets_allocated_read_positive(sk);
  1566. if (sk_prot_mem_limits(sk, 2) > alloc *
  1567. sk_mem_pages(sk->sk_wmem_queued +
  1568. atomic_read(&sk->sk_rmem_alloc) +
  1569. sk->sk_forward_alloc))
  1570. return 1;
  1571. }
  1572. suppress_allocation:
  1573. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1574. sk_stream_moderate_sndbuf(sk);
  1575. /* Fail only if socket is _under_ its sndbuf.
  1576. * In this case we cannot block, so that we have to fail.
  1577. */
  1578. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1579. return 1;
  1580. }
  1581. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1582. /* Alas. Undo changes. */
  1583. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1584. sk_memory_allocated_sub(sk, amt);
  1585. return 0;
  1586. }
  1587. EXPORT_SYMBOL(__sk_mem_schedule);
  1588. /**
  1589. * __sk_reclaim - reclaim memory_allocated
  1590. * @sk: socket
  1591. */
  1592. void __sk_mem_reclaim(struct sock *sk)
  1593. {
  1594. sk_memory_allocated_sub(sk,
  1595. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1596. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1597. if (sk_under_memory_pressure(sk) &&
  1598. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1599. sk_leave_memory_pressure(sk);
  1600. }
  1601. EXPORT_SYMBOL(__sk_mem_reclaim);
  1602. /*
  1603. * Set of default routines for initialising struct proto_ops when
  1604. * the protocol does not support a particular function. In certain
  1605. * cases where it makes no sense for a protocol to have a "do nothing"
  1606. * function, some default processing is provided.
  1607. */
  1608. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1609. {
  1610. return -EOPNOTSUPP;
  1611. }
  1612. EXPORT_SYMBOL(sock_no_bind);
  1613. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1614. int len, int flags)
  1615. {
  1616. return -EOPNOTSUPP;
  1617. }
  1618. EXPORT_SYMBOL(sock_no_connect);
  1619. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1620. {
  1621. return -EOPNOTSUPP;
  1622. }
  1623. EXPORT_SYMBOL(sock_no_socketpair);
  1624. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1625. {
  1626. return -EOPNOTSUPP;
  1627. }
  1628. EXPORT_SYMBOL(sock_no_accept);
  1629. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1630. int *len, int peer)
  1631. {
  1632. return -EOPNOTSUPP;
  1633. }
  1634. EXPORT_SYMBOL(sock_no_getname);
  1635. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1636. {
  1637. return 0;
  1638. }
  1639. EXPORT_SYMBOL(sock_no_poll);
  1640. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1641. {
  1642. return -EOPNOTSUPP;
  1643. }
  1644. EXPORT_SYMBOL(sock_no_ioctl);
  1645. int sock_no_listen(struct socket *sock, int backlog)
  1646. {
  1647. return -EOPNOTSUPP;
  1648. }
  1649. EXPORT_SYMBOL(sock_no_listen);
  1650. int sock_no_shutdown(struct socket *sock, int how)
  1651. {
  1652. return -EOPNOTSUPP;
  1653. }
  1654. EXPORT_SYMBOL(sock_no_shutdown);
  1655. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1656. char __user *optval, unsigned int optlen)
  1657. {
  1658. return -EOPNOTSUPP;
  1659. }
  1660. EXPORT_SYMBOL(sock_no_setsockopt);
  1661. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1662. char __user *optval, int __user *optlen)
  1663. {
  1664. return -EOPNOTSUPP;
  1665. }
  1666. EXPORT_SYMBOL(sock_no_getsockopt);
  1667. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1668. size_t len)
  1669. {
  1670. return -EOPNOTSUPP;
  1671. }
  1672. EXPORT_SYMBOL(sock_no_sendmsg);
  1673. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1674. size_t len, int flags)
  1675. {
  1676. return -EOPNOTSUPP;
  1677. }
  1678. EXPORT_SYMBOL(sock_no_recvmsg);
  1679. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1680. {
  1681. /* Mirror missing mmap method error code */
  1682. return -ENODEV;
  1683. }
  1684. EXPORT_SYMBOL(sock_no_mmap);
  1685. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1686. {
  1687. ssize_t res;
  1688. struct msghdr msg = {.msg_flags = flags};
  1689. struct kvec iov;
  1690. char *kaddr = kmap(page);
  1691. iov.iov_base = kaddr + offset;
  1692. iov.iov_len = size;
  1693. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1694. kunmap(page);
  1695. return res;
  1696. }
  1697. EXPORT_SYMBOL(sock_no_sendpage);
  1698. /*
  1699. * Default Socket Callbacks
  1700. */
  1701. static void sock_def_wakeup(struct sock *sk)
  1702. {
  1703. struct socket_wq *wq;
  1704. rcu_read_lock();
  1705. wq = rcu_dereference(sk->sk_wq);
  1706. if (wq_has_sleeper(wq))
  1707. wake_up_interruptible_all(&wq->wait);
  1708. rcu_read_unlock();
  1709. }
  1710. static void sock_def_error_report(struct sock *sk)
  1711. {
  1712. struct socket_wq *wq;
  1713. rcu_read_lock();
  1714. wq = rcu_dereference(sk->sk_wq);
  1715. if (wq_has_sleeper(wq))
  1716. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1717. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1718. rcu_read_unlock();
  1719. }
  1720. static void sock_def_readable(struct sock *sk, int len)
  1721. {
  1722. struct socket_wq *wq;
  1723. rcu_read_lock();
  1724. wq = rcu_dereference(sk->sk_wq);
  1725. if (wq_has_sleeper(wq))
  1726. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1727. POLLRDNORM | POLLRDBAND);
  1728. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1729. rcu_read_unlock();
  1730. }
  1731. static void sock_def_write_space(struct sock *sk)
  1732. {
  1733. struct socket_wq *wq;
  1734. rcu_read_lock();
  1735. /* Do not wake up a writer until he can make "significant"
  1736. * progress. --DaveM
  1737. */
  1738. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1739. wq = rcu_dereference(sk->sk_wq);
  1740. if (wq_has_sleeper(wq))
  1741. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1742. POLLWRNORM | POLLWRBAND);
  1743. /* Should agree with poll, otherwise some programs break */
  1744. if (sock_writeable(sk))
  1745. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1746. }
  1747. rcu_read_unlock();
  1748. }
  1749. static void sock_def_destruct(struct sock *sk)
  1750. {
  1751. kfree(sk->sk_protinfo);
  1752. }
  1753. void sk_send_sigurg(struct sock *sk)
  1754. {
  1755. if (sk->sk_socket && sk->sk_socket->file)
  1756. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1757. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1758. }
  1759. EXPORT_SYMBOL(sk_send_sigurg);
  1760. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1761. unsigned long expires)
  1762. {
  1763. if (!mod_timer(timer, expires))
  1764. sock_hold(sk);
  1765. }
  1766. EXPORT_SYMBOL(sk_reset_timer);
  1767. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1768. {
  1769. if (timer_pending(timer) && del_timer(timer))
  1770. __sock_put(sk);
  1771. }
  1772. EXPORT_SYMBOL(sk_stop_timer);
  1773. void sock_init_data(struct socket *sock, struct sock *sk)
  1774. {
  1775. skb_queue_head_init(&sk->sk_receive_queue);
  1776. skb_queue_head_init(&sk->sk_write_queue);
  1777. skb_queue_head_init(&sk->sk_error_queue);
  1778. #ifdef CONFIG_NET_DMA
  1779. skb_queue_head_init(&sk->sk_async_wait_queue);
  1780. #endif
  1781. sk->sk_send_head = NULL;
  1782. init_timer(&sk->sk_timer);
  1783. sk->sk_allocation = GFP_KERNEL;
  1784. sk->sk_rcvbuf = sysctl_rmem_default;
  1785. sk->sk_sndbuf = sysctl_wmem_default;
  1786. sk->sk_state = TCP_CLOSE;
  1787. sk_set_socket(sk, sock);
  1788. sock_set_flag(sk, SOCK_ZAPPED);
  1789. if (sock) {
  1790. sk->sk_type = sock->type;
  1791. sk->sk_wq = sock->wq;
  1792. sock->sk = sk;
  1793. } else
  1794. sk->sk_wq = NULL;
  1795. spin_lock_init(&sk->sk_dst_lock);
  1796. rwlock_init(&sk->sk_callback_lock);
  1797. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1798. af_callback_keys + sk->sk_family,
  1799. af_family_clock_key_strings[sk->sk_family]);
  1800. sk->sk_state_change = sock_def_wakeup;
  1801. sk->sk_data_ready = sock_def_readable;
  1802. sk->sk_write_space = sock_def_write_space;
  1803. sk->sk_error_report = sock_def_error_report;
  1804. sk->sk_destruct = sock_def_destruct;
  1805. sk->sk_sndmsg_page = NULL;
  1806. sk->sk_sndmsg_off = 0;
  1807. sk->sk_peek_off = -1;
  1808. sk->sk_peer_pid = NULL;
  1809. sk->sk_peer_cred = NULL;
  1810. sk->sk_write_pending = 0;
  1811. sk->sk_rcvlowat = 1;
  1812. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1813. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1814. sk->sk_stamp = ktime_set(-1L, 0);
  1815. /*
  1816. * Before updating sk_refcnt, we must commit prior changes to memory
  1817. * (Documentation/RCU/rculist_nulls.txt for details)
  1818. */
  1819. smp_wmb();
  1820. atomic_set(&sk->sk_refcnt, 1);
  1821. atomic_set(&sk->sk_drops, 0);
  1822. }
  1823. EXPORT_SYMBOL(sock_init_data);
  1824. void lock_sock_nested(struct sock *sk, int subclass)
  1825. {
  1826. might_sleep();
  1827. spin_lock_bh(&sk->sk_lock.slock);
  1828. if (sk->sk_lock.owned)
  1829. __lock_sock(sk);
  1830. sk->sk_lock.owned = 1;
  1831. spin_unlock(&sk->sk_lock.slock);
  1832. /*
  1833. * The sk_lock has mutex_lock() semantics here:
  1834. */
  1835. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1836. local_bh_enable();
  1837. }
  1838. EXPORT_SYMBOL(lock_sock_nested);
  1839. void release_sock(struct sock *sk)
  1840. {
  1841. /*
  1842. * The sk_lock has mutex_unlock() semantics:
  1843. */
  1844. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1845. spin_lock_bh(&sk->sk_lock.slock);
  1846. if (sk->sk_backlog.tail)
  1847. __release_sock(sk);
  1848. sk->sk_lock.owned = 0;
  1849. if (waitqueue_active(&sk->sk_lock.wq))
  1850. wake_up(&sk->sk_lock.wq);
  1851. spin_unlock_bh(&sk->sk_lock.slock);
  1852. }
  1853. EXPORT_SYMBOL(release_sock);
  1854. /**
  1855. * lock_sock_fast - fast version of lock_sock
  1856. * @sk: socket
  1857. *
  1858. * This version should be used for very small section, where process wont block
  1859. * return false if fast path is taken
  1860. * sk_lock.slock locked, owned = 0, BH disabled
  1861. * return true if slow path is taken
  1862. * sk_lock.slock unlocked, owned = 1, BH enabled
  1863. */
  1864. bool lock_sock_fast(struct sock *sk)
  1865. {
  1866. might_sleep();
  1867. spin_lock_bh(&sk->sk_lock.slock);
  1868. if (!sk->sk_lock.owned)
  1869. /*
  1870. * Note : We must disable BH
  1871. */
  1872. return false;
  1873. __lock_sock(sk);
  1874. sk->sk_lock.owned = 1;
  1875. spin_unlock(&sk->sk_lock.slock);
  1876. /*
  1877. * The sk_lock has mutex_lock() semantics here:
  1878. */
  1879. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1880. local_bh_enable();
  1881. return true;
  1882. }
  1883. EXPORT_SYMBOL(lock_sock_fast);
  1884. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1885. {
  1886. struct timeval tv;
  1887. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1888. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1889. tv = ktime_to_timeval(sk->sk_stamp);
  1890. if (tv.tv_sec == -1)
  1891. return -ENOENT;
  1892. if (tv.tv_sec == 0) {
  1893. sk->sk_stamp = ktime_get_real();
  1894. tv = ktime_to_timeval(sk->sk_stamp);
  1895. }
  1896. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1897. }
  1898. EXPORT_SYMBOL(sock_get_timestamp);
  1899. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1900. {
  1901. struct timespec ts;
  1902. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1903. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1904. ts = ktime_to_timespec(sk->sk_stamp);
  1905. if (ts.tv_sec == -1)
  1906. return -ENOENT;
  1907. if (ts.tv_sec == 0) {
  1908. sk->sk_stamp = ktime_get_real();
  1909. ts = ktime_to_timespec(sk->sk_stamp);
  1910. }
  1911. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1912. }
  1913. EXPORT_SYMBOL(sock_get_timestampns);
  1914. void sock_enable_timestamp(struct sock *sk, int flag)
  1915. {
  1916. if (!sock_flag(sk, flag)) {
  1917. unsigned long previous_flags = sk->sk_flags;
  1918. sock_set_flag(sk, flag);
  1919. /*
  1920. * we just set one of the two flags which require net
  1921. * time stamping, but time stamping might have been on
  1922. * already because of the other one
  1923. */
  1924. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  1925. net_enable_timestamp();
  1926. }
  1927. }
  1928. /*
  1929. * Get a socket option on an socket.
  1930. *
  1931. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1932. * asynchronous errors should be reported by getsockopt. We assume
  1933. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1934. */
  1935. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1936. char __user *optval, int __user *optlen)
  1937. {
  1938. struct sock *sk = sock->sk;
  1939. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1940. }
  1941. EXPORT_SYMBOL(sock_common_getsockopt);
  1942. #ifdef CONFIG_COMPAT
  1943. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1944. char __user *optval, int __user *optlen)
  1945. {
  1946. struct sock *sk = sock->sk;
  1947. if (sk->sk_prot->compat_getsockopt != NULL)
  1948. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1949. optval, optlen);
  1950. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1951. }
  1952. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1953. #endif
  1954. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1955. struct msghdr *msg, size_t size, int flags)
  1956. {
  1957. struct sock *sk = sock->sk;
  1958. int addr_len = 0;
  1959. int err;
  1960. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1961. flags & ~MSG_DONTWAIT, &addr_len);
  1962. if (err >= 0)
  1963. msg->msg_namelen = addr_len;
  1964. return err;
  1965. }
  1966. EXPORT_SYMBOL(sock_common_recvmsg);
  1967. /*
  1968. * Set socket options on an inet socket.
  1969. */
  1970. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1971. char __user *optval, unsigned int optlen)
  1972. {
  1973. struct sock *sk = sock->sk;
  1974. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1975. }
  1976. EXPORT_SYMBOL(sock_common_setsockopt);
  1977. #ifdef CONFIG_COMPAT
  1978. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1979. char __user *optval, unsigned int optlen)
  1980. {
  1981. struct sock *sk = sock->sk;
  1982. if (sk->sk_prot->compat_setsockopt != NULL)
  1983. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1984. optval, optlen);
  1985. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1986. }
  1987. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1988. #endif
  1989. void sk_common_release(struct sock *sk)
  1990. {
  1991. if (sk->sk_prot->destroy)
  1992. sk->sk_prot->destroy(sk);
  1993. /*
  1994. * Observation: when sock_common_release is called, processes have
  1995. * no access to socket. But net still has.
  1996. * Step one, detach it from networking:
  1997. *
  1998. * A. Remove from hash tables.
  1999. */
  2000. sk->sk_prot->unhash(sk);
  2001. /*
  2002. * In this point socket cannot receive new packets, but it is possible
  2003. * that some packets are in flight because some CPU runs receiver and
  2004. * did hash table lookup before we unhashed socket. They will achieve
  2005. * receive queue and will be purged by socket destructor.
  2006. *
  2007. * Also we still have packets pending on receive queue and probably,
  2008. * our own packets waiting in device queues. sock_destroy will drain
  2009. * receive queue, but transmitted packets will delay socket destruction
  2010. * until the last reference will be released.
  2011. */
  2012. sock_orphan(sk);
  2013. xfrm_sk_free_policy(sk);
  2014. sk_refcnt_debug_release(sk);
  2015. sock_put(sk);
  2016. }
  2017. EXPORT_SYMBOL(sk_common_release);
  2018. #ifdef CONFIG_PROC_FS
  2019. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2020. struct prot_inuse {
  2021. int val[PROTO_INUSE_NR];
  2022. };
  2023. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2024. #ifdef CONFIG_NET_NS
  2025. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2026. {
  2027. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2028. }
  2029. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2030. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2031. {
  2032. int cpu, idx = prot->inuse_idx;
  2033. int res = 0;
  2034. for_each_possible_cpu(cpu)
  2035. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2036. return res >= 0 ? res : 0;
  2037. }
  2038. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2039. static int __net_init sock_inuse_init_net(struct net *net)
  2040. {
  2041. net->core.inuse = alloc_percpu(struct prot_inuse);
  2042. return net->core.inuse ? 0 : -ENOMEM;
  2043. }
  2044. static void __net_exit sock_inuse_exit_net(struct net *net)
  2045. {
  2046. free_percpu(net->core.inuse);
  2047. }
  2048. static struct pernet_operations net_inuse_ops = {
  2049. .init = sock_inuse_init_net,
  2050. .exit = sock_inuse_exit_net,
  2051. };
  2052. static __init int net_inuse_init(void)
  2053. {
  2054. if (register_pernet_subsys(&net_inuse_ops))
  2055. panic("Cannot initialize net inuse counters");
  2056. return 0;
  2057. }
  2058. core_initcall(net_inuse_init);
  2059. #else
  2060. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2061. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2062. {
  2063. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2064. }
  2065. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2066. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2067. {
  2068. int cpu, idx = prot->inuse_idx;
  2069. int res = 0;
  2070. for_each_possible_cpu(cpu)
  2071. res += per_cpu(prot_inuse, cpu).val[idx];
  2072. return res >= 0 ? res : 0;
  2073. }
  2074. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2075. #endif
  2076. static void assign_proto_idx(struct proto *prot)
  2077. {
  2078. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2079. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2080. pr_err("PROTO_INUSE_NR exhausted\n");
  2081. return;
  2082. }
  2083. set_bit(prot->inuse_idx, proto_inuse_idx);
  2084. }
  2085. static void release_proto_idx(struct proto *prot)
  2086. {
  2087. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2088. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2089. }
  2090. #else
  2091. static inline void assign_proto_idx(struct proto *prot)
  2092. {
  2093. }
  2094. static inline void release_proto_idx(struct proto *prot)
  2095. {
  2096. }
  2097. #endif
  2098. int proto_register(struct proto *prot, int alloc_slab)
  2099. {
  2100. if (alloc_slab) {
  2101. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2102. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2103. NULL);
  2104. if (prot->slab == NULL) {
  2105. pr_crit("%s: Can't create sock SLAB cache!\n",
  2106. prot->name);
  2107. goto out;
  2108. }
  2109. if (prot->rsk_prot != NULL) {
  2110. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2111. if (prot->rsk_prot->slab_name == NULL)
  2112. goto out_free_sock_slab;
  2113. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2114. prot->rsk_prot->obj_size, 0,
  2115. SLAB_HWCACHE_ALIGN, NULL);
  2116. if (prot->rsk_prot->slab == NULL) {
  2117. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2118. prot->name);
  2119. goto out_free_request_sock_slab_name;
  2120. }
  2121. }
  2122. if (prot->twsk_prot != NULL) {
  2123. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2124. if (prot->twsk_prot->twsk_slab_name == NULL)
  2125. goto out_free_request_sock_slab;
  2126. prot->twsk_prot->twsk_slab =
  2127. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2128. prot->twsk_prot->twsk_obj_size,
  2129. 0,
  2130. SLAB_HWCACHE_ALIGN |
  2131. prot->slab_flags,
  2132. NULL);
  2133. if (prot->twsk_prot->twsk_slab == NULL)
  2134. goto out_free_timewait_sock_slab_name;
  2135. }
  2136. }
  2137. mutex_lock(&proto_list_mutex);
  2138. list_add(&prot->node, &proto_list);
  2139. assign_proto_idx(prot);
  2140. mutex_unlock(&proto_list_mutex);
  2141. return 0;
  2142. out_free_timewait_sock_slab_name:
  2143. kfree(prot->twsk_prot->twsk_slab_name);
  2144. out_free_request_sock_slab:
  2145. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2146. kmem_cache_destroy(prot->rsk_prot->slab);
  2147. prot->rsk_prot->slab = NULL;
  2148. }
  2149. out_free_request_sock_slab_name:
  2150. if (prot->rsk_prot)
  2151. kfree(prot->rsk_prot->slab_name);
  2152. out_free_sock_slab:
  2153. kmem_cache_destroy(prot->slab);
  2154. prot->slab = NULL;
  2155. out:
  2156. return -ENOBUFS;
  2157. }
  2158. EXPORT_SYMBOL(proto_register);
  2159. void proto_unregister(struct proto *prot)
  2160. {
  2161. mutex_lock(&proto_list_mutex);
  2162. release_proto_idx(prot);
  2163. list_del(&prot->node);
  2164. mutex_unlock(&proto_list_mutex);
  2165. if (prot->slab != NULL) {
  2166. kmem_cache_destroy(prot->slab);
  2167. prot->slab = NULL;
  2168. }
  2169. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2170. kmem_cache_destroy(prot->rsk_prot->slab);
  2171. kfree(prot->rsk_prot->slab_name);
  2172. prot->rsk_prot->slab = NULL;
  2173. }
  2174. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2175. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2176. kfree(prot->twsk_prot->twsk_slab_name);
  2177. prot->twsk_prot->twsk_slab = NULL;
  2178. }
  2179. }
  2180. EXPORT_SYMBOL(proto_unregister);
  2181. #ifdef CONFIG_PROC_FS
  2182. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2183. __acquires(proto_list_mutex)
  2184. {
  2185. mutex_lock(&proto_list_mutex);
  2186. return seq_list_start_head(&proto_list, *pos);
  2187. }
  2188. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2189. {
  2190. return seq_list_next(v, &proto_list, pos);
  2191. }
  2192. static void proto_seq_stop(struct seq_file *seq, void *v)
  2193. __releases(proto_list_mutex)
  2194. {
  2195. mutex_unlock(&proto_list_mutex);
  2196. }
  2197. static char proto_method_implemented(const void *method)
  2198. {
  2199. return method == NULL ? 'n' : 'y';
  2200. }
  2201. static long sock_prot_memory_allocated(struct proto *proto)
  2202. {
  2203. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2204. }
  2205. static char *sock_prot_memory_pressure(struct proto *proto)
  2206. {
  2207. return proto->memory_pressure != NULL ?
  2208. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2209. }
  2210. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2211. {
  2212. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2213. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2214. proto->name,
  2215. proto->obj_size,
  2216. sock_prot_inuse_get(seq_file_net(seq), proto),
  2217. sock_prot_memory_allocated(proto),
  2218. sock_prot_memory_pressure(proto),
  2219. proto->max_header,
  2220. proto->slab == NULL ? "no" : "yes",
  2221. module_name(proto->owner),
  2222. proto_method_implemented(proto->close),
  2223. proto_method_implemented(proto->connect),
  2224. proto_method_implemented(proto->disconnect),
  2225. proto_method_implemented(proto->accept),
  2226. proto_method_implemented(proto->ioctl),
  2227. proto_method_implemented(proto->init),
  2228. proto_method_implemented(proto->destroy),
  2229. proto_method_implemented(proto->shutdown),
  2230. proto_method_implemented(proto->setsockopt),
  2231. proto_method_implemented(proto->getsockopt),
  2232. proto_method_implemented(proto->sendmsg),
  2233. proto_method_implemented(proto->recvmsg),
  2234. proto_method_implemented(proto->sendpage),
  2235. proto_method_implemented(proto->bind),
  2236. proto_method_implemented(proto->backlog_rcv),
  2237. proto_method_implemented(proto->hash),
  2238. proto_method_implemented(proto->unhash),
  2239. proto_method_implemented(proto->get_port),
  2240. proto_method_implemented(proto->enter_memory_pressure));
  2241. }
  2242. static int proto_seq_show(struct seq_file *seq, void *v)
  2243. {
  2244. if (v == &proto_list)
  2245. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2246. "protocol",
  2247. "size",
  2248. "sockets",
  2249. "memory",
  2250. "press",
  2251. "maxhdr",
  2252. "slab",
  2253. "module",
  2254. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2255. else
  2256. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2257. return 0;
  2258. }
  2259. static const struct seq_operations proto_seq_ops = {
  2260. .start = proto_seq_start,
  2261. .next = proto_seq_next,
  2262. .stop = proto_seq_stop,
  2263. .show = proto_seq_show,
  2264. };
  2265. static int proto_seq_open(struct inode *inode, struct file *file)
  2266. {
  2267. return seq_open_net(inode, file, &proto_seq_ops,
  2268. sizeof(struct seq_net_private));
  2269. }
  2270. static const struct file_operations proto_seq_fops = {
  2271. .owner = THIS_MODULE,
  2272. .open = proto_seq_open,
  2273. .read = seq_read,
  2274. .llseek = seq_lseek,
  2275. .release = seq_release_net,
  2276. };
  2277. static __net_init int proto_init_net(struct net *net)
  2278. {
  2279. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2280. return -ENOMEM;
  2281. return 0;
  2282. }
  2283. static __net_exit void proto_exit_net(struct net *net)
  2284. {
  2285. proc_net_remove(net, "protocols");
  2286. }
  2287. static __net_initdata struct pernet_operations proto_net_ops = {
  2288. .init = proto_init_net,
  2289. .exit = proto_exit_net,
  2290. };
  2291. static int __init proto_init(void)
  2292. {
  2293. return register_pernet_subsys(&proto_net_ops);
  2294. }
  2295. subsys_initcall(proto_init);
  2296. #endif /* PROC_FS */