slub.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. static inline int kmem_cache_debug(struct kmem_cache *s)
  111. {
  112. #ifdef CONFIG_SLUB_DEBUG
  113. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  114. #else
  115. return 0;
  116. #endif
  117. }
  118. /*
  119. * Issues still to be resolved:
  120. *
  121. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  122. *
  123. * - Variable sizing of the per node arrays
  124. */
  125. /* Enable to test recovery from slab corruption on boot */
  126. #undef SLUB_RESILIENCY_TEST
  127. /* Enable to log cmpxchg failures */
  128. #undef SLUB_DEBUG_CMPXCHG
  129. /*
  130. * Mininum number of partial slabs. These will be left on the partial
  131. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  132. */
  133. #define MIN_PARTIAL 5
  134. /*
  135. * Maximum number of desirable partial slabs.
  136. * The existence of more partial slabs makes kmem_cache_shrink
  137. * sort the partial list by the number of objects in the.
  138. */
  139. #define MAX_PARTIAL 10
  140. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  141. SLAB_POISON | SLAB_STORE_USER)
  142. /*
  143. * Debugging flags that require metadata to be stored in the slab. These get
  144. * disabled when slub_debug=O is used and a cache's min order increases with
  145. * metadata.
  146. */
  147. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  148. /*
  149. * Set of flags that will prevent slab merging
  150. */
  151. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  152. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  153. SLAB_FAILSLAB)
  154. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  155. SLAB_CACHE_DMA | SLAB_NOTRACK)
  156. #define OO_SHIFT 16
  157. #define OO_MASK ((1 << OO_SHIFT) - 1)
  158. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  159. /* Internal SLUB flags */
  160. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  161. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. /*
  166. * Tracking user of a slab.
  167. */
  168. #define TRACK_ADDRS_COUNT 16
  169. struct track {
  170. unsigned long addr; /* Called from address */
  171. #ifdef CONFIG_STACKTRACE
  172. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  173. #endif
  174. int cpu; /* Was running on cpu */
  175. int pid; /* Pid context */
  176. unsigned long when; /* When did the operation occur */
  177. };
  178. enum track_item { TRACK_ALLOC, TRACK_FREE };
  179. #ifdef CONFIG_SYSFS
  180. static int sysfs_slab_add(struct kmem_cache *);
  181. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  182. static void sysfs_slab_remove(struct kmem_cache *);
  183. #else
  184. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  185. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  186. { return 0; }
  187. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  188. #endif
  189. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  190. {
  191. #ifdef CONFIG_SLUB_STATS
  192. __this_cpu_inc(s->cpu_slab->stat[si]);
  193. #endif
  194. }
  195. /********************************************************************
  196. * Core slab cache functions
  197. *******************************************************************/
  198. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  199. {
  200. return s->node[node];
  201. }
  202. /* Verify that a pointer has an address that is valid within a slab page */
  203. static inline int check_valid_pointer(struct kmem_cache *s,
  204. struct page *page, const void *object)
  205. {
  206. void *base;
  207. if (!object)
  208. return 1;
  209. base = page_address(page);
  210. if (object < base || object >= base + page->objects * s->size ||
  211. (object - base) % s->size) {
  212. return 0;
  213. }
  214. return 1;
  215. }
  216. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  217. {
  218. return *(void **)(object + s->offset);
  219. }
  220. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  221. {
  222. prefetch(object + s->offset);
  223. }
  224. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  225. {
  226. void *p;
  227. #ifdef CONFIG_DEBUG_PAGEALLOC
  228. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  229. #else
  230. p = get_freepointer(s, object);
  231. #endif
  232. return p;
  233. }
  234. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  235. {
  236. *(void **)(object + s->offset) = fp;
  237. }
  238. /* Loop over all objects in a slab */
  239. #define for_each_object(__p, __s, __addr, __objects) \
  240. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  241. __p += (__s)->size)
  242. /* Determine object index from a given position */
  243. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  244. {
  245. return (p - addr) / s->size;
  246. }
  247. static inline size_t slab_ksize(const struct kmem_cache *s)
  248. {
  249. #ifdef CONFIG_SLUB_DEBUG
  250. /*
  251. * Debugging requires use of the padding between object
  252. * and whatever may come after it.
  253. */
  254. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  255. return s->object_size;
  256. #endif
  257. /*
  258. * If we have the need to store the freelist pointer
  259. * back there or track user information then we can
  260. * only use the space before that information.
  261. */
  262. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  263. return s->inuse;
  264. /*
  265. * Else we can use all the padding etc for the allocation
  266. */
  267. return s->size;
  268. }
  269. static inline int order_objects(int order, unsigned long size, int reserved)
  270. {
  271. return ((PAGE_SIZE << order) - reserved) / size;
  272. }
  273. static inline struct kmem_cache_order_objects oo_make(int order,
  274. unsigned long size, int reserved)
  275. {
  276. struct kmem_cache_order_objects x = {
  277. (order << OO_SHIFT) + order_objects(order, size, reserved)
  278. };
  279. return x;
  280. }
  281. static inline int oo_order(struct kmem_cache_order_objects x)
  282. {
  283. return x.x >> OO_SHIFT;
  284. }
  285. static inline int oo_objects(struct kmem_cache_order_objects x)
  286. {
  287. return x.x & OO_MASK;
  288. }
  289. /*
  290. * Per slab locking using the pagelock
  291. */
  292. static __always_inline void slab_lock(struct page *page)
  293. {
  294. bit_spin_lock(PG_locked, &page->flags);
  295. }
  296. static __always_inline void slab_unlock(struct page *page)
  297. {
  298. __bit_spin_unlock(PG_locked, &page->flags);
  299. }
  300. /* Interrupts must be disabled (for the fallback code to work right) */
  301. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  302. void *freelist_old, unsigned long counters_old,
  303. void *freelist_new, unsigned long counters_new,
  304. const char *n)
  305. {
  306. VM_BUG_ON(!irqs_disabled());
  307. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  308. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  309. if (s->flags & __CMPXCHG_DOUBLE) {
  310. if (cmpxchg_double(&page->freelist, &page->counters,
  311. freelist_old, counters_old,
  312. freelist_new, counters_new))
  313. return 1;
  314. } else
  315. #endif
  316. {
  317. slab_lock(page);
  318. if (page->freelist == freelist_old && page->counters == counters_old) {
  319. page->freelist = freelist_new;
  320. page->counters = counters_new;
  321. slab_unlock(page);
  322. return 1;
  323. }
  324. slab_unlock(page);
  325. }
  326. cpu_relax();
  327. stat(s, CMPXCHG_DOUBLE_FAIL);
  328. #ifdef SLUB_DEBUG_CMPXCHG
  329. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  330. #endif
  331. return 0;
  332. }
  333. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  334. void *freelist_old, unsigned long counters_old,
  335. void *freelist_new, unsigned long counters_new,
  336. const char *n)
  337. {
  338. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  339. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  340. if (s->flags & __CMPXCHG_DOUBLE) {
  341. if (cmpxchg_double(&page->freelist, &page->counters,
  342. freelist_old, counters_old,
  343. freelist_new, counters_new))
  344. return 1;
  345. } else
  346. #endif
  347. {
  348. unsigned long flags;
  349. local_irq_save(flags);
  350. slab_lock(page);
  351. if (page->freelist == freelist_old && page->counters == counters_old) {
  352. page->freelist = freelist_new;
  353. page->counters = counters_new;
  354. slab_unlock(page);
  355. local_irq_restore(flags);
  356. return 1;
  357. }
  358. slab_unlock(page);
  359. local_irq_restore(flags);
  360. }
  361. cpu_relax();
  362. stat(s, CMPXCHG_DOUBLE_FAIL);
  363. #ifdef SLUB_DEBUG_CMPXCHG
  364. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  365. #endif
  366. return 0;
  367. }
  368. #ifdef CONFIG_SLUB_DEBUG
  369. /*
  370. * Determine a map of object in use on a page.
  371. *
  372. * Node listlock must be held to guarantee that the page does
  373. * not vanish from under us.
  374. */
  375. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  376. {
  377. void *p;
  378. void *addr = page_address(page);
  379. for (p = page->freelist; p; p = get_freepointer(s, p))
  380. set_bit(slab_index(p, s, addr), map);
  381. }
  382. /*
  383. * Debug settings:
  384. */
  385. #ifdef CONFIG_SLUB_DEBUG_ON
  386. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  387. #else
  388. static int slub_debug;
  389. #endif
  390. static char *slub_debug_slabs;
  391. static int disable_higher_order_debug;
  392. /*
  393. * Object debugging
  394. */
  395. static void print_section(char *text, u8 *addr, unsigned int length)
  396. {
  397. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  398. length, 1);
  399. }
  400. static struct track *get_track(struct kmem_cache *s, void *object,
  401. enum track_item alloc)
  402. {
  403. struct track *p;
  404. if (s->offset)
  405. p = object + s->offset + sizeof(void *);
  406. else
  407. p = object + s->inuse;
  408. return p + alloc;
  409. }
  410. static void set_track(struct kmem_cache *s, void *object,
  411. enum track_item alloc, unsigned long addr)
  412. {
  413. struct track *p = get_track(s, object, alloc);
  414. if (addr) {
  415. #ifdef CONFIG_STACKTRACE
  416. struct stack_trace trace;
  417. int i;
  418. trace.nr_entries = 0;
  419. trace.max_entries = TRACK_ADDRS_COUNT;
  420. trace.entries = p->addrs;
  421. trace.skip = 3;
  422. save_stack_trace(&trace);
  423. /* See rant in lockdep.c */
  424. if (trace.nr_entries != 0 &&
  425. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  426. trace.nr_entries--;
  427. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  428. p->addrs[i] = 0;
  429. #endif
  430. p->addr = addr;
  431. p->cpu = smp_processor_id();
  432. p->pid = current->pid;
  433. p->when = jiffies;
  434. } else
  435. memset(p, 0, sizeof(struct track));
  436. }
  437. static void init_tracking(struct kmem_cache *s, void *object)
  438. {
  439. if (!(s->flags & SLAB_STORE_USER))
  440. return;
  441. set_track(s, object, TRACK_FREE, 0UL);
  442. set_track(s, object, TRACK_ALLOC, 0UL);
  443. }
  444. static void print_track(const char *s, struct track *t)
  445. {
  446. if (!t->addr)
  447. return;
  448. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  449. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  450. #ifdef CONFIG_STACKTRACE
  451. {
  452. int i;
  453. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  454. if (t->addrs[i])
  455. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  456. else
  457. break;
  458. }
  459. #endif
  460. }
  461. static void print_tracking(struct kmem_cache *s, void *object)
  462. {
  463. if (!(s->flags & SLAB_STORE_USER))
  464. return;
  465. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  466. print_track("Freed", get_track(s, object, TRACK_FREE));
  467. }
  468. static void print_page_info(struct page *page)
  469. {
  470. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  471. page, page->objects, page->inuse, page->freelist, page->flags);
  472. }
  473. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  474. {
  475. va_list args;
  476. char buf[100];
  477. va_start(args, fmt);
  478. vsnprintf(buf, sizeof(buf), fmt, args);
  479. va_end(args);
  480. printk(KERN_ERR "========================================"
  481. "=====================================\n");
  482. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  483. printk(KERN_ERR "----------------------------------------"
  484. "-------------------------------------\n\n");
  485. add_taint(TAINT_BAD_PAGE);
  486. }
  487. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  488. {
  489. va_list args;
  490. char buf[100];
  491. va_start(args, fmt);
  492. vsnprintf(buf, sizeof(buf), fmt, args);
  493. va_end(args);
  494. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  495. }
  496. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  497. {
  498. unsigned int off; /* Offset of last byte */
  499. u8 *addr = page_address(page);
  500. print_tracking(s, p);
  501. print_page_info(page);
  502. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  503. p, p - addr, get_freepointer(s, p));
  504. if (p > addr + 16)
  505. print_section("Bytes b4 ", p - 16, 16);
  506. print_section("Object ", p, min_t(unsigned long, s->object_size,
  507. PAGE_SIZE));
  508. if (s->flags & SLAB_RED_ZONE)
  509. print_section("Redzone ", p + s->object_size,
  510. s->inuse - s->object_size);
  511. if (s->offset)
  512. off = s->offset + sizeof(void *);
  513. else
  514. off = s->inuse;
  515. if (s->flags & SLAB_STORE_USER)
  516. off += 2 * sizeof(struct track);
  517. if (off != s->size)
  518. /* Beginning of the filler is the free pointer */
  519. print_section("Padding ", p + off, s->size - off);
  520. dump_stack();
  521. }
  522. static void object_err(struct kmem_cache *s, struct page *page,
  523. u8 *object, char *reason)
  524. {
  525. slab_bug(s, "%s", reason);
  526. print_trailer(s, page, object);
  527. }
  528. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  529. {
  530. va_list args;
  531. char buf[100];
  532. va_start(args, fmt);
  533. vsnprintf(buf, sizeof(buf), fmt, args);
  534. va_end(args);
  535. slab_bug(s, "%s", buf);
  536. print_page_info(page);
  537. dump_stack();
  538. }
  539. static void init_object(struct kmem_cache *s, void *object, u8 val)
  540. {
  541. u8 *p = object;
  542. if (s->flags & __OBJECT_POISON) {
  543. memset(p, POISON_FREE, s->object_size - 1);
  544. p[s->object_size - 1] = POISON_END;
  545. }
  546. if (s->flags & SLAB_RED_ZONE)
  547. memset(p + s->object_size, val, s->inuse - s->object_size);
  548. }
  549. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  550. void *from, void *to)
  551. {
  552. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  553. memset(from, data, to - from);
  554. }
  555. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  556. u8 *object, char *what,
  557. u8 *start, unsigned int value, unsigned int bytes)
  558. {
  559. u8 *fault;
  560. u8 *end;
  561. fault = memchr_inv(start, value, bytes);
  562. if (!fault)
  563. return 1;
  564. end = start + bytes;
  565. while (end > fault && end[-1] == value)
  566. end--;
  567. slab_bug(s, "%s overwritten", what);
  568. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  569. fault, end - 1, fault[0], value);
  570. print_trailer(s, page, object);
  571. restore_bytes(s, what, value, fault, end);
  572. return 0;
  573. }
  574. /*
  575. * Object layout:
  576. *
  577. * object address
  578. * Bytes of the object to be managed.
  579. * If the freepointer may overlay the object then the free
  580. * pointer is the first word of the object.
  581. *
  582. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  583. * 0xa5 (POISON_END)
  584. *
  585. * object + s->object_size
  586. * Padding to reach word boundary. This is also used for Redzoning.
  587. * Padding is extended by another word if Redzoning is enabled and
  588. * object_size == inuse.
  589. *
  590. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  591. * 0xcc (RED_ACTIVE) for objects in use.
  592. *
  593. * object + s->inuse
  594. * Meta data starts here.
  595. *
  596. * A. Free pointer (if we cannot overwrite object on free)
  597. * B. Tracking data for SLAB_STORE_USER
  598. * C. Padding to reach required alignment boundary or at mininum
  599. * one word if debugging is on to be able to detect writes
  600. * before the word boundary.
  601. *
  602. * Padding is done using 0x5a (POISON_INUSE)
  603. *
  604. * object + s->size
  605. * Nothing is used beyond s->size.
  606. *
  607. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  608. * ignored. And therefore no slab options that rely on these boundaries
  609. * may be used with merged slabcaches.
  610. */
  611. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  612. {
  613. unsigned long off = s->inuse; /* The end of info */
  614. if (s->offset)
  615. /* Freepointer is placed after the object. */
  616. off += sizeof(void *);
  617. if (s->flags & SLAB_STORE_USER)
  618. /* We also have user information there */
  619. off += 2 * sizeof(struct track);
  620. if (s->size == off)
  621. return 1;
  622. return check_bytes_and_report(s, page, p, "Object padding",
  623. p + off, POISON_INUSE, s->size - off);
  624. }
  625. /* Check the pad bytes at the end of a slab page */
  626. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  627. {
  628. u8 *start;
  629. u8 *fault;
  630. u8 *end;
  631. int length;
  632. int remainder;
  633. if (!(s->flags & SLAB_POISON))
  634. return 1;
  635. start = page_address(page);
  636. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  637. end = start + length;
  638. remainder = length % s->size;
  639. if (!remainder)
  640. return 1;
  641. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  642. if (!fault)
  643. return 1;
  644. while (end > fault && end[-1] == POISON_INUSE)
  645. end--;
  646. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  647. print_section("Padding ", end - remainder, remainder);
  648. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  649. return 0;
  650. }
  651. static int check_object(struct kmem_cache *s, struct page *page,
  652. void *object, u8 val)
  653. {
  654. u8 *p = object;
  655. u8 *endobject = object + s->object_size;
  656. if (s->flags & SLAB_RED_ZONE) {
  657. if (!check_bytes_and_report(s, page, object, "Redzone",
  658. endobject, val, s->inuse - s->object_size))
  659. return 0;
  660. } else {
  661. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  662. check_bytes_and_report(s, page, p, "Alignment padding",
  663. endobject, POISON_INUSE, s->inuse - s->object_size);
  664. }
  665. }
  666. if (s->flags & SLAB_POISON) {
  667. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  668. (!check_bytes_and_report(s, page, p, "Poison", p,
  669. POISON_FREE, s->object_size - 1) ||
  670. !check_bytes_and_report(s, page, p, "Poison",
  671. p + s->object_size - 1, POISON_END, 1)))
  672. return 0;
  673. /*
  674. * check_pad_bytes cleans up on its own.
  675. */
  676. check_pad_bytes(s, page, p);
  677. }
  678. if (!s->offset && val == SLUB_RED_ACTIVE)
  679. /*
  680. * Object and freepointer overlap. Cannot check
  681. * freepointer while object is allocated.
  682. */
  683. return 1;
  684. /* Check free pointer validity */
  685. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  686. object_err(s, page, p, "Freepointer corrupt");
  687. /*
  688. * No choice but to zap it and thus lose the remainder
  689. * of the free objects in this slab. May cause
  690. * another error because the object count is now wrong.
  691. */
  692. set_freepointer(s, p, NULL);
  693. return 0;
  694. }
  695. return 1;
  696. }
  697. static int check_slab(struct kmem_cache *s, struct page *page)
  698. {
  699. int maxobj;
  700. VM_BUG_ON(!irqs_disabled());
  701. if (!PageSlab(page)) {
  702. slab_err(s, page, "Not a valid slab page");
  703. return 0;
  704. }
  705. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  706. if (page->objects > maxobj) {
  707. slab_err(s, page, "objects %u > max %u",
  708. s->name, page->objects, maxobj);
  709. return 0;
  710. }
  711. if (page->inuse > page->objects) {
  712. slab_err(s, page, "inuse %u > max %u",
  713. s->name, page->inuse, page->objects);
  714. return 0;
  715. }
  716. /* Slab_pad_check fixes things up after itself */
  717. slab_pad_check(s, page);
  718. return 1;
  719. }
  720. /*
  721. * Determine if a certain object on a page is on the freelist. Must hold the
  722. * slab lock to guarantee that the chains are in a consistent state.
  723. */
  724. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  725. {
  726. int nr = 0;
  727. void *fp;
  728. void *object = NULL;
  729. unsigned long max_objects;
  730. fp = page->freelist;
  731. while (fp && nr <= page->objects) {
  732. if (fp == search)
  733. return 1;
  734. if (!check_valid_pointer(s, page, fp)) {
  735. if (object) {
  736. object_err(s, page, object,
  737. "Freechain corrupt");
  738. set_freepointer(s, object, NULL);
  739. break;
  740. } else {
  741. slab_err(s, page, "Freepointer corrupt");
  742. page->freelist = NULL;
  743. page->inuse = page->objects;
  744. slab_fix(s, "Freelist cleared");
  745. return 0;
  746. }
  747. break;
  748. }
  749. object = fp;
  750. fp = get_freepointer(s, object);
  751. nr++;
  752. }
  753. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  754. if (max_objects > MAX_OBJS_PER_PAGE)
  755. max_objects = MAX_OBJS_PER_PAGE;
  756. if (page->objects != max_objects) {
  757. slab_err(s, page, "Wrong number of objects. Found %d but "
  758. "should be %d", page->objects, max_objects);
  759. page->objects = max_objects;
  760. slab_fix(s, "Number of objects adjusted.");
  761. }
  762. if (page->inuse != page->objects - nr) {
  763. slab_err(s, page, "Wrong object count. Counter is %d but "
  764. "counted were %d", page->inuse, page->objects - nr);
  765. page->inuse = page->objects - nr;
  766. slab_fix(s, "Object count adjusted.");
  767. }
  768. return search == NULL;
  769. }
  770. static void trace(struct kmem_cache *s, struct page *page, void *object,
  771. int alloc)
  772. {
  773. if (s->flags & SLAB_TRACE) {
  774. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  775. s->name,
  776. alloc ? "alloc" : "free",
  777. object, page->inuse,
  778. page->freelist);
  779. if (!alloc)
  780. print_section("Object ", (void *)object, s->object_size);
  781. dump_stack();
  782. }
  783. }
  784. /*
  785. * Hooks for other subsystems that check memory allocations. In a typical
  786. * production configuration these hooks all should produce no code at all.
  787. */
  788. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  789. {
  790. flags &= gfp_allowed_mask;
  791. lockdep_trace_alloc(flags);
  792. might_sleep_if(flags & __GFP_WAIT);
  793. return should_failslab(s->object_size, flags, s->flags);
  794. }
  795. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  796. {
  797. flags &= gfp_allowed_mask;
  798. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  799. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  800. }
  801. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  802. {
  803. kmemleak_free_recursive(x, s->flags);
  804. /*
  805. * Trouble is that we may no longer disable interupts in the fast path
  806. * So in order to make the debug calls that expect irqs to be
  807. * disabled we need to disable interrupts temporarily.
  808. */
  809. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  810. {
  811. unsigned long flags;
  812. local_irq_save(flags);
  813. kmemcheck_slab_free(s, x, s->object_size);
  814. debug_check_no_locks_freed(x, s->object_size);
  815. local_irq_restore(flags);
  816. }
  817. #endif
  818. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  819. debug_check_no_obj_freed(x, s->object_size);
  820. }
  821. /*
  822. * Tracking of fully allocated slabs for debugging purposes.
  823. *
  824. * list_lock must be held.
  825. */
  826. static void add_full(struct kmem_cache *s,
  827. struct kmem_cache_node *n, struct page *page)
  828. {
  829. if (!(s->flags & SLAB_STORE_USER))
  830. return;
  831. list_add(&page->lru, &n->full);
  832. }
  833. /*
  834. * list_lock must be held.
  835. */
  836. static void remove_full(struct kmem_cache *s, struct page *page)
  837. {
  838. if (!(s->flags & SLAB_STORE_USER))
  839. return;
  840. list_del(&page->lru);
  841. }
  842. /* Tracking of the number of slabs for debugging purposes */
  843. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  844. {
  845. struct kmem_cache_node *n = get_node(s, node);
  846. return atomic_long_read(&n->nr_slabs);
  847. }
  848. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  849. {
  850. return atomic_long_read(&n->nr_slabs);
  851. }
  852. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  853. {
  854. struct kmem_cache_node *n = get_node(s, node);
  855. /*
  856. * May be called early in order to allocate a slab for the
  857. * kmem_cache_node structure. Solve the chicken-egg
  858. * dilemma by deferring the increment of the count during
  859. * bootstrap (see early_kmem_cache_node_alloc).
  860. */
  861. if (n) {
  862. atomic_long_inc(&n->nr_slabs);
  863. atomic_long_add(objects, &n->total_objects);
  864. }
  865. }
  866. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  867. {
  868. struct kmem_cache_node *n = get_node(s, node);
  869. atomic_long_dec(&n->nr_slabs);
  870. atomic_long_sub(objects, &n->total_objects);
  871. }
  872. /* Object debug checks for alloc/free paths */
  873. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  874. void *object)
  875. {
  876. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  877. return;
  878. init_object(s, object, SLUB_RED_INACTIVE);
  879. init_tracking(s, object);
  880. }
  881. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  882. void *object, unsigned long addr)
  883. {
  884. if (!check_slab(s, page))
  885. goto bad;
  886. if (!check_valid_pointer(s, page, object)) {
  887. object_err(s, page, object, "Freelist Pointer check fails");
  888. goto bad;
  889. }
  890. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  891. goto bad;
  892. /* Success perform special debug activities for allocs */
  893. if (s->flags & SLAB_STORE_USER)
  894. set_track(s, object, TRACK_ALLOC, addr);
  895. trace(s, page, object, 1);
  896. init_object(s, object, SLUB_RED_ACTIVE);
  897. return 1;
  898. bad:
  899. if (PageSlab(page)) {
  900. /*
  901. * If this is a slab page then lets do the best we can
  902. * to avoid issues in the future. Marking all objects
  903. * as used avoids touching the remaining objects.
  904. */
  905. slab_fix(s, "Marking all objects used");
  906. page->inuse = page->objects;
  907. page->freelist = NULL;
  908. }
  909. return 0;
  910. }
  911. static noinline struct kmem_cache_node *free_debug_processing(
  912. struct kmem_cache *s, struct page *page, void *object,
  913. unsigned long addr, unsigned long *flags)
  914. {
  915. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  916. spin_lock_irqsave(&n->list_lock, *flags);
  917. slab_lock(page);
  918. if (!check_slab(s, page))
  919. goto fail;
  920. if (!check_valid_pointer(s, page, object)) {
  921. slab_err(s, page, "Invalid object pointer 0x%p", object);
  922. goto fail;
  923. }
  924. if (on_freelist(s, page, object)) {
  925. object_err(s, page, object, "Object already free");
  926. goto fail;
  927. }
  928. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  929. goto out;
  930. if (unlikely(s != page->slab_cache)) {
  931. if (!PageSlab(page)) {
  932. slab_err(s, page, "Attempt to free object(0x%p) "
  933. "outside of slab", object);
  934. } else if (!page->slab_cache) {
  935. printk(KERN_ERR
  936. "SLUB <none>: no slab for object 0x%p.\n",
  937. object);
  938. dump_stack();
  939. } else
  940. object_err(s, page, object,
  941. "page slab pointer corrupt.");
  942. goto fail;
  943. }
  944. if (s->flags & SLAB_STORE_USER)
  945. set_track(s, object, TRACK_FREE, addr);
  946. trace(s, page, object, 0);
  947. init_object(s, object, SLUB_RED_INACTIVE);
  948. out:
  949. slab_unlock(page);
  950. /*
  951. * Keep node_lock to preserve integrity
  952. * until the object is actually freed
  953. */
  954. return n;
  955. fail:
  956. slab_unlock(page);
  957. spin_unlock_irqrestore(&n->list_lock, *flags);
  958. slab_fix(s, "Object at 0x%p not freed", object);
  959. return NULL;
  960. }
  961. static int __init setup_slub_debug(char *str)
  962. {
  963. slub_debug = DEBUG_DEFAULT_FLAGS;
  964. if (*str++ != '=' || !*str)
  965. /*
  966. * No options specified. Switch on full debugging.
  967. */
  968. goto out;
  969. if (*str == ',')
  970. /*
  971. * No options but restriction on slabs. This means full
  972. * debugging for slabs matching a pattern.
  973. */
  974. goto check_slabs;
  975. if (tolower(*str) == 'o') {
  976. /*
  977. * Avoid enabling debugging on caches if its minimum order
  978. * would increase as a result.
  979. */
  980. disable_higher_order_debug = 1;
  981. goto out;
  982. }
  983. slub_debug = 0;
  984. if (*str == '-')
  985. /*
  986. * Switch off all debugging measures.
  987. */
  988. goto out;
  989. /*
  990. * Determine which debug features should be switched on
  991. */
  992. for (; *str && *str != ','; str++) {
  993. switch (tolower(*str)) {
  994. case 'f':
  995. slub_debug |= SLAB_DEBUG_FREE;
  996. break;
  997. case 'z':
  998. slub_debug |= SLAB_RED_ZONE;
  999. break;
  1000. case 'p':
  1001. slub_debug |= SLAB_POISON;
  1002. break;
  1003. case 'u':
  1004. slub_debug |= SLAB_STORE_USER;
  1005. break;
  1006. case 't':
  1007. slub_debug |= SLAB_TRACE;
  1008. break;
  1009. case 'a':
  1010. slub_debug |= SLAB_FAILSLAB;
  1011. break;
  1012. default:
  1013. printk(KERN_ERR "slub_debug option '%c' "
  1014. "unknown. skipped\n", *str);
  1015. }
  1016. }
  1017. check_slabs:
  1018. if (*str == ',')
  1019. slub_debug_slabs = str + 1;
  1020. out:
  1021. return 1;
  1022. }
  1023. __setup("slub_debug", setup_slub_debug);
  1024. static unsigned long kmem_cache_flags(unsigned long object_size,
  1025. unsigned long flags, const char *name,
  1026. void (*ctor)(void *))
  1027. {
  1028. /*
  1029. * Enable debugging if selected on the kernel commandline.
  1030. */
  1031. if (slub_debug && (!slub_debug_slabs ||
  1032. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1033. flags |= slub_debug;
  1034. return flags;
  1035. }
  1036. #else
  1037. static inline void setup_object_debug(struct kmem_cache *s,
  1038. struct page *page, void *object) {}
  1039. static inline int alloc_debug_processing(struct kmem_cache *s,
  1040. struct page *page, void *object, unsigned long addr) { return 0; }
  1041. static inline struct kmem_cache_node *free_debug_processing(
  1042. struct kmem_cache *s, struct page *page, void *object,
  1043. unsigned long addr, unsigned long *flags) { return NULL; }
  1044. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1045. { return 1; }
  1046. static inline int check_object(struct kmem_cache *s, struct page *page,
  1047. void *object, u8 val) { return 1; }
  1048. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1049. struct page *page) {}
  1050. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1051. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1052. unsigned long flags, const char *name,
  1053. void (*ctor)(void *))
  1054. {
  1055. return flags;
  1056. }
  1057. #define slub_debug 0
  1058. #define disable_higher_order_debug 0
  1059. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1060. { return 0; }
  1061. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1062. { return 0; }
  1063. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1064. int objects) {}
  1065. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1066. int objects) {}
  1067. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1068. { return 0; }
  1069. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1070. void *object) {}
  1071. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1072. #endif /* CONFIG_SLUB_DEBUG */
  1073. /*
  1074. * Slab allocation and freeing
  1075. */
  1076. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1077. struct kmem_cache_order_objects oo)
  1078. {
  1079. int order = oo_order(oo);
  1080. flags |= __GFP_NOTRACK;
  1081. if (node == NUMA_NO_NODE)
  1082. return alloc_pages(flags, order);
  1083. else
  1084. return alloc_pages_exact_node(node, flags, order);
  1085. }
  1086. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1087. {
  1088. struct page *page;
  1089. struct kmem_cache_order_objects oo = s->oo;
  1090. gfp_t alloc_gfp;
  1091. flags &= gfp_allowed_mask;
  1092. if (flags & __GFP_WAIT)
  1093. local_irq_enable();
  1094. flags |= s->allocflags;
  1095. /*
  1096. * Let the initial higher-order allocation fail under memory pressure
  1097. * so we fall-back to the minimum order allocation.
  1098. */
  1099. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1100. page = alloc_slab_page(alloc_gfp, node, oo);
  1101. if (unlikely(!page)) {
  1102. oo = s->min;
  1103. /*
  1104. * Allocation may have failed due to fragmentation.
  1105. * Try a lower order alloc if possible
  1106. */
  1107. page = alloc_slab_page(flags, node, oo);
  1108. if (page)
  1109. stat(s, ORDER_FALLBACK);
  1110. }
  1111. if (kmemcheck_enabled && page
  1112. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1113. int pages = 1 << oo_order(oo);
  1114. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1115. /*
  1116. * Objects from caches that have a constructor don't get
  1117. * cleared when they're allocated, so we need to do it here.
  1118. */
  1119. if (s->ctor)
  1120. kmemcheck_mark_uninitialized_pages(page, pages);
  1121. else
  1122. kmemcheck_mark_unallocated_pages(page, pages);
  1123. }
  1124. if (flags & __GFP_WAIT)
  1125. local_irq_disable();
  1126. if (!page)
  1127. return NULL;
  1128. page->objects = oo_objects(oo);
  1129. mod_zone_page_state(page_zone(page),
  1130. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1131. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1132. 1 << oo_order(oo));
  1133. return page;
  1134. }
  1135. static void setup_object(struct kmem_cache *s, struct page *page,
  1136. void *object)
  1137. {
  1138. setup_object_debug(s, page, object);
  1139. if (unlikely(s->ctor))
  1140. s->ctor(object);
  1141. }
  1142. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1143. {
  1144. struct page *page;
  1145. void *start;
  1146. void *last;
  1147. void *p;
  1148. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1149. page = allocate_slab(s,
  1150. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1151. if (!page)
  1152. goto out;
  1153. inc_slabs_node(s, page_to_nid(page), page->objects);
  1154. page->slab_cache = s;
  1155. __SetPageSlab(page);
  1156. if (page->pfmemalloc)
  1157. SetPageSlabPfmemalloc(page);
  1158. start = page_address(page);
  1159. if (unlikely(s->flags & SLAB_POISON))
  1160. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1161. last = start;
  1162. for_each_object(p, s, start, page->objects) {
  1163. setup_object(s, page, last);
  1164. set_freepointer(s, last, p);
  1165. last = p;
  1166. }
  1167. setup_object(s, page, last);
  1168. set_freepointer(s, last, NULL);
  1169. page->freelist = start;
  1170. page->inuse = page->objects;
  1171. page->frozen = 1;
  1172. out:
  1173. return page;
  1174. }
  1175. static void __free_slab(struct kmem_cache *s, struct page *page)
  1176. {
  1177. int order = compound_order(page);
  1178. int pages = 1 << order;
  1179. if (kmem_cache_debug(s)) {
  1180. void *p;
  1181. slab_pad_check(s, page);
  1182. for_each_object(p, s, page_address(page),
  1183. page->objects)
  1184. check_object(s, page, p, SLUB_RED_INACTIVE);
  1185. }
  1186. kmemcheck_free_shadow(page, compound_order(page));
  1187. mod_zone_page_state(page_zone(page),
  1188. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1189. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1190. -pages);
  1191. __ClearPageSlabPfmemalloc(page);
  1192. __ClearPageSlab(page);
  1193. reset_page_mapcount(page);
  1194. if (current->reclaim_state)
  1195. current->reclaim_state->reclaimed_slab += pages;
  1196. __free_pages(page, order);
  1197. }
  1198. #define need_reserve_slab_rcu \
  1199. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1200. static void rcu_free_slab(struct rcu_head *h)
  1201. {
  1202. struct page *page;
  1203. if (need_reserve_slab_rcu)
  1204. page = virt_to_head_page(h);
  1205. else
  1206. page = container_of((struct list_head *)h, struct page, lru);
  1207. __free_slab(page->slab_cache, page);
  1208. }
  1209. static void free_slab(struct kmem_cache *s, struct page *page)
  1210. {
  1211. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1212. struct rcu_head *head;
  1213. if (need_reserve_slab_rcu) {
  1214. int order = compound_order(page);
  1215. int offset = (PAGE_SIZE << order) - s->reserved;
  1216. VM_BUG_ON(s->reserved != sizeof(*head));
  1217. head = page_address(page) + offset;
  1218. } else {
  1219. /*
  1220. * RCU free overloads the RCU head over the LRU
  1221. */
  1222. head = (void *)&page->lru;
  1223. }
  1224. call_rcu(head, rcu_free_slab);
  1225. } else
  1226. __free_slab(s, page);
  1227. }
  1228. static void discard_slab(struct kmem_cache *s, struct page *page)
  1229. {
  1230. dec_slabs_node(s, page_to_nid(page), page->objects);
  1231. free_slab(s, page);
  1232. }
  1233. /*
  1234. * Management of partially allocated slabs.
  1235. *
  1236. * list_lock must be held.
  1237. */
  1238. static inline void add_partial(struct kmem_cache_node *n,
  1239. struct page *page, int tail)
  1240. {
  1241. n->nr_partial++;
  1242. if (tail == DEACTIVATE_TO_TAIL)
  1243. list_add_tail(&page->lru, &n->partial);
  1244. else
  1245. list_add(&page->lru, &n->partial);
  1246. }
  1247. /*
  1248. * list_lock must be held.
  1249. */
  1250. static inline void remove_partial(struct kmem_cache_node *n,
  1251. struct page *page)
  1252. {
  1253. list_del(&page->lru);
  1254. n->nr_partial--;
  1255. }
  1256. /*
  1257. * Remove slab from the partial list, freeze it and
  1258. * return the pointer to the freelist.
  1259. *
  1260. * Returns a list of objects or NULL if it fails.
  1261. *
  1262. * Must hold list_lock since we modify the partial list.
  1263. */
  1264. static inline void *acquire_slab(struct kmem_cache *s,
  1265. struct kmem_cache_node *n, struct page *page,
  1266. int mode)
  1267. {
  1268. void *freelist;
  1269. unsigned long counters;
  1270. struct page new;
  1271. /*
  1272. * Zap the freelist and set the frozen bit.
  1273. * The old freelist is the list of objects for the
  1274. * per cpu allocation list.
  1275. */
  1276. freelist = page->freelist;
  1277. counters = page->counters;
  1278. new.counters = counters;
  1279. if (mode) {
  1280. new.inuse = page->objects;
  1281. new.freelist = NULL;
  1282. } else {
  1283. new.freelist = freelist;
  1284. }
  1285. VM_BUG_ON(new.frozen);
  1286. new.frozen = 1;
  1287. if (!__cmpxchg_double_slab(s, page,
  1288. freelist, counters,
  1289. new.freelist, new.counters,
  1290. "acquire_slab"))
  1291. return NULL;
  1292. remove_partial(n, page);
  1293. WARN_ON(!freelist);
  1294. return freelist;
  1295. }
  1296. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1297. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1298. /*
  1299. * Try to allocate a partial slab from a specific node.
  1300. */
  1301. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1302. struct kmem_cache_cpu *c, gfp_t flags)
  1303. {
  1304. struct page *page, *page2;
  1305. void *object = NULL;
  1306. /*
  1307. * Racy check. If we mistakenly see no partial slabs then we
  1308. * just allocate an empty slab. If we mistakenly try to get a
  1309. * partial slab and there is none available then get_partials()
  1310. * will return NULL.
  1311. */
  1312. if (!n || !n->nr_partial)
  1313. return NULL;
  1314. spin_lock(&n->list_lock);
  1315. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1316. void *t;
  1317. int available;
  1318. if (!pfmemalloc_match(page, flags))
  1319. continue;
  1320. t = acquire_slab(s, n, page, object == NULL);
  1321. if (!t)
  1322. break;
  1323. if (!object) {
  1324. c->page = page;
  1325. stat(s, ALLOC_FROM_PARTIAL);
  1326. object = t;
  1327. available = page->objects - page->inuse;
  1328. } else {
  1329. available = put_cpu_partial(s, page, 0);
  1330. stat(s, CPU_PARTIAL_NODE);
  1331. }
  1332. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1333. break;
  1334. }
  1335. spin_unlock(&n->list_lock);
  1336. return object;
  1337. }
  1338. /*
  1339. * Get a page from somewhere. Search in increasing NUMA distances.
  1340. */
  1341. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1342. struct kmem_cache_cpu *c)
  1343. {
  1344. #ifdef CONFIG_NUMA
  1345. struct zonelist *zonelist;
  1346. struct zoneref *z;
  1347. struct zone *zone;
  1348. enum zone_type high_zoneidx = gfp_zone(flags);
  1349. void *object;
  1350. unsigned int cpuset_mems_cookie;
  1351. /*
  1352. * The defrag ratio allows a configuration of the tradeoffs between
  1353. * inter node defragmentation and node local allocations. A lower
  1354. * defrag_ratio increases the tendency to do local allocations
  1355. * instead of attempting to obtain partial slabs from other nodes.
  1356. *
  1357. * If the defrag_ratio is set to 0 then kmalloc() always
  1358. * returns node local objects. If the ratio is higher then kmalloc()
  1359. * may return off node objects because partial slabs are obtained
  1360. * from other nodes and filled up.
  1361. *
  1362. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1363. * defrag_ratio = 1000) then every (well almost) allocation will
  1364. * first attempt to defrag slab caches on other nodes. This means
  1365. * scanning over all nodes to look for partial slabs which may be
  1366. * expensive if we do it every time we are trying to find a slab
  1367. * with available objects.
  1368. */
  1369. if (!s->remote_node_defrag_ratio ||
  1370. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1371. return NULL;
  1372. do {
  1373. cpuset_mems_cookie = get_mems_allowed();
  1374. zonelist = node_zonelist(slab_node(), flags);
  1375. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1376. struct kmem_cache_node *n;
  1377. n = get_node(s, zone_to_nid(zone));
  1378. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1379. n->nr_partial > s->min_partial) {
  1380. object = get_partial_node(s, n, c, flags);
  1381. if (object) {
  1382. /*
  1383. * Return the object even if
  1384. * put_mems_allowed indicated that
  1385. * the cpuset mems_allowed was
  1386. * updated in parallel. It's a
  1387. * harmless race between the alloc
  1388. * and the cpuset update.
  1389. */
  1390. put_mems_allowed(cpuset_mems_cookie);
  1391. return object;
  1392. }
  1393. }
  1394. }
  1395. } while (!put_mems_allowed(cpuset_mems_cookie));
  1396. #endif
  1397. return NULL;
  1398. }
  1399. /*
  1400. * Get a partial page, lock it and return it.
  1401. */
  1402. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1403. struct kmem_cache_cpu *c)
  1404. {
  1405. void *object;
  1406. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1407. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1408. if (object || node != NUMA_NO_NODE)
  1409. return object;
  1410. return get_any_partial(s, flags, c);
  1411. }
  1412. #ifdef CONFIG_PREEMPT
  1413. /*
  1414. * Calculate the next globally unique transaction for disambiguiation
  1415. * during cmpxchg. The transactions start with the cpu number and are then
  1416. * incremented by CONFIG_NR_CPUS.
  1417. */
  1418. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1419. #else
  1420. /*
  1421. * No preemption supported therefore also no need to check for
  1422. * different cpus.
  1423. */
  1424. #define TID_STEP 1
  1425. #endif
  1426. static inline unsigned long next_tid(unsigned long tid)
  1427. {
  1428. return tid + TID_STEP;
  1429. }
  1430. static inline unsigned int tid_to_cpu(unsigned long tid)
  1431. {
  1432. return tid % TID_STEP;
  1433. }
  1434. static inline unsigned long tid_to_event(unsigned long tid)
  1435. {
  1436. return tid / TID_STEP;
  1437. }
  1438. static inline unsigned int init_tid(int cpu)
  1439. {
  1440. return cpu;
  1441. }
  1442. static inline void note_cmpxchg_failure(const char *n,
  1443. const struct kmem_cache *s, unsigned long tid)
  1444. {
  1445. #ifdef SLUB_DEBUG_CMPXCHG
  1446. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1447. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1448. #ifdef CONFIG_PREEMPT
  1449. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1450. printk("due to cpu change %d -> %d\n",
  1451. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1452. else
  1453. #endif
  1454. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1455. printk("due to cpu running other code. Event %ld->%ld\n",
  1456. tid_to_event(tid), tid_to_event(actual_tid));
  1457. else
  1458. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1459. actual_tid, tid, next_tid(tid));
  1460. #endif
  1461. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1462. }
  1463. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1464. {
  1465. int cpu;
  1466. for_each_possible_cpu(cpu)
  1467. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1468. }
  1469. /*
  1470. * Remove the cpu slab
  1471. */
  1472. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1473. {
  1474. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1475. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1476. int lock = 0;
  1477. enum slab_modes l = M_NONE, m = M_NONE;
  1478. void *nextfree;
  1479. int tail = DEACTIVATE_TO_HEAD;
  1480. struct page new;
  1481. struct page old;
  1482. if (page->freelist) {
  1483. stat(s, DEACTIVATE_REMOTE_FREES);
  1484. tail = DEACTIVATE_TO_TAIL;
  1485. }
  1486. /*
  1487. * Stage one: Free all available per cpu objects back
  1488. * to the page freelist while it is still frozen. Leave the
  1489. * last one.
  1490. *
  1491. * There is no need to take the list->lock because the page
  1492. * is still frozen.
  1493. */
  1494. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1495. void *prior;
  1496. unsigned long counters;
  1497. do {
  1498. prior = page->freelist;
  1499. counters = page->counters;
  1500. set_freepointer(s, freelist, prior);
  1501. new.counters = counters;
  1502. new.inuse--;
  1503. VM_BUG_ON(!new.frozen);
  1504. } while (!__cmpxchg_double_slab(s, page,
  1505. prior, counters,
  1506. freelist, new.counters,
  1507. "drain percpu freelist"));
  1508. freelist = nextfree;
  1509. }
  1510. /*
  1511. * Stage two: Ensure that the page is unfrozen while the
  1512. * list presence reflects the actual number of objects
  1513. * during unfreeze.
  1514. *
  1515. * We setup the list membership and then perform a cmpxchg
  1516. * with the count. If there is a mismatch then the page
  1517. * is not unfrozen but the page is on the wrong list.
  1518. *
  1519. * Then we restart the process which may have to remove
  1520. * the page from the list that we just put it on again
  1521. * because the number of objects in the slab may have
  1522. * changed.
  1523. */
  1524. redo:
  1525. old.freelist = page->freelist;
  1526. old.counters = page->counters;
  1527. VM_BUG_ON(!old.frozen);
  1528. /* Determine target state of the slab */
  1529. new.counters = old.counters;
  1530. if (freelist) {
  1531. new.inuse--;
  1532. set_freepointer(s, freelist, old.freelist);
  1533. new.freelist = freelist;
  1534. } else
  1535. new.freelist = old.freelist;
  1536. new.frozen = 0;
  1537. if (!new.inuse && n->nr_partial > s->min_partial)
  1538. m = M_FREE;
  1539. else if (new.freelist) {
  1540. m = M_PARTIAL;
  1541. if (!lock) {
  1542. lock = 1;
  1543. /*
  1544. * Taking the spinlock removes the possiblity
  1545. * that acquire_slab() will see a slab page that
  1546. * is frozen
  1547. */
  1548. spin_lock(&n->list_lock);
  1549. }
  1550. } else {
  1551. m = M_FULL;
  1552. if (kmem_cache_debug(s) && !lock) {
  1553. lock = 1;
  1554. /*
  1555. * This also ensures that the scanning of full
  1556. * slabs from diagnostic functions will not see
  1557. * any frozen slabs.
  1558. */
  1559. spin_lock(&n->list_lock);
  1560. }
  1561. }
  1562. if (l != m) {
  1563. if (l == M_PARTIAL)
  1564. remove_partial(n, page);
  1565. else if (l == M_FULL)
  1566. remove_full(s, page);
  1567. if (m == M_PARTIAL) {
  1568. add_partial(n, page, tail);
  1569. stat(s, tail);
  1570. } else if (m == M_FULL) {
  1571. stat(s, DEACTIVATE_FULL);
  1572. add_full(s, n, page);
  1573. }
  1574. }
  1575. l = m;
  1576. if (!__cmpxchg_double_slab(s, page,
  1577. old.freelist, old.counters,
  1578. new.freelist, new.counters,
  1579. "unfreezing slab"))
  1580. goto redo;
  1581. if (lock)
  1582. spin_unlock(&n->list_lock);
  1583. if (m == M_FREE) {
  1584. stat(s, DEACTIVATE_EMPTY);
  1585. discard_slab(s, page);
  1586. stat(s, FREE_SLAB);
  1587. }
  1588. }
  1589. /*
  1590. * Unfreeze all the cpu partial slabs.
  1591. *
  1592. * This function must be called with interrupts disabled
  1593. * for the cpu using c (or some other guarantee must be there
  1594. * to guarantee no concurrent accesses).
  1595. */
  1596. static void unfreeze_partials(struct kmem_cache *s,
  1597. struct kmem_cache_cpu *c)
  1598. {
  1599. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1600. struct page *page, *discard_page = NULL;
  1601. while ((page = c->partial)) {
  1602. struct page new;
  1603. struct page old;
  1604. c->partial = page->next;
  1605. n2 = get_node(s, page_to_nid(page));
  1606. if (n != n2) {
  1607. if (n)
  1608. spin_unlock(&n->list_lock);
  1609. n = n2;
  1610. spin_lock(&n->list_lock);
  1611. }
  1612. do {
  1613. old.freelist = page->freelist;
  1614. old.counters = page->counters;
  1615. VM_BUG_ON(!old.frozen);
  1616. new.counters = old.counters;
  1617. new.freelist = old.freelist;
  1618. new.frozen = 0;
  1619. } while (!__cmpxchg_double_slab(s, page,
  1620. old.freelist, old.counters,
  1621. new.freelist, new.counters,
  1622. "unfreezing slab"));
  1623. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1624. page->next = discard_page;
  1625. discard_page = page;
  1626. } else {
  1627. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1628. stat(s, FREE_ADD_PARTIAL);
  1629. }
  1630. }
  1631. if (n)
  1632. spin_unlock(&n->list_lock);
  1633. while (discard_page) {
  1634. page = discard_page;
  1635. discard_page = discard_page->next;
  1636. stat(s, DEACTIVATE_EMPTY);
  1637. discard_slab(s, page);
  1638. stat(s, FREE_SLAB);
  1639. }
  1640. }
  1641. /*
  1642. * Put a page that was just frozen (in __slab_free) into a partial page
  1643. * slot if available. This is done without interrupts disabled and without
  1644. * preemption disabled. The cmpxchg is racy and may put the partial page
  1645. * onto a random cpus partial slot.
  1646. *
  1647. * If we did not find a slot then simply move all the partials to the
  1648. * per node partial list.
  1649. */
  1650. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1651. {
  1652. struct page *oldpage;
  1653. int pages;
  1654. int pobjects;
  1655. do {
  1656. pages = 0;
  1657. pobjects = 0;
  1658. oldpage = this_cpu_read(s->cpu_slab->partial);
  1659. if (oldpage) {
  1660. pobjects = oldpage->pobjects;
  1661. pages = oldpage->pages;
  1662. if (drain && pobjects > s->cpu_partial) {
  1663. unsigned long flags;
  1664. /*
  1665. * partial array is full. Move the existing
  1666. * set to the per node partial list.
  1667. */
  1668. local_irq_save(flags);
  1669. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1670. local_irq_restore(flags);
  1671. oldpage = NULL;
  1672. pobjects = 0;
  1673. pages = 0;
  1674. stat(s, CPU_PARTIAL_DRAIN);
  1675. }
  1676. }
  1677. pages++;
  1678. pobjects += page->objects - page->inuse;
  1679. page->pages = pages;
  1680. page->pobjects = pobjects;
  1681. page->next = oldpage;
  1682. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1683. return pobjects;
  1684. }
  1685. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1686. {
  1687. stat(s, CPUSLAB_FLUSH);
  1688. deactivate_slab(s, c->page, c->freelist);
  1689. c->tid = next_tid(c->tid);
  1690. c->page = NULL;
  1691. c->freelist = NULL;
  1692. }
  1693. /*
  1694. * Flush cpu slab.
  1695. *
  1696. * Called from IPI handler with interrupts disabled.
  1697. */
  1698. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1699. {
  1700. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1701. if (likely(c)) {
  1702. if (c->page)
  1703. flush_slab(s, c);
  1704. unfreeze_partials(s, c);
  1705. }
  1706. }
  1707. static void flush_cpu_slab(void *d)
  1708. {
  1709. struct kmem_cache *s = d;
  1710. __flush_cpu_slab(s, smp_processor_id());
  1711. }
  1712. static bool has_cpu_slab(int cpu, void *info)
  1713. {
  1714. struct kmem_cache *s = info;
  1715. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1716. return c->page || c->partial;
  1717. }
  1718. static void flush_all(struct kmem_cache *s)
  1719. {
  1720. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1721. }
  1722. /*
  1723. * Check if the objects in a per cpu structure fit numa
  1724. * locality expectations.
  1725. */
  1726. static inline int node_match(struct page *page, int node)
  1727. {
  1728. #ifdef CONFIG_NUMA
  1729. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1730. return 0;
  1731. #endif
  1732. return 1;
  1733. }
  1734. static int count_free(struct page *page)
  1735. {
  1736. return page->objects - page->inuse;
  1737. }
  1738. static unsigned long count_partial(struct kmem_cache_node *n,
  1739. int (*get_count)(struct page *))
  1740. {
  1741. unsigned long flags;
  1742. unsigned long x = 0;
  1743. struct page *page;
  1744. spin_lock_irqsave(&n->list_lock, flags);
  1745. list_for_each_entry(page, &n->partial, lru)
  1746. x += get_count(page);
  1747. spin_unlock_irqrestore(&n->list_lock, flags);
  1748. return x;
  1749. }
  1750. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1751. {
  1752. #ifdef CONFIG_SLUB_DEBUG
  1753. return atomic_long_read(&n->total_objects);
  1754. #else
  1755. return 0;
  1756. #endif
  1757. }
  1758. static noinline void
  1759. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1760. {
  1761. int node;
  1762. printk(KERN_WARNING
  1763. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1764. nid, gfpflags);
  1765. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1766. "default order: %d, min order: %d\n", s->name, s->object_size,
  1767. s->size, oo_order(s->oo), oo_order(s->min));
  1768. if (oo_order(s->min) > get_order(s->object_size))
  1769. printk(KERN_WARNING " %s debugging increased min order, use "
  1770. "slub_debug=O to disable.\n", s->name);
  1771. for_each_online_node(node) {
  1772. struct kmem_cache_node *n = get_node(s, node);
  1773. unsigned long nr_slabs;
  1774. unsigned long nr_objs;
  1775. unsigned long nr_free;
  1776. if (!n)
  1777. continue;
  1778. nr_free = count_partial(n, count_free);
  1779. nr_slabs = node_nr_slabs(n);
  1780. nr_objs = node_nr_objs(n);
  1781. printk(KERN_WARNING
  1782. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1783. node, nr_slabs, nr_objs, nr_free);
  1784. }
  1785. }
  1786. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1787. int node, struct kmem_cache_cpu **pc)
  1788. {
  1789. void *freelist;
  1790. struct kmem_cache_cpu *c = *pc;
  1791. struct page *page;
  1792. freelist = get_partial(s, flags, node, c);
  1793. if (freelist)
  1794. return freelist;
  1795. page = new_slab(s, flags, node);
  1796. if (page) {
  1797. c = __this_cpu_ptr(s->cpu_slab);
  1798. if (c->page)
  1799. flush_slab(s, c);
  1800. /*
  1801. * No other reference to the page yet so we can
  1802. * muck around with it freely without cmpxchg
  1803. */
  1804. freelist = page->freelist;
  1805. page->freelist = NULL;
  1806. stat(s, ALLOC_SLAB);
  1807. c->page = page;
  1808. *pc = c;
  1809. } else
  1810. freelist = NULL;
  1811. return freelist;
  1812. }
  1813. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1814. {
  1815. if (unlikely(PageSlabPfmemalloc(page)))
  1816. return gfp_pfmemalloc_allowed(gfpflags);
  1817. return true;
  1818. }
  1819. /*
  1820. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1821. * or deactivate the page.
  1822. *
  1823. * The page is still frozen if the return value is not NULL.
  1824. *
  1825. * If this function returns NULL then the page has been unfrozen.
  1826. *
  1827. * This function must be called with interrupt disabled.
  1828. */
  1829. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1830. {
  1831. struct page new;
  1832. unsigned long counters;
  1833. void *freelist;
  1834. do {
  1835. freelist = page->freelist;
  1836. counters = page->counters;
  1837. new.counters = counters;
  1838. VM_BUG_ON(!new.frozen);
  1839. new.inuse = page->objects;
  1840. new.frozen = freelist != NULL;
  1841. } while (!__cmpxchg_double_slab(s, page,
  1842. freelist, counters,
  1843. NULL, new.counters,
  1844. "get_freelist"));
  1845. return freelist;
  1846. }
  1847. /*
  1848. * Slow path. The lockless freelist is empty or we need to perform
  1849. * debugging duties.
  1850. *
  1851. * Processing is still very fast if new objects have been freed to the
  1852. * regular freelist. In that case we simply take over the regular freelist
  1853. * as the lockless freelist and zap the regular freelist.
  1854. *
  1855. * If that is not working then we fall back to the partial lists. We take the
  1856. * first element of the freelist as the object to allocate now and move the
  1857. * rest of the freelist to the lockless freelist.
  1858. *
  1859. * And if we were unable to get a new slab from the partial slab lists then
  1860. * we need to allocate a new slab. This is the slowest path since it involves
  1861. * a call to the page allocator and the setup of a new slab.
  1862. */
  1863. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1864. unsigned long addr, struct kmem_cache_cpu *c)
  1865. {
  1866. void *freelist;
  1867. struct page *page;
  1868. unsigned long flags;
  1869. local_irq_save(flags);
  1870. #ifdef CONFIG_PREEMPT
  1871. /*
  1872. * We may have been preempted and rescheduled on a different
  1873. * cpu before disabling interrupts. Need to reload cpu area
  1874. * pointer.
  1875. */
  1876. c = this_cpu_ptr(s->cpu_slab);
  1877. #endif
  1878. page = c->page;
  1879. if (!page)
  1880. goto new_slab;
  1881. redo:
  1882. if (unlikely(!node_match(page, node))) {
  1883. stat(s, ALLOC_NODE_MISMATCH);
  1884. deactivate_slab(s, page, c->freelist);
  1885. c->page = NULL;
  1886. c->freelist = NULL;
  1887. goto new_slab;
  1888. }
  1889. /*
  1890. * By rights, we should be searching for a slab page that was
  1891. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1892. * information when the page leaves the per-cpu allocator
  1893. */
  1894. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1895. deactivate_slab(s, page, c->freelist);
  1896. c->page = NULL;
  1897. c->freelist = NULL;
  1898. goto new_slab;
  1899. }
  1900. /* must check again c->freelist in case of cpu migration or IRQ */
  1901. freelist = c->freelist;
  1902. if (freelist)
  1903. goto load_freelist;
  1904. stat(s, ALLOC_SLOWPATH);
  1905. freelist = get_freelist(s, page);
  1906. if (!freelist) {
  1907. c->page = NULL;
  1908. stat(s, DEACTIVATE_BYPASS);
  1909. goto new_slab;
  1910. }
  1911. stat(s, ALLOC_REFILL);
  1912. load_freelist:
  1913. /*
  1914. * freelist is pointing to the list of objects to be used.
  1915. * page is pointing to the page from which the objects are obtained.
  1916. * That page must be frozen for per cpu allocations to work.
  1917. */
  1918. VM_BUG_ON(!c->page->frozen);
  1919. c->freelist = get_freepointer(s, freelist);
  1920. c->tid = next_tid(c->tid);
  1921. local_irq_restore(flags);
  1922. return freelist;
  1923. new_slab:
  1924. if (c->partial) {
  1925. page = c->page = c->partial;
  1926. c->partial = page->next;
  1927. stat(s, CPU_PARTIAL_ALLOC);
  1928. c->freelist = NULL;
  1929. goto redo;
  1930. }
  1931. freelist = new_slab_objects(s, gfpflags, node, &c);
  1932. if (unlikely(!freelist)) {
  1933. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1934. slab_out_of_memory(s, gfpflags, node);
  1935. local_irq_restore(flags);
  1936. return NULL;
  1937. }
  1938. page = c->page;
  1939. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1940. goto load_freelist;
  1941. /* Only entered in the debug case */
  1942. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1943. goto new_slab; /* Slab failed checks. Next slab needed */
  1944. deactivate_slab(s, page, get_freepointer(s, freelist));
  1945. c->page = NULL;
  1946. c->freelist = NULL;
  1947. local_irq_restore(flags);
  1948. return freelist;
  1949. }
  1950. /*
  1951. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1952. * have the fastpath folded into their functions. So no function call
  1953. * overhead for requests that can be satisfied on the fastpath.
  1954. *
  1955. * The fastpath works by first checking if the lockless freelist can be used.
  1956. * If not then __slab_alloc is called for slow processing.
  1957. *
  1958. * Otherwise we can simply pick the next object from the lockless free list.
  1959. */
  1960. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1961. gfp_t gfpflags, int node, unsigned long addr)
  1962. {
  1963. void **object;
  1964. struct kmem_cache_cpu *c;
  1965. struct page *page;
  1966. unsigned long tid;
  1967. if (slab_pre_alloc_hook(s, gfpflags))
  1968. return NULL;
  1969. redo:
  1970. /*
  1971. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1972. * enabled. We may switch back and forth between cpus while
  1973. * reading from one cpu area. That does not matter as long
  1974. * as we end up on the original cpu again when doing the cmpxchg.
  1975. */
  1976. c = __this_cpu_ptr(s->cpu_slab);
  1977. /*
  1978. * The transaction ids are globally unique per cpu and per operation on
  1979. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1980. * occurs on the right processor and that there was no operation on the
  1981. * linked list in between.
  1982. */
  1983. tid = c->tid;
  1984. barrier();
  1985. object = c->freelist;
  1986. page = c->page;
  1987. if (unlikely(!object || !node_match(page, node)))
  1988. object = __slab_alloc(s, gfpflags, node, addr, c);
  1989. else {
  1990. void *next_object = get_freepointer_safe(s, object);
  1991. /*
  1992. * The cmpxchg will only match if there was no additional
  1993. * operation and if we are on the right processor.
  1994. *
  1995. * The cmpxchg does the following atomically (without lock semantics!)
  1996. * 1. Relocate first pointer to the current per cpu area.
  1997. * 2. Verify that tid and freelist have not been changed
  1998. * 3. If they were not changed replace tid and freelist
  1999. *
  2000. * Since this is without lock semantics the protection is only against
  2001. * code executing on this cpu *not* from access by other cpus.
  2002. */
  2003. if (unlikely(!this_cpu_cmpxchg_double(
  2004. s->cpu_slab->freelist, s->cpu_slab->tid,
  2005. object, tid,
  2006. next_object, next_tid(tid)))) {
  2007. note_cmpxchg_failure("slab_alloc", s, tid);
  2008. goto redo;
  2009. }
  2010. prefetch_freepointer(s, next_object);
  2011. stat(s, ALLOC_FASTPATH);
  2012. }
  2013. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2014. memset(object, 0, s->object_size);
  2015. slab_post_alloc_hook(s, gfpflags, object);
  2016. return object;
  2017. }
  2018. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2019. gfp_t gfpflags, unsigned long addr)
  2020. {
  2021. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2022. }
  2023. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2024. {
  2025. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2026. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2027. return ret;
  2028. }
  2029. EXPORT_SYMBOL(kmem_cache_alloc);
  2030. #ifdef CONFIG_TRACING
  2031. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2032. {
  2033. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2034. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2035. return ret;
  2036. }
  2037. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2038. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2039. {
  2040. void *ret = kmalloc_order(size, flags, order);
  2041. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2042. return ret;
  2043. }
  2044. EXPORT_SYMBOL(kmalloc_order_trace);
  2045. #endif
  2046. #ifdef CONFIG_NUMA
  2047. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2048. {
  2049. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2050. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2051. s->object_size, s->size, gfpflags, node);
  2052. return ret;
  2053. }
  2054. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2055. #ifdef CONFIG_TRACING
  2056. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2057. gfp_t gfpflags,
  2058. int node, size_t size)
  2059. {
  2060. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2061. trace_kmalloc_node(_RET_IP_, ret,
  2062. size, s->size, gfpflags, node);
  2063. return ret;
  2064. }
  2065. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2066. #endif
  2067. #endif
  2068. /*
  2069. * Slow patch handling. This may still be called frequently since objects
  2070. * have a longer lifetime than the cpu slabs in most processing loads.
  2071. *
  2072. * So we still attempt to reduce cache line usage. Just take the slab
  2073. * lock and free the item. If there is no additional partial page
  2074. * handling required then we can return immediately.
  2075. */
  2076. static void __slab_free(struct kmem_cache *s, struct page *page,
  2077. void *x, unsigned long addr)
  2078. {
  2079. void *prior;
  2080. void **object = (void *)x;
  2081. int was_frozen;
  2082. struct page new;
  2083. unsigned long counters;
  2084. struct kmem_cache_node *n = NULL;
  2085. unsigned long uninitialized_var(flags);
  2086. stat(s, FREE_SLOWPATH);
  2087. if (kmem_cache_debug(s) &&
  2088. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2089. return;
  2090. do {
  2091. if (unlikely(n)) {
  2092. spin_unlock_irqrestore(&n->list_lock, flags);
  2093. n = NULL;
  2094. }
  2095. prior = page->freelist;
  2096. counters = page->counters;
  2097. set_freepointer(s, object, prior);
  2098. new.counters = counters;
  2099. was_frozen = new.frozen;
  2100. new.inuse--;
  2101. if ((!new.inuse || !prior) && !was_frozen) {
  2102. if (!kmem_cache_debug(s) && !prior)
  2103. /*
  2104. * Slab was on no list before and will be partially empty
  2105. * We can defer the list move and instead freeze it.
  2106. */
  2107. new.frozen = 1;
  2108. else { /* Needs to be taken off a list */
  2109. n = get_node(s, page_to_nid(page));
  2110. /*
  2111. * Speculatively acquire the list_lock.
  2112. * If the cmpxchg does not succeed then we may
  2113. * drop the list_lock without any processing.
  2114. *
  2115. * Otherwise the list_lock will synchronize with
  2116. * other processors updating the list of slabs.
  2117. */
  2118. spin_lock_irqsave(&n->list_lock, flags);
  2119. }
  2120. }
  2121. } while (!cmpxchg_double_slab(s, page,
  2122. prior, counters,
  2123. object, new.counters,
  2124. "__slab_free"));
  2125. if (likely(!n)) {
  2126. /*
  2127. * If we just froze the page then put it onto the
  2128. * per cpu partial list.
  2129. */
  2130. if (new.frozen && !was_frozen) {
  2131. put_cpu_partial(s, page, 1);
  2132. stat(s, CPU_PARTIAL_FREE);
  2133. }
  2134. /*
  2135. * The list lock was not taken therefore no list
  2136. * activity can be necessary.
  2137. */
  2138. if (was_frozen)
  2139. stat(s, FREE_FROZEN);
  2140. return;
  2141. }
  2142. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2143. goto slab_empty;
  2144. /*
  2145. * Objects left in the slab. If it was not on the partial list before
  2146. * then add it.
  2147. */
  2148. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2149. remove_full(s, page);
  2150. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2151. stat(s, FREE_ADD_PARTIAL);
  2152. }
  2153. spin_unlock_irqrestore(&n->list_lock, flags);
  2154. return;
  2155. slab_empty:
  2156. if (prior) {
  2157. /*
  2158. * Slab on the partial list.
  2159. */
  2160. remove_partial(n, page);
  2161. stat(s, FREE_REMOVE_PARTIAL);
  2162. } else
  2163. /* Slab must be on the full list */
  2164. remove_full(s, page);
  2165. spin_unlock_irqrestore(&n->list_lock, flags);
  2166. stat(s, FREE_SLAB);
  2167. discard_slab(s, page);
  2168. }
  2169. /*
  2170. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2171. * can perform fastpath freeing without additional function calls.
  2172. *
  2173. * The fastpath is only possible if we are freeing to the current cpu slab
  2174. * of this processor. This typically the case if we have just allocated
  2175. * the item before.
  2176. *
  2177. * If fastpath is not possible then fall back to __slab_free where we deal
  2178. * with all sorts of special processing.
  2179. */
  2180. static __always_inline void slab_free(struct kmem_cache *s,
  2181. struct page *page, void *x, unsigned long addr)
  2182. {
  2183. void **object = (void *)x;
  2184. struct kmem_cache_cpu *c;
  2185. unsigned long tid;
  2186. slab_free_hook(s, x);
  2187. redo:
  2188. /*
  2189. * Determine the currently cpus per cpu slab.
  2190. * The cpu may change afterward. However that does not matter since
  2191. * data is retrieved via this pointer. If we are on the same cpu
  2192. * during the cmpxchg then the free will succedd.
  2193. */
  2194. c = __this_cpu_ptr(s->cpu_slab);
  2195. tid = c->tid;
  2196. barrier();
  2197. if (likely(page == c->page)) {
  2198. set_freepointer(s, object, c->freelist);
  2199. if (unlikely(!this_cpu_cmpxchg_double(
  2200. s->cpu_slab->freelist, s->cpu_slab->tid,
  2201. c->freelist, tid,
  2202. object, next_tid(tid)))) {
  2203. note_cmpxchg_failure("slab_free", s, tid);
  2204. goto redo;
  2205. }
  2206. stat(s, FREE_FASTPATH);
  2207. } else
  2208. __slab_free(s, page, x, addr);
  2209. }
  2210. void kmem_cache_free(struct kmem_cache *s, void *x)
  2211. {
  2212. struct page *page;
  2213. page = virt_to_head_page(x);
  2214. if (kmem_cache_debug(s) && page->slab_cache != s) {
  2215. pr_err("kmem_cache_free: Wrong slab cache. %s but object"
  2216. " is from %s\n", page->slab_cache->name, s->name);
  2217. WARN_ON_ONCE(1);
  2218. return;
  2219. }
  2220. slab_free(s, page, x, _RET_IP_);
  2221. trace_kmem_cache_free(_RET_IP_, x);
  2222. }
  2223. EXPORT_SYMBOL(kmem_cache_free);
  2224. /*
  2225. * Object placement in a slab is made very easy because we always start at
  2226. * offset 0. If we tune the size of the object to the alignment then we can
  2227. * get the required alignment by putting one properly sized object after
  2228. * another.
  2229. *
  2230. * Notice that the allocation order determines the sizes of the per cpu
  2231. * caches. Each processor has always one slab available for allocations.
  2232. * Increasing the allocation order reduces the number of times that slabs
  2233. * must be moved on and off the partial lists and is therefore a factor in
  2234. * locking overhead.
  2235. */
  2236. /*
  2237. * Mininum / Maximum order of slab pages. This influences locking overhead
  2238. * and slab fragmentation. A higher order reduces the number of partial slabs
  2239. * and increases the number of allocations possible without having to
  2240. * take the list_lock.
  2241. */
  2242. static int slub_min_order;
  2243. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2244. static int slub_min_objects;
  2245. /*
  2246. * Merge control. If this is set then no merging of slab caches will occur.
  2247. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2248. */
  2249. static int slub_nomerge;
  2250. /*
  2251. * Calculate the order of allocation given an slab object size.
  2252. *
  2253. * The order of allocation has significant impact on performance and other
  2254. * system components. Generally order 0 allocations should be preferred since
  2255. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2256. * be problematic to put into order 0 slabs because there may be too much
  2257. * unused space left. We go to a higher order if more than 1/16th of the slab
  2258. * would be wasted.
  2259. *
  2260. * In order to reach satisfactory performance we must ensure that a minimum
  2261. * number of objects is in one slab. Otherwise we may generate too much
  2262. * activity on the partial lists which requires taking the list_lock. This is
  2263. * less a concern for large slabs though which are rarely used.
  2264. *
  2265. * slub_max_order specifies the order where we begin to stop considering the
  2266. * number of objects in a slab as critical. If we reach slub_max_order then
  2267. * we try to keep the page order as low as possible. So we accept more waste
  2268. * of space in favor of a small page order.
  2269. *
  2270. * Higher order allocations also allow the placement of more objects in a
  2271. * slab and thereby reduce object handling overhead. If the user has
  2272. * requested a higher mininum order then we start with that one instead of
  2273. * the smallest order which will fit the object.
  2274. */
  2275. static inline int slab_order(int size, int min_objects,
  2276. int max_order, int fract_leftover, int reserved)
  2277. {
  2278. int order;
  2279. int rem;
  2280. int min_order = slub_min_order;
  2281. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2282. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2283. for (order = max(min_order,
  2284. fls(min_objects * size - 1) - PAGE_SHIFT);
  2285. order <= max_order; order++) {
  2286. unsigned long slab_size = PAGE_SIZE << order;
  2287. if (slab_size < min_objects * size + reserved)
  2288. continue;
  2289. rem = (slab_size - reserved) % size;
  2290. if (rem <= slab_size / fract_leftover)
  2291. break;
  2292. }
  2293. return order;
  2294. }
  2295. static inline int calculate_order(int size, int reserved)
  2296. {
  2297. int order;
  2298. int min_objects;
  2299. int fraction;
  2300. int max_objects;
  2301. /*
  2302. * Attempt to find best configuration for a slab. This
  2303. * works by first attempting to generate a layout with
  2304. * the best configuration and backing off gradually.
  2305. *
  2306. * First we reduce the acceptable waste in a slab. Then
  2307. * we reduce the minimum objects required in a slab.
  2308. */
  2309. min_objects = slub_min_objects;
  2310. if (!min_objects)
  2311. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2312. max_objects = order_objects(slub_max_order, size, reserved);
  2313. min_objects = min(min_objects, max_objects);
  2314. while (min_objects > 1) {
  2315. fraction = 16;
  2316. while (fraction >= 4) {
  2317. order = slab_order(size, min_objects,
  2318. slub_max_order, fraction, reserved);
  2319. if (order <= slub_max_order)
  2320. return order;
  2321. fraction /= 2;
  2322. }
  2323. min_objects--;
  2324. }
  2325. /*
  2326. * We were unable to place multiple objects in a slab. Now
  2327. * lets see if we can place a single object there.
  2328. */
  2329. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2330. if (order <= slub_max_order)
  2331. return order;
  2332. /*
  2333. * Doh this slab cannot be placed using slub_max_order.
  2334. */
  2335. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2336. if (order < MAX_ORDER)
  2337. return order;
  2338. return -ENOSYS;
  2339. }
  2340. /*
  2341. * Figure out what the alignment of the objects will be.
  2342. */
  2343. static unsigned long calculate_alignment(unsigned long flags,
  2344. unsigned long align, unsigned long size)
  2345. {
  2346. /*
  2347. * If the user wants hardware cache aligned objects then follow that
  2348. * suggestion if the object is sufficiently large.
  2349. *
  2350. * The hardware cache alignment cannot override the specified
  2351. * alignment though. If that is greater then use it.
  2352. */
  2353. if (flags & SLAB_HWCACHE_ALIGN) {
  2354. unsigned long ralign = cache_line_size();
  2355. while (size <= ralign / 2)
  2356. ralign /= 2;
  2357. align = max(align, ralign);
  2358. }
  2359. if (align < ARCH_SLAB_MINALIGN)
  2360. align = ARCH_SLAB_MINALIGN;
  2361. return ALIGN(align, sizeof(void *));
  2362. }
  2363. static void
  2364. init_kmem_cache_node(struct kmem_cache_node *n)
  2365. {
  2366. n->nr_partial = 0;
  2367. spin_lock_init(&n->list_lock);
  2368. INIT_LIST_HEAD(&n->partial);
  2369. #ifdef CONFIG_SLUB_DEBUG
  2370. atomic_long_set(&n->nr_slabs, 0);
  2371. atomic_long_set(&n->total_objects, 0);
  2372. INIT_LIST_HEAD(&n->full);
  2373. #endif
  2374. }
  2375. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2376. {
  2377. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2378. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2379. /*
  2380. * Must align to double word boundary for the double cmpxchg
  2381. * instructions to work; see __pcpu_double_call_return_bool().
  2382. */
  2383. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2384. 2 * sizeof(void *));
  2385. if (!s->cpu_slab)
  2386. return 0;
  2387. init_kmem_cache_cpus(s);
  2388. return 1;
  2389. }
  2390. static struct kmem_cache *kmem_cache_node;
  2391. /*
  2392. * No kmalloc_node yet so do it by hand. We know that this is the first
  2393. * slab on the node for this slabcache. There are no concurrent accesses
  2394. * possible.
  2395. *
  2396. * Note that this function only works on the kmalloc_node_cache
  2397. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2398. * memory on a fresh node that has no slab structures yet.
  2399. */
  2400. static void early_kmem_cache_node_alloc(int node)
  2401. {
  2402. struct page *page;
  2403. struct kmem_cache_node *n;
  2404. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2405. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2406. BUG_ON(!page);
  2407. if (page_to_nid(page) != node) {
  2408. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2409. "node %d\n", node);
  2410. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2411. "in order to be able to continue\n");
  2412. }
  2413. n = page->freelist;
  2414. BUG_ON(!n);
  2415. page->freelist = get_freepointer(kmem_cache_node, n);
  2416. page->inuse = 1;
  2417. page->frozen = 0;
  2418. kmem_cache_node->node[node] = n;
  2419. #ifdef CONFIG_SLUB_DEBUG
  2420. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2421. init_tracking(kmem_cache_node, n);
  2422. #endif
  2423. init_kmem_cache_node(n);
  2424. inc_slabs_node(kmem_cache_node, node, page->objects);
  2425. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2426. }
  2427. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2428. {
  2429. int node;
  2430. for_each_node_state(node, N_NORMAL_MEMORY) {
  2431. struct kmem_cache_node *n = s->node[node];
  2432. if (n)
  2433. kmem_cache_free(kmem_cache_node, n);
  2434. s->node[node] = NULL;
  2435. }
  2436. }
  2437. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2438. {
  2439. int node;
  2440. for_each_node_state(node, N_NORMAL_MEMORY) {
  2441. struct kmem_cache_node *n;
  2442. if (slab_state == DOWN) {
  2443. early_kmem_cache_node_alloc(node);
  2444. continue;
  2445. }
  2446. n = kmem_cache_alloc_node(kmem_cache_node,
  2447. GFP_KERNEL, node);
  2448. if (!n) {
  2449. free_kmem_cache_nodes(s);
  2450. return 0;
  2451. }
  2452. s->node[node] = n;
  2453. init_kmem_cache_node(n);
  2454. }
  2455. return 1;
  2456. }
  2457. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2458. {
  2459. if (min < MIN_PARTIAL)
  2460. min = MIN_PARTIAL;
  2461. else if (min > MAX_PARTIAL)
  2462. min = MAX_PARTIAL;
  2463. s->min_partial = min;
  2464. }
  2465. /*
  2466. * calculate_sizes() determines the order and the distribution of data within
  2467. * a slab object.
  2468. */
  2469. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2470. {
  2471. unsigned long flags = s->flags;
  2472. unsigned long size = s->object_size;
  2473. unsigned long align = s->align;
  2474. int order;
  2475. /*
  2476. * Round up object size to the next word boundary. We can only
  2477. * place the free pointer at word boundaries and this determines
  2478. * the possible location of the free pointer.
  2479. */
  2480. size = ALIGN(size, sizeof(void *));
  2481. #ifdef CONFIG_SLUB_DEBUG
  2482. /*
  2483. * Determine if we can poison the object itself. If the user of
  2484. * the slab may touch the object after free or before allocation
  2485. * then we should never poison the object itself.
  2486. */
  2487. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2488. !s->ctor)
  2489. s->flags |= __OBJECT_POISON;
  2490. else
  2491. s->flags &= ~__OBJECT_POISON;
  2492. /*
  2493. * If we are Redzoning then check if there is some space between the
  2494. * end of the object and the free pointer. If not then add an
  2495. * additional word to have some bytes to store Redzone information.
  2496. */
  2497. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2498. size += sizeof(void *);
  2499. #endif
  2500. /*
  2501. * With that we have determined the number of bytes in actual use
  2502. * by the object. This is the potential offset to the free pointer.
  2503. */
  2504. s->inuse = size;
  2505. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2506. s->ctor)) {
  2507. /*
  2508. * Relocate free pointer after the object if it is not
  2509. * permitted to overwrite the first word of the object on
  2510. * kmem_cache_free.
  2511. *
  2512. * This is the case if we do RCU, have a constructor or
  2513. * destructor or are poisoning the objects.
  2514. */
  2515. s->offset = size;
  2516. size += sizeof(void *);
  2517. }
  2518. #ifdef CONFIG_SLUB_DEBUG
  2519. if (flags & SLAB_STORE_USER)
  2520. /*
  2521. * Need to store information about allocs and frees after
  2522. * the object.
  2523. */
  2524. size += 2 * sizeof(struct track);
  2525. if (flags & SLAB_RED_ZONE)
  2526. /*
  2527. * Add some empty padding so that we can catch
  2528. * overwrites from earlier objects rather than let
  2529. * tracking information or the free pointer be
  2530. * corrupted if a user writes before the start
  2531. * of the object.
  2532. */
  2533. size += sizeof(void *);
  2534. #endif
  2535. /*
  2536. * Determine the alignment based on various parameters that the
  2537. * user specified and the dynamic determination of cache line size
  2538. * on bootup.
  2539. */
  2540. align = calculate_alignment(flags, align, s->object_size);
  2541. s->align = align;
  2542. /*
  2543. * SLUB stores one object immediately after another beginning from
  2544. * offset 0. In order to align the objects we have to simply size
  2545. * each object to conform to the alignment.
  2546. */
  2547. size = ALIGN(size, align);
  2548. s->size = size;
  2549. if (forced_order >= 0)
  2550. order = forced_order;
  2551. else
  2552. order = calculate_order(size, s->reserved);
  2553. if (order < 0)
  2554. return 0;
  2555. s->allocflags = 0;
  2556. if (order)
  2557. s->allocflags |= __GFP_COMP;
  2558. if (s->flags & SLAB_CACHE_DMA)
  2559. s->allocflags |= SLUB_DMA;
  2560. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2561. s->allocflags |= __GFP_RECLAIMABLE;
  2562. /*
  2563. * Determine the number of objects per slab
  2564. */
  2565. s->oo = oo_make(order, size, s->reserved);
  2566. s->min = oo_make(get_order(size), size, s->reserved);
  2567. if (oo_objects(s->oo) > oo_objects(s->max))
  2568. s->max = s->oo;
  2569. return !!oo_objects(s->oo);
  2570. }
  2571. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2572. {
  2573. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2574. s->reserved = 0;
  2575. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2576. s->reserved = sizeof(struct rcu_head);
  2577. if (!calculate_sizes(s, -1))
  2578. goto error;
  2579. if (disable_higher_order_debug) {
  2580. /*
  2581. * Disable debugging flags that store metadata if the min slab
  2582. * order increased.
  2583. */
  2584. if (get_order(s->size) > get_order(s->object_size)) {
  2585. s->flags &= ~DEBUG_METADATA_FLAGS;
  2586. s->offset = 0;
  2587. if (!calculate_sizes(s, -1))
  2588. goto error;
  2589. }
  2590. }
  2591. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2592. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2593. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2594. /* Enable fast mode */
  2595. s->flags |= __CMPXCHG_DOUBLE;
  2596. #endif
  2597. /*
  2598. * The larger the object size is, the more pages we want on the partial
  2599. * list to avoid pounding the page allocator excessively.
  2600. */
  2601. set_min_partial(s, ilog2(s->size) / 2);
  2602. /*
  2603. * cpu_partial determined the maximum number of objects kept in the
  2604. * per cpu partial lists of a processor.
  2605. *
  2606. * Per cpu partial lists mainly contain slabs that just have one
  2607. * object freed. If they are used for allocation then they can be
  2608. * filled up again with minimal effort. The slab will never hit the
  2609. * per node partial lists and therefore no locking will be required.
  2610. *
  2611. * This setting also determines
  2612. *
  2613. * A) The number of objects from per cpu partial slabs dumped to the
  2614. * per node list when we reach the limit.
  2615. * B) The number of objects in cpu partial slabs to extract from the
  2616. * per node list when we run out of per cpu objects. We only fetch 50%
  2617. * to keep some capacity around for frees.
  2618. */
  2619. if (kmem_cache_debug(s))
  2620. s->cpu_partial = 0;
  2621. else if (s->size >= PAGE_SIZE)
  2622. s->cpu_partial = 2;
  2623. else if (s->size >= 1024)
  2624. s->cpu_partial = 6;
  2625. else if (s->size >= 256)
  2626. s->cpu_partial = 13;
  2627. else
  2628. s->cpu_partial = 30;
  2629. #ifdef CONFIG_NUMA
  2630. s->remote_node_defrag_ratio = 1000;
  2631. #endif
  2632. if (!init_kmem_cache_nodes(s))
  2633. goto error;
  2634. if (alloc_kmem_cache_cpus(s))
  2635. return 0;
  2636. free_kmem_cache_nodes(s);
  2637. error:
  2638. if (flags & SLAB_PANIC)
  2639. panic("Cannot create slab %s size=%lu realsize=%u "
  2640. "order=%u offset=%u flags=%lx\n",
  2641. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2642. s->offset, flags);
  2643. return -EINVAL;
  2644. }
  2645. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2646. const char *text)
  2647. {
  2648. #ifdef CONFIG_SLUB_DEBUG
  2649. void *addr = page_address(page);
  2650. void *p;
  2651. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2652. sizeof(long), GFP_ATOMIC);
  2653. if (!map)
  2654. return;
  2655. slab_err(s, page, text, s->name);
  2656. slab_lock(page);
  2657. get_map(s, page, map);
  2658. for_each_object(p, s, addr, page->objects) {
  2659. if (!test_bit(slab_index(p, s, addr), map)) {
  2660. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2661. p, p - addr);
  2662. print_tracking(s, p);
  2663. }
  2664. }
  2665. slab_unlock(page);
  2666. kfree(map);
  2667. #endif
  2668. }
  2669. /*
  2670. * Attempt to free all partial slabs on a node.
  2671. * This is called from kmem_cache_close(). We must be the last thread
  2672. * using the cache and therefore we do not need to lock anymore.
  2673. */
  2674. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2675. {
  2676. struct page *page, *h;
  2677. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2678. if (!page->inuse) {
  2679. remove_partial(n, page);
  2680. discard_slab(s, page);
  2681. } else {
  2682. list_slab_objects(s, page,
  2683. "Objects remaining in %s on kmem_cache_close()");
  2684. }
  2685. }
  2686. }
  2687. /*
  2688. * Release all resources used by a slab cache.
  2689. */
  2690. static inline int kmem_cache_close(struct kmem_cache *s)
  2691. {
  2692. int node;
  2693. flush_all(s);
  2694. /* Attempt to free all objects */
  2695. for_each_node_state(node, N_NORMAL_MEMORY) {
  2696. struct kmem_cache_node *n = get_node(s, node);
  2697. free_partial(s, n);
  2698. if (n->nr_partial || slabs_node(s, node))
  2699. return 1;
  2700. }
  2701. free_percpu(s->cpu_slab);
  2702. free_kmem_cache_nodes(s);
  2703. return 0;
  2704. }
  2705. int __kmem_cache_shutdown(struct kmem_cache *s)
  2706. {
  2707. int rc = kmem_cache_close(s);
  2708. if (!rc)
  2709. sysfs_slab_remove(s);
  2710. return rc;
  2711. }
  2712. /********************************************************************
  2713. * Kmalloc subsystem
  2714. *******************************************************************/
  2715. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2716. EXPORT_SYMBOL(kmalloc_caches);
  2717. #ifdef CONFIG_ZONE_DMA
  2718. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2719. #endif
  2720. static int __init setup_slub_min_order(char *str)
  2721. {
  2722. get_option(&str, &slub_min_order);
  2723. return 1;
  2724. }
  2725. __setup("slub_min_order=", setup_slub_min_order);
  2726. static int __init setup_slub_max_order(char *str)
  2727. {
  2728. get_option(&str, &slub_max_order);
  2729. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2730. return 1;
  2731. }
  2732. __setup("slub_max_order=", setup_slub_max_order);
  2733. static int __init setup_slub_min_objects(char *str)
  2734. {
  2735. get_option(&str, &slub_min_objects);
  2736. return 1;
  2737. }
  2738. __setup("slub_min_objects=", setup_slub_min_objects);
  2739. static int __init setup_slub_nomerge(char *str)
  2740. {
  2741. slub_nomerge = 1;
  2742. return 1;
  2743. }
  2744. __setup("slub_nomerge", setup_slub_nomerge);
  2745. /*
  2746. * Conversion table for small slabs sizes / 8 to the index in the
  2747. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2748. * of two cache sizes there. The size of larger slabs can be determined using
  2749. * fls.
  2750. */
  2751. static s8 size_index[24] = {
  2752. 3, /* 8 */
  2753. 4, /* 16 */
  2754. 5, /* 24 */
  2755. 5, /* 32 */
  2756. 6, /* 40 */
  2757. 6, /* 48 */
  2758. 6, /* 56 */
  2759. 6, /* 64 */
  2760. 1, /* 72 */
  2761. 1, /* 80 */
  2762. 1, /* 88 */
  2763. 1, /* 96 */
  2764. 7, /* 104 */
  2765. 7, /* 112 */
  2766. 7, /* 120 */
  2767. 7, /* 128 */
  2768. 2, /* 136 */
  2769. 2, /* 144 */
  2770. 2, /* 152 */
  2771. 2, /* 160 */
  2772. 2, /* 168 */
  2773. 2, /* 176 */
  2774. 2, /* 184 */
  2775. 2 /* 192 */
  2776. };
  2777. static inline int size_index_elem(size_t bytes)
  2778. {
  2779. return (bytes - 1) / 8;
  2780. }
  2781. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2782. {
  2783. int index;
  2784. if (size <= 192) {
  2785. if (!size)
  2786. return ZERO_SIZE_PTR;
  2787. index = size_index[size_index_elem(size)];
  2788. } else
  2789. index = fls(size - 1);
  2790. #ifdef CONFIG_ZONE_DMA
  2791. if (unlikely((flags & SLUB_DMA)))
  2792. return kmalloc_dma_caches[index];
  2793. #endif
  2794. return kmalloc_caches[index];
  2795. }
  2796. void *__kmalloc(size_t size, gfp_t flags)
  2797. {
  2798. struct kmem_cache *s;
  2799. void *ret;
  2800. if (unlikely(size > SLUB_MAX_SIZE))
  2801. return kmalloc_large(size, flags);
  2802. s = get_slab(size, flags);
  2803. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2804. return s;
  2805. ret = slab_alloc(s, flags, _RET_IP_);
  2806. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2807. return ret;
  2808. }
  2809. EXPORT_SYMBOL(__kmalloc);
  2810. #ifdef CONFIG_NUMA
  2811. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2812. {
  2813. struct page *page;
  2814. void *ptr = NULL;
  2815. flags |= __GFP_COMP | __GFP_NOTRACK;
  2816. page = alloc_pages_node(node, flags, get_order(size));
  2817. if (page)
  2818. ptr = page_address(page);
  2819. kmemleak_alloc(ptr, size, 1, flags);
  2820. return ptr;
  2821. }
  2822. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2823. {
  2824. struct kmem_cache *s;
  2825. void *ret;
  2826. if (unlikely(size > SLUB_MAX_SIZE)) {
  2827. ret = kmalloc_large_node(size, flags, node);
  2828. trace_kmalloc_node(_RET_IP_, ret,
  2829. size, PAGE_SIZE << get_order(size),
  2830. flags, node);
  2831. return ret;
  2832. }
  2833. s = get_slab(size, flags);
  2834. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2835. return s;
  2836. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2837. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2838. return ret;
  2839. }
  2840. EXPORT_SYMBOL(__kmalloc_node);
  2841. #endif
  2842. size_t ksize(const void *object)
  2843. {
  2844. struct page *page;
  2845. if (unlikely(object == ZERO_SIZE_PTR))
  2846. return 0;
  2847. page = virt_to_head_page(object);
  2848. if (unlikely(!PageSlab(page))) {
  2849. WARN_ON(!PageCompound(page));
  2850. return PAGE_SIZE << compound_order(page);
  2851. }
  2852. return slab_ksize(page->slab_cache);
  2853. }
  2854. EXPORT_SYMBOL(ksize);
  2855. #ifdef CONFIG_SLUB_DEBUG
  2856. bool verify_mem_not_deleted(const void *x)
  2857. {
  2858. struct page *page;
  2859. void *object = (void *)x;
  2860. unsigned long flags;
  2861. bool rv;
  2862. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2863. return false;
  2864. local_irq_save(flags);
  2865. page = virt_to_head_page(x);
  2866. if (unlikely(!PageSlab(page))) {
  2867. /* maybe it was from stack? */
  2868. rv = true;
  2869. goto out_unlock;
  2870. }
  2871. slab_lock(page);
  2872. if (on_freelist(page->slab_cache, page, object)) {
  2873. object_err(page->slab_cache, page, object, "Object is on free-list");
  2874. rv = false;
  2875. } else {
  2876. rv = true;
  2877. }
  2878. slab_unlock(page);
  2879. out_unlock:
  2880. local_irq_restore(flags);
  2881. return rv;
  2882. }
  2883. EXPORT_SYMBOL(verify_mem_not_deleted);
  2884. #endif
  2885. void kfree(const void *x)
  2886. {
  2887. struct page *page;
  2888. void *object = (void *)x;
  2889. trace_kfree(_RET_IP_, x);
  2890. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2891. return;
  2892. page = virt_to_head_page(x);
  2893. if (unlikely(!PageSlab(page))) {
  2894. BUG_ON(!PageCompound(page));
  2895. kmemleak_free(x);
  2896. __free_pages(page, compound_order(page));
  2897. return;
  2898. }
  2899. slab_free(page->slab_cache, page, object, _RET_IP_);
  2900. }
  2901. EXPORT_SYMBOL(kfree);
  2902. /*
  2903. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2904. * the remaining slabs by the number of items in use. The slabs with the
  2905. * most items in use come first. New allocations will then fill those up
  2906. * and thus they can be removed from the partial lists.
  2907. *
  2908. * The slabs with the least items are placed last. This results in them
  2909. * being allocated from last increasing the chance that the last objects
  2910. * are freed in them.
  2911. */
  2912. int kmem_cache_shrink(struct kmem_cache *s)
  2913. {
  2914. int node;
  2915. int i;
  2916. struct kmem_cache_node *n;
  2917. struct page *page;
  2918. struct page *t;
  2919. int objects = oo_objects(s->max);
  2920. struct list_head *slabs_by_inuse =
  2921. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2922. unsigned long flags;
  2923. if (!slabs_by_inuse)
  2924. return -ENOMEM;
  2925. flush_all(s);
  2926. for_each_node_state(node, N_NORMAL_MEMORY) {
  2927. n = get_node(s, node);
  2928. if (!n->nr_partial)
  2929. continue;
  2930. for (i = 0; i < objects; i++)
  2931. INIT_LIST_HEAD(slabs_by_inuse + i);
  2932. spin_lock_irqsave(&n->list_lock, flags);
  2933. /*
  2934. * Build lists indexed by the items in use in each slab.
  2935. *
  2936. * Note that concurrent frees may occur while we hold the
  2937. * list_lock. page->inuse here is the upper limit.
  2938. */
  2939. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2940. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2941. if (!page->inuse)
  2942. n->nr_partial--;
  2943. }
  2944. /*
  2945. * Rebuild the partial list with the slabs filled up most
  2946. * first and the least used slabs at the end.
  2947. */
  2948. for (i = objects - 1; i > 0; i--)
  2949. list_splice(slabs_by_inuse + i, n->partial.prev);
  2950. spin_unlock_irqrestore(&n->list_lock, flags);
  2951. /* Release empty slabs */
  2952. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2953. discard_slab(s, page);
  2954. }
  2955. kfree(slabs_by_inuse);
  2956. return 0;
  2957. }
  2958. EXPORT_SYMBOL(kmem_cache_shrink);
  2959. #if defined(CONFIG_MEMORY_HOTPLUG)
  2960. static int slab_mem_going_offline_callback(void *arg)
  2961. {
  2962. struct kmem_cache *s;
  2963. mutex_lock(&slab_mutex);
  2964. list_for_each_entry(s, &slab_caches, list)
  2965. kmem_cache_shrink(s);
  2966. mutex_unlock(&slab_mutex);
  2967. return 0;
  2968. }
  2969. static void slab_mem_offline_callback(void *arg)
  2970. {
  2971. struct kmem_cache_node *n;
  2972. struct kmem_cache *s;
  2973. struct memory_notify *marg = arg;
  2974. int offline_node;
  2975. offline_node = marg->status_change_nid;
  2976. /*
  2977. * If the node still has available memory. we need kmem_cache_node
  2978. * for it yet.
  2979. */
  2980. if (offline_node < 0)
  2981. return;
  2982. mutex_lock(&slab_mutex);
  2983. list_for_each_entry(s, &slab_caches, list) {
  2984. n = get_node(s, offline_node);
  2985. if (n) {
  2986. /*
  2987. * if n->nr_slabs > 0, slabs still exist on the node
  2988. * that is going down. We were unable to free them,
  2989. * and offline_pages() function shouldn't call this
  2990. * callback. So, we must fail.
  2991. */
  2992. BUG_ON(slabs_node(s, offline_node));
  2993. s->node[offline_node] = NULL;
  2994. kmem_cache_free(kmem_cache_node, n);
  2995. }
  2996. }
  2997. mutex_unlock(&slab_mutex);
  2998. }
  2999. static int slab_mem_going_online_callback(void *arg)
  3000. {
  3001. struct kmem_cache_node *n;
  3002. struct kmem_cache *s;
  3003. struct memory_notify *marg = arg;
  3004. int nid = marg->status_change_nid;
  3005. int ret = 0;
  3006. /*
  3007. * If the node's memory is already available, then kmem_cache_node is
  3008. * already created. Nothing to do.
  3009. */
  3010. if (nid < 0)
  3011. return 0;
  3012. /*
  3013. * We are bringing a node online. No memory is available yet. We must
  3014. * allocate a kmem_cache_node structure in order to bring the node
  3015. * online.
  3016. */
  3017. mutex_lock(&slab_mutex);
  3018. list_for_each_entry(s, &slab_caches, list) {
  3019. /*
  3020. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3021. * since memory is not yet available from the node that
  3022. * is brought up.
  3023. */
  3024. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3025. if (!n) {
  3026. ret = -ENOMEM;
  3027. goto out;
  3028. }
  3029. init_kmem_cache_node(n);
  3030. s->node[nid] = n;
  3031. }
  3032. out:
  3033. mutex_unlock(&slab_mutex);
  3034. return ret;
  3035. }
  3036. static int slab_memory_callback(struct notifier_block *self,
  3037. unsigned long action, void *arg)
  3038. {
  3039. int ret = 0;
  3040. switch (action) {
  3041. case MEM_GOING_ONLINE:
  3042. ret = slab_mem_going_online_callback(arg);
  3043. break;
  3044. case MEM_GOING_OFFLINE:
  3045. ret = slab_mem_going_offline_callback(arg);
  3046. break;
  3047. case MEM_OFFLINE:
  3048. case MEM_CANCEL_ONLINE:
  3049. slab_mem_offline_callback(arg);
  3050. break;
  3051. case MEM_ONLINE:
  3052. case MEM_CANCEL_OFFLINE:
  3053. break;
  3054. }
  3055. if (ret)
  3056. ret = notifier_from_errno(ret);
  3057. else
  3058. ret = NOTIFY_OK;
  3059. return ret;
  3060. }
  3061. #endif /* CONFIG_MEMORY_HOTPLUG */
  3062. /********************************************************************
  3063. * Basic setup of slabs
  3064. *******************************************************************/
  3065. /*
  3066. * Used for early kmem_cache structures that were allocated using
  3067. * the page allocator. Allocate them properly then fix up the pointers
  3068. * that may be pointing to the wrong kmem_cache structure.
  3069. */
  3070. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3071. {
  3072. int node;
  3073. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3074. memcpy(s, static_cache, kmem_cache->object_size);
  3075. for_each_node_state(node, N_NORMAL_MEMORY) {
  3076. struct kmem_cache_node *n = get_node(s, node);
  3077. struct page *p;
  3078. if (n) {
  3079. list_for_each_entry(p, &n->partial, lru)
  3080. p->slab_cache = s;
  3081. #ifdef CONFIG_SLUB_DEBUG
  3082. list_for_each_entry(p, &n->full, lru)
  3083. p->slab_cache = s;
  3084. #endif
  3085. }
  3086. }
  3087. list_add(&s->list, &slab_caches);
  3088. return s;
  3089. }
  3090. void __init kmem_cache_init(void)
  3091. {
  3092. static __initdata struct kmem_cache boot_kmem_cache,
  3093. boot_kmem_cache_node;
  3094. int i;
  3095. int caches = 2;
  3096. if (debug_guardpage_minorder())
  3097. slub_max_order = 0;
  3098. kmem_cache_node = &boot_kmem_cache_node;
  3099. kmem_cache = &boot_kmem_cache;
  3100. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3101. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3102. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3103. /* Able to allocate the per node structures */
  3104. slab_state = PARTIAL;
  3105. create_boot_cache(kmem_cache, "kmem_cache",
  3106. offsetof(struct kmem_cache, node) +
  3107. nr_node_ids * sizeof(struct kmem_cache_node *),
  3108. SLAB_HWCACHE_ALIGN);
  3109. kmem_cache = bootstrap(&boot_kmem_cache);
  3110. /*
  3111. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3112. * kmem_cache_node is separately allocated so no need to
  3113. * update any list pointers.
  3114. */
  3115. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3116. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3117. /*
  3118. * Patch up the size_index table if we have strange large alignment
  3119. * requirements for the kmalloc array. This is only the case for
  3120. * MIPS it seems. The standard arches will not generate any code here.
  3121. *
  3122. * Largest permitted alignment is 256 bytes due to the way we
  3123. * handle the index determination for the smaller caches.
  3124. *
  3125. * Make sure that nothing crazy happens if someone starts tinkering
  3126. * around with ARCH_KMALLOC_MINALIGN
  3127. */
  3128. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3129. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3130. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3131. int elem = size_index_elem(i);
  3132. if (elem >= ARRAY_SIZE(size_index))
  3133. break;
  3134. size_index[elem] = KMALLOC_SHIFT_LOW;
  3135. }
  3136. if (KMALLOC_MIN_SIZE == 64) {
  3137. /*
  3138. * The 96 byte size cache is not used if the alignment
  3139. * is 64 byte.
  3140. */
  3141. for (i = 64 + 8; i <= 96; i += 8)
  3142. size_index[size_index_elem(i)] = 7;
  3143. } else if (KMALLOC_MIN_SIZE == 128) {
  3144. /*
  3145. * The 192 byte sized cache is not used if the alignment
  3146. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3147. * instead.
  3148. */
  3149. for (i = 128 + 8; i <= 192; i += 8)
  3150. size_index[size_index_elem(i)] = 8;
  3151. }
  3152. /* Caches that are not of the two-to-the-power-of size */
  3153. if (KMALLOC_MIN_SIZE <= 32) {
  3154. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3155. caches++;
  3156. }
  3157. if (KMALLOC_MIN_SIZE <= 64) {
  3158. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3159. caches++;
  3160. }
  3161. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3162. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3163. caches++;
  3164. }
  3165. slab_state = UP;
  3166. /* Provide the correct kmalloc names now that the caches are up */
  3167. if (KMALLOC_MIN_SIZE <= 32) {
  3168. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3169. BUG_ON(!kmalloc_caches[1]->name);
  3170. }
  3171. if (KMALLOC_MIN_SIZE <= 64) {
  3172. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3173. BUG_ON(!kmalloc_caches[2]->name);
  3174. }
  3175. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3176. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3177. BUG_ON(!s);
  3178. kmalloc_caches[i]->name = s;
  3179. }
  3180. #ifdef CONFIG_SMP
  3181. register_cpu_notifier(&slab_notifier);
  3182. #endif
  3183. #ifdef CONFIG_ZONE_DMA
  3184. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3185. struct kmem_cache *s = kmalloc_caches[i];
  3186. if (s && s->size) {
  3187. char *name = kasprintf(GFP_NOWAIT,
  3188. "dma-kmalloc-%d", s->object_size);
  3189. BUG_ON(!name);
  3190. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3191. s->object_size, SLAB_CACHE_DMA);
  3192. }
  3193. }
  3194. #endif
  3195. printk(KERN_INFO
  3196. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3197. " CPUs=%d, Nodes=%d\n",
  3198. caches, cache_line_size(),
  3199. slub_min_order, slub_max_order, slub_min_objects,
  3200. nr_cpu_ids, nr_node_ids);
  3201. }
  3202. void __init kmem_cache_init_late(void)
  3203. {
  3204. }
  3205. /*
  3206. * Find a mergeable slab cache
  3207. */
  3208. static int slab_unmergeable(struct kmem_cache *s)
  3209. {
  3210. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3211. return 1;
  3212. if (s->ctor)
  3213. return 1;
  3214. /*
  3215. * We may have set a slab to be unmergeable during bootstrap.
  3216. */
  3217. if (s->refcount < 0)
  3218. return 1;
  3219. return 0;
  3220. }
  3221. static struct kmem_cache *find_mergeable(size_t size,
  3222. size_t align, unsigned long flags, const char *name,
  3223. void (*ctor)(void *))
  3224. {
  3225. struct kmem_cache *s;
  3226. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3227. return NULL;
  3228. if (ctor)
  3229. return NULL;
  3230. size = ALIGN(size, sizeof(void *));
  3231. align = calculate_alignment(flags, align, size);
  3232. size = ALIGN(size, align);
  3233. flags = kmem_cache_flags(size, flags, name, NULL);
  3234. list_for_each_entry(s, &slab_caches, list) {
  3235. if (slab_unmergeable(s))
  3236. continue;
  3237. if (size > s->size)
  3238. continue;
  3239. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3240. continue;
  3241. /*
  3242. * Check if alignment is compatible.
  3243. * Courtesy of Adrian Drzewiecki
  3244. */
  3245. if ((s->size & ~(align - 1)) != s->size)
  3246. continue;
  3247. if (s->size - size >= sizeof(void *))
  3248. continue;
  3249. return s;
  3250. }
  3251. return NULL;
  3252. }
  3253. struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
  3254. size_t align, unsigned long flags, void (*ctor)(void *))
  3255. {
  3256. struct kmem_cache *s;
  3257. s = find_mergeable(size, align, flags, name, ctor);
  3258. if (s) {
  3259. s->refcount++;
  3260. /*
  3261. * Adjust the object sizes so that we clear
  3262. * the complete object on kzalloc.
  3263. */
  3264. s->object_size = max(s->object_size, (int)size);
  3265. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3266. if (sysfs_slab_alias(s, name)) {
  3267. s->refcount--;
  3268. s = NULL;
  3269. }
  3270. }
  3271. return s;
  3272. }
  3273. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3274. {
  3275. int err;
  3276. err = kmem_cache_open(s, flags);
  3277. if (err)
  3278. return err;
  3279. /* Mutex is not taken during early boot */
  3280. if (slab_state <= UP)
  3281. return 0;
  3282. mutex_unlock(&slab_mutex);
  3283. err = sysfs_slab_add(s);
  3284. mutex_lock(&slab_mutex);
  3285. if (err)
  3286. kmem_cache_close(s);
  3287. return err;
  3288. }
  3289. #ifdef CONFIG_SMP
  3290. /*
  3291. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3292. * necessary.
  3293. */
  3294. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3295. unsigned long action, void *hcpu)
  3296. {
  3297. long cpu = (long)hcpu;
  3298. struct kmem_cache *s;
  3299. unsigned long flags;
  3300. switch (action) {
  3301. case CPU_UP_CANCELED:
  3302. case CPU_UP_CANCELED_FROZEN:
  3303. case CPU_DEAD:
  3304. case CPU_DEAD_FROZEN:
  3305. mutex_lock(&slab_mutex);
  3306. list_for_each_entry(s, &slab_caches, list) {
  3307. local_irq_save(flags);
  3308. __flush_cpu_slab(s, cpu);
  3309. local_irq_restore(flags);
  3310. }
  3311. mutex_unlock(&slab_mutex);
  3312. break;
  3313. default:
  3314. break;
  3315. }
  3316. return NOTIFY_OK;
  3317. }
  3318. static struct notifier_block __cpuinitdata slab_notifier = {
  3319. .notifier_call = slab_cpuup_callback
  3320. };
  3321. #endif
  3322. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3323. {
  3324. struct kmem_cache *s;
  3325. void *ret;
  3326. if (unlikely(size > SLUB_MAX_SIZE))
  3327. return kmalloc_large(size, gfpflags);
  3328. s = get_slab(size, gfpflags);
  3329. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3330. return s;
  3331. ret = slab_alloc(s, gfpflags, caller);
  3332. /* Honor the call site pointer we received. */
  3333. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3334. return ret;
  3335. }
  3336. #ifdef CONFIG_NUMA
  3337. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3338. int node, unsigned long caller)
  3339. {
  3340. struct kmem_cache *s;
  3341. void *ret;
  3342. if (unlikely(size > SLUB_MAX_SIZE)) {
  3343. ret = kmalloc_large_node(size, gfpflags, node);
  3344. trace_kmalloc_node(caller, ret,
  3345. size, PAGE_SIZE << get_order(size),
  3346. gfpflags, node);
  3347. return ret;
  3348. }
  3349. s = get_slab(size, gfpflags);
  3350. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3351. return s;
  3352. ret = slab_alloc_node(s, gfpflags, node, caller);
  3353. /* Honor the call site pointer we received. */
  3354. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3355. return ret;
  3356. }
  3357. #endif
  3358. #ifdef CONFIG_SYSFS
  3359. static int count_inuse(struct page *page)
  3360. {
  3361. return page->inuse;
  3362. }
  3363. static int count_total(struct page *page)
  3364. {
  3365. return page->objects;
  3366. }
  3367. #endif
  3368. #ifdef CONFIG_SLUB_DEBUG
  3369. static int validate_slab(struct kmem_cache *s, struct page *page,
  3370. unsigned long *map)
  3371. {
  3372. void *p;
  3373. void *addr = page_address(page);
  3374. if (!check_slab(s, page) ||
  3375. !on_freelist(s, page, NULL))
  3376. return 0;
  3377. /* Now we know that a valid freelist exists */
  3378. bitmap_zero(map, page->objects);
  3379. get_map(s, page, map);
  3380. for_each_object(p, s, addr, page->objects) {
  3381. if (test_bit(slab_index(p, s, addr), map))
  3382. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3383. return 0;
  3384. }
  3385. for_each_object(p, s, addr, page->objects)
  3386. if (!test_bit(slab_index(p, s, addr), map))
  3387. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3388. return 0;
  3389. return 1;
  3390. }
  3391. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3392. unsigned long *map)
  3393. {
  3394. slab_lock(page);
  3395. validate_slab(s, page, map);
  3396. slab_unlock(page);
  3397. }
  3398. static int validate_slab_node(struct kmem_cache *s,
  3399. struct kmem_cache_node *n, unsigned long *map)
  3400. {
  3401. unsigned long count = 0;
  3402. struct page *page;
  3403. unsigned long flags;
  3404. spin_lock_irqsave(&n->list_lock, flags);
  3405. list_for_each_entry(page, &n->partial, lru) {
  3406. validate_slab_slab(s, page, map);
  3407. count++;
  3408. }
  3409. if (count != n->nr_partial)
  3410. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3411. "counter=%ld\n", s->name, count, n->nr_partial);
  3412. if (!(s->flags & SLAB_STORE_USER))
  3413. goto out;
  3414. list_for_each_entry(page, &n->full, lru) {
  3415. validate_slab_slab(s, page, map);
  3416. count++;
  3417. }
  3418. if (count != atomic_long_read(&n->nr_slabs))
  3419. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3420. "counter=%ld\n", s->name, count,
  3421. atomic_long_read(&n->nr_slabs));
  3422. out:
  3423. spin_unlock_irqrestore(&n->list_lock, flags);
  3424. return count;
  3425. }
  3426. static long validate_slab_cache(struct kmem_cache *s)
  3427. {
  3428. int node;
  3429. unsigned long count = 0;
  3430. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3431. sizeof(unsigned long), GFP_KERNEL);
  3432. if (!map)
  3433. return -ENOMEM;
  3434. flush_all(s);
  3435. for_each_node_state(node, N_NORMAL_MEMORY) {
  3436. struct kmem_cache_node *n = get_node(s, node);
  3437. count += validate_slab_node(s, n, map);
  3438. }
  3439. kfree(map);
  3440. return count;
  3441. }
  3442. /*
  3443. * Generate lists of code addresses where slabcache objects are allocated
  3444. * and freed.
  3445. */
  3446. struct location {
  3447. unsigned long count;
  3448. unsigned long addr;
  3449. long long sum_time;
  3450. long min_time;
  3451. long max_time;
  3452. long min_pid;
  3453. long max_pid;
  3454. DECLARE_BITMAP(cpus, NR_CPUS);
  3455. nodemask_t nodes;
  3456. };
  3457. struct loc_track {
  3458. unsigned long max;
  3459. unsigned long count;
  3460. struct location *loc;
  3461. };
  3462. static void free_loc_track(struct loc_track *t)
  3463. {
  3464. if (t->max)
  3465. free_pages((unsigned long)t->loc,
  3466. get_order(sizeof(struct location) * t->max));
  3467. }
  3468. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3469. {
  3470. struct location *l;
  3471. int order;
  3472. order = get_order(sizeof(struct location) * max);
  3473. l = (void *)__get_free_pages(flags, order);
  3474. if (!l)
  3475. return 0;
  3476. if (t->count) {
  3477. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3478. free_loc_track(t);
  3479. }
  3480. t->max = max;
  3481. t->loc = l;
  3482. return 1;
  3483. }
  3484. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3485. const struct track *track)
  3486. {
  3487. long start, end, pos;
  3488. struct location *l;
  3489. unsigned long caddr;
  3490. unsigned long age = jiffies - track->when;
  3491. start = -1;
  3492. end = t->count;
  3493. for ( ; ; ) {
  3494. pos = start + (end - start + 1) / 2;
  3495. /*
  3496. * There is nothing at "end". If we end up there
  3497. * we need to add something to before end.
  3498. */
  3499. if (pos == end)
  3500. break;
  3501. caddr = t->loc[pos].addr;
  3502. if (track->addr == caddr) {
  3503. l = &t->loc[pos];
  3504. l->count++;
  3505. if (track->when) {
  3506. l->sum_time += age;
  3507. if (age < l->min_time)
  3508. l->min_time = age;
  3509. if (age > l->max_time)
  3510. l->max_time = age;
  3511. if (track->pid < l->min_pid)
  3512. l->min_pid = track->pid;
  3513. if (track->pid > l->max_pid)
  3514. l->max_pid = track->pid;
  3515. cpumask_set_cpu(track->cpu,
  3516. to_cpumask(l->cpus));
  3517. }
  3518. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3519. return 1;
  3520. }
  3521. if (track->addr < caddr)
  3522. end = pos;
  3523. else
  3524. start = pos;
  3525. }
  3526. /*
  3527. * Not found. Insert new tracking element.
  3528. */
  3529. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3530. return 0;
  3531. l = t->loc + pos;
  3532. if (pos < t->count)
  3533. memmove(l + 1, l,
  3534. (t->count - pos) * sizeof(struct location));
  3535. t->count++;
  3536. l->count = 1;
  3537. l->addr = track->addr;
  3538. l->sum_time = age;
  3539. l->min_time = age;
  3540. l->max_time = age;
  3541. l->min_pid = track->pid;
  3542. l->max_pid = track->pid;
  3543. cpumask_clear(to_cpumask(l->cpus));
  3544. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3545. nodes_clear(l->nodes);
  3546. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3547. return 1;
  3548. }
  3549. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3550. struct page *page, enum track_item alloc,
  3551. unsigned long *map)
  3552. {
  3553. void *addr = page_address(page);
  3554. void *p;
  3555. bitmap_zero(map, page->objects);
  3556. get_map(s, page, map);
  3557. for_each_object(p, s, addr, page->objects)
  3558. if (!test_bit(slab_index(p, s, addr), map))
  3559. add_location(t, s, get_track(s, p, alloc));
  3560. }
  3561. static int list_locations(struct kmem_cache *s, char *buf,
  3562. enum track_item alloc)
  3563. {
  3564. int len = 0;
  3565. unsigned long i;
  3566. struct loc_track t = { 0, 0, NULL };
  3567. int node;
  3568. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3569. sizeof(unsigned long), GFP_KERNEL);
  3570. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3571. GFP_TEMPORARY)) {
  3572. kfree(map);
  3573. return sprintf(buf, "Out of memory\n");
  3574. }
  3575. /* Push back cpu slabs */
  3576. flush_all(s);
  3577. for_each_node_state(node, N_NORMAL_MEMORY) {
  3578. struct kmem_cache_node *n = get_node(s, node);
  3579. unsigned long flags;
  3580. struct page *page;
  3581. if (!atomic_long_read(&n->nr_slabs))
  3582. continue;
  3583. spin_lock_irqsave(&n->list_lock, flags);
  3584. list_for_each_entry(page, &n->partial, lru)
  3585. process_slab(&t, s, page, alloc, map);
  3586. list_for_each_entry(page, &n->full, lru)
  3587. process_slab(&t, s, page, alloc, map);
  3588. spin_unlock_irqrestore(&n->list_lock, flags);
  3589. }
  3590. for (i = 0; i < t.count; i++) {
  3591. struct location *l = &t.loc[i];
  3592. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3593. break;
  3594. len += sprintf(buf + len, "%7ld ", l->count);
  3595. if (l->addr)
  3596. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3597. else
  3598. len += sprintf(buf + len, "<not-available>");
  3599. if (l->sum_time != l->min_time) {
  3600. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3601. l->min_time,
  3602. (long)div_u64(l->sum_time, l->count),
  3603. l->max_time);
  3604. } else
  3605. len += sprintf(buf + len, " age=%ld",
  3606. l->min_time);
  3607. if (l->min_pid != l->max_pid)
  3608. len += sprintf(buf + len, " pid=%ld-%ld",
  3609. l->min_pid, l->max_pid);
  3610. else
  3611. len += sprintf(buf + len, " pid=%ld",
  3612. l->min_pid);
  3613. if (num_online_cpus() > 1 &&
  3614. !cpumask_empty(to_cpumask(l->cpus)) &&
  3615. len < PAGE_SIZE - 60) {
  3616. len += sprintf(buf + len, " cpus=");
  3617. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3618. to_cpumask(l->cpus));
  3619. }
  3620. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3621. len < PAGE_SIZE - 60) {
  3622. len += sprintf(buf + len, " nodes=");
  3623. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3624. l->nodes);
  3625. }
  3626. len += sprintf(buf + len, "\n");
  3627. }
  3628. free_loc_track(&t);
  3629. kfree(map);
  3630. if (!t.count)
  3631. len += sprintf(buf, "No data\n");
  3632. return len;
  3633. }
  3634. #endif
  3635. #ifdef SLUB_RESILIENCY_TEST
  3636. static void resiliency_test(void)
  3637. {
  3638. u8 *p;
  3639. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3640. printk(KERN_ERR "SLUB resiliency testing\n");
  3641. printk(KERN_ERR "-----------------------\n");
  3642. printk(KERN_ERR "A. Corruption after allocation\n");
  3643. p = kzalloc(16, GFP_KERNEL);
  3644. p[16] = 0x12;
  3645. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3646. " 0x12->0x%p\n\n", p + 16);
  3647. validate_slab_cache(kmalloc_caches[4]);
  3648. /* Hmmm... The next two are dangerous */
  3649. p = kzalloc(32, GFP_KERNEL);
  3650. p[32 + sizeof(void *)] = 0x34;
  3651. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3652. " 0x34 -> -0x%p\n", p);
  3653. printk(KERN_ERR
  3654. "If allocated object is overwritten then not detectable\n\n");
  3655. validate_slab_cache(kmalloc_caches[5]);
  3656. p = kzalloc(64, GFP_KERNEL);
  3657. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3658. *p = 0x56;
  3659. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3660. p);
  3661. printk(KERN_ERR
  3662. "If allocated object is overwritten then not detectable\n\n");
  3663. validate_slab_cache(kmalloc_caches[6]);
  3664. printk(KERN_ERR "\nB. Corruption after free\n");
  3665. p = kzalloc(128, GFP_KERNEL);
  3666. kfree(p);
  3667. *p = 0x78;
  3668. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3669. validate_slab_cache(kmalloc_caches[7]);
  3670. p = kzalloc(256, GFP_KERNEL);
  3671. kfree(p);
  3672. p[50] = 0x9a;
  3673. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3674. p);
  3675. validate_slab_cache(kmalloc_caches[8]);
  3676. p = kzalloc(512, GFP_KERNEL);
  3677. kfree(p);
  3678. p[512] = 0xab;
  3679. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3680. validate_slab_cache(kmalloc_caches[9]);
  3681. }
  3682. #else
  3683. #ifdef CONFIG_SYSFS
  3684. static void resiliency_test(void) {};
  3685. #endif
  3686. #endif
  3687. #ifdef CONFIG_SYSFS
  3688. enum slab_stat_type {
  3689. SL_ALL, /* All slabs */
  3690. SL_PARTIAL, /* Only partially allocated slabs */
  3691. SL_CPU, /* Only slabs used for cpu caches */
  3692. SL_OBJECTS, /* Determine allocated objects not slabs */
  3693. SL_TOTAL /* Determine object capacity not slabs */
  3694. };
  3695. #define SO_ALL (1 << SL_ALL)
  3696. #define SO_PARTIAL (1 << SL_PARTIAL)
  3697. #define SO_CPU (1 << SL_CPU)
  3698. #define SO_OBJECTS (1 << SL_OBJECTS)
  3699. #define SO_TOTAL (1 << SL_TOTAL)
  3700. static ssize_t show_slab_objects(struct kmem_cache *s,
  3701. char *buf, unsigned long flags)
  3702. {
  3703. unsigned long total = 0;
  3704. int node;
  3705. int x;
  3706. unsigned long *nodes;
  3707. unsigned long *per_cpu;
  3708. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3709. if (!nodes)
  3710. return -ENOMEM;
  3711. per_cpu = nodes + nr_node_ids;
  3712. if (flags & SO_CPU) {
  3713. int cpu;
  3714. for_each_possible_cpu(cpu) {
  3715. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3716. int node;
  3717. struct page *page;
  3718. page = ACCESS_ONCE(c->page);
  3719. if (!page)
  3720. continue;
  3721. node = page_to_nid(page);
  3722. if (flags & SO_TOTAL)
  3723. x = page->objects;
  3724. else if (flags & SO_OBJECTS)
  3725. x = page->inuse;
  3726. else
  3727. x = 1;
  3728. total += x;
  3729. nodes[node] += x;
  3730. page = ACCESS_ONCE(c->partial);
  3731. if (page) {
  3732. x = page->pobjects;
  3733. total += x;
  3734. nodes[node] += x;
  3735. }
  3736. per_cpu[node]++;
  3737. }
  3738. }
  3739. lock_memory_hotplug();
  3740. #ifdef CONFIG_SLUB_DEBUG
  3741. if (flags & SO_ALL) {
  3742. for_each_node_state(node, N_NORMAL_MEMORY) {
  3743. struct kmem_cache_node *n = get_node(s, node);
  3744. if (flags & SO_TOTAL)
  3745. x = atomic_long_read(&n->total_objects);
  3746. else if (flags & SO_OBJECTS)
  3747. x = atomic_long_read(&n->total_objects) -
  3748. count_partial(n, count_free);
  3749. else
  3750. x = atomic_long_read(&n->nr_slabs);
  3751. total += x;
  3752. nodes[node] += x;
  3753. }
  3754. } else
  3755. #endif
  3756. if (flags & SO_PARTIAL) {
  3757. for_each_node_state(node, N_NORMAL_MEMORY) {
  3758. struct kmem_cache_node *n = get_node(s, node);
  3759. if (flags & SO_TOTAL)
  3760. x = count_partial(n, count_total);
  3761. else if (flags & SO_OBJECTS)
  3762. x = count_partial(n, count_inuse);
  3763. else
  3764. x = n->nr_partial;
  3765. total += x;
  3766. nodes[node] += x;
  3767. }
  3768. }
  3769. x = sprintf(buf, "%lu", total);
  3770. #ifdef CONFIG_NUMA
  3771. for_each_node_state(node, N_NORMAL_MEMORY)
  3772. if (nodes[node])
  3773. x += sprintf(buf + x, " N%d=%lu",
  3774. node, nodes[node]);
  3775. #endif
  3776. unlock_memory_hotplug();
  3777. kfree(nodes);
  3778. return x + sprintf(buf + x, "\n");
  3779. }
  3780. #ifdef CONFIG_SLUB_DEBUG
  3781. static int any_slab_objects(struct kmem_cache *s)
  3782. {
  3783. int node;
  3784. for_each_online_node(node) {
  3785. struct kmem_cache_node *n = get_node(s, node);
  3786. if (!n)
  3787. continue;
  3788. if (atomic_long_read(&n->total_objects))
  3789. return 1;
  3790. }
  3791. return 0;
  3792. }
  3793. #endif
  3794. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3795. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3796. struct slab_attribute {
  3797. struct attribute attr;
  3798. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3799. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3800. };
  3801. #define SLAB_ATTR_RO(_name) \
  3802. static struct slab_attribute _name##_attr = \
  3803. __ATTR(_name, 0400, _name##_show, NULL)
  3804. #define SLAB_ATTR(_name) \
  3805. static struct slab_attribute _name##_attr = \
  3806. __ATTR(_name, 0600, _name##_show, _name##_store)
  3807. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3808. {
  3809. return sprintf(buf, "%d\n", s->size);
  3810. }
  3811. SLAB_ATTR_RO(slab_size);
  3812. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3813. {
  3814. return sprintf(buf, "%d\n", s->align);
  3815. }
  3816. SLAB_ATTR_RO(align);
  3817. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3818. {
  3819. return sprintf(buf, "%d\n", s->object_size);
  3820. }
  3821. SLAB_ATTR_RO(object_size);
  3822. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3823. {
  3824. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3825. }
  3826. SLAB_ATTR_RO(objs_per_slab);
  3827. static ssize_t order_store(struct kmem_cache *s,
  3828. const char *buf, size_t length)
  3829. {
  3830. unsigned long order;
  3831. int err;
  3832. err = strict_strtoul(buf, 10, &order);
  3833. if (err)
  3834. return err;
  3835. if (order > slub_max_order || order < slub_min_order)
  3836. return -EINVAL;
  3837. calculate_sizes(s, order);
  3838. return length;
  3839. }
  3840. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3841. {
  3842. return sprintf(buf, "%d\n", oo_order(s->oo));
  3843. }
  3844. SLAB_ATTR(order);
  3845. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3846. {
  3847. return sprintf(buf, "%lu\n", s->min_partial);
  3848. }
  3849. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3850. size_t length)
  3851. {
  3852. unsigned long min;
  3853. int err;
  3854. err = strict_strtoul(buf, 10, &min);
  3855. if (err)
  3856. return err;
  3857. set_min_partial(s, min);
  3858. return length;
  3859. }
  3860. SLAB_ATTR(min_partial);
  3861. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3862. {
  3863. return sprintf(buf, "%u\n", s->cpu_partial);
  3864. }
  3865. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3866. size_t length)
  3867. {
  3868. unsigned long objects;
  3869. int err;
  3870. err = strict_strtoul(buf, 10, &objects);
  3871. if (err)
  3872. return err;
  3873. if (objects && kmem_cache_debug(s))
  3874. return -EINVAL;
  3875. s->cpu_partial = objects;
  3876. flush_all(s);
  3877. return length;
  3878. }
  3879. SLAB_ATTR(cpu_partial);
  3880. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3881. {
  3882. if (!s->ctor)
  3883. return 0;
  3884. return sprintf(buf, "%pS\n", s->ctor);
  3885. }
  3886. SLAB_ATTR_RO(ctor);
  3887. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3888. {
  3889. return sprintf(buf, "%d\n", s->refcount - 1);
  3890. }
  3891. SLAB_ATTR_RO(aliases);
  3892. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3893. {
  3894. return show_slab_objects(s, buf, SO_PARTIAL);
  3895. }
  3896. SLAB_ATTR_RO(partial);
  3897. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3898. {
  3899. return show_slab_objects(s, buf, SO_CPU);
  3900. }
  3901. SLAB_ATTR_RO(cpu_slabs);
  3902. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3903. {
  3904. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3905. }
  3906. SLAB_ATTR_RO(objects);
  3907. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3908. {
  3909. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3910. }
  3911. SLAB_ATTR_RO(objects_partial);
  3912. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. int objects = 0;
  3915. int pages = 0;
  3916. int cpu;
  3917. int len;
  3918. for_each_online_cpu(cpu) {
  3919. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3920. if (page) {
  3921. pages += page->pages;
  3922. objects += page->pobjects;
  3923. }
  3924. }
  3925. len = sprintf(buf, "%d(%d)", objects, pages);
  3926. #ifdef CONFIG_SMP
  3927. for_each_online_cpu(cpu) {
  3928. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3929. if (page && len < PAGE_SIZE - 20)
  3930. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3931. page->pobjects, page->pages);
  3932. }
  3933. #endif
  3934. return len + sprintf(buf + len, "\n");
  3935. }
  3936. SLAB_ATTR_RO(slabs_cpu_partial);
  3937. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3938. {
  3939. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3940. }
  3941. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3942. const char *buf, size_t length)
  3943. {
  3944. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3945. if (buf[0] == '1')
  3946. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3947. return length;
  3948. }
  3949. SLAB_ATTR(reclaim_account);
  3950. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3951. {
  3952. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3953. }
  3954. SLAB_ATTR_RO(hwcache_align);
  3955. #ifdef CONFIG_ZONE_DMA
  3956. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3957. {
  3958. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3959. }
  3960. SLAB_ATTR_RO(cache_dma);
  3961. #endif
  3962. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3963. {
  3964. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3965. }
  3966. SLAB_ATTR_RO(destroy_by_rcu);
  3967. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3968. {
  3969. return sprintf(buf, "%d\n", s->reserved);
  3970. }
  3971. SLAB_ATTR_RO(reserved);
  3972. #ifdef CONFIG_SLUB_DEBUG
  3973. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3974. {
  3975. return show_slab_objects(s, buf, SO_ALL);
  3976. }
  3977. SLAB_ATTR_RO(slabs);
  3978. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3979. {
  3980. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3981. }
  3982. SLAB_ATTR_RO(total_objects);
  3983. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3984. {
  3985. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3986. }
  3987. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3988. const char *buf, size_t length)
  3989. {
  3990. s->flags &= ~SLAB_DEBUG_FREE;
  3991. if (buf[0] == '1') {
  3992. s->flags &= ~__CMPXCHG_DOUBLE;
  3993. s->flags |= SLAB_DEBUG_FREE;
  3994. }
  3995. return length;
  3996. }
  3997. SLAB_ATTR(sanity_checks);
  3998. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3999. {
  4000. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4001. }
  4002. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4003. size_t length)
  4004. {
  4005. s->flags &= ~SLAB_TRACE;
  4006. if (buf[0] == '1') {
  4007. s->flags &= ~__CMPXCHG_DOUBLE;
  4008. s->flags |= SLAB_TRACE;
  4009. }
  4010. return length;
  4011. }
  4012. SLAB_ATTR(trace);
  4013. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4014. {
  4015. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4016. }
  4017. static ssize_t red_zone_store(struct kmem_cache *s,
  4018. const char *buf, size_t length)
  4019. {
  4020. if (any_slab_objects(s))
  4021. return -EBUSY;
  4022. s->flags &= ~SLAB_RED_ZONE;
  4023. if (buf[0] == '1') {
  4024. s->flags &= ~__CMPXCHG_DOUBLE;
  4025. s->flags |= SLAB_RED_ZONE;
  4026. }
  4027. calculate_sizes(s, -1);
  4028. return length;
  4029. }
  4030. SLAB_ATTR(red_zone);
  4031. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4032. {
  4033. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4034. }
  4035. static ssize_t poison_store(struct kmem_cache *s,
  4036. const char *buf, size_t length)
  4037. {
  4038. if (any_slab_objects(s))
  4039. return -EBUSY;
  4040. s->flags &= ~SLAB_POISON;
  4041. if (buf[0] == '1') {
  4042. s->flags &= ~__CMPXCHG_DOUBLE;
  4043. s->flags |= SLAB_POISON;
  4044. }
  4045. calculate_sizes(s, -1);
  4046. return length;
  4047. }
  4048. SLAB_ATTR(poison);
  4049. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4050. {
  4051. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4052. }
  4053. static ssize_t store_user_store(struct kmem_cache *s,
  4054. const char *buf, size_t length)
  4055. {
  4056. if (any_slab_objects(s))
  4057. return -EBUSY;
  4058. s->flags &= ~SLAB_STORE_USER;
  4059. if (buf[0] == '1') {
  4060. s->flags &= ~__CMPXCHG_DOUBLE;
  4061. s->flags |= SLAB_STORE_USER;
  4062. }
  4063. calculate_sizes(s, -1);
  4064. return length;
  4065. }
  4066. SLAB_ATTR(store_user);
  4067. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4068. {
  4069. return 0;
  4070. }
  4071. static ssize_t validate_store(struct kmem_cache *s,
  4072. const char *buf, size_t length)
  4073. {
  4074. int ret = -EINVAL;
  4075. if (buf[0] == '1') {
  4076. ret = validate_slab_cache(s);
  4077. if (ret >= 0)
  4078. ret = length;
  4079. }
  4080. return ret;
  4081. }
  4082. SLAB_ATTR(validate);
  4083. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4084. {
  4085. if (!(s->flags & SLAB_STORE_USER))
  4086. return -ENOSYS;
  4087. return list_locations(s, buf, TRACK_ALLOC);
  4088. }
  4089. SLAB_ATTR_RO(alloc_calls);
  4090. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4091. {
  4092. if (!(s->flags & SLAB_STORE_USER))
  4093. return -ENOSYS;
  4094. return list_locations(s, buf, TRACK_FREE);
  4095. }
  4096. SLAB_ATTR_RO(free_calls);
  4097. #endif /* CONFIG_SLUB_DEBUG */
  4098. #ifdef CONFIG_FAILSLAB
  4099. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4100. {
  4101. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4102. }
  4103. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4104. size_t length)
  4105. {
  4106. s->flags &= ~SLAB_FAILSLAB;
  4107. if (buf[0] == '1')
  4108. s->flags |= SLAB_FAILSLAB;
  4109. return length;
  4110. }
  4111. SLAB_ATTR(failslab);
  4112. #endif
  4113. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4114. {
  4115. return 0;
  4116. }
  4117. static ssize_t shrink_store(struct kmem_cache *s,
  4118. const char *buf, size_t length)
  4119. {
  4120. if (buf[0] == '1') {
  4121. int rc = kmem_cache_shrink(s);
  4122. if (rc)
  4123. return rc;
  4124. } else
  4125. return -EINVAL;
  4126. return length;
  4127. }
  4128. SLAB_ATTR(shrink);
  4129. #ifdef CONFIG_NUMA
  4130. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4131. {
  4132. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4133. }
  4134. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4135. const char *buf, size_t length)
  4136. {
  4137. unsigned long ratio;
  4138. int err;
  4139. err = strict_strtoul(buf, 10, &ratio);
  4140. if (err)
  4141. return err;
  4142. if (ratio <= 100)
  4143. s->remote_node_defrag_ratio = ratio * 10;
  4144. return length;
  4145. }
  4146. SLAB_ATTR(remote_node_defrag_ratio);
  4147. #endif
  4148. #ifdef CONFIG_SLUB_STATS
  4149. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4150. {
  4151. unsigned long sum = 0;
  4152. int cpu;
  4153. int len;
  4154. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4155. if (!data)
  4156. return -ENOMEM;
  4157. for_each_online_cpu(cpu) {
  4158. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4159. data[cpu] = x;
  4160. sum += x;
  4161. }
  4162. len = sprintf(buf, "%lu", sum);
  4163. #ifdef CONFIG_SMP
  4164. for_each_online_cpu(cpu) {
  4165. if (data[cpu] && len < PAGE_SIZE - 20)
  4166. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4167. }
  4168. #endif
  4169. kfree(data);
  4170. return len + sprintf(buf + len, "\n");
  4171. }
  4172. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4173. {
  4174. int cpu;
  4175. for_each_online_cpu(cpu)
  4176. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4177. }
  4178. #define STAT_ATTR(si, text) \
  4179. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4180. { \
  4181. return show_stat(s, buf, si); \
  4182. } \
  4183. static ssize_t text##_store(struct kmem_cache *s, \
  4184. const char *buf, size_t length) \
  4185. { \
  4186. if (buf[0] != '0') \
  4187. return -EINVAL; \
  4188. clear_stat(s, si); \
  4189. return length; \
  4190. } \
  4191. SLAB_ATTR(text); \
  4192. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4193. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4194. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4195. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4196. STAT_ATTR(FREE_FROZEN, free_frozen);
  4197. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4198. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4199. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4200. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4201. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4202. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4203. STAT_ATTR(FREE_SLAB, free_slab);
  4204. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4205. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4206. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4207. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4208. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4209. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4210. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4211. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4212. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4213. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4214. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4215. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4216. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4217. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4218. #endif
  4219. static struct attribute *slab_attrs[] = {
  4220. &slab_size_attr.attr,
  4221. &object_size_attr.attr,
  4222. &objs_per_slab_attr.attr,
  4223. &order_attr.attr,
  4224. &min_partial_attr.attr,
  4225. &cpu_partial_attr.attr,
  4226. &objects_attr.attr,
  4227. &objects_partial_attr.attr,
  4228. &partial_attr.attr,
  4229. &cpu_slabs_attr.attr,
  4230. &ctor_attr.attr,
  4231. &aliases_attr.attr,
  4232. &align_attr.attr,
  4233. &hwcache_align_attr.attr,
  4234. &reclaim_account_attr.attr,
  4235. &destroy_by_rcu_attr.attr,
  4236. &shrink_attr.attr,
  4237. &reserved_attr.attr,
  4238. &slabs_cpu_partial_attr.attr,
  4239. #ifdef CONFIG_SLUB_DEBUG
  4240. &total_objects_attr.attr,
  4241. &slabs_attr.attr,
  4242. &sanity_checks_attr.attr,
  4243. &trace_attr.attr,
  4244. &red_zone_attr.attr,
  4245. &poison_attr.attr,
  4246. &store_user_attr.attr,
  4247. &validate_attr.attr,
  4248. &alloc_calls_attr.attr,
  4249. &free_calls_attr.attr,
  4250. #endif
  4251. #ifdef CONFIG_ZONE_DMA
  4252. &cache_dma_attr.attr,
  4253. #endif
  4254. #ifdef CONFIG_NUMA
  4255. &remote_node_defrag_ratio_attr.attr,
  4256. #endif
  4257. #ifdef CONFIG_SLUB_STATS
  4258. &alloc_fastpath_attr.attr,
  4259. &alloc_slowpath_attr.attr,
  4260. &free_fastpath_attr.attr,
  4261. &free_slowpath_attr.attr,
  4262. &free_frozen_attr.attr,
  4263. &free_add_partial_attr.attr,
  4264. &free_remove_partial_attr.attr,
  4265. &alloc_from_partial_attr.attr,
  4266. &alloc_slab_attr.attr,
  4267. &alloc_refill_attr.attr,
  4268. &alloc_node_mismatch_attr.attr,
  4269. &free_slab_attr.attr,
  4270. &cpuslab_flush_attr.attr,
  4271. &deactivate_full_attr.attr,
  4272. &deactivate_empty_attr.attr,
  4273. &deactivate_to_head_attr.attr,
  4274. &deactivate_to_tail_attr.attr,
  4275. &deactivate_remote_frees_attr.attr,
  4276. &deactivate_bypass_attr.attr,
  4277. &order_fallback_attr.attr,
  4278. &cmpxchg_double_fail_attr.attr,
  4279. &cmpxchg_double_cpu_fail_attr.attr,
  4280. &cpu_partial_alloc_attr.attr,
  4281. &cpu_partial_free_attr.attr,
  4282. &cpu_partial_node_attr.attr,
  4283. &cpu_partial_drain_attr.attr,
  4284. #endif
  4285. #ifdef CONFIG_FAILSLAB
  4286. &failslab_attr.attr,
  4287. #endif
  4288. NULL
  4289. };
  4290. static struct attribute_group slab_attr_group = {
  4291. .attrs = slab_attrs,
  4292. };
  4293. static ssize_t slab_attr_show(struct kobject *kobj,
  4294. struct attribute *attr,
  4295. char *buf)
  4296. {
  4297. struct slab_attribute *attribute;
  4298. struct kmem_cache *s;
  4299. int err;
  4300. attribute = to_slab_attr(attr);
  4301. s = to_slab(kobj);
  4302. if (!attribute->show)
  4303. return -EIO;
  4304. err = attribute->show(s, buf);
  4305. return err;
  4306. }
  4307. static ssize_t slab_attr_store(struct kobject *kobj,
  4308. struct attribute *attr,
  4309. const char *buf, size_t len)
  4310. {
  4311. struct slab_attribute *attribute;
  4312. struct kmem_cache *s;
  4313. int err;
  4314. attribute = to_slab_attr(attr);
  4315. s = to_slab(kobj);
  4316. if (!attribute->store)
  4317. return -EIO;
  4318. err = attribute->store(s, buf, len);
  4319. return err;
  4320. }
  4321. static const struct sysfs_ops slab_sysfs_ops = {
  4322. .show = slab_attr_show,
  4323. .store = slab_attr_store,
  4324. };
  4325. static struct kobj_type slab_ktype = {
  4326. .sysfs_ops = &slab_sysfs_ops,
  4327. };
  4328. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4329. {
  4330. struct kobj_type *ktype = get_ktype(kobj);
  4331. if (ktype == &slab_ktype)
  4332. return 1;
  4333. return 0;
  4334. }
  4335. static const struct kset_uevent_ops slab_uevent_ops = {
  4336. .filter = uevent_filter,
  4337. };
  4338. static struct kset *slab_kset;
  4339. #define ID_STR_LENGTH 64
  4340. /* Create a unique string id for a slab cache:
  4341. *
  4342. * Format :[flags-]size
  4343. */
  4344. static char *create_unique_id(struct kmem_cache *s)
  4345. {
  4346. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4347. char *p = name;
  4348. BUG_ON(!name);
  4349. *p++ = ':';
  4350. /*
  4351. * First flags affecting slabcache operations. We will only
  4352. * get here for aliasable slabs so we do not need to support
  4353. * too many flags. The flags here must cover all flags that
  4354. * are matched during merging to guarantee that the id is
  4355. * unique.
  4356. */
  4357. if (s->flags & SLAB_CACHE_DMA)
  4358. *p++ = 'd';
  4359. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4360. *p++ = 'a';
  4361. if (s->flags & SLAB_DEBUG_FREE)
  4362. *p++ = 'F';
  4363. if (!(s->flags & SLAB_NOTRACK))
  4364. *p++ = 't';
  4365. if (p != name + 1)
  4366. *p++ = '-';
  4367. p += sprintf(p, "%07d", s->size);
  4368. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4369. return name;
  4370. }
  4371. static int sysfs_slab_add(struct kmem_cache *s)
  4372. {
  4373. int err;
  4374. const char *name;
  4375. int unmergeable = slab_unmergeable(s);
  4376. if (unmergeable) {
  4377. /*
  4378. * Slabcache can never be merged so we can use the name proper.
  4379. * This is typically the case for debug situations. In that
  4380. * case we can catch duplicate names easily.
  4381. */
  4382. sysfs_remove_link(&slab_kset->kobj, s->name);
  4383. name = s->name;
  4384. } else {
  4385. /*
  4386. * Create a unique name for the slab as a target
  4387. * for the symlinks.
  4388. */
  4389. name = create_unique_id(s);
  4390. }
  4391. s->kobj.kset = slab_kset;
  4392. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4393. if (err) {
  4394. kobject_put(&s->kobj);
  4395. return err;
  4396. }
  4397. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4398. if (err) {
  4399. kobject_del(&s->kobj);
  4400. kobject_put(&s->kobj);
  4401. return err;
  4402. }
  4403. kobject_uevent(&s->kobj, KOBJ_ADD);
  4404. if (!unmergeable) {
  4405. /* Setup first alias */
  4406. sysfs_slab_alias(s, s->name);
  4407. kfree(name);
  4408. }
  4409. return 0;
  4410. }
  4411. static void sysfs_slab_remove(struct kmem_cache *s)
  4412. {
  4413. if (slab_state < FULL)
  4414. /*
  4415. * Sysfs has not been setup yet so no need to remove the
  4416. * cache from sysfs.
  4417. */
  4418. return;
  4419. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4420. kobject_del(&s->kobj);
  4421. kobject_put(&s->kobj);
  4422. }
  4423. /*
  4424. * Need to buffer aliases during bootup until sysfs becomes
  4425. * available lest we lose that information.
  4426. */
  4427. struct saved_alias {
  4428. struct kmem_cache *s;
  4429. const char *name;
  4430. struct saved_alias *next;
  4431. };
  4432. static struct saved_alias *alias_list;
  4433. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4434. {
  4435. struct saved_alias *al;
  4436. if (slab_state == FULL) {
  4437. /*
  4438. * If we have a leftover link then remove it.
  4439. */
  4440. sysfs_remove_link(&slab_kset->kobj, name);
  4441. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4442. }
  4443. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4444. if (!al)
  4445. return -ENOMEM;
  4446. al->s = s;
  4447. al->name = name;
  4448. al->next = alias_list;
  4449. alias_list = al;
  4450. return 0;
  4451. }
  4452. static int __init slab_sysfs_init(void)
  4453. {
  4454. struct kmem_cache *s;
  4455. int err;
  4456. mutex_lock(&slab_mutex);
  4457. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4458. if (!slab_kset) {
  4459. mutex_unlock(&slab_mutex);
  4460. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4461. return -ENOSYS;
  4462. }
  4463. slab_state = FULL;
  4464. list_for_each_entry(s, &slab_caches, list) {
  4465. err = sysfs_slab_add(s);
  4466. if (err)
  4467. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4468. " to sysfs\n", s->name);
  4469. }
  4470. while (alias_list) {
  4471. struct saved_alias *al = alias_list;
  4472. alias_list = alias_list->next;
  4473. err = sysfs_slab_alias(al->s, al->name);
  4474. if (err)
  4475. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4476. " %s to sysfs\n", al->name);
  4477. kfree(al);
  4478. }
  4479. mutex_unlock(&slab_mutex);
  4480. resiliency_test();
  4481. return 0;
  4482. }
  4483. __initcall(slab_sysfs_init);
  4484. #endif /* CONFIG_SYSFS */
  4485. /*
  4486. * The /proc/slabinfo ABI
  4487. */
  4488. #ifdef CONFIG_SLABINFO
  4489. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4490. {
  4491. unsigned long nr_partials = 0;
  4492. unsigned long nr_slabs = 0;
  4493. unsigned long nr_objs = 0;
  4494. unsigned long nr_free = 0;
  4495. int node;
  4496. for_each_online_node(node) {
  4497. struct kmem_cache_node *n = get_node(s, node);
  4498. if (!n)
  4499. continue;
  4500. nr_partials += n->nr_partial;
  4501. nr_slabs += atomic_long_read(&n->nr_slabs);
  4502. nr_objs += atomic_long_read(&n->total_objects);
  4503. nr_free += count_partial(n, count_free);
  4504. }
  4505. sinfo->active_objs = nr_objs - nr_free;
  4506. sinfo->num_objs = nr_objs;
  4507. sinfo->active_slabs = nr_slabs;
  4508. sinfo->num_slabs = nr_slabs;
  4509. sinfo->objects_per_slab = oo_objects(s->oo);
  4510. sinfo->cache_order = oo_order(s->oo);
  4511. }
  4512. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4513. {
  4514. }
  4515. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4516. size_t count, loff_t *ppos)
  4517. {
  4518. return -EIO;
  4519. }
  4520. #endif /* CONFIG_SLABINFO */