hw.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "ath9k.h"
  19. #include "initvals.h"
  20. static int btcoex_enable;
  21. module_param(btcoex_enable, bool, 0);
  22. MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
  23. #define ATH9K_CLOCK_RATE_CCK 22
  24. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  25. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  26. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  28. enum ath9k_ht_macmode macmode);
  29. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  30. struct ar5416_eeprom_def *pEepData,
  31. u32 reg, u32 value);
  32. static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
  33. static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
  34. /********************/
  35. /* Helper Functions */
  36. /********************/
  37. static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
  38. {
  39. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  40. if (!ah->curchan) /* should really check for CCK instead */
  41. return clks / ATH9K_CLOCK_RATE_CCK;
  42. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  43. return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
  44. return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
  45. }
  46. static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
  47. {
  48. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  49. if (conf_is_ht40(conf))
  50. return ath9k_hw_mac_usec(ah, clks) / 2;
  51. else
  52. return ath9k_hw_mac_usec(ah, clks);
  53. }
  54. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  55. {
  56. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  57. if (!ah->curchan) /* should really check for CCK instead */
  58. return usecs *ATH9K_CLOCK_RATE_CCK;
  59. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  60. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  61. return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
  62. }
  63. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  64. {
  65. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  66. if (conf_is_ht40(conf))
  67. return ath9k_hw_mac_clks(ah, usecs) * 2;
  68. else
  69. return ath9k_hw_mac_clks(ah, usecs);
  70. }
  71. /*
  72. * Read and write, they both share the same lock. We do this to serialize
  73. * reads and writes on Atheros 802.11n PCI devices only. This is required
  74. * as the FIFO on these devices can only accept sanely 2 requests. After
  75. * that the device goes bananas. Serializing the reads/writes prevents this
  76. * from happening.
  77. */
  78. void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
  79. {
  80. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  81. unsigned long flags;
  82. spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
  83. iowrite32(val, ah->ah_sc->mem + reg_offset);
  84. spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
  85. } else
  86. iowrite32(val, ah->ah_sc->mem + reg_offset);
  87. }
  88. unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
  89. {
  90. u32 val;
  91. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  92. unsigned long flags;
  93. spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
  94. val = ioread32(ah->ah_sc->mem + reg_offset);
  95. spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
  96. } else
  97. val = ioread32(ah->ah_sc->mem + reg_offset);
  98. return val;
  99. }
  100. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  101. {
  102. int i;
  103. BUG_ON(timeout < AH_TIME_QUANTUM);
  104. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  105. if ((REG_READ(ah, reg) & mask) == val)
  106. return true;
  107. udelay(AH_TIME_QUANTUM);
  108. }
  109. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  110. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  111. timeout, reg, REG_READ(ah, reg), mask, val);
  112. return false;
  113. }
  114. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  115. {
  116. u32 retval;
  117. int i;
  118. for (i = 0, retval = 0; i < n; i++) {
  119. retval = (retval << 1) | (val & 1);
  120. val >>= 1;
  121. }
  122. return retval;
  123. }
  124. bool ath9k_get_channel_edges(struct ath_hw *ah,
  125. u16 flags, u16 *low,
  126. u16 *high)
  127. {
  128. struct ath9k_hw_capabilities *pCap = &ah->caps;
  129. if (flags & CHANNEL_5GHZ) {
  130. *low = pCap->low_5ghz_chan;
  131. *high = pCap->high_5ghz_chan;
  132. return true;
  133. }
  134. if ((flags & CHANNEL_2GHZ)) {
  135. *low = pCap->low_2ghz_chan;
  136. *high = pCap->high_2ghz_chan;
  137. return true;
  138. }
  139. return false;
  140. }
  141. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  142. const struct ath_rate_table *rates,
  143. u32 frameLen, u16 rateix,
  144. bool shortPreamble)
  145. {
  146. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  147. u32 kbps;
  148. kbps = rates->info[rateix].ratekbps;
  149. if (kbps == 0)
  150. return 0;
  151. switch (rates->info[rateix].phy) {
  152. case WLAN_RC_PHY_CCK:
  153. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  154. if (shortPreamble && rates->info[rateix].short_preamble)
  155. phyTime >>= 1;
  156. numBits = frameLen << 3;
  157. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  158. break;
  159. case WLAN_RC_PHY_OFDM:
  160. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  161. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  162. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  163. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  164. txTime = OFDM_SIFS_TIME_QUARTER
  165. + OFDM_PREAMBLE_TIME_QUARTER
  166. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  167. } else if (ah->curchan &&
  168. IS_CHAN_HALF_RATE(ah->curchan)) {
  169. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  170. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  171. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  172. txTime = OFDM_SIFS_TIME_HALF +
  173. OFDM_PREAMBLE_TIME_HALF
  174. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  175. } else {
  176. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  177. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  178. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  179. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  180. + (numSymbols * OFDM_SYMBOL_TIME);
  181. }
  182. break;
  183. default:
  184. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  185. "Unknown phy %u (rate ix %u)\n",
  186. rates->info[rateix].phy, rateix);
  187. txTime = 0;
  188. break;
  189. }
  190. return txTime;
  191. }
  192. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  193. struct ath9k_channel *chan,
  194. struct chan_centers *centers)
  195. {
  196. int8_t extoff;
  197. if (!IS_CHAN_HT40(chan)) {
  198. centers->ctl_center = centers->ext_center =
  199. centers->synth_center = chan->channel;
  200. return;
  201. }
  202. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  203. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  204. centers->synth_center =
  205. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  206. extoff = 1;
  207. } else {
  208. centers->synth_center =
  209. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  210. extoff = -1;
  211. }
  212. centers->ctl_center =
  213. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  214. centers->ext_center =
  215. centers->synth_center + (extoff *
  216. ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
  217. HT40_CHANNEL_CENTER_SHIFT : 15));
  218. }
  219. /******************/
  220. /* Chip Revisions */
  221. /******************/
  222. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  223. {
  224. u32 val;
  225. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  226. if (val == 0xFF) {
  227. val = REG_READ(ah, AR_SREV);
  228. ah->hw_version.macVersion =
  229. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  230. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  231. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  232. } else {
  233. if (!AR_SREV_9100(ah))
  234. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  235. ah->hw_version.macRev = val & AR_SREV_REVISION;
  236. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  237. ah->is_pciexpress = true;
  238. }
  239. }
  240. static int ath9k_hw_get_radiorev(struct ath_hw *ah)
  241. {
  242. u32 val;
  243. int i;
  244. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  245. for (i = 0; i < 8; i++)
  246. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  247. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  248. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  249. return ath9k_hw_reverse_bits(val, 8);
  250. }
  251. /************************************/
  252. /* HW Attach, Detach, Init Routines */
  253. /************************************/
  254. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  255. {
  256. if (AR_SREV_9100(ah))
  257. return;
  258. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  259. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  260. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  261. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  262. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  263. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  264. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  265. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  266. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  267. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  268. }
  269. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  270. {
  271. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  272. u32 regHold[2];
  273. u32 patternData[4] = { 0x55555555,
  274. 0xaaaaaaaa,
  275. 0x66666666,
  276. 0x99999999 };
  277. int i, j;
  278. for (i = 0; i < 2; i++) {
  279. u32 addr = regAddr[i];
  280. u32 wrData, rdData;
  281. regHold[i] = REG_READ(ah, addr);
  282. for (j = 0; j < 0x100; j++) {
  283. wrData = (j << 16) | j;
  284. REG_WRITE(ah, addr, wrData);
  285. rdData = REG_READ(ah, addr);
  286. if (rdData != wrData) {
  287. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  288. "address test failed "
  289. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  290. addr, wrData, rdData);
  291. return false;
  292. }
  293. }
  294. for (j = 0; j < 4; j++) {
  295. wrData = patternData[j];
  296. REG_WRITE(ah, addr, wrData);
  297. rdData = REG_READ(ah, addr);
  298. if (wrData != rdData) {
  299. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  300. "address test failed "
  301. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  302. addr, wrData, rdData);
  303. return false;
  304. }
  305. }
  306. REG_WRITE(ah, regAddr[i], regHold[i]);
  307. }
  308. udelay(100);
  309. return true;
  310. }
  311. static const char *ath9k_hw_devname(u16 devid)
  312. {
  313. switch (devid) {
  314. case AR5416_DEVID_PCI:
  315. return "Atheros 5416";
  316. case AR5416_DEVID_PCIE:
  317. return "Atheros 5418";
  318. case AR9160_DEVID_PCI:
  319. return "Atheros 9160";
  320. case AR5416_AR9100_DEVID:
  321. return "Atheros 9100";
  322. case AR9280_DEVID_PCI:
  323. case AR9280_DEVID_PCIE:
  324. return "Atheros 9280";
  325. case AR9285_DEVID_PCIE:
  326. return "Atheros 9285";
  327. }
  328. return NULL;
  329. }
  330. static void ath9k_hw_set_defaults(struct ath_hw *ah)
  331. {
  332. int i;
  333. ah->config.dma_beacon_response_time = 2;
  334. ah->config.sw_beacon_response_time = 10;
  335. ah->config.additional_swba_backoff = 0;
  336. ah->config.ack_6mb = 0x0;
  337. ah->config.cwm_ignore_extcca = 0;
  338. ah->config.pcie_powersave_enable = 0;
  339. ah->config.pcie_clock_req = 0;
  340. ah->config.pcie_waen = 0;
  341. ah->config.analog_shiftreg = 1;
  342. ah->config.ht_enable = 1;
  343. ah->config.ofdm_trig_low = 200;
  344. ah->config.ofdm_trig_high = 500;
  345. ah->config.cck_trig_high = 200;
  346. ah->config.cck_trig_low = 100;
  347. ah->config.enable_ani = 1;
  348. ah->config.diversity_control = 0;
  349. ah->config.antenna_switch_swap = 0;
  350. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  351. ah->config.spurchans[i][0] = AR_NO_SPUR;
  352. ah->config.spurchans[i][1] = AR_NO_SPUR;
  353. }
  354. ah->config.intr_mitigation = true;
  355. /*
  356. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  357. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  358. * This means we use it for all AR5416 devices, and the few
  359. * minor PCI AR9280 devices out there.
  360. *
  361. * Serialization is required because these devices do not handle
  362. * well the case of two concurrent reads/writes due to the latency
  363. * involved. During one read/write another read/write can be issued
  364. * on another CPU while the previous read/write may still be working
  365. * on our hardware, if we hit this case the hardware poops in a loop.
  366. * We prevent this by serializing reads and writes.
  367. *
  368. * This issue is not present on PCI-Express devices or pre-AR5416
  369. * devices (legacy, 802.11abg).
  370. */
  371. if (num_possible_cpus() > 1)
  372. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  373. }
  374. static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
  375. int *status)
  376. {
  377. struct ath_hw *ah;
  378. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  379. if (ah == NULL) {
  380. DPRINTF(sc, ATH_DBG_FATAL,
  381. "Cannot allocate memory for state block\n");
  382. *status = -ENOMEM;
  383. return NULL;
  384. }
  385. ah->ah_sc = sc;
  386. ah->hw_version.magic = AR5416_MAGIC;
  387. ah->regulatory.country_code = CTRY_DEFAULT;
  388. ah->hw_version.devid = devid;
  389. ah->hw_version.subvendorid = 0;
  390. ah->ah_flags = 0;
  391. if ((devid == AR5416_AR9100_DEVID))
  392. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  393. if (!AR_SREV_9100(ah))
  394. ah->ah_flags = AH_USE_EEPROM;
  395. ah->regulatory.power_limit = MAX_RATE_POWER;
  396. ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
  397. ah->atim_window = 0;
  398. ah->diversity_control = ah->config.diversity_control;
  399. ah->antenna_switch_swap =
  400. ah->config.antenna_switch_swap;
  401. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  402. ah->beacon_interval = 100;
  403. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  404. ah->slottime = (u32) -1;
  405. ah->acktimeout = (u32) -1;
  406. ah->ctstimeout = (u32) -1;
  407. ah->globaltxtimeout = (u32) -1;
  408. ah->gbeacon_rate = 0;
  409. return ah;
  410. }
  411. static int ath9k_hw_rfattach(struct ath_hw *ah)
  412. {
  413. bool rfStatus = false;
  414. int ecode = 0;
  415. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  416. if (!rfStatus) {
  417. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  418. "RF setup failed, status: %u\n", ecode);
  419. return ecode;
  420. }
  421. return 0;
  422. }
  423. static int ath9k_hw_rf_claim(struct ath_hw *ah)
  424. {
  425. u32 val;
  426. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  427. val = ath9k_hw_get_radiorev(ah);
  428. switch (val & AR_RADIO_SREV_MAJOR) {
  429. case 0:
  430. val = AR_RAD5133_SREV_MAJOR;
  431. break;
  432. case AR_RAD5133_SREV_MAJOR:
  433. case AR_RAD5122_SREV_MAJOR:
  434. case AR_RAD2133_SREV_MAJOR:
  435. case AR_RAD2122_SREV_MAJOR:
  436. break;
  437. default:
  438. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  439. "Radio Chip Rev 0x%02X not supported\n",
  440. val & AR_RADIO_SREV_MAJOR);
  441. return -EOPNOTSUPP;
  442. }
  443. ah->hw_version.analog5GhzRev = val;
  444. return 0;
  445. }
  446. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  447. {
  448. u32 sum;
  449. int i;
  450. u16 eeval;
  451. sum = 0;
  452. for (i = 0; i < 3; i++) {
  453. eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
  454. sum += eeval;
  455. ah->macaddr[2 * i] = eeval >> 8;
  456. ah->macaddr[2 * i + 1] = eeval & 0xff;
  457. }
  458. if (sum == 0 || sum == 0xffff * 3)
  459. return -EADDRNOTAVAIL;
  460. return 0;
  461. }
  462. static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
  463. {
  464. u32 rxgain_type;
  465. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  466. rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
  467. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  468. INIT_INI_ARRAY(&ah->iniModesRxGain,
  469. ar9280Modes_backoff_13db_rxgain_9280_2,
  470. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  471. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  472. INIT_INI_ARRAY(&ah->iniModesRxGain,
  473. ar9280Modes_backoff_23db_rxgain_9280_2,
  474. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  475. else
  476. INIT_INI_ARRAY(&ah->iniModesRxGain,
  477. ar9280Modes_original_rxgain_9280_2,
  478. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  479. } else {
  480. INIT_INI_ARRAY(&ah->iniModesRxGain,
  481. ar9280Modes_original_rxgain_9280_2,
  482. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  483. }
  484. }
  485. static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
  486. {
  487. u32 txgain_type;
  488. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  489. txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  490. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  491. INIT_INI_ARRAY(&ah->iniModesTxGain,
  492. ar9280Modes_high_power_tx_gain_9280_2,
  493. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  494. else
  495. INIT_INI_ARRAY(&ah->iniModesTxGain,
  496. ar9280Modes_original_tx_gain_9280_2,
  497. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  498. } else {
  499. INIT_INI_ARRAY(&ah->iniModesTxGain,
  500. ar9280Modes_original_tx_gain_9280_2,
  501. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  502. }
  503. }
  504. static int ath9k_hw_post_attach(struct ath_hw *ah)
  505. {
  506. int ecode;
  507. if (!ath9k_hw_chip_test(ah))
  508. return -ENODEV;
  509. ecode = ath9k_hw_rf_claim(ah);
  510. if (ecode != 0)
  511. return ecode;
  512. ecode = ath9k_hw_eeprom_attach(ah);
  513. if (ecode != 0)
  514. return ecode;
  515. DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
  516. ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
  517. ecode = ath9k_hw_rfattach(ah);
  518. if (ecode != 0)
  519. return ecode;
  520. if (!AR_SREV_9100(ah)) {
  521. ath9k_hw_ani_setup(ah);
  522. ath9k_hw_ani_attach(ah);
  523. }
  524. return 0;
  525. }
  526. static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
  527. int *status)
  528. {
  529. struct ath_hw *ah;
  530. int ecode;
  531. u32 i, j;
  532. ah = ath9k_hw_newstate(devid, sc, status);
  533. if (ah == NULL)
  534. return NULL;
  535. ath9k_hw_set_defaults(ah);
  536. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  537. DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
  538. ecode = -EIO;
  539. goto bad;
  540. }
  541. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  542. DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  543. ecode = -EIO;
  544. goto bad;
  545. }
  546. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  547. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  548. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  549. ah->config.serialize_regmode =
  550. SER_REG_MODE_ON;
  551. } else {
  552. ah->config.serialize_regmode =
  553. SER_REG_MODE_OFF;
  554. }
  555. }
  556. DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
  557. ah->config.serialize_regmode);
  558. if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
  559. (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
  560. (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
  561. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
  562. DPRINTF(sc, ATH_DBG_FATAL,
  563. "Mac Chip Rev 0x%02x.%x is not supported by "
  564. "this driver\n", ah->hw_version.macVersion,
  565. ah->hw_version.macRev);
  566. ecode = -EOPNOTSUPP;
  567. goto bad;
  568. }
  569. if (AR_SREV_9100(ah)) {
  570. ah->iq_caldata.calData = &iq_cal_multi_sample;
  571. ah->supp_cals = IQ_MISMATCH_CAL;
  572. ah->is_pciexpress = false;
  573. }
  574. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  575. if (AR_SREV_9160_10_OR_LATER(ah)) {
  576. if (AR_SREV_9280_10_OR_LATER(ah)) {
  577. ah->iq_caldata.calData = &iq_cal_single_sample;
  578. ah->adcgain_caldata.calData =
  579. &adc_gain_cal_single_sample;
  580. ah->adcdc_caldata.calData =
  581. &adc_dc_cal_single_sample;
  582. ah->adcdc_calinitdata.calData =
  583. &adc_init_dc_cal;
  584. } else {
  585. ah->iq_caldata.calData = &iq_cal_multi_sample;
  586. ah->adcgain_caldata.calData =
  587. &adc_gain_cal_multi_sample;
  588. ah->adcdc_caldata.calData =
  589. &adc_dc_cal_multi_sample;
  590. ah->adcdc_calinitdata.calData =
  591. &adc_init_dc_cal;
  592. }
  593. ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  594. }
  595. ah->ani_function = ATH9K_ANI_ALL;
  596. if (AR_SREV_9280_10_OR_LATER(ah))
  597. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  598. if (AR_SREV_9285_12_OR_LATER(ah)) {
  599. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
  600. ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
  601. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
  602. ARRAY_SIZE(ar9285Common_9285_1_2), 2);
  603. if (ah->config.pcie_clock_req) {
  604. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  605. ar9285PciePhy_clkreq_off_L1_9285_1_2,
  606. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
  607. } else {
  608. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  609. ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
  610. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
  611. 2);
  612. }
  613. } else if (AR_SREV_9285_10_OR_LATER(ah)) {
  614. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
  615. ARRAY_SIZE(ar9285Modes_9285), 6);
  616. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
  617. ARRAY_SIZE(ar9285Common_9285), 2);
  618. if (ah->config.pcie_clock_req) {
  619. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  620. ar9285PciePhy_clkreq_off_L1_9285,
  621. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
  622. } else {
  623. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  624. ar9285PciePhy_clkreq_always_on_L1_9285,
  625. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
  626. }
  627. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  628. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
  629. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  630. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
  631. ARRAY_SIZE(ar9280Common_9280_2), 2);
  632. if (ah->config.pcie_clock_req) {
  633. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  634. ar9280PciePhy_clkreq_off_L1_9280,
  635. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  636. } else {
  637. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  638. ar9280PciePhy_clkreq_always_on_L1_9280,
  639. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  640. }
  641. INIT_INI_ARRAY(&ah->iniModesAdditional,
  642. ar9280Modes_fast_clock_9280_2,
  643. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  644. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  645. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
  646. ARRAY_SIZE(ar9280Modes_9280), 6);
  647. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
  648. ARRAY_SIZE(ar9280Common_9280), 2);
  649. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  650. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
  651. ARRAY_SIZE(ar5416Modes_9160), 6);
  652. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
  653. ARRAY_SIZE(ar5416Common_9160), 2);
  654. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
  655. ARRAY_SIZE(ar5416Bank0_9160), 2);
  656. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
  657. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  658. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
  659. ARRAY_SIZE(ar5416Bank1_9160), 2);
  660. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
  661. ARRAY_SIZE(ar5416Bank2_9160), 2);
  662. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
  663. ARRAY_SIZE(ar5416Bank3_9160), 3);
  664. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
  665. ARRAY_SIZE(ar5416Bank6_9160), 3);
  666. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
  667. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  668. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
  669. ARRAY_SIZE(ar5416Bank7_9160), 2);
  670. if (AR_SREV_9160_11(ah)) {
  671. INIT_INI_ARRAY(&ah->iniAddac,
  672. ar5416Addac_91601_1,
  673. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  674. } else {
  675. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
  676. ARRAY_SIZE(ar5416Addac_9160), 2);
  677. }
  678. } else if (AR_SREV_9100_OR_LATER(ah)) {
  679. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
  680. ARRAY_SIZE(ar5416Modes_9100), 6);
  681. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
  682. ARRAY_SIZE(ar5416Common_9100), 2);
  683. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
  684. ARRAY_SIZE(ar5416Bank0_9100), 2);
  685. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
  686. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  687. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
  688. ARRAY_SIZE(ar5416Bank1_9100), 2);
  689. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
  690. ARRAY_SIZE(ar5416Bank2_9100), 2);
  691. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
  692. ARRAY_SIZE(ar5416Bank3_9100), 3);
  693. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
  694. ARRAY_SIZE(ar5416Bank6_9100), 3);
  695. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
  696. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  697. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
  698. ARRAY_SIZE(ar5416Bank7_9100), 2);
  699. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
  700. ARRAY_SIZE(ar5416Addac_9100), 2);
  701. } else {
  702. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
  703. ARRAY_SIZE(ar5416Modes), 6);
  704. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
  705. ARRAY_SIZE(ar5416Common), 2);
  706. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
  707. ARRAY_SIZE(ar5416Bank0), 2);
  708. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
  709. ARRAY_SIZE(ar5416BB_RfGain), 3);
  710. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
  711. ARRAY_SIZE(ar5416Bank1), 2);
  712. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
  713. ARRAY_SIZE(ar5416Bank2), 2);
  714. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
  715. ARRAY_SIZE(ar5416Bank3), 3);
  716. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
  717. ARRAY_SIZE(ar5416Bank6), 3);
  718. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
  719. ARRAY_SIZE(ar5416Bank6TPC), 3);
  720. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
  721. ARRAY_SIZE(ar5416Bank7), 2);
  722. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
  723. ARRAY_SIZE(ar5416Addac), 2);
  724. }
  725. if (ah->is_pciexpress)
  726. ath9k_hw_configpcipowersave(ah, 0);
  727. else
  728. ath9k_hw_disablepcie(ah);
  729. ecode = ath9k_hw_post_attach(ah);
  730. if (ecode != 0)
  731. goto bad;
  732. if (AR_SREV_9285_12_OR_LATER(ah)) {
  733. u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  734. /* txgain table */
  735. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
  736. INIT_INI_ARRAY(&ah->iniModesTxGain,
  737. ar9285Modes_high_power_tx_gain_9285_1_2,
  738. ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
  739. } else {
  740. INIT_INI_ARRAY(&ah->iniModesTxGain,
  741. ar9285Modes_original_tx_gain_9285_1_2,
  742. ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
  743. }
  744. }
  745. /* rxgain table */
  746. if (AR_SREV_9280_20(ah))
  747. ath9k_hw_init_rxgain_ini(ah);
  748. /* txgain table */
  749. if (AR_SREV_9280_20(ah))
  750. ath9k_hw_init_txgain_ini(ah);
  751. ath9k_hw_fill_cap_info(ah);
  752. if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
  753. test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
  754. /* EEPROM Fixup */
  755. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  756. u32 reg = INI_RA(&ah->iniModes, i, 0);
  757. for (j = 1; j < ah->iniModes.ia_columns; j++) {
  758. u32 val = INI_RA(&ah->iniModes, i, j);
  759. INI_RA(&ah->iniModes, i, j) =
  760. ath9k_hw_ini_fixup(ah,
  761. &ah->eeprom.def,
  762. reg, val);
  763. }
  764. }
  765. }
  766. ecode = ath9k_hw_init_macaddr(ah);
  767. if (ecode != 0) {
  768. DPRINTF(sc, ATH_DBG_FATAL,
  769. "Failed to initialize MAC address\n");
  770. goto bad;
  771. }
  772. if (AR_SREV_9285(ah))
  773. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  774. else
  775. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  776. ath9k_init_nfcal_hist_buffer(ah);
  777. return ah;
  778. bad:
  779. if (ah)
  780. ath9k_hw_detach(ah);
  781. if (status)
  782. *status = ecode;
  783. return NULL;
  784. }
  785. static void ath9k_hw_init_bb(struct ath_hw *ah,
  786. struct ath9k_channel *chan)
  787. {
  788. u32 synthDelay;
  789. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  790. if (IS_CHAN_B(chan))
  791. synthDelay = (4 * synthDelay) / 22;
  792. else
  793. synthDelay /= 10;
  794. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  795. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  796. }
  797. static void ath9k_hw_init_qos(struct ath_hw *ah)
  798. {
  799. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  800. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  801. REG_WRITE(ah, AR_QOS_NO_ACK,
  802. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  803. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  804. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  805. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  806. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  807. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  808. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  809. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  810. }
  811. static void ath9k_hw_init_pll(struct ath_hw *ah,
  812. struct ath9k_channel *chan)
  813. {
  814. u32 pll;
  815. if (AR_SREV_9100(ah)) {
  816. if (chan && IS_CHAN_5GHZ(chan))
  817. pll = 0x1450;
  818. else
  819. pll = 0x1458;
  820. } else {
  821. if (AR_SREV_9280_10_OR_LATER(ah)) {
  822. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  823. if (chan && IS_CHAN_HALF_RATE(chan))
  824. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  825. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  826. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  827. if (chan && IS_CHAN_5GHZ(chan)) {
  828. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  829. if (AR_SREV_9280_20(ah)) {
  830. if (((chan->channel % 20) == 0)
  831. || ((chan->channel % 10) == 0))
  832. pll = 0x2850;
  833. else
  834. pll = 0x142c;
  835. }
  836. } else {
  837. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  838. }
  839. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  840. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  841. if (chan && IS_CHAN_HALF_RATE(chan))
  842. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  843. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  844. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  845. if (chan && IS_CHAN_5GHZ(chan))
  846. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  847. else
  848. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  849. } else {
  850. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  851. if (chan && IS_CHAN_HALF_RATE(chan))
  852. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  853. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  854. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  855. if (chan && IS_CHAN_5GHZ(chan))
  856. pll |= SM(0xa, AR_RTC_PLL_DIV);
  857. else
  858. pll |= SM(0xb, AR_RTC_PLL_DIV);
  859. }
  860. }
  861. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  862. udelay(RTC_PLL_SETTLE_DELAY);
  863. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  864. }
  865. static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
  866. {
  867. int rx_chainmask, tx_chainmask;
  868. rx_chainmask = ah->rxchainmask;
  869. tx_chainmask = ah->txchainmask;
  870. switch (rx_chainmask) {
  871. case 0x5:
  872. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  873. AR_PHY_SWAP_ALT_CHAIN);
  874. case 0x3:
  875. if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
  876. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  877. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  878. break;
  879. }
  880. case 0x1:
  881. case 0x2:
  882. case 0x7:
  883. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  884. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  885. break;
  886. default:
  887. break;
  888. }
  889. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  890. if (tx_chainmask == 0x5) {
  891. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  892. AR_PHY_SWAP_ALT_CHAIN);
  893. }
  894. if (AR_SREV_9100(ah))
  895. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  896. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  897. }
  898. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  899. enum nl80211_iftype opmode)
  900. {
  901. ah->mask_reg = AR_IMR_TXERR |
  902. AR_IMR_TXURN |
  903. AR_IMR_RXERR |
  904. AR_IMR_RXORN |
  905. AR_IMR_BCNMISC;
  906. if (ah->config.intr_mitigation)
  907. ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  908. else
  909. ah->mask_reg |= AR_IMR_RXOK;
  910. ah->mask_reg |= AR_IMR_TXOK;
  911. if (opmode == NL80211_IFTYPE_AP)
  912. ah->mask_reg |= AR_IMR_MIB;
  913. REG_WRITE(ah, AR_IMR, ah->mask_reg);
  914. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  915. if (!AR_SREV_9100(ah)) {
  916. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  917. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  918. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  919. }
  920. }
  921. static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  922. {
  923. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  924. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
  925. ah->acktimeout = (u32) -1;
  926. return false;
  927. } else {
  928. REG_RMW_FIELD(ah, AR_TIME_OUT,
  929. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  930. ah->acktimeout = us;
  931. return true;
  932. }
  933. }
  934. static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  935. {
  936. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  937. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
  938. ah->ctstimeout = (u32) -1;
  939. return false;
  940. } else {
  941. REG_RMW_FIELD(ah, AR_TIME_OUT,
  942. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  943. ah->ctstimeout = us;
  944. return true;
  945. }
  946. }
  947. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  948. {
  949. if (tu > 0xFFFF) {
  950. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  951. "bad global tx timeout %u\n", tu);
  952. ah->globaltxtimeout = (u32) -1;
  953. return false;
  954. } else {
  955. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  956. ah->globaltxtimeout = tu;
  957. return true;
  958. }
  959. }
  960. static void ath9k_hw_init_user_settings(struct ath_hw *ah)
  961. {
  962. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  963. ah->misc_mode);
  964. if (ah->misc_mode != 0)
  965. REG_WRITE(ah, AR_PCU_MISC,
  966. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  967. if (ah->slottime != (u32) -1)
  968. ath9k_hw_setslottime(ah, ah->slottime);
  969. if (ah->acktimeout != (u32) -1)
  970. ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
  971. if (ah->ctstimeout != (u32) -1)
  972. ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
  973. if (ah->globaltxtimeout != (u32) -1)
  974. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  975. }
  976. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  977. {
  978. return vendorid == ATHEROS_VENDOR_ID ?
  979. ath9k_hw_devname(devid) : NULL;
  980. }
  981. void ath9k_hw_detach(struct ath_hw *ah)
  982. {
  983. if (!AR_SREV_9100(ah))
  984. ath9k_hw_ani_detach(ah);
  985. ath9k_hw_rfdetach(ah);
  986. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  987. kfree(ah);
  988. }
  989. struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
  990. {
  991. struct ath_hw *ah = NULL;
  992. switch (devid) {
  993. case AR5416_DEVID_PCI:
  994. case AR5416_DEVID_PCIE:
  995. case AR5416_AR9100_DEVID:
  996. case AR9160_DEVID_PCI:
  997. case AR9280_DEVID_PCI:
  998. case AR9280_DEVID_PCIE:
  999. case AR9285_DEVID_PCIE:
  1000. ah = ath9k_hw_do_attach(devid, sc, error);
  1001. break;
  1002. default:
  1003. *error = -ENXIO;
  1004. break;
  1005. }
  1006. return ah;
  1007. }
  1008. /*******/
  1009. /* INI */
  1010. /*******/
  1011. static void ath9k_hw_override_ini(struct ath_hw *ah,
  1012. struct ath9k_channel *chan)
  1013. {
  1014. /*
  1015. * Set the RX_ABORT and RX_DIS and clear if off only after
  1016. * RXE is set for MAC. This prevents frames with corrupted
  1017. * descriptor status.
  1018. */
  1019. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  1020. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  1021. AR_SREV_9280_10_OR_LATER(ah))
  1022. return;
  1023. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1024. }
  1025. static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
  1026. struct ar5416_eeprom_def *pEepData,
  1027. u32 reg, u32 value)
  1028. {
  1029. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1030. switch (ah->hw_version.devid) {
  1031. case AR9280_DEVID_PCI:
  1032. if (reg == 0x7894) {
  1033. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1034. "ini VAL: %x EEPROM: %x\n", value,
  1035. (pBase->version & 0xff));
  1036. if ((pBase->version & 0xff) > 0x0a) {
  1037. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1038. "PWDCLKIND: %d\n",
  1039. pBase->pwdclkind);
  1040. value &= ~AR_AN_TOP2_PWDCLKIND;
  1041. value |= AR_AN_TOP2_PWDCLKIND &
  1042. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1043. } else {
  1044. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1045. "PWDCLKIND Earlier Rev\n");
  1046. }
  1047. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1048. "final ini VAL: %x\n", value);
  1049. }
  1050. break;
  1051. }
  1052. return value;
  1053. }
  1054. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  1055. struct ar5416_eeprom_def *pEepData,
  1056. u32 reg, u32 value)
  1057. {
  1058. if (ah->eep_map == EEP_MAP_4KBITS)
  1059. return value;
  1060. else
  1061. return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
  1062. }
  1063. static void ath9k_olc_init(struct ath_hw *ah)
  1064. {
  1065. u32 i;
  1066. for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
  1067. ah->originalGain[i] =
  1068. MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
  1069. AR_PHY_TX_GAIN);
  1070. ah->PDADCdelta = 0;
  1071. }
  1072. static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
  1073. struct ath9k_channel *chan)
  1074. {
  1075. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  1076. if (IS_CHAN_B(chan))
  1077. ctl |= CTL_11B;
  1078. else if (IS_CHAN_G(chan))
  1079. ctl |= CTL_11G;
  1080. else
  1081. ctl |= CTL_11A;
  1082. return ctl;
  1083. }
  1084. static int ath9k_hw_process_ini(struct ath_hw *ah,
  1085. struct ath9k_channel *chan,
  1086. enum ath9k_ht_macmode macmode)
  1087. {
  1088. int i, regWrites = 0;
  1089. struct ieee80211_channel *channel = chan->chan;
  1090. u32 modesIndex, freqIndex;
  1091. switch (chan->chanmode) {
  1092. case CHANNEL_A:
  1093. case CHANNEL_A_HT20:
  1094. modesIndex = 1;
  1095. freqIndex = 1;
  1096. break;
  1097. case CHANNEL_A_HT40PLUS:
  1098. case CHANNEL_A_HT40MINUS:
  1099. modesIndex = 2;
  1100. freqIndex = 1;
  1101. break;
  1102. case CHANNEL_G:
  1103. case CHANNEL_G_HT20:
  1104. case CHANNEL_B:
  1105. modesIndex = 4;
  1106. freqIndex = 2;
  1107. break;
  1108. case CHANNEL_G_HT40PLUS:
  1109. case CHANNEL_G_HT40MINUS:
  1110. modesIndex = 3;
  1111. freqIndex = 2;
  1112. break;
  1113. default:
  1114. return -EINVAL;
  1115. }
  1116. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1117. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1118. ah->eep_ops->set_addac(ah, chan);
  1119. if (AR_SREV_5416_22_OR_LATER(ah)) {
  1120. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  1121. } else {
  1122. struct ar5416IniArray temp;
  1123. u32 addacSize =
  1124. sizeof(u32) * ah->iniAddac.ia_rows *
  1125. ah->iniAddac.ia_columns;
  1126. memcpy(ah->addac5416_21,
  1127. ah->iniAddac.ia_array, addacSize);
  1128. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  1129. temp.ia_array = ah->addac5416_21;
  1130. temp.ia_columns = ah->iniAddac.ia_columns;
  1131. temp.ia_rows = ah->iniAddac.ia_rows;
  1132. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1133. }
  1134. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1135. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  1136. u32 reg = INI_RA(&ah->iniModes, i, 0);
  1137. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  1138. REG_WRITE(ah, reg, val);
  1139. if (reg >= 0x7800 && reg < 0x78a0
  1140. && ah->config.analog_shiftreg) {
  1141. udelay(100);
  1142. }
  1143. DO_DELAY(regWrites);
  1144. }
  1145. if (AR_SREV_9280(ah))
  1146. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  1147. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah))
  1148. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1149. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  1150. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  1151. u32 val = INI_RA(&ah->iniCommon, i, 1);
  1152. REG_WRITE(ah, reg, val);
  1153. if (reg >= 0x7800 && reg < 0x78a0
  1154. && ah->config.analog_shiftreg) {
  1155. udelay(100);
  1156. }
  1157. DO_DELAY(regWrites);
  1158. }
  1159. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  1160. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1161. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  1162. regWrites);
  1163. }
  1164. ath9k_hw_override_ini(ah, chan);
  1165. ath9k_hw_set_regs(ah, chan, macmode);
  1166. ath9k_hw_init_chain_masks(ah);
  1167. if (OLC_FOR_AR9280_20_LATER)
  1168. ath9k_olc_init(ah);
  1169. ah->eep_ops->set_txpower(ah, chan,
  1170. ath9k_regd_get_ctl(&ah->regulatory, chan),
  1171. channel->max_antenna_gain * 2,
  1172. channel->max_power * 2,
  1173. min((u32) MAX_RATE_POWER,
  1174. (u32) ah->regulatory.power_limit));
  1175. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1176. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1177. "ar5416SetRfRegs failed\n");
  1178. return -EIO;
  1179. }
  1180. return 0;
  1181. }
  1182. /****************************************/
  1183. /* Reset and Channel Switching Routines */
  1184. /****************************************/
  1185. static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  1186. {
  1187. u32 rfMode = 0;
  1188. if (chan == NULL)
  1189. return;
  1190. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1191. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1192. if (!AR_SREV_9280_10_OR_LATER(ah))
  1193. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1194. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1195. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1196. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1197. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1198. }
  1199. static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
  1200. {
  1201. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1202. }
  1203. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  1204. {
  1205. u32 regval;
  1206. regval = REG_READ(ah, AR_AHB_MODE);
  1207. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1208. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1209. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1210. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1211. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1212. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1213. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1214. if (AR_SREV_9285(ah)) {
  1215. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1216. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1217. } else {
  1218. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1219. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1220. }
  1221. }
  1222. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1223. {
  1224. u32 val;
  1225. val = REG_READ(ah, AR_STA_ID1);
  1226. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1227. switch (opmode) {
  1228. case NL80211_IFTYPE_AP:
  1229. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1230. | AR_STA_ID1_KSRCH_MODE);
  1231. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1232. break;
  1233. case NL80211_IFTYPE_ADHOC:
  1234. case NL80211_IFTYPE_MESH_POINT:
  1235. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1236. | AR_STA_ID1_KSRCH_MODE);
  1237. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1238. break;
  1239. case NL80211_IFTYPE_STATION:
  1240. case NL80211_IFTYPE_MONITOR:
  1241. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1242. break;
  1243. }
  1244. }
  1245. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
  1246. u32 coef_scaled,
  1247. u32 *coef_mantissa,
  1248. u32 *coef_exponent)
  1249. {
  1250. u32 coef_exp, coef_man;
  1251. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1252. if ((coef_scaled >> coef_exp) & 0x1)
  1253. break;
  1254. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1255. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1256. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1257. *coef_exponent = coef_exp - 16;
  1258. }
  1259. static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
  1260. struct ath9k_channel *chan)
  1261. {
  1262. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1263. u32 clockMhzScaled = 0x64000000;
  1264. struct chan_centers centers;
  1265. if (IS_CHAN_HALF_RATE(chan))
  1266. clockMhzScaled = clockMhzScaled >> 1;
  1267. else if (IS_CHAN_QUARTER_RATE(chan))
  1268. clockMhzScaled = clockMhzScaled >> 2;
  1269. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1270. coef_scaled = clockMhzScaled / centers.synth_center;
  1271. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1272. &ds_coef_exp);
  1273. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1274. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1275. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1276. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1277. coef_scaled = (9 * coef_scaled) / 10;
  1278. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1279. &ds_coef_exp);
  1280. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1281. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1282. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1283. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1284. }
  1285. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1286. {
  1287. u32 rst_flags;
  1288. u32 tmpReg;
  1289. if (AR_SREV_9100(ah)) {
  1290. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  1291. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  1292. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  1293. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  1294. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1295. }
  1296. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1297. AR_RTC_FORCE_WAKE_ON_INT);
  1298. if (AR_SREV_9100(ah)) {
  1299. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1300. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1301. } else {
  1302. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1303. if (tmpReg &
  1304. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1305. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1306. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1307. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1308. } else {
  1309. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1310. }
  1311. rst_flags = AR_RTC_RC_MAC_WARM;
  1312. if (type == ATH9K_RESET_COLD)
  1313. rst_flags |= AR_RTC_RC_MAC_COLD;
  1314. }
  1315. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1316. udelay(50);
  1317. REG_WRITE(ah, AR_RTC_RC, 0);
  1318. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1319. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1320. "RTC stuck in MAC reset\n");
  1321. return false;
  1322. }
  1323. if (!AR_SREV_9100(ah))
  1324. REG_WRITE(ah, AR_RC, 0);
  1325. ath9k_hw_init_pll(ah, NULL);
  1326. if (AR_SREV_9100(ah))
  1327. udelay(50);
  1328. return true;
  1329. }
  1330. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1331. {
  1332. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1333. AR_RTC_FORCE_WAKE_ON_INT);
  1334. REG_WRITE(ah, AR_RTC_RESET, 0);
  1335. udelay(2);
  1336. REG_WRITE(ah, AR_RTC_RESET, 1);
  1337. if (!ath9k_hw_wait(ah,
  1338. AR_RTC_STATUS,
  1339. AR_RTC_STATUS_M,
  1340. AR_RTC_STATUS_ON,
  1341. AH_WAIT_TIMEOUT)) {
  1342. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
  1343. return false;
  1344. }
  1345. ath9k_hw_read_revisions(ah);
  1346. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1347. }
  1348. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1349. {
  1350. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1351. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1352. switch (type) {
  1353. case ATH9K_RESET_POWER_ON:
  1354. return ath9k_hw_set_reset_power_on(ah);
  1355. case ATH9K_RESET_WARM:
  1356. case ATH9K_RESET_COLD:
  1357. return ath9k_hw_set_reset(ah, type);
  1358. default:
  1359. return false;
  1360. }
  1361. }
  1362. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  1363. enum ath9k_ht_macmode macmode)
  1364. {
  1365. u32 phymode;
  1366. u32 enableDacFifo = 0;
  1367. if (AR_SREV_9285_10_OR_LATER(ah))
  1368. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  1369. AR_PHY_FC_ENABLE_DAC_FIFO);
  1370. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1371. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  1372. if (IS_CHAN_HT40(chan)) {
  1373. phymode |= AR_PHY_FC_DYN2040_EN;
  1374. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1375. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1376. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1377. if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1378. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1379. }
  1380. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1381. ath9k_hw_set11nmac2040(ah, macmode);
  1382. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1383. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1384. }
  1385. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1386. struct ath9k_channel *chan)
  1387. {
  1388. if (OLC_FOR_AR9280_20_LATER) {
  1389. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1390. return false;
  1391. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1392. return false;
  1393. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1394. return false;
  1395. ah->chip_fullsleep = false;
  1396. ath9k_hw_init_pll(ah, chan);
  1397. ath9k_hw_set_rfmode(ah, chan);
  1398. return true;
  1399. }
  1400. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1401. struct ath9k_channel *chan,
  1402. enum ath9k_ht_macmode macmode)
  1403. {
  1404. struct ieee80211_channel *channel = chan->chan;
  1405. u32 synthDelay, qnum;
  1406. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1407. if (ath9k_hw_numtxpending(ah, qnum)) {
  1408. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  1409. "Transmit frames pending on queue %d\n", qnum);
  1410. return false;
  1411. }
  1412. }
  1413. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1414. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1415. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
  1416. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1417. "Could not kill baseband RX\n");
  1418. return false;
  1419. }
  1420. ath9k_hw_set_regs(ah, chan, macmode);
  1421. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1422. ath9k_hw_ar9280_set_channel(ah, chan);
  1423. } else {
  1424. if (!(ath9k_hw_set_channel(ah, chan))) {
  1425. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  1426. "Failed to set channel\n");
  1427. return false;
  1428. }
  1429. }
  1430. ah->eep_ops->set_txpower(ah, chan,
  1431. ath9k_regd_get_ctl(&ah->regulatory, chan),
  1432. channel->max_antenna_gain * 2,
  1433. channel->max_power * 2,
  1434. min((u32) MAX_RATE_POWER,
  1435. (u32) ah->regulatory.power_limit));
  1436. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1437. if (IS_CHAN_B(chan))
  1438. synthDelay = (4 * synthDelay) / 22;
  1439. else
  1440. synthDelay /= 10;
  1441. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1442. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1443. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1444. ath9k_hw_set_delta_slope(ah, chan);
  1445. if (AR_SREV_9280_10_OR_LATER(ah))
  1446. ath9k_hw_9280_spur_mitigate(ah, chan);
  1447. else
  1448. ath9k_hw_spur_mitigate(ah, chan);
  1449. if (!chan->oneTimeCalsDone)
  1450. chan->oneTimeCalsDone = true;
  1451. return true;
  1452. }
  1453. static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
  1454. {
  1455. int bb_spur = AR_NO_SPUR;
  1456. int freq;
  1457. int bin, cur_bin;
  1458. int bb_spur_off, spur_subchannel_sd;
  1459. int spur_freq_sd;
  1460. int spur_delta_phase;
  1461. int denominator;
  1462. int upper, lower, cur_vit_mask;
  1463. int tmp, newVal;
  1464. int i;
  1465. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1466. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1467. };
  1468. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1469. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1470. };
  1471. int inc[4] = { 0, 100, 0, 0 };
  1472. struct chan_centers centers;
  1473. int8_t mask_m[123];
  1474. int8_t mask_p[123];
  1475. int8_t mask_amt;
  1476. int tmp_mask;
  1477. int cur_bb_spur;
  1478. bool is2GHz = IS_CHAN_2GHZ(chan);
  1479. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1480. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1481. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1482. freq = centers.synth_center;
  1483. ah->config.spurmode = SPUR_ENABLE_EEPROM;
  1484. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1485. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  1486. if (is2GHz)
  1487. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  1488. else
  1489. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  1490. if (AR_NO_SPUR == cur_bb_spur)
  1491. break;
  1492. cur_bb_spur = cur_bb_spur - freq;
  1493. if (IS_CHAN_HT40(chan)) {
  1494. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  1495. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  1496. bb_spur = cur_bb_spur;
  1497. break;
  1498. }
  1499. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  1500. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  1501. bb_spur = cur_bb_spur;
  1502. break;
  1503. }
  1504. }
  1505. if (AR_NO_SPUR == bb_spur) {
  1506. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1507. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1508. return;
  1509. } else {
  1510. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1511. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1512. }
  1513. bin = bb_spur * 320;
  1514. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1515. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1516. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1517. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1518. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1519. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  1520. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1521. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1522. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1523. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1524. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1525. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  1526. if (IS_CHAN_HT40(chan)) {
  1527. if (bb_spur < 0) {
  1528. spur_subchannel_sd = 1;
  1529. bb_spur_off = bb_spur + 10;
  1530. } else {
  1531. spur_subchannel_sd = 0;
  1532. bb_spur_off = bb_spur - 10;
  1533. }
  1534. } else {
  1535. spur_subchannel_sd = 0;
  1536. bb_spur_off = bb_spur;
  1537. }
  1538. if (IS_CHAN_HT40(chan))
  1539. spur_delta_phase =
  1540. ((bb_spur * 262144) /
  1541. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1542. else
  1543. spur_delta_phase =
  1544. ((bb_spur * 524288) /
  1545. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1546. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  1547. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  1548. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1549. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1550. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1551. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  1552. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  1553. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  1554. cur_bin = -6000;
  1555. upper = bin + 100;
  1556. lower = bin - 100;
  1557. for (i = 0; i < 4; i++) {
  1558. int pilot_mask = 0;
  1559. int chan_mask = 0;
  1560. int bp = 0;
  1561. for (bp = 0; bp < 30; bp++) {
  1562. if ((cur_bin > lower) && (cur_bin < upper)) {
  1563. pilot_mask = pilot_mask | 0x1 << bp;
  1564. chan_mask = chan_mask | 0x1 << bp;
  1565. }
  1566. cur_bin += 100;
  1567. }
  1568. cur_bin += inc[i];
  1569. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1570. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1571. }
  1572. cur_vit_mask = 6100;
  1573. upper = bin + 120;
  1574. lower = bin - 120;
  1575. for (i = 0; i < 123; i++) {
  1576. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1577. /* workaround for gcc bug #37014 */
  1578. volatile int tmp_v = abs(cur_vit_mask - bin);
  1579. if (tmp_v < 75)
  1580. mask_amt = 1;
  1581. else
  1582. mask_amt = 0;
  1583. if (cur_vit_mask < 0)
  1584. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1585. else
  1586. mask_p[cur_vit_mask / 100] = mask_amt;
  1587. }
  1588. cur_vit_mask -= 100;
  1589. }
  1590. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1591. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1592. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1593. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1594. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1595. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1596. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1597. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1598. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1599. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1600. tmp_mask = (mask_m[31] << 28)
  1601. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1602. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1603. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1604. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1605. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1606. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1607. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1608. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1609. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1610. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1611. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1612. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1613. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1614. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1615. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1616. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1617. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1618. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1619. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1620. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1621. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1622. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1623. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1624. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1625. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1626. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1627. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1628. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1629. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1630. tmp_mask = (mask_p[15] << 28)
  1631. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1632. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1633. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1634. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1635. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1636. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1637. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1638. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1639. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1640. tmp_mask = (mask_p[30] << 28)
  1641. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1642. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1643. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1644. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1645. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1646. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1647. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1648. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1649. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1650. tmp_mask = (mask_p[45] << 28)
  1651. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1652. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1653. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1654. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1655. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1656. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1657. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1658. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1659. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1660. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1661. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1662. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1663. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1664. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1665. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1666. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1667. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1668. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1669. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1670. }
  1671. static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
  1672. {
  1673. int bb_spur = AR_NO_SPUR;
  1674. int bin, cur_bin;
  1675. int spur_freq_sd;
  1676. int spur_delta_phase;
  1677. int denominator;
  1678. int upper, lower, cur_vit_mask;
  1679. int tmp, new;
  1680. int i;
  1681. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1682. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1683. };
  1684. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1685. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1686. };
  1687. int inc[4] = { 0, 100, 0, 0 };
  1688. int8_t mask_m[123];
  1689. int8_t mask_p[123];
  1690. int8_t mask_amt;
  1691. int tmp_mask;
  1692. int cur_bb_spur;
  1693. bool is2GHz = IS_CHAN_2GHZ(chan);
  1694. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1695. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1696. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1697. cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
  1698. if (AR_NO_SPUR == cur_bb_spur)
  1699. break;
  1700. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  1701. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  1702. bb_spur = cur_bb_spur;
  1703. break;
  1704. }
  1705. }
  1706. if (AR_NO_SPUR == bb_spur)
  1707. return;
  1708. bin = bb_spur * 32;
  1709. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1710. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1711. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1712. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1713. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1714. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  1715. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1716. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1717. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1718. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1719. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1720. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  1721. spur_delta_phase = ((bb_spur * 524288) / 100) &
  1722. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1723. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  1724. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  1725. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1726. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1727. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1728. REG_WRITE(ah, AR_PHY_TIMING11, new);
  1729. cur_bin = -6000;
  1730. upper = bin + 100;
  1731. lower = bin - 100;
  1732. for (i = 0; i < 4; i++) {
  1733. int pilot_mask = 0;
  1734. int chan_mask = 0;
  1735. int bp = 0;
  1736. for (bp = 0; bp < 30; bp++) {
  1737. if ((cur_bin > lower) && (cur_bin < upper)) {
  1738. pilot_mask = pilot_mask | 0x1 << bp;
  1739. chan_mask = chan_mask | 0x1 << bp;
  1740. }
  1741. cur_bin += 100;
  1742. }
  1743. cur_bin += inc[i];
  1744. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1745. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1746. }
  1747. cur_vit_mask = 6100;
  1748. upper = bin + 120;
  1749. lower = bin - 120;
  1750. for (i = 0; i < 123; i++) {
  1751. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1752. /* workaround for gcc bug #37014 */
  1753. volatile int tmp_v = abs(cur_vit_mask - bin);
  1754. if (tmp_v < 75)
  1755. mask_amt = 1;
  1756. else
  1757. mask_amt = 0;
  1758. if (cur_vit_mask < 0)
  1759. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1760. else
  1761. mask_p[cur_vit_mask / 100] = mask_amt;
  1762. }
  1763. cur_vit_mask -= 100;
  1764. }
  1765. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1766. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1767. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1768. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1769. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1770. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1771. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1772. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1773. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1774. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1775. tmp_mask = (mask_m[31] << 28)
  1776. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1777. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1778. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1779. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1780. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1781. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1782. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1783. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1784. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1785. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1786. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1787. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1788. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1789. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1790. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1791. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1792. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1793. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1794. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1795. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1796. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1797. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1798. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1799. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1800. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1801. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1802. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1803. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1804. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1805. tmp_mask = (mask_p[15] << 28)
  1806. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1807. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1808. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1809. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1810. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1811. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1812. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1813. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1814. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1815. tmp_mask = (mask_p[30] << 28)
  1816. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1817. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1818. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1819. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1820. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1821. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1822. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1823. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1824. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1825. tmp_mask = (mask_p[45] << 28)
  1826. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1827. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1828. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1829. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1830. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1831. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1832. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1833. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1834. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1835. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1836. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1837. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1838. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1839. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1840. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1841. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1842. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1843. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1844. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1845. }
  1846. static void ath9k_enable_rfkill(struct ath_hw *ah)
  1847. {
  1848. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1849. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  1850. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  1851. AR_GPIO_INPUT_MUX2_RFSILENT);
  1852. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1853. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  1854. }
  1855. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1856. bool bChannelChange)
  1857. {
  1858. u32 saveLedState;
  1859. struct ath_softc *sc = ah->ah_sc;
  1860. struct ath9k_channel *curchan = ah->curchan;
  1861. u32 saveDefAntenna;
  1862. u32 macStaId1;
  1863. int i, rx_chainmask, r;
  1864. ah->extprotspacing = sc->ht_extprotspacing;
  1865. ah->txchainmask = sc->tx_chainmask;
  1866. ah->rxchainmask = sc->rx_chainmask;
  1867. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1868. return -EIO;
  1869. if (curchan)
  1870. ath9k_hw_getnf(ah, curchan);
  1871. if (bChannelChange &&
  1872. (ah->chip_fullsleep != true) &&
  1873. (ah->curchan != NULL) &&
  1874. (chan->channel != ah->curchan->channel) &&
  1875. ((chan->channelFlags & CHANNEL_ALL) ==
  1876. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1877. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  1878. !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
  1879. if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
  1880. ath9k_hw_loadnf(ah, ah->curchan);
  1881. ath9k_hw_start_nfcal(ah);
  1882. return 0;
  1883. }
  1884. }
  1885. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1886. if (saveDefAntenna == 0)
  1887. saveDefAntenna = 1;
  1888. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1889. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1890. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1891. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1892. ath9k_hw_mark_phy_inactive(ah);
  1893. if (!ath9k_hw_chip_reset(ah, chan)) {
  1894. DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
  1895. return -EINVAL;
  1896. }
  1897. if (AR_SREV_9280_10_OR_LATER(ah))
  1898. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1899. r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
  1900. if (r)
  1901. return r;
  1902. /* Setup MFP options for CCMP */
  1903. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1904. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1905. * frames when constructing CCMP AAD. */
  1906. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1907. 0xc7ff);
  1908. ah->sw_mgmt_crypto = false;
  1909. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1910. /* Disable hardware crypto for management frames */
  1911. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1912. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1913. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1914. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1915. ah->sw_mgmt_crypto = true;
  1916. } else
  1917. ah->sw_mgmt_crypto = true;
  1918. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1919. ath9k_hw_set_delta_slope(ah, chan);
  1920. if (AR_SREV_9280_10_OR_LATER(ah))
  1921. ath9k_hw_9280_spur_mitigate(ah, chan);
  1922. else
  1923. ath9k_hw_spur_mitigate(ah, chan);
  1924. ah->eep_ops->set_board_values(ah, chan);
  1925. ath9k_hw_decrease_chain_power(ah, chan);
  1926. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
  1927. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
  1928. | macStaId1
  1929. | AR_STA_ID1_RTS_USE_DEF
  1930. | (ah->config.
  1931. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1932. | ah->sta_id1_defaults);
  1933. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1934. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
  1935. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
  1936. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1937. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
  1938. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
  1939. ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1940. REG_WRITE(ah, AR_ISR, ~0);
  1941. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1942. if (AR_SREV_9280_10_OR_LATER(ah))
  1943. ath9k_hw_ar9280_set_channel(ah, chan);
  1944. else
  1945. if (!(ath9k_hw_set_channel(ah, chan)))
  1946. return -EIO;
  1947. for (i = 0; i < AR_NUM_DCU; i++)
  1948. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1949. ah->intr_txqs = 0;
  1950. for (i = 0; i < ah->caps.total_queues; i++)
  1951. ath9k_hw_resettxqueue(ah, i);
  1952. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1953. ath9k_hw_init_qos(ah);
  1954. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1955. ath9k_enable_rfkill(ah);
  1956. ath9k_hw_init_user_settings(ah);
  1957. REG_WRITE(ah, AR_STA_ID1,
  1958. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1959. ath9k_hw_set_dma(ah);
  1960. REG_WRITE(ah, AR_OBS, 8);
  1961. if (ah->config.intr_mitigation) {
  1962. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1963. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1964. }
  1965. ath9k_hw_init_bb(ah, chan);
  1966. if (!ath9k_hw_init_cal(ah, chan))
  1967. return -EIO;
  1968. rx_chainmask = ah->rxchainmask;
  1969. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  1970. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  1971. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  1972. }
  1973. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1974. if (AR_SREV_9100(ah)) {
  1975. u32 mask;
  1976. mask = REG_READ(ah, AR_CFG);
  1977. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1978. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1979. "CFG Byte Swap Set 0x%x\n", mask);
  1980. } else {
  1981. mask =
  1982. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1983. REG_WRITE(ah, AR_CFG, mask);
  1984. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1985. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1986. }
  1987. } else {
  1988. #ifdef __BIG_ENDIAN
  1989. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1990. #endif
  1991. }
  1992. return 0;
  1993. }
  1994. /************************/
  1995. /* Key Cache Management */
  1996. /************************/
  1997. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1998. {
  1999. u32 keyType;
  2000. if (entry >= ah->caps.keycache_size) {
  2001. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2002. "keychache entry %u out of range\n", entry);
  2003. return false;
  2004. }
  2005. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  2006. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  2007. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  2008. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  2009. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  2010. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  2011. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  2012. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  2013. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  2014. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2015. u16 micentry = entry + 64;
  2016. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  2017. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2018. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  2019. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2020. }
  2021. if (ah->curchan == NULL)
  2022. return true;
  2023. return true;
  2024. }
  2025. bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  2026. {
  2027. u32 macHi, macLo;
  2028. if (entry >= ah->caps.keycache_size) {
  2029. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2030. "keychache entry %u out of range\n", entry);
  2031. return false;
  2032. }
  2033. if (mac != NULL) {
  2034. macHi = (mac[5] << 8) | mac[4];
  2035. macLo = (mac[3] << 24) |
  2036. (mac[2] << 16) |
  2037. (mac[1] << 8) |
  2038. mac[0];
  2039. macLo >>= 1;
  2040. macLo |= (macHi & 1) << 31;
  2041. macHi >>= 1;
  2042. } else {
  2043. macLo = macHi = 0;
  2044. }
  2045. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  2046. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  2047. return true;
  2048. }
  2049. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  2050. const struct ath9k_keyval *k,
  2051. const u8 *mac)
  2052. {
  2053. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  2054. u32 key0, key1, key2, key3, key4;
  2055. u32 keyType;
  2056. if (entry >= pCap->keycache_size) {
  2057. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2058. "keycache entry %u out of range\n", entry);
  2059. return false;
  2060. }
  2061. switch (k->kv_type) {
  2062. case ATH9K_CIPHER_AES_OCB:
  2063. keyType = AR_KEYTABLE_TYPE_AES;
  2064. break;
  2065. case ATH9K_CIPHER_AES_CCM:
  2066. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  2067. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2068. "AES-CCM not supported by mac rev 0x%x\n",
  2069. ah->hw_version.macRev);
  2070. return false;
  2071. }
  2072. keyType = AR_KEYTABLE_TYPE_CCM;
  2073. break;
  2074. case ATH9K_CIPHER_TKIP:
  2075. keyType = AR_KEYTABLE_TYPE_TKIP;
  2076. if (ATH9K_IS_MIC_ENABLED(ah)
  2077. && entry + 64 >= pCap->keycache_size) {
  2078. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2079. "entry %u inappropriate for TKIP\n", entry);
  2080. return false;
  2081. }
  2082. break;
  2083. case ATH9K_CIPHER_WEP:
  2084. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  2085. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2086. "WEP key length %u too small\n", k->kv_len);
  2087. return false;
  2088. }
  2089. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  2090. keyType = AR_KEYTABLE_TYPE_40;
  2091. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  2092. keyType = AR_KEYTABLE_TYPE_104;
  2093. else
  2094. keyType = AR_KEYTABLE_TYPE_128;
  2095. break;
  2096. case ATH9K_CIPHER_CLR:
  2097. keyType = AR_KEYTABLE_TYPE_CLR;
  2098. break;
  2099. default:
  2100. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2101. "cipher %u not supported\n", k->kv_type);
  2102. return false;
  2103. }
  2104. key0 = get_unaligned_le32(k->kv_val + 0);
  2105. key1 = get_unaligned_le16(k->kv_val + 4);
  2106. key2 = get_unaligned_le32(k->kv_val + 6);
  2107. key3 = get_unaligned_le16(k->kv_val + 10);
  2108. key4 = get_unaligned_le32(k->kv_val + 12);
  2109. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  2110. key4 &= 0xff;
  2111. /*
  2112. * Note: Key cache registers access special memory area that requires
  2113. * two 32-bit writes to actually update the values in the internal
  2114. * memory. Consequently, the exact order and pairs used here must be
  2115. * maintained.
  2116. */
  2117. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2118. u16 micentry = entry + 64;
  2119. /*
  2120. * Write inverted key[47:0] first to avoid Michael MIC errors
  2121. * on frames that could be sent or received at the same time.
  2122. * The correct key will be written in the end once everything
  2123. * else is ready.
  2124. */
  2125. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  2126. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  2127. /* Write key[95:48] */
  2128. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2129. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2130. /* Write key[127:96] and key type */
  2131. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2132. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2133. /* Write MAC address for the entry */
  2134. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2135. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  2136. /*
  2137. * TKIP uses two key cache entries:
  2138. * Michael MIC TX/RX keys in the same key cache entry
  2139. * (idx = main index + 64):
  2140. * key0 [31:0] = RX key [31:0]
  2141. * key1 [15:0] = TX key [31:16]
  2142. * key1 [31:16] = reserved
  2143. * key2 [31:0] = RX key [63:32]
  2144. * key3 [15:0] = TX key [15:0]
  2145. * key3 [31:16] = reserved
  2146. * key4 [31:0] = TX key [63:32]
  2147. */
  2148. u32 mic0, mic1, mic2, mic3, mic4;
  2149. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2150. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2151. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  2152. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  2153. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  2154. /* Write RX[31:0] and TX[31:16] */
  2155. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2156. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  2157. /* Write RX[63:32] and TX[15:0] */
  2158. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2159. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  2160. /* Write TX[63:32] and keyType(reserved) */
  2161. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  2162. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2163. AR_KEYTABLE_TYPE_CLR);
  2164. } else {
  2165. /*
  2166. * TKIP uses four key cache entries (two for group
  2167. * keys):
  2168. * Michael MIC TX/RX keys are in different key cache
  2169. * entries (idx = main index + 64 for TX and
  2170. * main index + 32 + 96 for RX):
  2171. * key0 [31:0] = TX/RX MIC key [31:0]
  2172. * key1 [31:0] = reserved
  2173. * key2 [31:0] = TX/RX MIC key [63:32]
  2174. * key3 [31:0] = reserved
  2175. * key4 [31:0] = reserved
  2176. *
  2177. * Upper layer code will call this function separately
  2178. * for TX and RX keys when these registers offsets are
  2179. * used.
  2180. */
  2181. u32 mic0, mic2;
  2182. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2183. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2184. /* Write MIC key[31:0] */
  2185. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2186. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2187. /* Write MIC key[63:32] */
  2188. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2189. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2190. /* Write TX[63:32] and keyType(reserved) */
  2191. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  2192. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2193. AR_KEYTABLE_TYPE_CLR);
  2194. }
  2195. /* MAC address registers are reserved for the MIC entry */
  2196. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2197. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2198. /*
  2199. * Write the correct (un-inverted) key[47:0] last to enable
  2200. * TKIP now that all other registers are set with correct
  2201. * values.
  2202. */
  2203. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2204. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2205. } else {
  2206. /* Write key[47:0] */
  2207. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2208. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2209. /* Write key[95:48] */
  2210. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2211. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2212. /* Write key[127:96] and key type */
  2213. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2214. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2215. /* Write MAC address for the entry */
  2216. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2217. }
  2218. return true;
  2219. }
  2220. bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
  2221. {
  2222. if (entry < ah->caps.keycache_size) {
  2223. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2224. if (val & AR_KEYTABLE_VALID)
  2225. return true;
  2226. }
  2227. return false;
  2228. }
  2229. /******************************/
  2230. /* Power Management (Chipset) */
  2231. /******************************/
  2232. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  2233. {
  2234. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2235. if (setChip) {
  2236. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2237. AR_RTC_FORCE_WAKE_EN);
  2238. if (!AR_SREV_9100(ah))
  2239. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2240. REG_CLR_BIT(ah, (AR_RTC_RESET),
  2241. AR_RTC_RESET_EN);
  2242. }
  2243. }
  2244. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  2245. {
  2246. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2247. if (setChip) {
  2248. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2249. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2250. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2251. AR_RTC_FORCE_WAKE_ON_INT);
  2252. } else {
  2253. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2254. AR_RTC_FORCE_WAKE_EN);
  2255. }
  2256. }
  2257. }
  2258. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  2259. {
  2260. u32 val;
  2261. int i;
  2262. if (setChip) {
  2263. if ((REG_READ(ah, AR_RTC_STATUS) &
  2264. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2265. if (ath9k_hw_set_reset_reg(ah,
  2266. ATH9K_RESET_POWER_ON) != true) {
  2267. return false;
  2268. }
  2269. }
  2270. if (AR_SREV_9100(ah))
  2271. REG_SET_BIT(ah, AR_RTC_RESET,
  2272. AR_RTC_RESET_EN);
  2273. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2274. AR_RTC_FORCE_WAKE_EN);
  2275. udelay(50);
  2276. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2277. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2278. if (val == AR_RTC_STATUS_ON)
  2279. break;
  2280. udelay(50);
  2281. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2282. AR_RTC_FORCE_WAKE_EN);
  2283. }
  2284. if (i == 0) {
  2285. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2286. "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
  2287. return false;
  2288. }
  2289. }
  2290. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2291. return true;
  2292. }
  2293. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  2294. {
  2295. int status = true, setChip = true;
  2296. static const char *modes[] = {
  2297. "AWAKE",
  2298. "FULL-SLEEP",
  2299. "NETWORK SLEEP",
  2300. "UNDEFINED"
  2301. };
  2302. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
  2303. modes[ah->power_mode], modes[mode]);
  2304. switch (mode) {
  2305. case ATH9K_PM_AWAKE:
  2306. status = ath9k_hw_set_power_awake(ah, setChip);
  2307. break;
  2308. case ATH9K_PM_FULL_SLEEP:
  2309. ath9k_set_power_sleep(ah, setChip);
  2310. ah->chip_fullsleep = true;
  2311. break;
  2312. case ATH9K_PM_NETWORK_SLEEP:
  2313. ath9k_set_power_network_sleep(ah, setChip);
  2314. break;
  2315. default:
  2316. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  2317. "Unknown power mode %u\n", mode);
  2318. return false;
  2319. }
  2320. ah->power_mode = mode;
  2321. return status;
  2322. }
  2323. /*
  2324. * Helper for ASPM support.
  2325. *
  2326. * Disable PLL when in L0s as well as receiver clock when in L1.
  2327. * This power saving option must be enabled through the SerDes.
  2328. *
  2329. * Programming the SerDes must go through the same 288 bit serial shift
  2330. * register as the other analog registers. Hence the 9 writes.
  2331. */
  2332. void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
  2333. {
  2334. u8 i;
  2335. if (ah->is_pciexpress != true)
  2336. return;
  2337. /* Do not touch SerDes registers */
  2338. if (ah->config.pcie_powersave_enable == 2)
  2339. return;
  2340. /* Nothing to do on restore for 11N */
  2341. if (restore)
  2342. return;
  2343. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2344. /*
  2345. * AR9280 2.0 or later chips use SerDes values from the
  2346. * initvals.h initialized depending on chipset during
  2347. * ath9k_hw_do_attach()
  2348. */
  2349. for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
  2350. REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
  2351. INI_RA(&ah->iniPcieSerdes, i, 1));
  2352. }
  2353. } else if (AR_SREV_9280(ah) &&
  2354. (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
  2355. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2356. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2357. /* RX shut off when elecidle is asserted */
  2358. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2359. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2360. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2361. /* Shut off CLKREQ active in L1 */
  2362. if (ah->config.pcie_clock_req)
  2363. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2364. else
  2365. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2366. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2367. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2368. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2369. /* Load the new settings */
  2370. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2371. } else {
  2372. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2373. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2374. /* RX shut off when elecidle is asserted */
  2375. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2376. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2377. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2378. /*
  2379. * Ignore ah->ah_config.pcie_clock_req setting for
  2380. * pre-AR9280 11n
  2381. */
  2382. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2383. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2384. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2385. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2386. /* Load the new settings */
  2387. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2388. }
  2389. udelay(1000);
  2390. /* set bit 19 to allow forcing of pcie core into L1 state */
  2391. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2392. /* Several PCIe massages to ensure proper behaviour */
  2393. if (ah->config.pcie_waen) {
  2394. REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
  2395. } else {
  2396. if (AR_SREV_9285(ah))
  2397. REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
  2398. /*
  2399. * On AR9280 chips bit 22 of 0x4004 needs to be set to
  2400. * otherwise card may disappear.
  2401. */
  2402. else if (AR_SREV_9280(ah))
  2403. REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
  2404. else
  2405. REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
  2406. }
  2407. }
  2408. /**********************/
  2409. /* Interrupt Handling */
  2410. /**********************/
  2411. bool ath9k_hw_intrpend(struct ath_hw *ah)
  2412. {
  2413. u32 host_isr;
  2414. if (AR_SREV_9100(ah))
  2415. return true;
  2416. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2417. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2418. return true;
  2419. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2420. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2421. && (host_isr != AR_INTR_SPURIOUS))
  2422. return true;
  2423. return false;
  2424. }
  2425. bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
  2426. {
  2427. u32 isr = 0;
  2428. u32 mask2 = 0;
  2429. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2430. u32 sync_cause = 0;
  2431. bool fatal_int = false;
  2432. if (!AR_SREV_9100(ah)) {
  2433. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2434. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2435. == AR_RTC_STATUS_ON) {
  2436. isr = REG_READ(ah, AR_ISR);
  2437. }
  2438. }
  2439. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2440. AR_INTR_SYNC_DEFAULT;
  2441. *masked = 0;
  2442. if (!isr && !sync_cause)
  2443. return false;
  2444. } else {
  2445. *masked = 0;
  2446. isr = REG_READ(ah, AR_ISR);
  2447. }
  2448. if (isr) {
  2449. if (isr & AR_ISR_BCNMISC) {
  2450. u32 isr2;
  2451. isr2 = REG_READ(ah, AR_ISR_S2);
  2452. if (isr2 & AR_ISR_S2_TIM)
  2453. mask2 |= ATH9K_INT_TIM;
  2454. if (isr2 & AR_ISR_S2_DTIM)
  2455. mask2 |= ATH9K_INT_DTIM;
  2456. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2457. mask2 |= ATH9K_INT_DTIMSYNC;
  2458. if (isr2 & (AR_ISR_S2_CABEND))
  2459. mask2 |= ATH9K_INT_CABEND;
  2460. if (isr2 & AR_ISR_S2_GTT)
  2461. mask2 |= ATH9K_INT_GTT;
  2462. if (isr2 & AR_ISR_S2_CST)
  2463. mask2 |= ATH9K_INT_CST;
  2464. if (isr2 & AR_ISR_S2_TSFOOR)
  2465. mask2 |= ATH9K_INT_TSFOOR;
  2466. }
  2467. isr = REG_READ(ah, AR_ISR_RAC);
  2468. if (isr == 0xffffffff) {
  2469. *masked = 0;
  2470. return false;
  2471. }
  2472. *masked = isr & ATH9K_INT_COMMON;
  2473. if (ah->config.intr_mitigation) {
  2474. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2475. *masked |= ATH9K_INT_RX;
  2476. }
  2477. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2478. *masked |= ATH9K_INT_RX;
  2479. if (isr &
  2480. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2481. AR_ISR_TXEOL)) {
  2482. u32 s0_s, s1_s;
  2483. *masked |= ATH9K_INT_TX;
  2484. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2485. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2486. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2487. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2488. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2489. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2490. }
  2491. if (isr & AR_ISR_RXORN) {
  2492. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2493. "receive FIFO overrun interrupt\n");
  2494. }
  2495. if (!AR_SREV_9100(ah)) {
  2496. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2497. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2498. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2499. *masked |= ATH9K_INT_TIM_TIMER;
  2500. }
  2501. }
  2502. *masked |= mask2;
  2503. }
  2504. if (AR_SREV_9100(ah))
  2505. return true;
  2506. if (sync_cause) {
  2507. fatal_int =
  2508. (sync_cause &
  2509. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2510. ? true : false;
  2511. if (fatal_int) {
  2512. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2513. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2514. "received PCI FATAL interrupt\n");
  2515. }
  2516. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2517. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2518. "received PCI PERR interrupt\n");
  2519. }
  2520. *masked |= ATH9K_INT_FATAL;
  2521. }
  2522. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2523. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2524. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2525. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2526. REG_WRITE(ah, AR_RC, 0);
  2527. *masked |= ATH9K_INT_FATAL;
  2528. }
  2529. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2530. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2531. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2532. }
  2533. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2534. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2535. }
  2536. return true;
  2537. }
  2538. enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
  2539. {
  2540. return ah->mask_reg;
  2541. }
  2542. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
  2543. {
  2544. u32 omask = ah->mask_reg;
  2545. u32 mask, mask2;
  2546. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2547. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2548. if (omask & ATH9K_INT_GLOBAL) {
  2549. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
  2550. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2551. (void) REG_READ(ah, AR_IER);
  2552. if (!AR_SREV_9100(ah)) {
  2553. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2554. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2555. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2556. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2557. }
  2558. }
  2559. mask = ints & ATH9K_INT_COMMON;
  2560. mask2 = 0;
  2561. if (ints & ATH9K_INT_TX) {
  2562. if (ah->txok_interrupt_mask)
  2563. mask |= AR_IMR_TXOK;
  2564. if (ah->txdesc_interrupt_mask)
  2565. mask |= AR_IMR_TXDESC;
  2566. if (ah->txerr_interrupt_mask)
  2567. mask |= AR_IMR_TXERR;
  2568. if (ah->txeol_interrupt_mask)
  2569. mask |= AR_IMR_TXEOL;
  2570. }
  2571. if (ints & ATH9K_INT_RX) {
  2572. mask |= AR_IMR_RXERR;
  2573. if (ah->config.intr_mitigation)
  2574. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2575. else
  2576. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2577. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2578. mask |= AR_IMR_GENTMR;
  2579. }
  2580. if (ints & (ATH9K_INT_BMISC)) {
  2581. mask |= AR_IMR_BCNMISC;
  2582. if (ints & ATH9K_INT_TIM)
  2583. mask2 |= AR_IMR_S2_TIM;
  2584. if (ints & ATH9K_INT_DTIM)
  2585. mask2 |= AR_IMR_S2_DTIM;
  2586. if (ints & ATH9K_INT_DTIMSYNC)
  2587. mask2 |= AR_IMR_S2_DTIMSYNC;
  2588. if (ints & ATH9K_INT_CABEND)
  2589. mask2 |= AR_IMR_S2_CABEND;
  2590. if (ints & ATH9K_INT_TSFOOR)
  2591. mask2 |= AR_IMR_S2_TSFOOR;
  2592. }
  2593. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2594. mask |= AR_IMR_BCNMISC;
  2595. if (ints & ATH9K_INT_GTT)
  2596. mask2 |= AR_IMR_S2_GTT;
  2597. if (ints & ATH9K_INT_CST)
  2598. mask2 |= AR_IMR_S2_CST;
  2599. }
  2600. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2601. REG_WRITE(ah, AR_IMR, mask);
  2602. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2603. AR_IMR_S2_DTIM |
  2604. AR_IMR_S2_DTIMSYNC |
  2605. AR_IMR_S2_CABEND |
  2606. AR_IMR_S2_CABTO |
  2607. AR_IMR_S2_TSFOOR |
  2608. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2609. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2610. ah->mask_reg = ints;
  2611. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2612. if (ints & ATH9K_INT_TIM_TIMER)
  2613. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2614. else
  2615. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2616. }
  2617. if (ints & ATH9K_INT_GLOBAL) {
  2618. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
  2619. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2620. if (!AR_SREV_9100(ah)) {
  2621. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2622. AR_INTR_MAC_IRQ);
  2623. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2624. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2625. AR_INTR_SYNC_DEFAULT);
  2626. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2627. AR_INTR_SYNC_DEFAULT);
  2628. }
  2629. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2630. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2631. }
  2632. return omask;
  2633. }
  2634. /*******************/
  2635. /* Beacon Handling */
  2636. /*******************/
  2637. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  2638. {
  2639. int flags = 0;
  2640. ah->beacon_interval = beacon_period;
  2641. switch (ah->opmode) {
  2642. case NL80211_IFTYPE_STATION:
  2643. case NL80211_IFTYPE_MONITOR:
  2644. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2645. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2646. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2647. flags |= AR_TBTT_TIMER_EN;
  2648. break;
  2649. case NL80211_IFTYPE_ADHOC:
  2650. case NL80211_IFTYPE_MESH_POINT:
  2651. REG_SET_BIT(ah, AR_TXCFG,
  2652. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2653. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2654. TU_TO_USEC(next_beacon +
  2655. (ah->atim_window ? ah->
  2656. atim_window : 1)));
  2657. flags |= AR_NDP_TIMER_EN;
  2658. case NL80211_IFTYPE_AP:
  2659. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2660. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2661. TU_TO_USEC(next_beacon -
  2662. ah->config.
  2663. dma_beacon_response_time));
  2664. REG_WRITE(ah, AR_NEXT_SWBA,
  2665. TU_TO_USEC(next_beacon -
  2666. ah->config.
  2667. sw_beacon_response_time));
  2668. flags |=
  2669. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2670. break;
  2671. default:
  2672. DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
  2673. "%s: unsupported opmode: %d\n",
  2674. __func__, ah->opmode);
  2675. return;
  2676. break;
  2677. }
  2678. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2679. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2680. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2681. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2682. beacon_period &= ~ATH9K_BEACON_ENA;
  2683. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2684. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  2685. ath9k_hw_reset_tsf(ah);
  2686. }
  2687. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2688. }
  2689. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  2690. const struct ath9k_beacon_state *bs)
  2691. {
  2692. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2693. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2694. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2695. REG_WRITE(ah, AR_BEACON_PERIOD,
  2696. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2697. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2698. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2699. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2700. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2701. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2702. if (bs->bs_sleepduration > beaconintval)
  2703. beaconintval = bs->bs_sleepduration;
  2704. dtimperiod = bs->bs_dtimperiod;
  2705. if (bs->bs_sleepduration > dtimperiod)
  2706. dtimperiod = bs->bs_sleepduration;
  2707. if (beaconintval == dtimperiod)
  2708. nextTbtt = bs->bs_nextdtim;
  2709. else
  2710. nextTbtt = bs->bs_nexttbtt;
  2711. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2712. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2713. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2714. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2715. REG_WRITE(ah, AR_NEXT_DTIM,
  2716. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2717. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2718. REG_WRITE(ah, AR_SLEEP1,
  2719. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2720. | AR_SLEEP1_ASSUME_DTIM);
  2721. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2722. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2723. else
  2724. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2725. REG_WRITE(ah, AR_SLEEP2,
  2726. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2727. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2728. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2729. REG_SET_BIT(ah, AR_TIMER_MODE,
  2730. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2731. AR_DTIM_TIMER_EN);
  2732. /* TSF Out of Range Threshold */
  2733. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  2734. }
  2735. /*******************/
  2736. /* HW Capabilities */
  2737. /*******************/
  2738. void ath9k_hw_fill_cap_info(struct ath_hw *ah)
  2739. {
  2740. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2741. u16 capField = 0, eeval;
  2742. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  2743. ah->regulatory.current_rd = eeval;
  2744. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  2745. if (AR_SREV_9285_10_OR_LATER(ah))
  2746. eeval |= AR9285_RDEXT_DEFAULT;
  2747. ah->regulatory.current_rd_ext = eeval;
  2748. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  2749. if (ah->opmode != NL80211_IFTYPE_AP &&
  2750. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2751. if (ah->regulatory.current_rd == 0x64 ||
  2752. ah->regulatory.current_rd == 0x65)
  2753. ah->regulatory.current_rd += 5;
  2754. else if (ah->regulatory.current_rd == 0x41)
  2755. ah->regulatory.current_rd = 0x43;
  2756. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2757. "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
  2758. }
  2759. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  2760. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2761. if (eeval & AR5416_OPFLAGS_11A) {
  2762. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2763. if (ah->config.ht_enable) {
  2764. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2765. set_bit(ATH9K_MODE_11NA_HT20,
  2766. pCap->wireless_modes);
  2767. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2768. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2769. pCap->wireless_modes);
  2770. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2771. pCap->wireless_modes);
  2772. }
  2773. }
  2774. }
  2775. if (eeval & AR5416_OPFLAGS_11G) {
  2776. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2777. if (ah->config.ht_enable) {
  2778. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2779. set_bit(ATH9K_MODE_11NG_HT20,
  2780. pCap->wireless_modes);
  2781. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2782. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2783. pCap->wireless_modes);
  2784. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2785. pCap->wireless_modes);
  2786. }
  2787. }
  2788. }
  2789. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2790. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2791. !(eeval & AR5416_OPFLAGS_11A))
  2792. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2793. else
  2794. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2795. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  2796. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2797. pCap->low_2ghz_chan = 2312;
  2798. pCap->high_2ghz_chan = 2732;
  2799. pCap->low_5ghz_chan = 4920;
  2800. pCap->high_5ghz_chan = 6100;
  2801. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2802. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2803. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2804. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2805. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2806. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2807. if (ah->config.ht_enable)
  2808. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2809. else
  2810. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2811. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2812. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2813. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2814. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2815. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2816. pCap->total_queues =
  2817. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2818. else
  2819. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2820. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2821. pCap->keycache_size =
  2822. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2823. else
  2824. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2825. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2826. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2827. if (AR_SREV_9285_10_OR_LATER(ah))
  2828. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2829. else if (AR_SREV_9280_10_OR_LATER(ah))
  2830. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2831. else
  2832. pCap->num_gpio_pins = AR_NUM_GPIO;
  2833. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2834. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2835. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2836. } else {
  2837. pCap->rts_aggr_limit = (8 * 1024);
  2838. }
  2839. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2840. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2841. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2842. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2843. ah->rfkill_gpio =
  2844. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2845. ah->rfkill_polarity =
  2846. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2847. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2848. }
  2849. #endif
  2850. if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
  2851. (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2852. (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
  2853. (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
  2854. (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
  2855. (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
  2856. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2857. else
  2858. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2859. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2860. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2861. else
  2862. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2863. if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2864. pCap->reg_cap =
  2865. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2866. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2867. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2868. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2869. } else {
  2870. pCap->reg_cap =
  2871. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2872. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2873. }
  2874. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2875. pCap->num_antcfg_5ghz =
  2876. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  2877. pCap->num_antcfg_2ghz =
  2878. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  2879. if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
  2880. pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
  2881. ah->btactive_gpio = 6;
  2882. ah->wlanactive_gpio = 5;
  2883. }
  2884. }
  2885. bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2886. u32 capability, u32 *result)
  2887. {
  2888. switch (type) {
  2889. case ATH9K_CAP_CIPHER:
  2890. switch (capability) {
  2891. case ATH9K_CIPHER_AES_CCM:
  2892. case ATH9K_CIPHER_AES_OCB:
  2893. case ATH9K_CIPHER_TKIP:
  2894. case ATH9K_CIPHER_WEP:
  2895. case ATH9K_CIPHER_MIC:
  2896. case ATH9K_CIPHER_CLR:
  2897. return true;
  2898. default:
  2899. return false;
  2900. }
  2901. case ATH9K_CAP_TKIP_MIC:
  2902. switch (capability) {
  2903. case 0:
  2904. return true;
  2905. case 1:
  2906. return (ah->sta_id1_defaults &
  2907. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  2908. false;
  2909. }
  2910. case ATH9K_CAP_TKIP_SPLIT:
  2911. return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
  2912. false : true;
  2913. case ATH9K_CAP_DIVERSITY:
  2914. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  2915. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  2916. true : false;
  2917. case ATH9K_CAP_MCAST_KEYSRCH:
  2918. switch (capability) {
  2919. case 0:
  2920. return true;
  2921. case 1:
  2922. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  2923. return false;
  2924. } else {
  2925. return (ah->sta_id1_defaults &
  2926. AR_STA_ID1_MCAST_KSRCH) ? true :
  2927. false;
  2928. }
  2929. }
  2930. return false;
  2931. case ATH9K_CAP_TXPOW:
  2932. switch (capability) {
  2933. case 0:
  2934. return 0;
  2935. case 1:
  2936. *result = ah->regulatory.power_limit;
  2937. return 0;
  2938. case 2:
  2939. *result = ah->regulatory.max_power_level;
  2940. return 0;
  2941. case 3:
  2942. *result = ah->regulatory.tp_scale;
  2943. return 0;
  2944. }
  2945. return false;
  2946. case ATH9K_CAP_DS:
  2947. return (AR_SREV_9280_20_OR_LATER(ah) &&
  2948. (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
  2949. ? false : true;
  2950. default:
  2951. return false;
  2952. }
  2953. }
  2954. bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2955. u32 capability, u32 setting, int *status)
  2956. {
  2957. u32 v;
  2958. switch (type) {
  2959. case ATH9K_CAP_TKIP_MIC:
  2960. if (setting)
  2961. ah->sta_id1_defaults |=
  2962. AR_STA_ID1_CRPT_MIC_ENABLE;
  2963. else
  2964. ah->sta_id1_defaults &=
  2965. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  2966. return true;
  2967. case ATH9K_CAP_DIVERSITY:
  2968. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  2969. if (setting)
  2970. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2971. else
  2972. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2973. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  2974. return true;
  2975. case ATH9K_CAP_MCAST_KEYSRCH:
  2976. if (setting)
  2977. ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
  2978. else
  2979. ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  2980. return true;
  2981. default:
  2982. return false;
  2983. }
  2984. }
  2985. /****************************/
  2986. /* GPIO / RFKILL / Antennae */
  2987. /****************************/
  2988. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2989. u32 gpio, u32 type)
  2990. {
  2991. int addr;
  2992. u32 gpio_shift, tmp;
  2993. if (gpio > 11)
  2994. addr = AR_GPIO_OUTPUT_MUX3;
  2995. else if (gpio > 5)
  2996. addr = AR_GPIO_OUTPUT_MUX2;
  2997. else
  2998. addr = AR_GPIO_OUTPUT_MUX1;
  2999. gpio_shift = (gpio % 6) * 5;
  3000. if (AR_SREV_9280_20_OR_LATER(ah)
  3001. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  3002. REG_RMW(ah, addr, (type << gpio_shift),
  3003. (0x1f << gpio_shift));
  3004. } else {
  3005. tmp = REG_READ(ah, addr);
  3006. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  3007. tmp &= ~(0x1f << gpio_shift);
  3008. tmp |= (type << gpio_shift);
  3009. REG_WRITE(ah, addr, tmp);
  3010. }
  3011. }
  3012. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  3013. {
  3014. u32 gpio_shift;
  3015. ASSERT(gpio < ah->caps.num_gpio_pins);
  3016. gpio_shift = gpio << 1;
  3017. REG_RMW(ah,
  3018. AR_GPIO_OE_OUT,
  3019. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  3020. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3021. }
  3022. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  3023. {
  3024. #define MS_REG_READ(x, y) \
  3025. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  3026. if (gpio >= ah->caps.num_gpio_pins)
  3027. return 0xffffffff;
  3028. if (AR_SREV_9285_10_OR_LATER(ah))
  3029. return MS_REG_READ(AR9285, gpio) != 0;
  3030. else if (AR_SREV_9280_10_OR_LATER(ah))
  3031. return MS_REG_READ(AR928X, gpio) != 0;
  3032. else
  3033. return MS_REG_READ(AR, gpio) != 0;
  3034. }
  3035. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  3036. u32 ah_signal_type)
  3037. {
  3038. u32 gpio_shift;
  3039. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  3040. gpio_shift = 2 * gpio;
  3041. REG_RMW(ah,
  3042. AR_GPIO_OE_OUT,
  3043. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  3044. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3045. }
  3046. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  3047. {
  3048. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  3049. AR_GPIO_BIT(gpio));
  3050. }
  3051. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  3052. {
  3053. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  3054. }
  3055. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  3056. {
  3057. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  3058. }
  3059. bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
  3060. enum ath9k_ant_setting settings,
  3061. struct ath9k_channel *chan,
  3062. u8 *tx_chainmask,
  3063. u8 *rx_chainmask,
  3064. u8 *antenna_cfgd)
  3065. {
  3066. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  3067. if (AR_SREV_9280(ah)) {
  3068. if (!tx_chainmask_cfg) {
  3069. tx_chainmask_cfg = *tx_chainmask;
  3070. rx_chainmask_cfg = *rx_chainmask;
  3071. }
  3072. switch (settings) {
  3073. case ATH9K_ANT_FIXED_A:
  3074. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3075. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3076. *antenna_cfgd = true;
  3077. break;
  3078. case ATH9K_ANT_FIXED_B:
  3079. if (ah->caps.tx_chainmask >
  3080. ATH9K_ANTENNA1_CHAINMASK) {
  3081. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3082. }
  3083. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3084. *antenna_cfgd = true;
  3085. break;
  3086. case ATH9K_ANT_VARIABLE:
  3087. *tx_chainmask = tx_chainmask_cfg;
  3088. *rx_chainmask = rx_chainmask_cfg;
  3089. *antenna_cfgd = true;
  3090. break;
  3091. default:
  3092. break;
  3093. }
  3094. } else {
  3095. ah->diversity_control = settings;
  3096. }
  3097. return true;
  3098. }
  3099. /*********************/
  3100. /* General Operation */
  3101. /*********************/
  3102. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  3103. {
  3104. u32 bits = REG_READ(ah, AR_RX_FILTER);
  3105. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  3106. if (phybits & AR_PHY_ERR_RADAR)
  3107. bits |= ATH9K_RX_FILTER_PHYRADAR;
  3108. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  3109. bits |= ATH9K_RX_FILTER_PHYERR;
  3110. return bits;
  3111. }
  3112. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  3113. {
  3114. u32 phybits;
  3115. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  3116. phybits = 0;
  3117. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  3118. phybits |= AR_PHY_ERR_RADAR;
  3119. if (bits & ATH9K_RX_FILTER_PHYERR)
  3120. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  3121. REG_WRITE(ah, AR_PHY_ERR, phybits);
  3122. if (phybits)
  3123. REG_WRITE(ah, AR_RXCFG,
  3124. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  3125. else
  3126. REG_WRITE(ah, AR_RXCFG,
  3127. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  3128. }
  3129. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  3130. {
  3131. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  3132. }
  3133. bool ath9k_hw_disable(struct ath_hw *ah)
  3134. {
  3135. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  3136. return false;
  3137. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  3138. }
  3139. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  3140. {
  3141. struct ath9k_channel *chan = ah->curchan;
  3142. struct ieee80211_channel *channel = chan->chan;
  3143. ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
  3144. ah->eep_ops->set_txpower(ah, chan,
  3145. ath9k_regd_get_ctl(&ah->regulatory, chan),
  3146. channel->max_antenna_gain * 2,
  3147. channel->max_power * 2,
  3148. min((u32) MAX_RATE_POWER,
  3149. (u32) ah->regulatory.power_limit));
  3150. }
  3151. void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
  3152. {
  3153. memcpy(ah->macaddr, mac, ETH_ALEN);
  3154. }
  3155. void ath9k_hw_setopmode(struct ath_hw *ah)
  3156. {
  3157. ath9k_hw_set_operating_mode(ah, ah->opmode);
  3158. }
  3159. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  3160. {
  3161. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3162. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3163. }
  3164. void ath9k_hw_setbssidmask(struct ath_softc *sc)
  3165. {
  3166. REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
  3167. REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
  3168. }
  3169. void ath9k_hw_write_associd(struct ath_softc *sc)
  3170. {
  3171. REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
  3172. REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
  3173. ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  3174. }
  3175. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  3176. {
  3177. u64 tsf;
  3178. tsf = REG_READ(ah, AR_TSF_U32);
  3179. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3180. return tsf;
  3181. }
  3182. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  3183. {
  3184. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  3185. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  3186. }
  3187. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  3188. {
  3189. int count;
  3190. count = 0;
  3191. while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
  3192. count++;
  3193. if (count > 10) {
  3194. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3195. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3196. break;
  3197. }
  3198. udelay(10);
  3199. }
  3200. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3201. }
  3202. bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  3203. {
  3204. if (setting)
  3205. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  3206. else
  3207. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  3208. return true;
  3209. }
  3210. bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  3211. {
  3212. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3213. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
  3214. ah->slottime = (u32) -1;
  3215. return false;
  3216. } else {
  3217. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3218. ah->slottime = us;
  3219. return true;
  3220. }
  3221. }
  3222. void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
  3223. {
  3224. u32 macmode;
  3225. if (mode == ATH9K_HT_MACMODE_2040 &&
  3226. !ah->config.cwm_ignore_extcca)
  3227. macmode = AR_2040_JOINED_RX_CLEAR;
  3228. else
  3229. macmode = 0;
  3230. REG_WRITE(ah, AR_2040_MODE, macmode);
  3231. }
  3232. /***************************/
  3233. /* Bluetooth Coexistence */
  3234. /***************************/
  3235. void ath9k_hw_btcoex_enable(struct ath_hw *ah)
  3236. {
  3237. /* connect bt_active to baseband */
  3238. REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3239. (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
  3240. AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
  3241. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3242. AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
  3243. /* Set input mux for bt_active to gpio pin */
  3244. REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
  3245. AR_GPIO_INPUT_MUX1_BT_ACTIVE,
  3246. ah->btactive_gpio);
  3247. /* Configure the desired gpio port for input */
  3248. ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
  3249. /* Configure the desired GPIO port for TX_FRAME output */
  3250. ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
  3251. AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
  3252. }