init.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
  9. *
  10. * Derived from "arch/i386/mm/init.c"
  11. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  12. *
  13. * Dave Engebretsen <engebret@us.ibm.com>
  14. * Rework for PPC64 port.
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License
  18. * as published by the Free Software Foundation; either version
  19. * 2 of the License, or (at your option) any later version.
  20. *
  21. */
  22. #include <linux/config.h>
  23. #include <linux/signal.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/errno.h>
  27. #include <linux/string.h>
  28. #include <linux/types.h>
  29. #include <linux/mman.h>
  30. #include <linux/mm.h>
  31. #include <linux/swap.h>
  32. #include <linux/stddef.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include <linux/bootmem.h>
  37. #include <linux/highmem.h>
  38. #include <linux/idr.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/module.h>
  41. #include <asm/pgalloc.h>
  42. #include <asm/page.h>
  43. #include <asm/abs_addr.h>
  44. #include <asm/prom.h>
  45. #include <asm/lmb.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/ppcdebug.h>
  60. #include <asm/sections.h>
  61. #include <asm/system.h>
  62. #include <asm/iommu.h>
  63. #include <asm/abs_addr.h>
  64. #include <asm/vdso.h>
  65. int mem_init_done;
  66. unsigned long ioremap_bot = IMALLOC_BASE;
  67. static unsigned long phbs_io_bot = PHBS_IO_BASE;
  68. extern pgd_t swapper_pg_dir[];
  69. extern struct task_struct *current_set[NR_CPUS];
  70. extern pgd_t ioremap_dir[];
  71. pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir;
  72. unsigned long klimit = (unsigned long)_end;
  73. unsigned long _SDR1=0;
  74. unsigned long _ASR=0;
  75. /* max amount of RAM to use */
  76. unsigned long __max_memory;
  77. /* info on what we think the IO hole is */
  78. unsigned long io_hole_start;
  79. unsigned long io_hole_size;
  80. void show_mem(void)
  81. {
  82. unsigned long total = 0, reserved = 0;
  83. unsigned long shared = 0, cached = 0;
  84. struct page *page;
  85. pg_data_t *pgdat;
  86. unsigned long i;
  87. printk("Mem-info:\n");
  88. show_free_areas();
  89. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  90. for_each_pgdat(pgdat) {
  91. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  92. page = pgdat->node_mem_map + i;
  93. total++;
  94. if (PageReserved(page))
  95. reserved++;
  96. else if (PageSwapCache(page))
  97. cached++;
  98. else if (page_count(page))
  99. shared += page_count(page) - 1;
  100. }
  101. }
  102. printk("%ld pages of RAM\n", total);
  103. printk("%ld reserved pages\n", reserved);
  104. printk("%ld pages shared\n", shared);
  105. printk("%ld pages swap cached\n", cached);
  106. }
  107. #ifdef CONFIG_PPC_ISERIES
  108. void __iomem *ioremap(unsigned long addr, unsigned long size)
  109. {
  110. return (void __iomem *)addr;
  111. }
  112. extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
  113. unsigned long flags)
  114. {
  115. return (void __iomem *)addr;
  116. }
  117. void iounmap(volatile void __iomem *addr)
  118. {
  119. return;
  120. }
  121. #else
  122. /*
  123. * map_io_page currently only called by __ioremap
  124. * map_io_page adds an entry to the ioremap page table
  125. * and adds an entry to the HPT, possibly bolting it
  126. */
  127. static void map_io_page(unsigned long ea, unsigned long pa, int flags)
  128. {
  129. pgd_t *pgdp;
  130. pmd_t *pmdp;
  131. pte_t *ptep;
  132. unsigned long vsid;
  133. if (mem_init_done) {
  134. spin_lock(&ioremap_mm.page_table_lock);
  135. pgdp = pgd_offset_i(ea);
  136. pmdp = pmd_alloc(&ioremap_mm, pgdp, ea);
  137. ptep = pte_alloc_kernel(&ioremap_mm, pmdp, ea);
  138. pa = abs_to_phys(pa);
  139. set_pte_at(&ioremap_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
  140. __pgprot(flags)));
  141. spin_unlock(&ioremap_mm.page_table_lock);
  142. } else {
  143. unsigned long va, vpn, hash, hpteg;
  144. /*
  145. * If the mm subsystem is not fully up, we cannot create a
  146. * linux page table entry for this mapping. Simply bolt an
  147. * entry in the hardware page table.
  148. */
  149. vsid = get_kernel_vsid(ea);
  150. va = (vsid << 28) | (ea & 0xFFFFFFF);
  151. vpn = va >> PAGE_SHIFT;
  152. hash = hpt_hash(vpn, 0);
  153. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  154. /* Panic if a pte grpup is full */
  155. if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
  156. _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
  157. 1, 0) == -1) {
  158. panic("map_io_page: could not insert mapping");
  159. }
  160. }
  161. }
  162. static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
  163. unsigned long ea, unsigned long size,
  164. unsigned long flags)
  165. {
  166. unsigned long i;
  167. if ((flags & _PAGE_PRESENT) == 0)
  168. flags |= pgprot_val(PAGE_KERNEL);
  169. for (i = 0; i < size; i += PAGE_SIZE)
  170. map_io_page(ea+i, pa+i, flags);
  171. return (void __iomem *) (ea + (addr & ~PAGE_MASK));
  172. }
  173. void __iomem *
  174. ioremap(unsigned long addr, unsigned long size)
  175. {
  176. return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
  177. }
  178. void __iomem *
  179. __ioremap(unsigned long addr, unsigned long size, unsigned long flags)
  180. {
  181. unsigned long pa, ea;
  182. /*
  183. * Choose an address to map it to.
  184. * Once the imalloc system is running, we use it.
  185. * Before that, we map using addresses going
  186. * up from ioremap_bot. imalloc will use
  187. * the addresses from ioremap_bot through
  188. * IMALLOC_END (0xE000001fffffffff)
  189. *
  190. */
  191. pa = addr & PAGE_MASK;
  192. size = PAGE_ALIGN(addr + size) - pa;
  193. if (size == 0)
  194. return NULL;
  195. if (mem_init_done) {
  196. struct vm_struct *area;
  197. area = im_get_free_area(size);
  198. if (area == NULL)
  199. return NULL;
  200. ea = (unsigned long)(area->addr);
  201. } else {
  202. ea = ioremap_bot;
  203. ioremap_bot += size;
  204. }
  205. return __ioremap_com(addr, pa, ea, size, flags);
  206. }
  207. #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
  208. int __ioremap_explicit(unsigned long pa, unsigned long ea,
  209. unsigned long size, unsigned long flags)
  210. {
  211. struct vm_struct *area;
  212. /* For now, require page-aligned values for pa, ea, and size */
  213. if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
  214. !IS_PAGE_ALIGNED(size)) {
  215. printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
  216. return 1;
  217. }
  218. if (!mem_init_done) {
  219. /* Two things to consider in this case:
  220. * 1) No records will be kept (imalloc, etc) that the region
  221. * has been remapped
  222. * 2) It won't be easy to iounmap() the region later (because
  223. * of 1)
  224. */
  225. ;
  226. } else {
  227. area = im_get_area(ea, size,
  228. IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
  229. if (area == NULL) {
  230. /* Expected when PHB-dlpar is in play */
  231. return 1;
  232. }
  233. if (ea != (unsigned long) area->addr) {
  234. printk(KERN_ERR "unexpected addr return from "
  235. "im_get_area\n");
  236. return 1;
  237. }
  238. }
  239. if (__ioremap_com(pa, pa, ea, size, flags) != (void *) ea) {
  240. printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
  241. return 1;
  242. }
  243. return 0;
  244. }
  245. static void unmap_im_area_pte(pmd_t *pmd, unsigned long address,
  246. unsigned long size)
  247. {
  248. unsigned long base, end;
  249. pte_t *pte;
  250. if (pmd_none(*pmd))
  251. return;
  252. if (pmd_bad(*pmd)) {
  253. pmd_ERROR(*pmd);
  254. pmd_clear(pmd);
  255. return;
  256. }
  257. pte = pte_offset_kernel(pmd, address);
  258. base = address & PMD_MASK;
  259. address &= ~PMD_MASK;
  260. end = address + size;
  261. if (end > PMD_SIZE)
  262. end = PMD_SIZE;
  263. do {
  264. pte_t page;
  265. page = ptep_get_and_clear(&ioremap_mm, base + address, pte);
  266. address += PAGE_SIZE;
  267. pte++;
  268. if (pte_none(page))
  269. continue;
  270. if (pte_present(page))
  271. continue;
  272. printk(KERN_CRIT "Whee.. Swapped out page in kernel page"
  273. " table\n");
  274. } while (address < end);
  275. }
  276. static void unmap_im_area_pmd(pgd_t *dir, unsigned long address,
  277. unsigned long size)
  278. {
  279. unsigned long base, end;
  280. pmd_t *pmd;
  281. if (pgd_none(*dir))
  282. return;
  283. if (pgd_bad(*dir)) {
  284. pgd_ERROR(*dir);
  285. pgd_clear(dir);
  286. return;
  287. }
  288. pmd = pmd_offset(dir, address);
  289. base = address & PGDIR_MASK;
  290. address &= ~PGDIR_MASK;
  291. end = address + size;
  292. if (end > PGDIR_SIZE)
  293. end = PGDIR_SIZE;
  294. do {
  295. unmap_im_area_pte(pmd, base + address, end - address);
  296. address = (address + PMD_SIZE) & PMD_MASK;
  297. pmd++;
  298. } while (address < end);
  299. }
  300. /*
  301. * Unmap an IO region and remove it from imalloc'd list.
  302. * Access to IO memory should be serialized by driver.
  303. * This code is modeled after vmalloc code - unmap_vm_area()
  304. *
  305. * XXX what about calls before mem_init_done (ie python_countermeasures())
  306. */
  307. void iounmap(volatile void __iomem *token)
  308. {
  309. unsigned long address, start, end, size;
  310. struct mm_struct *mm;
  311. pgd_t *dir;
  312. void *addr;
  313. if (!mem_init_done) {
  314. return;
  315. }
  316. addr = (void *) ((unsigned long __force) token & PAGE_MASK);
  317. if ((size = im_free(addr)) == 0) {
  318. return;
  319. }
  320. address = (unsigned long)addr;
  321. start = address;
  322. end = address + size;
  323. mm = &ioremap_mm;
  324. spin_lock(&mm->page_table_lock);
  325. dir = pgd_offset_i(address);
  326. flush_cache_vunmap(address, end);
  327. do {
  328. unmap_im_area_pmd(dir, address, end - address);
  329. address = (address + PGDIR_SIZE) & PGDIR_MASK;
  330. dir++;
  331. } while (address && (address < end));
  332. flush_tlb_kernel_range(start, end);
  333. spin_unlock(&mm->page_table_lock);
  334. return;
  335. }
  336. static int iounmap_subset_regions(unsigned long addr, unsigned long size)
  337. {
  338. struct vm_struct *area;
  339. /* Check whether subsets of this region exist */
  340. area = im_get_area(addr, size, IM_REGION_SUPERSET);
  341. if (area == NULL)
  342. return 1;
  343. while (area) {
  344. iounmap((void __iomem *) area->addr);
  345. area = im_get_area(addr, size,
  346. IM_REGION_SUPERSET);
  347. }
  348. return 0;
  349. }
  350. int iounmap_explicit(volatile void __iomem *start, unsigned long size)
  351. {
  352. struct vm_struct *area;
  353. unsigned long addr;
  354. int rc;
  355. addr = (unsigned long __force) start & PAGE_MASK;
  356. /* Verify that the region either exists or is a subset of an existing
  357. * region. In the latter case, split the parent region to create
  358. * the exact region
  359. */
  360. area = im_get_area(addr, size,
  361. IM_REGION_EXISTS | IM_REGION_SUBSET);
  362. if (area == NULL) {
  363. /* Determine whether subset regions exist. If so, unmap */
  364. rc = iounmap_subset_regions(addr, size);
  365. if (rc) {
  366. printk(KERN_ERR
  367. "%s() cannot unmap nonexistent range 0x%lx\n",
  368. __FUNCTION__, addr);
  369. return 1;
  370. }
  371. } else {
  372. iounmap((void __iomem *) area->addr);
  373. }
  374. /*
  375. * FIXME! This can't be right:
  376. iounmap(area->addr);
  377. * Maybe it should be "iounmap(area);"
  378. */
  379. return 0;
  380. }
  381. #endif
  382. EXPORT_SYMBOL(ioremap);
  383. EXPORT_SYMBOL(__ioremap);
  384. EXPORT_SYMBOL(iounmap);
  385. void free_initmem(void)
  386. {
  387. unsigned long addr;
  388. addr = (unsigned long)__init_begin;
  389. for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
  390. ClearPageReserved(virt_to_page(addr));
  391. set_page_count(virt_to_page(addr), 1);
  392. free_page(addr);
  393. totalram_pages++;
  394. }
  395. printk ("Freeing unused kernel memory: %luk freed\n",
  396. ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
  397. }
  398. #ifdef CONFIG_BLK_DEV_INITRD
  399. void free_initrd_mem(unsigned long start, unsigned long end)
  400. {
  401. if (start < end)
  402. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  403. for (; start < end; start += PAGE_SIZE) {
  404. ClearPageReserved(virt_to_page(start));
  405. set_page_count(virt_to_page(start), 1);
  406. free_page(start);
  407. totalram_pages++;
  408. }
  409. }
  410. #endif
  411. static DEFINE_SPINLOCK(mmu_context_lock);
  412. static DEFINE_IDR(mmu_context_idr);
  413. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  414. {
  415. int index;
  416. int err;
  417. #ifdef CONFIG_HUGETLB_PAGE
  418. /* We leave htlb_segs as it was, but for a fork, we need to
  419. * clear the huge_pgdir. */
  420. mm->context.huge_pgdir = NULL;
  421. #endif
  422. again:
  423. if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
  424. return -ENOMEM;
  425. spin_lock(&mmu_context_lock);
  426. err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
  427. spin_unlock(&mmu_context_lock);
  428. if (err == -EAGAIN)
  429. goto again;
  430. else if (err)
  431. return err;
  432. if (index > MAX_CONTEXT) {
  433. idr_remove(&mmu_context_idr, index);
  434. return -ENOMEM;
  435. }
  436. mm->context.id = index;
  437. return 0;
  438. }
  439. void destroy_context(struct mm_struct *mm)
  440. {
  441. spin_lock(&mmu_context_lock);
  442. idr_remove(&mmu_context_idr, mm->context.id);
  443. spin_unlock(&mmu_context_lock);
  444. mm->context.id = NO_CONTEXT;
  445. hugetlb_mm_free_pgd(mm);
  446. }
  447. /*
  448. * Do very early mm setup.
  449. */
  450. void __init mm_init_ppc64(void)
  451. {
  452. #ifndef CONFIG_PPC_ISERIES
  453. unsigned long i;
  454. #endif
  455. ppc64_boot_msg(0x100, "MM Init");
  456. /* This is the story of the IO hole... please, keep seated,
  457. * unfortunately, we are out of oxygen masks at the moment.
  458. * So we need some rough way to tell where your big IO hole
  459. * is. On pmac, it's between 2G and 4G, on POWER3, it's around
  460. * that area as well, on POWER4 we don't have one, etc...
  461. * We need that as a "hint" when sizing the TCE table on POWER3
  462. * So far, the simplest way that seem work well enough for us it
  463. * to just assume that the first discontinuity in our physical
  464. * RAM layout is the IO hole. That may not be correct in the future
  465. * (and isn't on iSeries but then we don't care ;)
  466. */
  467. #ifndef CONFIG_PPC_ISERIES
  468. for (i = 1; i < lmb.memory.cnt; i++) {
  469. unsigned long base, prevbase, prevsize;
  470. prevbase = lmb.memory.region[i-1].physbase;
  471. prevsize = lmb.memory.region[i-1].size;
  472. base = lmb.memory.region[i].physbase;
  473. if (base > (prevbase + prevsize)) {
  474. io_hole_start = prevbase + prevsize;
  475. io_hole_size = base - (prevbase + prevsize);
  476. break;
  477. }
  478. }
  479. #endif /* CONFIG_PPC_ISERIES */
  480. if (io_hole_start)
  481. printk("IO Hole assumed to be %lx -> %lx\n",
  482. io_hole_start, io_hole_start + io_hole_size - 1);
  483. ppc64_boot_msg(0x100, "MM Init Done");
  484. }
  485. /*
  486. * This is called by /dev/mem to know if a given address has to
  487. * be mapped non-cacheable or not
  488. */
  489. int page_is_ram(unsigned long pfn)
  490. {
  491. int i;
  492. unsigned long paddr = (pfn << PAGE_SHIFT);
  493. for (i=0; i < lmb.memory.cnt; i++) {
  494. unsigned long base;
  495. #ifdef CONFIG_MSCHUNKS
  496. base = lmb.memory.region[i].physbase;
  497. #else
  498. base = lmb.memory.region[i].base;
  499. #endif
  500. if ((paddr >= base) &&
  501. (paddr < (base + lmb.memory.region[i].size))) {
  502. return 1;
  503. }
  504. }
  505. return 0;
  506. }
  507. EXPORT_SYMBOL(page_is_ram);
  508. /*
  509. * Initialize the bootmem system and give it all the memory we
  510. * have available.
  511. */
  512. #ifndef CONFIG_DISCONTIGMEM
  513. void __init do_init_bootmem(void)
  514. {
  515. unsigned long i;
  516. unsigned long start, bootmap_pages;
  517. unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
  518. int boot_mapsize;
  519. /*
  520. * Find an area to use for the bootmem bitmap. Calculate the size of
  521. * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
  522. * Add 1 additional page in case the address isn't page-aligned.
  523. */
  524. bootmap_pages = bootmem_bootmap_pages(total_pages);
  525. start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
  526. BUG_ON(!start);
  527. boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
  528. max_pfn = max_low_pfn;
  529. /* add all physical memory to the bootmem map. Also find the first */
  530. for (i=0; i < lmb.memory.cnt; i++) {
  531. unsigned long physbase, size;
  532. physbase = lmb.memory.region[i].physbase;
  533. size = lmb.memory.region[i].size;
  534. free_bootmem(physbase, size);
  535. }
  536. /* reserve the sections we're already using */
  537. for (i=0; i < lmb.reserved.cnt; i++) {
  538. unsigned long physbase = lmb.reserved.region[i].physbase;
  539. unsigned long size = lmb.reserved.region[i].size;
  540. reserve_bootmem(physbase, size);
  541. }
  542. }
  543. /*
  544. * paging_init() sets up the page tables - in fact we've already done this.
  545. */
  546. void __init paging_init(void)
  547. {
  548. unsigned long zones_size[MAX_NR_ZONES];
  549. unsigned long zholes_size[MAX_NR_ZONES];
  550. unsigned long total_ram = lmb_phys_mem_size();
  551. unsigned long top_of_ram = lmb_end_of_DRAM();
  552. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  553. top_of_ram, total_ram);
  554. printk(KERN_INFO "Memory hole size: %ldMB\n",
  555. (top_of_ram - total_ram) >> 20);
  556. /*
  557. * All pages are DMA-able so we put them all in the DMA zone.
  558. */
  559. memset(zones_size, 0, sizeof(zones_size));
  560. memset(zholes_size, 0, sizeof(zholes_size));
  561. zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  562. zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  563. free_area_init_node(0, &contig_page_data, zones_size,
  564. __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
  565. }
  566. #endif /* CONFIG_DISCONTIGMEM */
  567. static struct kcore_list kcore_vmem;
  568. static int __init setup_kcore(void)
  569. {
  570. int i;
  571. for (i=0; i < lmb.memory.cnt; i++) {
  572. unsigned long physbase, size;
  573. struct kcore_list *kcore_mem;
  574. physbase = lmb.memory.region[i].physbase;
  575. size = lmb.memory.region[i].size;
  576. /* GFP_ATOMIC to avoid might_sleep warnings during boot */
  577. kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
  578. if (!kcore_mem)
  579. panic("mem_init: kmalloc failed\n");
  580. kclist_add(kcore_mem, __va(physbase), size);
  581. }
  582. kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
  583. return 0;
  584. }
  585. module_init(setup_kcore);
  586. void __init mem_init(void)
  587. {
  588. #ifdef CONFIG_DISCONTIGMEM
  589. int nid;
  590. #endif
  591. pg_data_t *pgdat;
  592. unsigned long i;
  593. struct page *page;
  594. unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
  595. num_physpages = max_low_pfn; /* RAM is assumed contiguous */
  596. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
  597. #ifdef CONFIG_DISCONTIGMEM
  598. for_each_online_node(nid) {
  599. if (NODE_DATA(nid)->node_spanned_pages != 0) {
  600. printk("freeing bootmem node %x\n", nid);
  601. totalram_pages +=
  602. free_all_bootmem_node(NODE_DATA(nid));
  603. }
  604. }
  605. #else
  606. max_mapnr = num_physpages;
  607. totalram_pages += free_all_bootmem();
  608. #endif
  609. for_each_pgdat(pgdat) {
  610. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  611. page = pgdat->node_mem_map + i;
  612. if (PageReserved(page))
  613. reservedpages++;
  614. }
  615. }
  616. codesize = (unsigned long)&_etext - (unsigned long)&_stext;
  617. initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
  618. datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
  619. bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
  620. printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
  621. "%luk reserved, %luk data, %luk bss, %luk init)\n",
  622. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  623. num_physpages << (PAGE_SHIFT-10),
  624. codesize >> 10,
  625. reservedpages << (PAGE_SHIFT-10),
  626. datasize >> 10,
  627. bsssize >> 10,
  628. initsize >> 10);
  629. mem_init_done = 1;
  630. #ifdef CONFIG_PPC_ISERIES
  631. iommu_vio_init();
  632. #endif
  633. /* Initialize the vDSO */
  634. vdso_init();
  635. }
  636. /*
  637. * This is called when a page has been modified by the kernel.
  638. * It just marks the page as not i-cache clean. We do the i-cache
  639. * flush later when the page is given to a user process, if necessary.
  640. */
  641. void flush_dcache_page(struct page *page)
  642. {
  643. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  644. return;
  645. /* avoid an atomic op if possible */
  646. if (test_bit(PG_arch_1, &page->flags))
  647. clear_bit(PG_arch_1, &page->flags);
  648. }
  649. EXPORT_SYMBOL(flush_dcache_page);
  650. void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
  651. {
  652. clear_page(page);
  653. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  654. return;
  655. /*
  656. * We shouldnt have to do this, but some versions of glibc
  657. * require it (ld.so assumes zero filled pages are icache clean)
  658. * - Anton
  659. */
  660. /* avoid an atomic op if possible */
  661. if (test_bit(PG_arch_1, &pg->flags))
  662. clear_bit(PG_arch_1, &pg->flags);
  663. }
  664. EXPORT_SYMBOL(clear_user_page);
  665. void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
  666. struct page *pg)
  667. {
  668. copy_page(vto, vfrom);
  669. /*
  670. * We should be able to use the following optimisation, however
  671. * there are two problems.
  672. * Firstly a bug in some versions of binutils meant PLT sections
  673. * were not marked executable.
  674. * Secondly the first word in the GOT section is blrl, used
  675. * to establish the GOT address. Until recently the GOT was
  676. * not marked executable.
  677. * - Anton
  678. */
  679. #if 0
  680. if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
  681. return;
  682. #endif
  683. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  684. return;
  685. /* avoid an atomic op if possible */
  686. if (test_bit(PG_arch_1, &pg->flags))
  687. clear_bit(PG_arch_1, &pg->flags);
  688. }
  689. void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
  690. unsigned long addr, int len)
  691. {
  692. unsigned long maddr;
  693. maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
  694. flush_icache_range(maddr, maddr + len);
  695. }
  696. EXPORT_SYMBOL(flush_icache_user_range);
  697. /*
  698. * This is called at the end of handling a user page fault, when the
  699. * fault has been handled by updating a PTE in the linux page tables.
  700. * We use it to preload an HPTE into the hash table corresponding to
  701. * the updated linux PTE.
  702. *
  703. * This must always be called with the mm->page_table_lock held
  704. */
  705. void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
  706. pte_t pte)
  707. {
  708. unsigned long vsid;
  709. void *pgdir;
  710. pte_t *ptep;
  711. int local = 0;
  712. cpumask_t tmp;
  713. unsigned long flags;
  714. /* handle i-cache coherency */
  715. if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
  716. !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
  717. unsigned long pfn = pte_pfn(pte);
  718. if (pfn_valid(pfn)) {
  719. struct page *page = pfn_to_page(pfn);
  720. if (!PageReserved(page)
  721. && !test_bit(PG_arch_1, &page->flags)) {
  722. __flush_dcache_icache(page_address(page));
  723. set_bit(PG_arch_1, &page->flags);
  724. }
  725. }
  726. }
  727. /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
  728. if (!pte_young(pte))
  729. return;
  730. pgdir = vma->vm_mm->pgd;
  731. if (pgdir == NULL)
  732. return;
  733. ptep = find_linux_pte(pgdir, ea);
  734. if (!ptep)
  735. return;
  736. vsid = get_vsid(vma->vm_mm->context.id, ea);
  737. local_irq_save(flags);
  738. tmp = cpumask_of_cpu(smp_processor_id());
  739. if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
  740. local = 1;
  741. __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
  742. 0x300, local);
  743. local_irq_restore(flags);
  744. }
  745. void __iomem * reserve_phb_iospace(unsigned long size)
  746. {
  747. void __iomem *virt_addr;
  748. if (phbs_io_bot >= IMALLOC_BASE)
  749. panic("reserve_phb_iospace(): phb io space overflow\n");
  750. virt_addr = (void __iomem *) phbs_io_bot;
  751. phbs_io_bot += size;
  752. return virt_addr;
  753. }
  754. kmem_cache_t *zero_cache;
  755. static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
  756. {
  757. memset(pte, 0, PAGE_SIZE);
  758. }
  759. void pgtable_cache_init(void)
  760. {
  761. zero_cache = kmem_cache_create("zero",
  762. PAGE_SIZE,
  763. 0,
  764. SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
  765. zero_ctor,
  766. NULL);
  767. if (!zero_cache)
  768. panic("pgtable_cache_init(): could not create zero_cache!\n");
  769. }
  770. pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
  771. unsigned long size, pgprot_t vma_prot)
  772. {
  773. if (ppc_md.phys_mem_access_prot)
  774. return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
  775. if (!page_is_ram(addr >> PAGE_SHIFT))
  776. vma_prot = __pgprot(pgprot_val(vma_prot)
  777. | _PAGE_GUARDED | _PAGE_NO_CACHE);
  778. return vma_prot;
  779. }
  780. EXPORT_SYMBOL(phys_mem_access_prot);