bnx2x_sriov.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512
  1. /* bnx2x_sriov.c: Broadcom Everest network driver.
  2. *
  3. * Copyright 2009-2013 Broadcom Corporation
  4. *
  5. * Unless you and Broadcom execute a separate written software license
  6. * agreement governing use of this software, this software is licensed to you
  7. * under the terms of the GNU General Public License version 2, available
  8. * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
  9. *
  10. * Notwithstanding the above, under no circumstances may you combine this
  11. * software in any way with any other Broadcom software provided under a
  12. * license other than the GPL, without Broadcom's express prior written
  13. * consent.
  14. *
  15. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  16. * Written by: Shmulik Ravid <shmulikr@broadcom.com>
  17. * Ariel Elior <ariele@broadcom.com>
  18. *
  19. */
  20. #include "bnx2x.h"
  21. #include "bnx2x_init.h"
  22. #include "bnx2x_cmn.h"
  23. #include "bnx2x_sp.h"
  24. #include <linux/crc32.h>
  25. #include <linux/if_vlan.h>
  26. /* General service functions */
  27. static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  28. u16 pf_id)
  29. {
  30. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  31. pf_id);
  32. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  33. pf_id);
  34. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  35. pf_id);
  36. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  37. pf_id);
  38. }
  39. static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  40. u8 enable)
  41. {
  42. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  43. enable);
  44. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  45. enable);
  46. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  47. enable);
  48. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  49. enable);
  50. }
  51. int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
  52. {
  53. int idx;
  54. for_each_vf(bp, idx)
  55. if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
  56. break;
  57. return idx;
  58. }
  59. static
  60. struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
  61. {
  62. u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
  63. return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
  64. }
  65. static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
  66. u8 igu_sb_id, u8 segment, u16 index, u8 op,
  67. u8 update)
  68. {
  69. /* acking a VF sb through the PF - use the GRC */
  70. u32 ctl;
  71. u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
  72. u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
  73. u32 func_encode = vf->abs_vfid;
  74. u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
  75. struct igu_regular cmd_data = {0};
  76. cmd_data.sb_id_and_flags =
  77. ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
  78. (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
  79. (update << IGU_REGULAR_BUPDATE_SHIFT) |
  80. (op << IGU_REGULAR_ENABLE_INT_SHIFT));
  81. ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
  82. func_encode << IGU_CTRL_REG_FID_SHIFT |
  83. IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
  84. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  85. cmd_data.sb_id_and_flags, igu_addr_data);
  86. REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
  87. mmiowb();
  88. barrier();
  89. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  90. ctl, igu_addr_ctl);
  91. REG_WR(bp, igu_addr_ctl, ctl);
  92. mmiowb();
  93. barrier();
  94. }
  95. /* VFOP - VF slow-path operation support */
  96. #define BNX2X_VFOP_FILTER_ADD_CNT_MAX 0x10000
  97. /* VFOP operations states */
  98. enum bnx2x_vfop_qctor_state {
  99. BNX2X_VFOP_QCTOR_INIT,
  100. BNX2X_VFOP_QCTOR_SETUP,
  101. BNX2X_VFOP_QCTOR_INT_EN
  102. };
  103. enum bnx2x_vfop_qdtor_state {
  104. BNX2X_VFOP_QDTOR_HALT,
  105. BNX2X_VFOP_QDTOR_TERMINATE,
  106. BNX2X_VFOP_QDTOR_CFCDEL,
  107. BNX2X_VFOP_QDTOR_DONE
  108. };
  109. enum bnx2x_vfop_vlan_mac_state {
  110. BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE,
  111. BNX2X_VFOP_VLAN_MAC_CLEAR,
  112. BNX2X_VFOP_VLAN_MAC_CHK_DONE,
  113. BNX2X_VFOP_MAC_CONFIG_LIST,
  114. BNX2X_VFOP_VLAN_CONFIG_LIST,
  115. BNX2X_VFOP_VLAN_CONFIG_LIST_0
  116. };
  117. enum bnx2x_vfop_qsetup_state {
  118. BNX2X_VFOP_QSETUP_CTOR,
  119. BNX2X_VFOP_QSETUP_VLAN0,
  120. BNX2X_VFOP_QSETUP_DONE
  121. };
  122. enum bnx2x_vfop_mcast_state {
  123. BNX2X_VFOP_MCAST_DEL,
  124. BNX2X_VFOP_MCAST_ADD,
  125. BNX2X_VFOP_MCAST_CHK_DONE
  126. };
  127. enum bnx2x_vfop_qflr_state {
  128. BNX2X_VFOP_QFLR_CLR_VLAN,
  129. BNX2X_VFOP_QFLR_CLR_MAC,
  130. BNX2X_VFOP_QFLR_TERMINATE,
  131. BNX2X_VFOP_QFLR_DONE
  132. };
  133. enum bnx2x_vfop_flr_state {
  134. BNX2X_VFOP_FLR_QUEUES,
  135. BNX2X_VFOP_FLR_HW
  136. };
  137. enum bnx2x_vfop_close_state {
  138. BNX2X_VFOP_CLOSE_QUEUES,
  139. BNX2X_VFOP_CLOSE_HW
  140. };
  141. enum bnx2x_vfop_rxmode_state {
  142. BNX2X_VFOP_RXMODE_CONFIG,
  143. BNX2X_VFOP_RXMODE_DONE
  144. };
  145. enum bnx2x_vfop_qteardown_state {
  146. BNX2X_VFOP_QTEARDOWN_RXMODE,
  147. BNX2X_VFOP_QTEARDOWN_CLR_VLAN,
  148. BNX2X_VFOP_QTEARDOWN_CLR_MAC,
  149. BNX2X_VFOP_QTEARDOWN_QDTOR,
  150. BNX2X_VFOP_QTEARDOWN_DONE
  151. };
  152. #define bnx2x_vfop_reset_wq(vf) atomic_set(&vf->op_in_progress, 0)
  153. void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
  154. struct bnx2x_queue_init_params *init_params,
  155. struct bnx2x_queue_setup_params *setup_params,
  156. u16 q_idx, u16 sb_idx)
  157. {
  158. DP(BNX2X_MSG_IOV,
  159. "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
  160. vf->abs_vfid,
  161. q_idx,
  162. sb_idx,
  163. init_params->tx.sb_cq_index,
  164. init_params->tx.hc_rate,
  165. setup_params->flags,
  166. setup_params->txq_params.traffic_type);
  167. }
  168. void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
  169. struct bnx2x_queue_init_params *init_params,
  170. struct bnx2x_queue_setup_params *setup_params,
  171. u16 q_idx, u16 sb_idx)
  172. {
  173. struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
  174. DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
  175. "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
  176. vf->abs_vfid,
  177. q_idx,
  178. sb_idx,
  179. init_params->rx.sb_cq_index,
  180. init_params->rx.hc_rate,
  181. setup_params->gen_params.mtu,
  182. rxq_params->buf_sz,
  183. rxq_params->sge_buf_sz,
  184. rxq_params->max_sges_pkt,
  185. rxq_params->tpa_agg_sz,
  186. setup_params->flags,
  187. rxq_params->drop_flags,
  188. rxq_params->cache_line_log);
  189. }
  190. void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
  191. struct bnx2x_virtf *vf,
  192. struct bnx2x_vf_queue *q,
  193. struct bnx2x_vfop_qctor_params *p,
  194. unsigned long q_type)
  195. {
  196. struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
  197. struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
  198. /* INIT */
  199. /* Enable host coalescing in the transition to INIT state */
  200. if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
  201. __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
  202. if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
  203. __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
  204. /* FW SB ID */
  205. init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  206. init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  207. /* context */
  208. init_p->cxts[0] = q->cxt;
  209. /* SETUP */
  210. /* Setup-op general parameters */
  211. setup_p->gen_params.spcl_id = vf->sp_cl_id;
  212. setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
  213. /* Setup-op pause params:
  214. * Nothing to do, the pause thresholds are set by default to 0 which
  215. * effectively turns off the feature for this queue. We don't want
  216. * one queue (VF) to interfering with another queue (another VF)
  217. */
  218. if (vf->cfg_flags & VF_CFG_FW_FC)
  219. BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n",
  220. vf->abs_vfid);
  221. /* Setup-op flags:
  222. * collect statistics, zero statistics, local-switching, security,
  223. * OV for Flex10, RSS and MCAST for leading
  224. */
  225. if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
  226. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
  227. /* for VFs, enable tx switching, bd coherency, and mac address
  228. * anti-spoofing
  229. */
  230. __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
  231. __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
  232. __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
  233. if (vfq_is_leading(q)) {
  234. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &setup_p->flags);
  235. __set_bit(BNX2X_Q_FLG_MCAST, &setup_p->flags);
  236. }
  237. /* Setup-op rx parameters */
  238. if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
  239. struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
  240. rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
  241. rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  242. rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
  243. if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
  244. rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
  245. }
  246. /* Setup-op tx parameters */
  247. if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
  248. setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
  249. setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
  250. }
  251. }
  252. /* VFOP queue construction */
  253. static void bnx2x_vfop_qctor(struct bnx2x *bp, struct bnx2x_virtf *vf)
  254. {
  255. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  256. struct bnx2x_vfop_args_qctor *args = &vfop->args.qctor;
  257. struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate;
  258. enum bnx2x_vfop_qctor_state state = vfop->state;
  259. bnx2x_vfop_reset_wq(vf);
  260. if (vfop->rc < 0)
  261. goto op_err;
  262. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  263. switch (state) {
  264. case BNX2X_VFOP_QCTOR_INIT:
  265. /* has this queue already been opened? */
  266. if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
  267. BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  268. DP(BNX2X_MSG_IOV,
  269. "Entered qctor but queue was already up. Aborting gracefully\n");
  270. goto op_done;
  271. }
  272. /* next state */
  273. vfop->state = BNX2X_VFOP_QCTOR_SETUP;
  274. q_params->cmd = BNX2X_Q_CMD_INIT;
  275. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  276. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  277. case BNX2X_VFOP_QCTOR_SETUP:
  278. /* next state */
  279. vfop->state = BNX2X_VFOP_QCTOR_INT_EN;
  280. /* copy pre-prepared setup params to the queue-state params */
  281. vfop->op_p->qctor.qstate.params.setup =
  282. vfop->op_p->qctor.prep_qsetup;
  283. q_params->cmd = BNX2X_Q_CMD_SETUP;
  284. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  285. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  286. case BNX2X_VFOP_QCTOR_INT_EN:
  287. /* enable interrupts */
  288. bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, args->sb_idx),
  289. USTORM_ID, 0, IGU_INT_ENABLE, 0);
  290. goto op_done;
  291. default:
  292. bnx2x_vfop_default(state);
  293. }
  294. op_err:
  295. BNX2X_ERR("QCTOR[%d:%d] error: cmd %d, rc %d\n",
  296. vf->abs_vfid, args->qid, q_params->cmd, vfop->rc);
  297. op_done:
  298. bnx2x_vfop_end(bp, vf, vfop);
  299. op_pending:
  300. return;
  301. }
  302. static int bnx2x_vfop_qctor_cmd(struct bnx2x *bp,
  303. struct bnx2x_virtf *vf,
  304. struct bnx2x_vfop_cmd *cmd,
  305. int qid)
  306. {
  307. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  308. if (vfop) {
  309. vf->op_params.qctor.qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  310. vfop->args.qctor.qid = qid;
  311. vfop->args.qctor.sb_idx = bnx2x_vfq(vf, qid, sb_idx);
  312. bnx2x_vfop_opset(BNX2X_VFOP_QCTOR_INIT,
  313. bnx2x_vfop_qctor, cmd->done);
  314. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qctor,
  315. cmd->block);
  316. }
  317. return -ENOMEM;
  318. }
  319. /* VFOP queue destruction */
  320. static void bnx2x_vfop_qdtor(struct bnx2x *bp, struct bnx2x_virtf *vf)
  321. {
  322. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  323. struct bnx2x_vfop_args_qdtor *qdtor = &vfop->args.qdtor;
  324. struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate;
  325. enum bnx2x_vfop_qdtor_state state = vfop->state;
  326. bnx2x_vfop_reset_wq(vf);
  327. if (vfop->rc < 0)
  328. goto op_err;
  329. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  330. switch (state) {
  331. case BNX2X_VFOP_QDTOR_HALT:
  332. /* has this queue already been stopped? */
  333. if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
  334. BNX2X_Q_LOGICAL_STATE_STOPPED) {
  335. DP(BNX2X_MSG_IOV,
  336. "Entered qdtor but queue was already stopped. Aborting gracefully\n");
  337. goto op_done;
  338. }
  339. /* next state */
  340. vfop->state = BNX2X_VFOP_QDTOR_TERMINATE;
  341. q_params->cmd = BNX2X_Q_CMD_HALT;
  342. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  343. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  344. case BNX2X_VFOP_QDTOR_TERMINATE:
  345. /* next state */
  346. vfop->state = BNX2X_VFOP_QDTOR_CFCDEL;
  347. q_params->cmd = BNX2X_Q_CMD_TERMINATE;
  348. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  349. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  350. case BNX2X_VFOP_QDTOR_CFCDEL:
  351. /* next state */
  352. vfop->state = BNX2X_VFOP_QDTOR_DONE;
  353. q_params->cmd = BNX2X_Q_CMD_CFC_DEL;
  354. vfop->rc = bnx2x_queue_state_change(bp, q_params);
  355. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  356. op_err:
  357. BNX2X_ERR("QDTOR[%d:%d] error: cmd %d, rc %d\n",
  358. vf->abs_vfid, qdtor->qid, q_params->cmd, vfop->rc);
  359. op_done:
  360. case BNX2X_VFOP_QDTOR_DONE:
  361. /* invalidate the context */
  362. qdtor->cxt->ustorm_ag_context.cdu_usage = 0;
  363. qdtor->cxt->xstorm_ag_context.cdu_reserved = 0;
  364. bnx2x_vfop_end(bp, vf, vfop);
  365. return;
  366. default:
  367. bnx2x_vfop_default(state);
  368. }
  369. op_pending:
  370. return;
  371. }
  372. static int bnx2x_vfop_qdtor_cmd(struct bnx2x *bp,
  373. struct bnx2x_virtf *vf,
  374. struct bnx2x_vfop_cmd *cmd,
  375. int qid)
  376. {
  377. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  378. if (vfop) {
  379. struct bnx2x_queue_state_params *qstate =
  380. &vf->op_params.qctor.qstate;
  381. memset(qstate, 0, sizeof(*qstate));
  382. qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  383. vfop->args.qdtor.qid = qid;
  384. vfop->args.qdtor.cxt = bnx2x_vfq(vf, qid, cxt);
  385. bnx2x_vfop_opset(BNX2X_VFOP_QDTOR_HALT,
  386. bnx2x_vfop_qdtor, cmd->done);
  387. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdtor,
  388. cmd->block);
  389. }
  390. DP(BNX2X_MSG_IOV, "VF[%d] failed to add a vfop.\n", vf->abs_vfid);
  391. return -ENOMEM;
  392. }
  393. static void
  394. bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
  395. {
  396. struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  397. if (vf) {
  398. if (!vf_sb_count(vf))
  399. vf->igu_base_id = igu_sb_id;
  400. ++vf_sb_count(vf);
  401. }
  402. }
  403. /* VFOP MAC/VLAN helpers */
  404. static inline void bnx2x_vfop_credit(struct bnx2x *bp,
  405. struct bnx2x_vfop *vfop,
  406. struct bnx2x_vlan_mac_obj *obj)
  407. {
  408. struct bnx2x_vfop_args_filters *args = &vfop->args.filters;
  409. /* update credit only if there is no error
  410. * and a valid credit counter
  411. */
  412. if (!vfop->rc && args->credit) {
  413. int cnt = 0;
  414. struct list_head *pos;
  415. list_for_each(pos, &obj->head)
  416. cnt++;
  417. atomic_set(args->credit, cnt);
  418. }
  419. }
  420. static int bnx2x_vfop_set_user_req(struct bnx2x *bp,
  421. struct bnx2x_vfop_filter *pos,
  422. struct bnx2x_vlan_mac_data *user_req)
  423. {
  424. user_req->cmd = pos->add ? BNX2X_VLAN_MAC_ADD :
  425. BNX2X_VLAN_MAC_DEL;
  426. switch (pos->type) {
  427. case BNX2X_VFOP_FILTER_MAC:
  428. memcpy(user_req->u.mac.mac, pos->mac, ETH_ALEN);
  429. break;
  430. case BNX2X_VFOP_FILTER_VLAN:
  431. user_req->u.vlan.vlan = pos->vid;
  432. break;
  433. default:
  434. BNX2X_ERR("Invalid filter type, skipping\n");
  435. return 1;
  436. }
  437. return 0;
  438. }
  439. static int
  440. bnx2x_vfop_config_vlan0(struct bnx2x *bp,
  441. struct bnx2x_vlan_mac_ramrod_params *vlan_mac,
  442. bool add)
  443. {
  444. int rc;
  445. vlan_mac->user_req.cmd = add ? BNX2X_VLAN_MAC_ADD :
  446. BNX2X_VLAN_MAC_DEL;
  447. vlan_mac->user_req.u.vlan.vlan = 0;
  448. rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  449. if (rc == -EEXIST)
  450. rc = 0;
  451. return rc;
  452. }
  453. static int bnx2x_vfop_config_list(struct bnx2x *bp,
  454. struct bnx2x_vfop_filters *filters,
  455. struct bnx2x_vlan_mac_ramrod_params *vlan_mac)
  456. {
  457. struct bnx2x_vfop_filter *pos, *tmp;
  458. struct list_head rollback_list, *filters_list = &filters->head;
  459. struct bnx2x_vlan_mac_data *user_req = &vlan_mac->user_req;
  460. int rc = 0, cnt = 0;
  461. INIT_LIST_HEAD(&rollback_list);
  462. list_for_each_entry_safe(pos, tmp, filters_list, link) {
  463. if (bnx2x_vfop_set_user_req(bp, pos, user_req))
  464. continue;
  465. rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  466. if (rc >= 0) {
  467. cnt += pos->add ? 1 : -1;
  468. list_move(&pos->link, &rollback_list);
  469. rc = 0;
  470. } else if (rc == -EEXIST) {
  471. rc = 0;
  472. } else {
  473. BNX2X_ERR("Failed to add a new vlan_mac command\n");
  474. break;
  475. }
  476. }
  477. /* rollback if error or too many rules added */
  478. if (rc || cnt > filters->add_cnt) {
  479. BNX2X_ERR("error or too many rules added. Performing rollback\n");
  480. list_for_each_entry_safe(pos, tmp, &rollback_list, link) {
  481. pos->add = !pos->add; /* reverse op */
  482. bnx2x_vfop_set_user_req(bp, pos, user_req);
  483. bnx2x_config_vlan_mac(bp, vlan_mac);
  484. list_del(&pos->link);
  485. }
  486. cnt = 0;
  487. if (!rc)
  488. rc = -EINVAL;
  489. }
  490. filters->add_cnt = cnt;
  491. return rc;
  492. }
  493. /* VFOP set VLAN/MAC */
  494. static void bnx2x_vfop_vlan_mac(struct bnx2x *bp, struct bnx2x_virtf *vf)
  495. {
  496. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  497. struct bnx2x_vlan_mac_ramrod_params *vlan_mac = &vfop->op_p->vlan_mac;
  498. struct bnx2x_vlan_mac_obj *obj = vlan_mac->vlan_mac_obj;
  499. struct bnx2x_vfop_filters *filters = vfop->args.filters.multi_filter;
  500. enum bnx2x_vfop_vlan_mac_state state = vfop->state;
  501. if (vfop->rc < 0)
  502. goto op_err;
  503. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  504. bnx2x_vfop_reset_wq(vf);
  505. switch (state) {
  506. case BNX2X_VFOP_VLAN_MAC_CLEAR:
  507. /* next state */
  508. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  509. /* do delete */
  510. vfop->rc = obj->delete_all(bp, obj,
  511. &vlan_mac->user_req.vlan_mac_flags,
  512. &vlan_mac->ramrod_flags);
  513. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  514. case BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE:
  515. /* next state */
  516. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  517. /* do config */
  518. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  519. if (vfop->rc == -EEXIST)
  520. vfop->rc = 0;
  521. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  522. case BNX2X_VFOP_VLAN_MAC_CHK_DONE:
  523. vfop->rc = !!obj->raw.check_pending(&obj->raw);
  524. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  525. case BNX2X_VFOP_MAC_CONFIG_LIST:
  526. /* next state */
  527. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  528. /* do list config */
  529. vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac);
  530. if (vfop->rc)
  531. goto op_err;
  532. set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags);
  533. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  534. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  535. case BNX2X_VFOP_VLAN_CONFIG_LIST:
  536. /* next state */
  537. vfop->state = BNX2X_VFOP_VLAN_CONFIG_LIST_0;
  538. /* remove vlan0 - could be no-op */
  539. vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, false);
  540. if (vfop->rc)
  541. goto op_err;
  542. /* Do vlan list config. if this operation fails we try to
  543. * restore vlan0 to keep the queue is working order
  544. */
  545. vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac);
  546. if (!vfop->rc) {
  547. set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags);
  548. vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac);
  549. }
  550. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); /* fall-through */
  551. case BNX2X_VFOP_VLAN_CONFIG_LIST_0:
  552. /* next state */
  553. vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE;
  554. if (list_empty(&obj->head))
  555. /* add vlan0 */
  556. vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, true);
  557. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  558. default:
  559. bnx2x_vfop_default(state);
  560. }
  561. op_err:
  562. BNX2X_ERR("VLAN-MAC error: rc %d\n", vfop->rc);
  563. op_done:
  564. kfree(filters);
  565. bnx2x_vfop_credit(bp, vfop, obj);
  566. bnx2x_vfop_end(bp, vf, vfop);
  567. op_pending:
  568. return;
  569. }
  570. struct bnx2x_vfop_vlan_mac_flags {
  571. bool drv_only;
  572. bool dont_consume;
  573. bool single_cmd;
  574. bool add;
  575. };
  576. static void
  577. bnx2x_vfop_vlan_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod,
  578. struct bnx2x_vfop_vlan_mac_flags *flags)
  579. {
  580. struct bnx2x_vlan_mac_data *ureq = &ramrod->user_req;
  581. memset(ramrod, 0, sizeof(*ramrod));
  582. /* ramrod flags */
  583. if (flags->drv_only)
  584. set_bit(RAMROD_DRV_CLR_ONLY, &ramrod->ramrod_flags);
  585. if (flags->single_cmd)
  586. set_bit(RAMROD_EXEC, &ramrod->ramrod_flags);
  587. /* mac_vlan flags */
  588. if (flags->dont_consume)
  589. set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &ureq->vlan_mac_flags);
  590. /* cmd */
  591. ureq->cmd = flags->add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL;
  592. }
  593. static inline void
  594. bnx2x_vfop_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod,
  595. struct bnx2x_vfop_vlan_mac_flags *flags)
  596. {
  597. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, flags);
  598. set_bit(BNX2X_ETH_MAC, &ramrod->user_req.vlan_mac_flags);
  599. }
  600. static int bnx2x_vfop_mac_delall_cmd(struct bnx2x *bp,
  601. struct bnx2x_virtf *vf,
  602. struct bnx2x_vfop_cmd *cmd,
  603. int qid, bool drv_only)
  604. {
  605. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  606. if (vfop) {
  607. struct bnx2x_vfop_args_filters filters = {
  608. .multi_filter = NULL, /* single */
  609. .credit = NULL, /* consume credit */
  610. };
  611. struct bnx2x_vfop_vlan_mac_flags flags = {
  612. .drv_only = drv_only,
  613. .dont_consume = (filters.credit != NULL),
  614. .single_cmd = true,
  615. .add = false /* don't care */,
  616. };
  617. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  618. &vf->op_params.vlan_mac;
  619. /* set ramrod params */
  620. bnx2x_vfop_mac_prep_ramrod(ramrod, &flags);
  621. /* set object */
  622. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
  623. /* set extra args */
  624. vfop->args.filters = filters;
  625. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR,
  626. bnx2x_vfop_vlan_mac, cmd->done);
  627. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  628. cmd->block);
  629. }
  630. return -ENOMEM;
  631. }
  632. int bnx2x_vfop_mac_list_cmd(struct bnx2x *bp,
  633. struct bnx2x_virtf *vf,
  634. struct bnx2x_vfop_cmd *cmd,
  635. struct bnx2x_vfop_filters *macs,
  636. int qid, bool drv_only)
  637. {
  638. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  639. if (vfop) {
  640. struct bnx2x_vfop_args_filters filters = {
  641. .multi_filter = macs,
  642. .credit = NULL, /* consume credit */
  643. };
  644. struct bnx2x_vfop_vlan_mac_flags flags = {
  645. .drv_only = drv_only,
  646. .dont_consume = (filters.credit != NULL),
  647. .single_cmd = false,
  648. .add = false, /* don't care since only the items in the
  649. * filters list affect the sp operation,
  650. * not the list itself
  651. */
  652. };
  653. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  654. &vf->op_params.vlan_mac;
  655. /* set ramrod params */
  656. bnx2x_vfop_mac_prep_ramrod(ramrod, &flags);
  657. /* set object */
  658. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
  659. /* set extra args */
  660. filters.multi_filter->add_cnt = BNX2X_VFOP_FILTER_ADD_CNT_MAX;
  661. vfop->args.filters = filters;
  662. bnx2x_vfop_opset(BNX2X_VFOP_MAC_CONFIG_LIST,
  663. bnx2x_vfop_vlan_mac, cmd->done);
  664. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  665. cmd->block);
  666. }
  667. return -ENOMEM;
  668. }
  669. int bnx2x_vfop_vlan_set_cmd(struct bnx2x *bp,
  670. struct bnx2x_virtf *vf,
  671. struct bnx2x_vfop_cmd *cmd,
  672. int qid, u16 vid, bool add)
  673. {
  674. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  675. if (vfop) {
  676. struct bnx2x_vfop_args_filters filters = {
  677. .multi_filter = NULL, /* single command */
  678. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  679. };
  680. struct bnx2x_vfop_vlan_mac_flags flags = {
  681. .drv_only = false,
  682. .dont_consume = (filters.credit != NULL),
  683. .single_cmd = true,
  684. .add = add,
  685. };
  686. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  687. &vf->op_params.vlan_mac;
  688. /* set ramrod params */
  689. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  690. ramrod->user_req.u.vlan.vlan = vid;
  691. /* set object */
  692. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  693. /* set extra args */
  694. vfop->args.filters = filters;
  695. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE,
  696. bnx2x_vfop_vlan_mac, cmd->done);
  697. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  698. cmd->block);
  699. }
  700. return -ENOMEM;
  701. }
  702. static int bnx2x_vfop_vlan_delall_cmd(struct bnx2x *bp,
  703. struct bnx2x_virtf *vf,
  704. struct bnx2x_vfop_cmd *cmd,
  705. int qid, bool drv_only)
  706. {
  707. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  708. if (vfop) {
  709. struct bnx2x_vfop_args_filters filters = {
  710. .multi_filter = NULL, /* single command */
  711. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  712. };
  713. struct bnx2x_vfop_vlan_mac_flags flags = {
  714. .drv_only = drv_only,
  715. .dont_consume = (filters.credit != NULL),
  716. .single_cmd = true,
  717. .add = false, /* don't care */
  718. };
  719. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  720. &vf->op_params.vlan_mac;
  721. /* set ramrod params */
  722. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  723. /* set object */
  724. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  725. /* set extra args */
  726. vfop->args.filters = filters;
  727. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR,
  728. bnx2x_vfop_vlan_mac, cmd->done);
  729. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  730. cmd->block);
  731. }
  732. return -ENOMEM;
  733. }
  734. int bnx2x_vfop_vlan_list_cmd(struct bnx2x *bp,
  735. struct bnx2x_virtf *vf,
  736. struct bnx2x_vfop_cmd *cmd,
  737. struct bnx2x_vfop_filters *vlans,
  738. int qid, bool drv_only)
  739. {
  740. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  741. if (vfop) {
  742. struct bnx2x_vfop_args_filters filters = {
  743. .multi_filter = vlans,
  744. .credit = &bnx2x_vfq(vf, qid, vlan_count),
  745. };
  746. struct bnx2x_vfop_vlan_mac_flags flags = {
  747. .drv_only = drv_only,
  748. .dont_consume = (filters.credit != NULL),
  749. .single_cmd = false,
  750. .add = false, /* don't care */
  751. };
  752. struct bnx2x_vlan_mac_ramrod_params *ramrod =
  753. &vf->op_params.vlan_mac;
  754. /* set ramrod params */
  755. bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags);
  756. /* set object */
  757. ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
  758. /* set extra args */
  759. filters.multi_filter->add_cnt = vf_vlan_rules_cnt(vf) -
  760. atomic_read(filters.credit);
  761. vfop->args.filters = filters;
  762. bnx2x_vfop_opset(BNX2X_VFOP_VLAN_CONFIG_LIST,
  763. bnx2x_vfop_vlan_mac, cmd->done);
  764. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac,
  765. cmd->block);
  766. }
  767. return -ENOMEM;
  768. }
  769. /* VFOP queue setup (queue constructor + set vlan 0) */
  770. static void bnx2x_vfop_qsetup(struct bnx2x *bp, struct bnx2x_virtf *vf)
  771. {
  772. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  773. int qid = vfop->args.qctor.qid;
  774. enum bnx2x_vfop_qsetup_state state = vfop->state;
  775. struct bnx2x_vfop_cmd cmd = {
  776. .done = bnx2x_vfop_qsetup,
  777. .block = false,
  778. };
  779. if (vfop->rc < 0)
  780. goto op_err;
  781. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  782. switch (state) {
  783. case BNX2X_VFOP_QSETUP_CTOR:
  784. /* init the queue ctor command */
  785. vfop->state = BNX2X_VFOP_QSETUP_VLAN0;
  786. vfop->rc = bnx2x_vfop_qctor_cmd(bp, vf, &cmd, qid);
  787. if (vfop->rc)
  788. goto op_err;
  789. return;
  790. case BNX2X_VFOP_QSETUP_VLAN0:
  791. /* skip if non-leading or FPGA/EMU*/
  792. if (qid)
  793. goto op_done;
  794. /* init the queue set-vlan command (for vlan 0) */
  795. vfop->state = BNX2X_VFOP_QSETUP_DONE;
  796. vfop->rc = bnx2x_vfop_vlan_set_cmd(bp, vf, &cmd, qid, 0, true);
  797. if (vfop->rc)
  798. goto op_err;
  799. return;
  800. op_err:
  801. BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, vfop->rc);
  802. op_done:
  803. case BNX2X_VFOP_QSETUP_DONE:
  804. vf->cfg_flags |= VF_CFG_VLAN;
  805. smp_mb__before_clear_bit();
  806. set_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
  807. &bp->sp_rtnl_state);
  808. smp_mb__after_clear_bit();
  809. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  810. bnx2x_vfop_end(bp, vf, vfop);
  811. return;
  812. default:
  813. bnx2x_vfop_default(state);
  814. }
  815. }
  816. int bnx2x_vfop_qsetup_cmd(struct bnx2x *bp,
  817. struct bnx2x_virtf *vf,
  818. struct bnx2x_vfop_cmd *cmd,
  819. int qid)
  820. {
  821. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  822. if (vfop) {
  823. vfop->args.qctor.qid = qid;
  824. bnx2x_vfop_opset(BNX2X_VFOP_QSETUP_CTOR,
  825. bnx2x_vfop_qsetup, cmd->done);
  826. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qsetup,
  827. cmd->block);
  828. }
  829. return -ENOMEM;
  830. }
  831. /* VFOP queue FLR handling (clear vlans, clear macs, queue destructor) */
  832. static void bnx2x_vfop_qflr(struct bnx2x *bp, struct bnx2x_virtf *vf)
  833. {
  834. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  835. int qid = vfop->args.qx.qid;
  836. enum bnx2x_vfop_qflr_state state = vfop->state;
  837. struct bnx2x_queue_state_params *qstate;
  838. struct bnx2x_vfop_cmd cmd;
  839. bnx2x_vfop_reset_wq(vf);
  840. if (vfop->rc < 0)
  841. goto op_err;
  842. DP(BNX2X_MSG_IOV, "VF[%d] STATE: %d\n", vf->abs_vfid, state);
  843. cmd.done = bnx2x_vfop_qflr;
  844. cmd.block = false;
  845. switch (state) {
  846. case BNX2X_VFOP_QFLR_CLR_VLAN:
  847. /* vlan-clear-all: driver-only, don't consume credit */
  848. vfop->state = BNX2X_VFOP_QFLR_CLR_MAC;
  849. vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, true);
  850. if (vfop->rc)
  851. goto op_err;
  852. return;
  853. case BNX2X_VFOP_QFLR_CLR_MAC:
  854. /* mac-clear-all: driver only consume credit */
  855. vfop->state = BNX2X_VFOP_QFLR_TERMINATE;
  856. vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, true);
  857. DP(BNX2X_MSG_IOV,
  858. "VF[%d] vfop->rc after bnx2x_vfop_mac_delall_cmd was %d",
  859. vf->abs_vfid, vfop->rc);
  860. if (vfop->rc)
  861. goto op_err;
  862. return;
  863. case BNX2X_VFOP_QFLR_TERMINATE:
  864. qstate = &vfop->op_p->qctor.qstate;
  865. memset(qstate , 0, sizeof(*qstate));
  866. qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
  867. vfop->state = BNX2X_VFOP_QFLR_DONE;
  868. DP(BNX2X_MSG_IOV, "VF[%d] qstate during flr was %d\n",
  869. vf->abs_vfid, qstate->q_obj->state);
  870. if (qstate->q_obj->state != BNX2X_Q_STATE_RESET) {
  871. qstate->q_obj->state = BNX2X_Q_STATE_STOPPED;
  872. qstate->cmd = BNX2X_Q_CMD_TERMINATE;
  873. vfop->rc = bnx2x_queue_state_change(bp, qstate);
  874. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_VERIFY_PEND);
  875. } else {
  876. goto op_done;
  877. }
  878. op_err:
  879. BNX2X_ERR("QFLR[%d:%d] error: rc %d\n",
  880. vf->abs_vfid, qid, vfop->rc);
  881. op_done:
  882. case BNX2X_VFOP_QFLR_DONE:
  883. bnx2x_vfop_end(bp, vf, vfop);
  884. return;
  885. default:
  886. bnx2x_vfop_default(state);
  887. }
  888. op_pending:
  889. return;
  890. }
  891. static int bnx2x_vfop_qflr_cmd(struct bnx2x *bp,
  892. struct bnx2x_virtf *vf,
  893. struct bnx2x_vfop_cmd *cmd,
  894. int qid)
  895. {
  896. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  897. if (vfop) {
  898. vfop->args.qx.qid = qid;
  899. bnx2x_vfop_opset(BNX2X_VFOP_QFLR_CLR_VLAN,
  900. bnx2x_vfop_qflr, cmd->done);
  901. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qflr,
  902. cmd->block);
  903. }
  904. return -ENOMEM;
  905. }
  906. /* VFOP multi-casts */
  907. static void bnx2x_vfop_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf)
  908. {
  909. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  910. struct bnx2x_mcast_ramrod_params *mcast = &vfop->op_p->mcast;
  911. struct bnx2x_raw_obj *raw = &mcast->mcast_obj->raw;
  912. struct bnx2x_vfop_args_mcast *args = &vfop->args.mc_list;
  913. enum bnx2x_vfop_mcast_state state = vfop->state;
  914. int i;
  915. bnx2x_vfop_reset_wq(vf);
  916. if (vfop->rc < 0)
  917. goto op_err;
  918. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  919. switch (state) {
  920. case BNX2X_VFOP_MCAST_DEL:
  921. /* clear existing mcasts */
  922. vfop->state = BNX2X_VFOP_MCAST_ADD;
  923. vfop->rc = bnx2x_config_mcast(bp, mcast, BNX2X_MCAST_CMD_DEL);
  924. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT);
  925. case BNX2X_VFOP_MCAST_ADD:
  926. if (raw->check_pending(raw))
  927. goto op_pending;
  928. if (args->mc_num) {
  929. /* update mcast list on the ramrod params */
  930. INIT_LIST_HEAD(&mcast->mcast_list);
  931. for (i = 0; i < args->mc_num; i++)
  932. list_add_tail(&(args->mc[i].link),
  933. &mcast->mcast_list);
  934. /* add new mcasts */
  935. vfop->state = BNX2X_VFOP_MCAST_CHK_DONE;
  936. vfop->rc = bnx2x_config_mcast(bp, mcast,
  937. BNX2X_MCAST_CMD_ADD);
  938. }
  939. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  940. case BNX2X_VFOP_MCAST_CHK_DONE:
  941. vfop->rc = raw->check_pending(raw) ? 1 : 0;
  942. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  943. default:
  944. bnx2x_vfop_default(state);
  945. }
  946. op_err:
  947. BNX2X_ERR("MCAST CONFIG error: rc %d\n", vfop->rc);
  948. op_done:
  949. kfree(args->mc);
  950. bnx2x_vfop_end(bp, vf, vfop);
  951. op_pending:
  952. return;
  953. }
  954. int bnx2x_vfop_mcast_cmd(struct bnx2x *bp,
  955. struct bnx2x_virtf *vf,
  956. struct bnx2x_vfop_cmd *cmd,
  957. bnx2x_mac_addr_t *mcasts,
  958. int mcast_num, bool drv_only)
  959. {
  960. struct bnx2x_vfop *vfop = NULL;
  961. size_t mc_sz = mcast_num * sizeof(struct bnx2x_mcast_list_elem);
  962. struct bnx2x_mcast_list_elem *mc = mc_sz ? kzalloc(mc_sz, GFP_KERNEL) :
  963. NULL;
  964. if (!mc_sz || mc) {
  965. vfop = bnx2x_vfop_add(bp, vf);
  966. if (vfop) {
  967. int i;
  968. struct bnx2x_mcast_ramrod_params *ramrod =
  969. &vf->op_params.mcast;
  970. /* set ramrod params */
  971. memset(ramrod, 0, sizeof(*ramrod));
  972. ramrod->mcast_obj = &vf->mcast_obj;
  973. if (drv_only)
  974. set_bit(RAMROD_DRV_CLR_ONLY,
  975. &ramrod->ramrod_flags);
  976. /* copy mcasts pointers */
  977. vfop->args.mc_list.mc_num = mcast_num;
  978. vfop->args.mc_list.mc = mc;
  979. for (i = 0; i < mcast_num; i++)
  980. mc[i].mac = mcasts[i];
  981. bnx2x_vfop_opset(BNX2X_VFOP_MCAST_DEL,
  982. bnx2x_vfop_mcast, cmd->done);
  983. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_mcast,
  984. cmd->block);
  985. } else {
  986. kfree(mc);
  987. }
  988. }
  989. return -ENOMEM;
  990. }
  991. /* VFOP rx-mode */
  992. static void bnx2x_vfop_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf)
  993. {
  994. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  995. struct bnx2x_rx_mode_ramrod_params *ramrod = &vfop->op_p->rx_mode;
  996. enum bnx2x_vfop_rxmode_state state = vfop->state;
  997. bnx2x_vfop_reset_wq(vf);
  998. if (vfop->rc < 0)
  999. goto op_err;
  1000. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1001. switch (state) {
  1002. case BNX2X_VFOP_RXMODE_CONFIG:
  1003. /* next state */
  1004. vfop->state = BNX2X_VFOP_RXMODE_DONE;
  1005. vfop->rc = bnx2x_config_rx_mode(bp, ramrod);
  1006. bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE);
  1007. op_err:
  1008. BNX2X_ERR("RXMODE error: rc %d\n", vfop->rc);
  1009. op_done:
  1010. case BNX2X_VFOP_RXMODE_DONE:
  1011. bnx2x_vfop_end(bp, vf, vfop);
  1012. return;
  1013. default:
  1014. bnx2x_vfop_default(state);
  1015. }
  1016. op_pending:
  1017. return;
  1018. }
  1019. int bnx2x_vfop_rxmode_cmd(struct bnx2x *bp,
  1020. struct bnx2x_virtf *vf,
  1021. struct bnx2x_vfop_cmd *cmd,
  1022. int qid, unsigned long accept_flags)
  1023. {
  1024. struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
  1025. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1026. if (vfop) {
  1027. struct bnx2x_rx_mode_ramrod_params *ramrod =
  1028. &vf->op_params.rx_mode;
  1029. memset(ramrod, 0, sizeof(*ramrod));
  1030. /* Prepare ramrod parameters */
  1031. ramrod->cid = vfq->cid;
  1032. ramrod->cl_id = vfq_cl_id(vf, vfq);
  1033. ramrod->rx_mode_obj = &bp->rx_mode_obj;
  1034. ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
  1035. ramrod->rx_accept_flags = accept_flags;
  1036. ramrod->tx_accept_flags = accept_flags;
  1037. ramrod->pstate = &vf->filter_state;
  1038. ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
  1039. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
  1040. set_bit(RAMROD_RX, &ramrod->ramrod_flags);
  1041. set_bit(RAMROD_TX, &ramrod->ramrod_flags);
  1042. ramrod->rdata =
  1043. bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
  1044. ramrod->rdata_mapping =
  1045. bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
  1046. bnx2x_vfop_opset(BNX2X_VFOP_RXMODE_CONFIG,
  1047. bnx2x_vfop_rxmode, cmd->done);
  1048. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_rxmode,
  1049. cmd->block);
  1050. }
  1051. return -ENOMEM;
  1052. }
  1053. /* VFOP queue tear-down ('drop all' rx-mode, clear vlans, clear macs,
  1054. * queue destructor)
  1055. */
  1056. static void bnx2x_vfop_qdown(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1057. {
  1058. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  1059. int qid = vfop->args.qx.qid;
  1060. enum bnx2x_vfop_qteardown_state state = vfop->state;
  1061. struct bnx2x_vfop_cmd cmd;
  1062. if (vfop->rc < 0)
  1063. goto op_err;
  1064. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1065. cmd.done = bnx2x_vfop_qdown;
  1066. cmd.block = false;
  1067. switch (state) {
  1068. case BNX2X_VFOP_QTEARDOWN_RXMODE:
  1069. /* Drop all */
  1070. vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_VLAN;
  1071. vfop->rc = bnx2x_vfop_rxmode_cmd(bp, vf, &cmd, qid, 0);
  1072. if (vfop->rc)
  1073. goto op_err;
  1074. return;
  1075. case BNX2X_VFOP_QTEARDOWN_CLR_VLAN:
  1076. /* vlan-clear-all: don't consume credit */
  1077. vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_MAC;
  1078. vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, false);
  1079. if (vfop->rc)
  1080. goto op_err;
  1081. return;
  1082. case BNX2X_VFOP_QTEARDOWN_CLR_MAC:
  1083. /* mac-clear-all: consume credit */
  1084. vfop->state = BNX2X_VFOP_QTEARDOWN_QDTOR;
  1085. vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, false);
  1086. if (vfop->rc)
  1087. goto op_err;
  1088. return;
  1089. case BNX2X_VFOP_QTEARDOWN_QDTOR:
  1090. /* run the queue destruction flow */
  1091. DP(BNX2X_MSG_IOV, "case: BNX2X_VFOP_QTEARDOWN_QDTOR\n");
  1092. vfop->state = BNX2X_VFOP_QTEARDOWN_DONE;
  1093. DP(BNX2X_MSG_IOV, "new state: BNX2X_VFOP_QTEARDOWN_DONE\n");
  1094. vfop->rc = bnx2x_vfop_qdtor_cmd(bp, vf, &cmd, qid);
  1095. DP(BNX2X_MSG_IOV, "returned from cmd\n");
  1096. if (vfop->rc)
  1097. goto op_err;
  1098. return;
  1099. op_err:
  1100. BNX2X_ERR("QTEARDOWN[%d:%d] error: rc %d\n",
  1101. vf->abs_vfid, qid, vfop->rc);
  1102. case BNX2X_VFOP_QTEARDOWN_DONE:
  1103. bnx2x_vfop_end(bp, vf, vfop);
  1104. return;
  1105. default:
  1106. bnx2x_vfop_default(state);
  1107. }
  1108. }
  1109. int bnx2x_vfop_qdown_cmd(struct bnx2x *bp,
  1110. struct bnx2x_virtf *vf,
  1111. struct bnx2x_vfop_cmd *cmd,
  1112. int qid)
  1113. {
  1114. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1115. if (vfop) {
  1116. vfop->args.qx.qid = qid;
  1117. bnx2x_vfop_opset(BNX2X_VFOP_QTEARDOWN_RXMODE,
  1118. bnx2x_vfop_qdown, cmd->done);
  1119. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdown,
  1120. cmd->block);
  1121. }
  1122. return -ENOMEM;
  1123. }
  1124. /* VF enable primitives
  1125. * when pretend is required the caller is responsible
  1126. * for calling pretend prior to calling these routines
  1127. */
  1128. /* internal vf enable - until vf is enabled internally all transactions
  1129. * are blocked. This routine should always be called last with pretend.
  1130. */
  1131. static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
  1132. {
  1133. REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
  1134. }
  1135. /* clears vf error in all semi blocks */
  1136. static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
  1137. {
  1138. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1139. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
  1140. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1141. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
  1142. }
  1143. static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
  1144. {
  1145. u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
  1146. u32 was_err_reg = 0;
  1147. switch (was_err_group) {
  1148. case 0:
  1149. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
  1150. break;
  1151. case 1:
  1152. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
  1153. break;
  1154. case 2:
  1155. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
  1156. break;
  1157. case 3:
  1158. was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
  1159. break;
  1160. }
  1161. REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
  1162. }
  1163. static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1164. {
  1165. int i;
  1166. u32 val;
  1167. /* Set VF masks and configuration - pretend */
  1168. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1169. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  1170. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  1171. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  1172. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  1173. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  1174. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  1175. val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
  1176. val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
  1177. if (vf->cfg_flags & VF_CFG_INT_SIMD)
  1178. val |= IGU_VF_CONF_SINGLE_ISR_EN;
  1179. val &= ~IGU_VF_CONF_PARENT_MASK;
  1180. val |= BP_FUNC(bp) << IGU_VF_CONF_PARENT_SHIFT; /* parent PF */
  1181. REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
  1182. DP(BNX2X_MSG_IOV,
  1183. "value in IGU_REG_VF_CONFIGURATION of vf %d after write %x\n",
  1184. vf->abs_vfid, REG_RD(bp, IGU_REG_VF_CONFIGURATION));
  1185. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1186. /* iterate over all queues, clear sb consumer */
  1187. for (i = 0; i < vf_sb_count(vf); i++) {
  1188. u8 igu_sb_id = vf_igu_sb(vf, i);
  1189. /* zero prod memory */
  1190. REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
  1191. /* clear sb state machine */
  1192. bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
  1193. false /* VF */);
  1194. /* disable + update */
  1195. bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
  1196. IGU_INT_DISABLE, 1);
  1197. }
  1198. }
  1199. void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
  1200. {
  1201. /* set the VF-PF association in the FW */
  1202. storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
  1203. storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
  1204. /* clear vf errors*/
  1205. bnx2x_vf_semi_clear_err(bp, abs_vfid);
  1206. bnx2x_vf_pglue_clear_err(bp, abs_vfid);
  1207. /* internal vf-enable - pretend */
  1208. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
  1209. DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
  1210. bnx2x_vf_enable_internal(bp, true);
  1211. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1212. }
  1213. static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1214. {
  1215. /* Reset vf in IGU interrupts are still disabled */
  1216. bnx2x_vf_igu_reset(bp, vf);
  1217. /* pretend to enable the vf with the PBF */
  1218. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1219. REG_WR(bp, PBF_REG_DISABLE_VF, 0);
  1220. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1221. }
  1222. static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
  1223. {
  1224. struct pci_dev *dev;
  1225. struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  1226. if (!vf)
  1227. return false;
  1228. dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
  1229. if (dev)
  1230. return bnx2x_is_pcie_pending(dev);
  1231. return false;
  1232. }
  1233. int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
  1234. {
  1235. /* Verify no pending pci transactions */
  1236. if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
  1237. BNX2X_ERR("PCIE Transactions still pending\n");
  1238. return 0;
  1239. }
  1240. /* must be called after the number of PF queues and the number of VFs are
  1241. * both known
  1242. */
  1243. static void
  1244. bnx2x_iov_static_resc(struct bnx2x *bp, struct vf_pf_resc_request *resc)
  1245. {
  1246. u16 vlan_count = 0;
  1247. /* will be set only during VF-ACQUIRE */
  1248. resc->num_rxqs = 0;
  1249. resc->num_txqs = 0;
  1250. /* no credit calculcis for macs (just yet) */
  1251. resc->num_mac_filters = 1;
  1252. /* divvy up vlan rules */
  1253. vlan_count = bp->vlans_pool.check(&bp->vlans_pool);
  1254. vlan_count = 1 << ilog2(vlan_count);
  1255. resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp);
  1256. /* no real limitation */
  1257. resc->num_mc_filters = 0;
  1258. /* num_sbs already set */
  1259. }
  1260. /* FLR routines: */
  1261. static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1262. {
  1263. /* reset the state variables */
  1264. bnx2x_iov_static_resc(bp, &vf->alloc_resc);
  1265. vf->state = VF_FREE;
  1266. }
  1267. static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1268. {
  1269. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1270. /* DQ usage counter */
  1271. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  1272. bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
  1273. "DQ VF usage counter timed out",
  1274. poll_cnt);
  1275. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  1276. /* FW cleanup command - poll for the results */
  1277. if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
  1278. poll_cnt))
  1279. BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
  1280. /* verify TX hw is flushed */
  1281. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1282. }
  1283. static void bnx2x_vfop_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1284. {
  1285. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  1286. struct bnx2x_vfop_args_qx *qx = &vfop->args.qx;
  1287. enum bnx2x_vfop_flr_state state = vfop->state;
  1288. struct bnx2x_vfop_cmd cmd = {
  1289. .done = bnx2x_vfop_flr,
  1290. .block = false,
  1291. };
  1292. if (vfop->rc < 0)
  1293. goto op_err;
  1294. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  1295. switch (state) {
  1296. case BNX2X_VFOP_FLR_QUEUES:
  1297. /* the cleanup operations are valid if and only if the VF
  1298. * was first acquired.
  1299. */
  1300. if (++(qx->qid) < vf_rxq_count(vf)) {
  1301. vfop->rc = bnx2x_vfop_qflr_cmd(bp, vf, &cmd,
  1302. qx->qid);
  1303. if (vfop->rc)
  1304. goto op_err;
  1305. return;
  1306. }
  1307. /* remove multicasts */
  1308. vfop->state = BNX2X_VFOP_FLR_HW;
  1309. vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL,
  1310. 0, true);
  1311. if (vfop->rc)
  1312. goto op_err;
  1313. return;
  1314. case BNX2X_VFOP_FLR_HW:
  1315. /* dispatch final cleanup and wait for HW queues to flush */
  1316. bnx2x_vf_flr_clnup_hw(bp, vf);
  1317. /* release VF resources */
  1318. bnx2x_vf_free_resc(bp, vf);
  1319. /* re-open the mailbox */
  1320. bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
  1321. goto op_done;
  1322. default:
  1323. bnx2x_vfop_default(state);
  1324. }
  1325. op_err:
  1326. BNX2X_ERR("VF[%d] FLR error: rc %d\n", vf->abs_vfid, vfop->rc);
  1327. op_done:
  1328. vf->flr_clnup_stage = VF_FLR_ACK;
  1329. bnx2x_vfop_end(bp, vf, vfop);
  1330. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
  1331. }
  1332. static int bnx2x_vfop_flr_cmd(struct bnx2x *bp,
  1333. struct bnx2x_virtf *vf,
  1334. vfop_handler_t done)
  1335. {
  1336. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  1337. if (vfop) {
  1338. vfop->args.qx.qid = -1; /* loop */
  1339. bnx2x_vfop_opset(BNX2X_VFOP_FLR_QUEUES,
  1340. bnx2x_vfop_flr, done);
  1341. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_flr, false);
  1342. }
  1343. return -ENOMEM;
  1344. }
  1345. static void bnx2x_vf_flr_clnup(struct bnx2x *bp, struct bnx2x_virtf *prev_vf)
  1346. {
  1347. int i = prev_vf ? prev_vf->index + 1 : 0;
  1348. struct bnx2x_virtf *vf;
  1349. /* find next VF to cleanup */
  1350. next_vf_to_clean:
  1351. for (;
  1352. i < BNX2X_NR_VIRTFN(bp) &&
  1353. (bnx2x_vf(bp, i, state) != VF_RESET ||
  1354. bnx2x_vf(bp, i, flr_clnup_stage) != VF_FLR_CLN);
  1355. i++)
  1356. ;
  1357. DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", i,
  1358. BNX2X_NR_VIRTFN(bp));
  1359. if (i < BNX2X_NR_VIRTFN(bp)) {
  1360. vf = BP_VF(bp, i);
  1361. /* lock the vf pf channel */
  1362. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
  1363. /* invoke the VF FLR SM */
  1364. if (bnx2x_vfop_flr_cmd(bp, vf, bnx2x_vf_flr_clnup)) {
  1365. BNX2X_ERR("VF[%d]: FLR cleanup failed -ENOMEM\n",
  1366. vf->abs_vfid);
  1367. /* mark the VF to be ACKED and continue */
  1368. vf->flr_clnup_stage = VF_FLR_ACK;
  1369. goto next_vf_to_clean;
  1370. }
  1371. return;
  1372. }
  1373. /* we are done, update vf records */
  1374. for_each_vf(bp, i) {
  1375. vf = BP_VF(bp, i);
  1376. if (vf->flr_clnup_stage != VF_FLR_ACK)
  1377. continue;
  1378. vf->flr_clnup_stage = VF_FLR_EPILOG;
  1379. }
  1380. /* Acknowledge the handled VFs.
  1381. * we are acknowledge all the vfs which an flr was requested for, even
  1382. * if amongst them there are such that we never opened, since the mcp
  1383. * will interrupt us immediately again if we only ack some of the bits,
  1384. * resulting in an endless loop. This can happen for example in KVM
  1385. * where an 'all ones' flr request is sometimes given by hyper visor
  1386. */
  1387. DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
  1388. bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
  1389. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1390. SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
  1391. bp->vfdb->flrd_vfs[i]);
  1392. bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
  1393. /* clear the acked bits - better yet if the MCP implemented
  1394. * write to clear semantics
  1395. */
  1396. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1397. SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
  1398. }
  1399. void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
  1400. {
  1401. int i;
  1402. /* Read FLR'd VFs */
  1403. for (i = 0; i < FLRD_VFS_DWORDS; i++)
  1404. bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
  1405. DP(BNX2X_MSG_MCP,
  1406. "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
  1407. bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
  1408. for_each_vf(bp, i) {
  1409. struct bnx2x_virtf *vf = BP_VF(bp, i);
  1410. u32 reset = 0;
  1411. if (vf->abs_vfid < 32)
  1412. reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
  1413. else
  1414. reset = bp->vfdb->flrd_vfs[1] &
  1415. (1 << (vf->abs_vfid - 32));
  1416. if (reset) {
  1417. /* set as reset and ready for cleanup */
  1418. vf->state = VF_RESET;
  1419. vf->flr_clnup_stage = VF_FLR_CLN;
  1420. DP(BNX2X_MSG_IOV,
  1421. "Initiating Final cleanup for VF %d\n",
  1422. vf->abs_vfid);
  1423. }
  1424. }
  1425. /* do the FLR cleanup for all marked VFs*/
  1426. bnx2x_vf_flr_clnup(bp, NULL);
  1427. }
  1428. /* IOV global initialization routines */
  1429. void bnx2x_iov_init_dq(struct bnx2x *bp)
  1430. {
  1431. if (!IS_SRIOV(bp))
  1432. return;
  1433. /* Set the DQ such that the CID reflect the abs_vfid */
  1434. REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
  1435. REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
  1436. /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
  1437. * the PF L2 queues
  1438. */
  1439. REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
  1440. /* The VF window size is the log2 of the max number of CIDs per VF */
  1441. REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
  1442. /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
  1443. * the Pf doorbell size although the 2 are independent.
  1444. */
  1445. REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST,
  1446. BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
  1447. /* No security checks for now -
  1448. * configure single rule (out of 16) mask = 0x1, value = 0x0,
  1449. * CID range 0 - 0x1ffff
  1450. */
  1451. REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
  1452. REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
  1453. REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
  1454. REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
  1455. /* set the number of VF allowed doorbells to the full DQ range */
  1456. REG_WR(bp, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
  1457. /* set the VF doorbell threshold */
  1458. REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
  1459. }
  1460. void bnx2x_iov_init_dmae(struct bnx2x *bp)
  1461. {
  1462. DP(BNX2X_MSG_IOV, "SRIOV is %s\n", IS_SRIOV(bp) ? "ON" : "OFF");
  1463. if (!IS_SRIOV(bp))
  1464. return;
  1465. REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
  1466. }
  1467. static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
  1468. {
  1469. struct pci_dev *dev = bp->pdev;
  1470. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1471. return dev->bus->number + ((dev->devfn + iov->offset +
  1472. iov->stride * vfid) >> 8);
  1473. }
  1474. static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
  1475. {
  1476. struct pci_dev *dev = bp->pdev;
  1477. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1478. return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
  1479. }
  1480. static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
  1481. {
  1482. int i, n;
  1483. struct pci_dev *dev = bp->pdev;
  1484. struct bnx2x_sriov *iov = &bp->vfdb->sriov;
  1485. for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
  1486. u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
  1487. u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
  1488. size /= iov->total;
  1489. vf->bars[n].bar = start + size * vf->abs_vfid;
  1490. vf->bars[n].size = size;
  1491. }
  1492. }
  1493. static int bnx2x_ari_enabled(struct pci_dev *dev)
  1494. {
  1495. return dev->bus->self && dev->bus->self->ari_enabled;
  1496. }
  1497. static void
  1498. bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
  1499. {
  1500. int sb_id;
  1501. u32 val;
  1502. u8 fid;
  1503. /* IGU in normal mode - read CAM */
  1504. for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
  1505. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
  1506. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  1507. continue;
  1508. fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
  1509. if (!(fid & IGU_FID_ENCODE_IS_PF))
  1510. bnx2x_vf_set_igu_info(bp, sb_id,
  1511. (fid & IGU_FID_VF_NUM_MASK));
  1512. DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
  1513. ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
  1514. ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
  1515. (fid & IGU_FID_VF_NUM_MASK)), sb_id,
  1516. GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
  1517. }
  1518. }
  1519. static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
  1520. {
  1521. if (bp->vfdb) {
  1522. kfree(bp->vfdb->vfqs);
  1523. kfree(bp->vfdb->vfs);
  1524. kfree(bp->vfdb);
  1525. }
  1526. bp->vfdb = NULL;
  1527. }
  1528. static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
  1529. {
  1530. int pos;
  1531. struct pci_dev *dev = bp->pdev;
  1532. pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
  1533. if (!pos) {
  1534. BNX2X_ERR("failed to find SRIOV capability in device\n");
  1535. return -ENODEV;
  1536. }
  1537. iov->pos = pos;
  1538. DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
  1539. pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
  1540. pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
  1541. pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
  1542. pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
  1543. pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
  1544. pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
  1545. pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
  1546. pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
  1547. return 0;
  1548. }
  1549. static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
  1550. {
  1551. u32 val;
  1552. /* read the SRIOV capability structure
  1553. * The fields can be read via configuration read or
  1554. * directly from the device (starting at offset PCICFG_OFFSET)
  1555. */
  1556. if (bnx2x_sriov_pci_cfg_info(bp, iov))
  1557. return -ENODEV;
  1558. /* get the number of SRIOV bars */
  1559. iov->nres = 0;
  1560. /* read the first_vfid */
  1561. val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
  1562. iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
  1563. * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
  1564. DP(BNX2X_MSG_IOV,
  1565. "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
  1566. BP_FUNC(bp),
  1567. iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
  1568. iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
  1569. return 0;
  1570. }
  1571. static u8 bnx2x_iov_get_max_queue_count(struct bnx2x *bp)
  1572. {
  1573. int i;
  1574. u8 queue_count = 0;
  1575. if (IS_SRIOV(bp))
  1576. for_each_vf(bp, i)
  1577. queue_count += bnx2x_vf(bp, i, alloc_resc.num_sbs);
  1578. return queue_count;
  1579. }
  1580. /* must be called after PF bars are mapped */
  1581. int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
  1582. int num_vfs_param)
  1583. {
  1584. int err, i, qcount;
  1585. struct bnx2x_sriov *iov;
  1586. struct pci_dev *dev = bp->pdev;
  1587. bp->vfdb = NULL;
  1588. /* verify is pf */
  1589. if (IS_VF(bp))
  1590. return 0;
  1591. /* verify sriov capability is present in configuration space */
  1592. if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
  1593. return 0;
  1594. /* verify chip revision */
  1595. if (CHIP_IS_E1x(bp))
  1596. return 0;
  1597. /* check if SRIOV support is turned off */
  1598. if (!num_vfs_param)
  1599. return 0;
  1600. /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
  1601. if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
  1602. BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
  1603. BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
  1604. return 0;
  1605. }
  1606. /* SRIOV can be enabled only with MSIX */
  1607. if (int_mode_param == BNX2X_INT_MODE_MSI ||
  1608. int_mode_param == BNX2X_INT_MODE_INTX) {
  1609. BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
  1610. return 0;
  1611. }
  1612. err = -EIO;
  1613. /* verify ari is enabled */
  1614. if (!bnx2x_ari_enabled(bp->pdev)) {
  1615. BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
  1616. return 0;
  1617. }
  1618. /* verify igu is in normal mode */
  1619. if (CHIP_INT_MODE_IS_BC(bp)) {
  1620. BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
  1621. return 0;
  1622. }
  1623. /* allocate the vfs database */
  1624. bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
  1625. if (!bp->vfdb) {
  1626. BNX2X_ERR("failed to allocate vf database\n");
  1627. err = -ENOMEM;
  1628. goto failed;
  1629. }
  1630. /* get the sriov info - Linux already collected all the pertinent
  1631. * information, however the sriov structure is for the private use
  1632. * of the pci module. Also we want this information regardless
  1633. * of the hyper-visor.
  1634. */
  1635. iov = &(bp->vfdb->sriov);
  1636. err = bnx2x_sriov_info(bp, iov);
  1637. if (err)
  1638. goto failed;
  1639. /* SR-IOV capability was enabled but there are no VFs*/
  1640. if (iov->total == 0)
  1641. goto failed;
  1642. iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
  1643. DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
  1644. num_vfs_param, iov->nr_virtfn);
  1645. /* allocate the vf array */
  1646. bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
  1647. BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
  1648. if (!bp->vfdb->vfs) {
  1649. BNX2X_ERR("failed to allocate vf array\n");
  1650. err = -ENOMEM;
  1651. goto failed;
  1652. }
  1653. /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
  1654. for_each_vf(bp, i) {
  1655. bnx2x_vf(bp, i, index) = i;
  1656. bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
  1657. bnx2x_vf(bp, i, state) = VF_FREE;
  1658. INIT_LIST_HEAD(&bnx2x_vf(bp, i, op_list_head));
  1659. mutex_init(&bnx2x_vf(bp, i, op_mutex));
  1660. bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
  1661. }
  1662. /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
  1663. bnx2x_get_vf_igu_cam_info(bp);
  1664. /* get the total queue count and allocate the global queue arrays */
  1665. qcount = bnx2x_iov_get_max_queue_count(bp);
  1666. /* allocate the queue arrays for all VFs */
  1667. bp->vfdb->vfqs = kzalloc(qcount * sizeof(struct bnx2x_vf_queue),
  1668. GFP_KERNEL);
  1669. if (!bp->vfdb->vfqs) {
  1670. BNX2X_ERR("failed to allocate vf queue array\n");
  1671. err = -ENOMEM;
  1672. goto failed;
  1673. }
  1674. return 0;
  1675. failed:
  1676. DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
  1677. __bnx2x_iov_free_vfdb(bp);
  1678. return err;
  1679. }
  1680. void bnx2x_iov_remove_one(struct bnx2x *bp)
  1681. {
  1682. /* if SRIOV is not enabled there's nothing to do */
  1683. if (!IS_SRIOV(bp))
  1684. return;
  1685. DP(BNX2X_MSG_IOV, "about to call disable sriov\n");
  1686. pci_disable_sriov(bp->pdev);
  1687. DP(BNX2X_MSG_IOV, "sriov disabled\n");
  1688. /* free vf database */
  1689. __bnx2x_iov_free_vfdb(bp);
  1690. }
  1691. void bnx2x_iov_free_mem(struct bnx2x *bp)
  1692. {
  1693. int i;
  1694. if (!IS_SRIOV(bp))
  1695. return;
  1696. /* free vfs hw contexts */
  1697. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1698. struct hw_dma *cxt = &bp->vfdb->context[i];
  1699. BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
  1700. }
  1701. BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
  1702. BP_VFDB(bp)->sp_dma.mapping,
  1703. BP_VFDB(bp)->sp_dma.size);
  1704. BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
  1705. BP_VF_MBX_DMA(bp)->mapping,
  1706. BP_VF_MBX_DMA(bp)->size);
  1707. BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
  1708. BP_VF_BULLETIN_DMA(bp)->mapping,
  1709. BP_VF_BULLETIN_DMA(bp)->size);
  1710. }
  1711. int bnx2x_iov_alloc_mem(struct bnx2x *bp)
  1712. {
  1713. size_t tot_size;
  1714. int i, rc = 0;
  1715. if (!IS_SRIOV(bp))
  1716. return rc;
  1717. /* allocate vfs hw contexts */
  1718. tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
  1719. BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
  1720. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1721. struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
  1722. cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
  1723. if (cxt->size) {
  1724. BNX2X_PCI_ALLOC(cxt->addr, &cxt->mapping, cxt->size);
  1725. } else {
  1726. cxt->addr = NULL;
  1727. cxt->mapping = 0;
  1728. }
  1729. tot_size -= cxt->size;
  1730. }
  1731. /* allocate vfs ramrods dma memory - client_init and set_mac */
  1732. tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
  1733. BNX2X_PCI_ALLOC(BP_VFDB(bp)->sp_dma.addr, &BP_VFDB(bp)->sp_dma.mapping,
  1734. tot_size);
  1735. BP_VFDB(bp)->sp_dma.size = tot_size;
  1736. /* allocate mailboxes */
  1737. tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
  1738. BNX2X_PCI_ALLOC(BP_VF_MBX_DMA(bp)->addr, &BP_VF_MBX_DMA(bp)->mapping,
  1739. tot_size);
  1740. BP_VF_MBX_DMA(bp)->size = tot_size;
  1741. /* allocate local bulletin boards */
  1742. tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
  1743. BNX2X_PCI_ALLOC(BP_VF_BULLETIN_DMA(bp)->addr,
  1744. &BP_VF_BULLETIN_DMA(bp)->mapping, tot_size);
  1745. BP_VF_BULLETIN_DMA(bp)->size = tot_size;
  1746. return 0;
  1747. alloc_mem_err:
  1748. return -ENOMEM;
  1749. }
  1750. static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
  1751. struct bnx2x_vf_queue *q)
  1752. {
  1753. u8 cl_id = vfq_cl_id(vf, q);
  1754. u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
  1755. unsigned long q_type = 0;
  1756. set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  1757. set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  1758. /* Queue State object */
  1759. bnx2x_init_queue_obj(bp, &q->sp_obj,
  1760. cl_id, &q->cid, 1, func_id,
  1761. bnx2x_vf_sp(bp, vf, q_data),
  1762. bnx2x_vf_sp_map(bp, vf, q_data),
  1763. q_type);
  1764. DP(BNX2X_MSG_IOV,
  1765. "initialized vf %d's queue object. func id set to %d\n",
  1766. vf->abs_vfid, q->sp_obj.func_id);
  1767. /* mac/vlan objects are per queue, but only those
  1768. * that belong to the leading queue are initialized
  1769. */
  1770. if (vfq_is_leading(q)) {
  1771. /* mac */
  1772. bnx2x_init_mac_obj(bp, &q->mac_obj,
  1773. cl_id, q->cid, func_id,
  1774. bnx2x_vf_sp(bp, vf, mac_rdata),
  1775. bnx2x_vf_sp_map(bp, vf, mac_rdata),
  1776. BNX2X_FILTER_MAC_PENDING,
  1777. &vf->filter_state,
  1778. BNX2X_OBJ_TYPE_RX_TX,
  1779. &bp->macs_pool);
  1780. /* vlan */
  1781. bnx2x_init_vlan_obj(bp, &q->vlan_obj,
  1782. cl_id, q->cid, func_id,
  1783. bnx2x_vf_sp(bp, vf, vlan_rdata),
  1784. bnx2x_vf_sp_map(bp, vf, vlan_rdata),
  1785. BNX2X_FILTER_VLAN_PENDING,
  1786. &vf->filter_state,
  1787. BNX2X_OBJ_TYPE_RX_TX,
  1788. &bp->vlans_pool);
  1789. /* mcast */
  1790. bnx2x_init_mcast_obj(bp, &vf->mcast_obj, cl_id,
  1791. q->cid, func_id, func_id,
  1792. bnx2x_vf_sp(bp, vf, mcast_rdata),
  1793. bnx2x_vf_sp_map(bp, vf, mcast_rdata),
  1794. BNX2X_FILTER_MCAST_PENDING,
  1795. &vf->filter_state,
  1796. BNX2X_OBJ_TYPE_RX_TX);
  1797. vf->leading_rss = cl_id;
  1798. }
  1799. }
  1800. /* called by bnx2x_nic_load */
  1801. int bnx2x_iov_nic_init(struct bnx2x *bp)
  1802. {
  1803. int vfid, qcount, i;
  1804. if (!IS_SRIOV(bp)) {
  1805. DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
  1806. return 0;
  1807. }
  1808. DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
  1809. /* let FLR complete ... */
  1810. msleep(100);
  1811. /* initialize vf database */
  1812. for_each_vf(bp, vfid) {
  1813. struct bnx2x_virtf *vf = BP_VF(bp, vfid);
  1814. int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
  1815. BNX2X_CIDS_PER_VF;
  1816. union cdu_context *base_cxt = (union cdu_context *)
  1817. BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
  1818. (base_vf_cid & (ILT_PAGE_CIDS-1));
  1819. DP(BNX2X_MSG_IOV,
  1820. "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
  1821. vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
  1822. BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
  1823. /* init statically provisioned resources */
  1824. bnx2x_iov_static_resc(bp, &vf->alloc_resc);
  1825. /* queues are initialized during VF-ACQUIRE */
  1826. /* reserve the vf vlan credit */
  1827. bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf));
  1828. vf->filter_state = 0;
  1829. vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
  1830. /* init mcast object - This object will be re-initialized
  1831. * during VF-ACQUIRE with the proper cl_id and cid.
  1832. * It needs to be initialized here so that it can be safely
  1833. * handled by a subsequent FLR flow.
  1834. */
  1835. bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
  1836. 0xFF, 0xFF, 0xFF,
  1837. bnx2x_vf_sp(bp, vf, mcast_rdata),
  1838. bnx2x_vf_sp_map(bp, vf, mcast_rdata),
  1839. BNX2X_FILTER_MCAST_PENDING,
  1840. &vf->filter_state,
  1841. BNX2X_OBJ_TYPE_RX_TX);
  1842. /* set the mailbox message addresses */
  1843. BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
  1844. (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
  1845. MBX_MSG_ALIGNED_SIZE);
  1846. BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
  1847. vfid * MBX_MSG_ALIGNED_SIZE;
  1848. /* Enable vf mailbox */
  1849. bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
  1850. }
  1851. /* Final VF init */
  1852. qcount = 0;
  1853. for_each_vf(bp, i) {
  1854. struct bnx2x_virtf *vf = BP_VF(bp, i);
  1855. /* fill in the BDF and bars */
  1856. vf->bus = bnx2x_vf_bus(bp, i);
  1857. vf->devfn = bnx2x_vf_devfn(bp, i);
  1858. bnx2x_vf_set_bars(bp, vf);
  1859. DP(BNX2X_MSG_IOV,
  1860. "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
  1861. vf->abs_vfid, vf->bus, vf->devfn,
  1862. (unsigned)vf->bars[0].bar, vf->bars[0].size,
  1863. (unsigned)vf->bars[1].bar, vf->bars[1].size,
  1864. (unsigned)vf->bars[2].bar, vf->bars[2].size);
  1865. /* set local queue arrays */
  1866. vf->vfqs = &bp->vfdb->vfqs[qcount];
  1867. qcount += bnx2x_vf(bp, i, alloc_resc.num_sbs);
  1868. }
  1869. return 0;
  1870. }
  1871. /* called by bnx2x_chip_cleanup */
  1872. int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
  1873. {
  1874. int i;
  1875. if (!IS_SRIOV(bp))
  1876. return 0;
  1877. /* release all the VFs */
  1878. for_each_vf(bp, i)
  1879. bnx2x_vf_release(bp, BP_VF(bp, i), true); /* blocking */
  1880. return 0;
  1881. }
  1882. /* called by bnx2x_init_hw_func, returns the next ilt line */
  1883. int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
  1884. {
  1885. int i;
  1886. struct bnx2x_ilt *ilt = BP_ILT(bp);
  1887. if (!IS_SRIOV(bp))
  1888. return line;
  1889. /* set vfs ilt lines */
  1890. for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
  1891. struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
  1892. ilt->lines[line+i].page = hw_cxt->addr;
  1893. ilt->lines[line+i].page_mapping = hw_cxt->mapping;
  1894. ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
  1895. }
  1896. return line + i;
  1897. }
  1898. static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
  1899. {
  1900. return ((cid >= BNX2X_FIRST_VF_CID) &&
  1901. ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
  1902. }
  1903. static
  1904. void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
  1905. struct bnx2x_vf_queue *vfq,
  1906. union event_ring_elem *elem)
  1907. {
  1908. unsigned long ramrod_flags = 0;
  1909. int rc = 0;
  1910. /* Always push next commands out, don't wait here */
  1911. set_bit(RAMROD_CONT, &ramrod_flags);
  1912. switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
  1913. case BNX2X_FILTER_MAC_PENDING:
  1914. rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
  1915. &ramrod_flags);
  1916. break;
  1917. case BNX2X_FILTER_VLAN_PENDING:
  1918. rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
  1919. &ramrod_flags);
  1920. break;
  1921. default:
  1922. BNX2X_ERR("Unsupported classification command: %d\n",
  1923. elem->message.data.eth_event.echo);
  1924. return;
  1925. }
  1926. if (rc < 0)
  1927. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  1928. else if (rc > 0)
  1929. DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
  1930. }
  1931. static
  1932. void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
  1933. struct bnx2x_virtf *vf)
  1934. {
  1935. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  1936. int rc;
  1937. rparam.mcast_obj = &vf->mcast_obj;
  1938. vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
  1939. /* If there are pending mcast commands - send them */
  1940. if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
  1941. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  1942. if (rc < 0)
  1943. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  1944. rc);
  1945. }
  1946. }
  1947. static
  1948. void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
  1949. struct bnx2x_virtf *vf)
  1950. {
  1951. smp_mb__before_clear_bit();
  1952. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
  1953. smp_mb__after_clear_bit();
  1954. }
  1955. int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
  1956. {
  1957. struct bnx2x_virtf *vf;
  1958. int qidx = 0, abs_vfid;
  1959. u8 opcode;
  1960. u16 cid = 0xffff;
  1961. if (!IS_SRIOV(bp))
  1962. return 1;
  1963. /* first get the cid - the only events we handle here are cfc-delete
  1964. * and set-mac completion
  1965. */
  1966. opcode = elem->message.opcode;
  1967. switch (opcode) {
  1968. case EVENT_RING_OPCODE_CFC_DEL:
  1969. cid = SW_CID((__force __le32)
  1970. elem->message.data.cfc_del_event.cid);
  1971. DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
  1972. break;
  1973. case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
  1974. case EVENT_RING_OPCODE_MULTICAST_RULES:
  1975. case EVENT_RING_OPCODE_FILTERS_RULES:
  1976. cid = (elem->message.data.eth_event.echo &
  1977. BNX2X_SWCID_MASK);
  1978. DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
  1979. break;
  1980. case EVENT_RING_OPCODE_VF_FLR:
  1981. abs_vfid = elem->message.data.vf_flr_event.vf_id;
  1982. DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
  1983. abs_vfid);
  1984. goto get_vf;
  1985. case EVENT_RING_OPCODE_MALICIOUS_VF:
  1986. abs_vfid = elem->message.data.malicious_vf_event.vf_id;
  1987. DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
  1988. abs_vfid, elem->message.data.malicious_vf_event.err_id);
  1989. goto get_vf;
  1990. default:
  1991. return 1;
  1992. }
  1993. /* check if the cid is the VF range */
  1994. if (!bnx2x_iov_is_vf_cid(bp, cid)) {
  1995. DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
  1996. return 1;
  1997. }
  1998. /* extract vf and rxq index from vf_cid - relies on the following:
  1999. * 1. vfid on cid reflects the true abs_vfid
  2000. * 2. The max number of VFs (per path) is 64
  2001. */
  2002. qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
  2003. abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
  2004. get_vf:
  2005. vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
  2006. if (!vf) {
  2007. BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
  2008. cid, abs_vfid);
  2009. return 0;
  2010. }
  2011. switch (opcode) {
  2012. case EVENT_RING_OPCODE_CFC_DEL:
  2013. DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
  2014. vf->abs_vfid, qidx);
  2015. vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
  2016. &vfq_get(vf,
  2017. qidx)->sp_obj,
  2018. BNX2X_Q_CMD_CFC_DEL);
  2019. break;
  2020. case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
  2021. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
  2022. vf->abs_vfid, qidx);
  2023. bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
  2024. break;
  2025. case EVENT_RING_OPCODE_MULTICAST_RULES:
  2026. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
  2027. vf->abs_vfid, qidx);
  2028. bnx2x_vf_handle_mcast_eqe(bp, vf);
  2029. break;
  2030. case EVENT_RING_OPCODE_FILTERS_RULES:
  2031. DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
  2032. vf->abs_vfid, qidx);
  2033. bnx2x_vf_handle_filters_eqe(bp, vf);
  2034. break;
  2035. case EVENT_RING_OPCODE_VF_FLR:
  2036. DP(BNX2X_MSG_IOV, "got VF [%d] FLR notification\n",
  2037. vf->abs_vfid);
  2038. /* Do nothing for now */
  2039. break;
  2040. case EVENT_RING_OPCODE_MALICIOUS_VF:
  2041. DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d error id %x\n",
  2042. abs_vfid, elem->message.data.malicious_vf_event.err_id);
  2043. /* Do nothing for now */
  2044. break;
  2045. }
  2046. /* SRIOV: reschedule any 'in_progress' operations */
  2047. bnx2x_iov_sp_event(bp, cid, false);
  2048. return 0;
  2049. }
  2050. static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
  2051. {
  2052. /* extract the vf from vf_cid - relies on the following:
  2053. * 1. vfid on cid reflects the true abs_vfid
  2054. * 2. The max number of VFs (per path) is 64
  2055. */
  2056. int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
  2057. return bnx2x_vf_by_abs_fid(bp, abs_vfid);
  2058. }
  2059. void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
  2060. struct bnx2x_queue_sp_obj **q_obj)
  2061. {
  2062. struct bnx2x_virtf *vf;
  2063. if (!IS_SRIOV(bp))
  2064. return;
  2065. vf = bnx2x_vf_by_cid(bp, vf_cid);
  2066. if (vf) {
  2067. /* extract queue index from vf_cid - relies on the following:
  2068. * 1. vfid on cid reflects the true abs_vfid
  2069. * 2. The max number of VFs (per path) is 64
  2070. */
  2071. int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
  2072. *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
  2073. } else {
  2074. BNX2X_ERR("No vf matching cid %d\n", vf_cid);
  2075. }
  2076. }
  2077. void bnx2x_iov_sp_event(struct bnx2x *bp, int vf_cid, bool queue_work)
  2078. {
  2079. struct bnx2x_virtf *vf;
  2080. /* check if the cid is the VF range */
  2081. if (!IS_SRIOV(bp) || !bnx2x_iov_is_vf_cid(bp, vf_cid))
  2082. return;
  2083. vf = bnx2x_vf_by_cid(bp, vf_cid);
  2084. if (vf) {
  2085. /* set in_progress flag */
  2086. atomic_set(&vf->op_in_progress, 1);
  2087. if (queue_work)
  2088. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  2089. }
  2090. }
  2091. void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
  2092. {
  2093. int i;
  2094. int first_queue_query_index, num_queues_req;
  2095. dma_addr_t cur_data_offset;
  2096. struct stats_query_entry *cur_query_entry;
  2097. u8 stats_count = 0;
  2098. bool is_fcoe = false;
  2099. if (!IS_SRIOV(bp))
  2100. return;
  2101. if (!NO_FCOE(bp))
  2102. is_fcoe = true;
  2103. /* fcoe adds one global request and one queue request */
  2104. num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
  2105. first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
  2106. (is_fcoe ? 0 : 1);
  2107. DP(BNX2X_MSG_IOV,
  2108. "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
  2109. BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
  2110. first_queue_query_index + num_queues_req);
  2111. cur_data_offset = bp->fw_stats_data_mapping +
  2112. offsetof(struct bnx2x_fw_stats_data, queue_stats) +
  2113. num_queues_req * sizeof(struct per_queue_stats);
  2114. cur_query_entry = &bp->fw_stats_req->
  2115. query[first_queue_query_index + num_queues_req];
  2116. for_each_vf(bp, i) {
  2117. int j;
  2118. struct bnx2x_virtf *vf = BP_VF(bp, i);
  2119. if (vf->state != VF_ENABLED) {
  2120. DP(BNX2X_MSG_IOV,
  2121. "vf %d not enabled so no stats for it\n",
  2122. vf->abs_vfid);
  2123. continue;
  2124. }
  2125. DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
  2126. for_each_vfq(vf, j) {
  2127. struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
  2128. /* collect stats fro active queues only */
  2129. if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
  2130. BNX2X_Q_LOGICAL_STATE_STOPPED)
  2131. continue;
  2132. /* create stats query entry for this queue */
  2133. cur_query_entry->kind = STATS_TYPE_QUEUE;
  2134. cur_query_entry->index = vfq_cl_id(vf, rxq);
  2135. cur_query_entry->funcID =
  2136. cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
  2137. cur_query_entry->address.hi =
  2138. cpu_to_le32(U64_HI(vf->fw_stat_map));
  2139. cur_query_entry->address.lo =
  2140. cpu_to_le32(U64_LO(vf->fw_stat_map));
  2141. DP(BNX2X_MSG_IOV,
  2142. "added address %x %x for vf %d queue %d client %d\n",
  2143. cur_query_entry->address.hi,
  2144. cur_query_entry->address.lo, cur_query_entry->funcID,
  2145. j, cur_query_entry->index);
  2146. cur_query_entry++;
  2147. cur_data_offset += sizeof(struct per_queue_stats);
  2148. stats_count++;
  2149. }
  2150. }
  2151. bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
  2152. }
  2153. void bnx2x_iov_sp_task(struct bnx2x *bp)
  2154. {
  2155. int i;
  2156. if (!IS_SRIOV(bp))
  2157. return;
  2158. /* Iterate over all VFs and invoke state transition for VFs with
  2159. * 'in-progress' slow-path operations
  2160. */
  2161. DP(BNX2X_MSG_IOV, "searching for pending vf operations\n");
  2162. for_each_vf(bp, i) {
  2163. struct bnx2x_virtf *vf = BP_VF(bp, i);
  2164. if (!list_empty(&vf->op_list_head) &&
  2165. atomic_read(&vf->op_in_progress)) {
  2166. DP(BNX2X_MSG_IOV, "running pending op for vf %d\n", i);
  2167. bnx2x_vfop_cur(bp, vf)->transition(bp, vf);
  2168. }
  2169. }
  2170. }
  2171. static inline
  2172. struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id)
  2173. {
  2174. int i;
  2175. struct bnx2x_virtf *vf = NULL;
  2176. for_each_vf(bp, i) {
  2177. vf = BP_VF(bp, i);
  2178. if (stat_id >= vf->igu_base_id &&
  2179. stat_id < vf->igu_base_id + vf_sb_count(vf))
  2180. break;
  2181. }
  2182. return vf;
  2183. }
  2184. /* VF API helpers */
  2185. static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
  2186. u8 enable)
  2187. {
  2188. u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
  2189. u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
  2190. REG_WR(bp, reg, val);
  2191. }
  2192. static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2193. {
  2194. int i;
  2195. for_each_vfq(vf, i)
  2196. bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
  2197. vfq_qzone_id(vf, vfq_get(vf, i)), false);
  2198. }
  2199. static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2200. {
  2201. u32 val;
  2202. /* clear the VF configuration - pretend */
  2203. bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
  2204. val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
  2205. val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
  2206. IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
  2207. REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
  2208. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  2209. }
  2210. u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2211. {
  2212. return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
  2213. BNX2X_VF_MAX_QUEUES);
  2214. }
  2215. static
  2216. int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2217. struct vf_pf_resc_request *req_resc)
  2218. {
  2219. u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2220. u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2221. return ((req_resc->num_rxqs <= rxq_cnt) &&
  2222. (req_resc->num_txqs <= txq_cnt) &&
  2223. (req_resc->num_sbs <= vf_sb_count(vf)) &&
  2224. (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
  2225. (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
  2226. }
  2227. /* CORE VF API */
  2228. int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2229. struct vf_pf_resc_request *resc)
  2230. {
  2231. int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
  2232. BNX2X_CIDS_PER_VF;
  2233. union cdu_context *base_cxt = (union cdu_context *)
  2234. BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
  2235. (base_vf_cid & (ILT_PAGE_CIDS-1));
  2236. int i;
  2237. /* if state is 'acquired' the VF was not released or FLR'd, in
  2238. * this case the returned resources match the acquired already
  2239. * acquired resources. Verify that the requested numbers do
  2240. * not exceed the already acquired numbers.
  2241. */
  2242. if (vf->state == VF_ACQUIRED) {
  2243. DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
  2244. vf->abs_vfid);
  2245. if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
  2246. BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
  2247. vf->abs_vfid);
  2248. return -EINVAL;
  2249. }
  2250. return 0;
  2251. }
  2252. /* Otherwise vf state must be 'free' or 'reset' */
  2253. if (vf->state != VF_FREE && vf->state != VF_RESET) {
  2254. BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
  2255. vf->abs_vfid, vf->state);
  2256. return -EINVAL;
  2257. }
  2258. /* static allocation:
  2259. * the global maximum number are fixed per VF. Fail the request if
  2260. * requested number exceed these globals
  2261. */
  2262. if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
  2263. DP(BNX2X_MSG_IOV,
  2264. "cannot fulfill vf resource request. Placing maximal available values in response\n");
  2265. /* set the max resource in the vf */
  2266. return -ENOMEM;
  2267. }
  2268. /* Set resources counters - 0 request means max available */
  2269. vf_sb_count(vf) = resc->num_sbs;
  2270. vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2271. vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
  2272. if (resc->num_mac_filters)
  2273. vf_mac_rules_cnt(vf) = resc->num_mac_filters;
  2274. if (resc->num_vlan_filters)
  2275. vf_vlan_rules_cnt(vf) = resc->num_vlan_filters;
  2276. DP(BNX2X_MSG_IOV,
  2277. "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
  2278. vf_sb_count(vf), vf_rxq_count(vf),
  2279. vf_txq_count(vf), vf_mac_rules_cnt(vf),
  2280. vf_vlan_rules_cnt(vf));
  2281. /* Initialize the queues */
  2282. if (!vf->vfqs) {
  2283. DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
  2284. return -EINVAL;
  2285. }
  2286. for_each_vfq(vf, i) {
  2287. struct bnx2x_vf_queue *q = vfq_get(vf, i);
  2288. if (!q) {
  2289. DP(BNX2X_MSG_IOV, "q number %d was not allocated\n", i);
  2290. return -EINVAL;
  2291. }
  2292. q->index = i;
  2293. q->cxt = &((base_cxt + i)->eth);
  2294. q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
  2295. DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
  2296. vf->abs_vfid, i, q->index, q->cid, q->cxt);
  2297. /* init SP objects */
  2298. bnx2x_vfq_init(bp, vf, q);
  2299. }
  2300. vf->state = VF_ACQUIRED;
  2301. return 0;
  2302. }
  2303. int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
  2304. {
  2305. struct bnx2x_func_init_params func_init = {0};
  2306. u16 flags = 0;
  2307. int i;
  2308. /* the sb resources are initialized at this point, do the
  2309. * FW/HW initializations
  2310. */
  2311. for_each_vf_sb(vf, i)
  2312. bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
  2313. vf_igu_sb(vf, i), vf_igu_sb(vf, i));
  2314. /* Sanity checks */
  2315. if (vf->state != VF_ACQUIRED) {
  2316. DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
  2317. vf->abs_vfid, vf->state);
  2318. return -EINVAL;
  2319. }
  2320. /* let FLR complete ... */
  2321. msleep(100);
  2322. /* FLR cleanup epilogue */
  2323. if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
  2324. return -EBUSY;
  2325. /* reset IGU VF statistics: MSIX */
  2326. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
  2327. /* vf init */
  2328. if (vf->cfg_flags & VF_CFG_STATS)
  2329. flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ);
  2330. if (vf->cfg_flags & VF_CFG_TPA)
  2331. flags |= FUNC_FLG_TPA;
  2332. if (is_vf_multi(vf))
  2333. flags |= FUNC_FLG_RSS;
  2334. /* function setup */
  2335. func_init.func_flgs = flags;
  2336. func_init.pf_id = BP_FUNC(bp);
  2337. func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
  2338. func_init.fw_stat_map = vf->fw_stat_map;
  2339. func_init.spq_map = vf->spq_map;
  2340. func_init.spq_prod = 0;
  2341. bnx2x_func_init(bp, &func_init);
  2342. /* Enable the vf */
  2343. bnx2x_vf_enable_access(bp, vf->abs_vfid);
  2344. bnx2x_vf_enable_traffic(bp, vf);
  2345. /* queue protection table */
  2346. for_each_vfq(vf, i)
  2347. bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
  2348. vfq_qzone_id(vf, vfq_get(vf, i)), true);
  2349. vf->state = VF_ENABLED;
  2350. /* update vf bulletin board */
  2351. bnx2x_post_vf_bulletin(bp, vf->index);
  2352. return 0;
  2353. }
  2354. /* VFOP close (teardown the queues, delete mcasts and close HW) */
  2355. static void bnx2x_vfop_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2356. {
  2357. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  2358. struct bnx2x_vfop_args_qx *qx = &vfop->args.qx;
  2359. enum bnx2x_vfop_close_state state = vfop->state;
  2360. struct bnx2x_vfop_cmd cmd = {
  2361. .done = bnx2x_vfop_close,
  2362. .block = false,
  2363. };
  2364. if (vfop->rc < 0)
  2365. goto op_err;
  2366. DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state);
  2367. switch (state) {
  2368. case BNX2X_VFOP_CLOSE_QUEUES:
  2369. if (++(qx->qid) < vf_rxq_count(vf)) {
  2370. vfop->rc = bnx2x_vfop_qdown_cmd(bp, vf, &cmd, qx->qid);
  2371. if (vfop->rc)
  2372. goto op_err;
  2373. return;
  2374. }
  2375. /* remove multicasts */
  2376. vfop->state = BNX2X_VFOP_CLOSE_HW;
  2377. vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL, 0, false);
  2378. if (vfop->rc)
  2379. goto op_err;
  2380. return;
  2381. case BNX2X_VFOP_CLOSE_HW:
  2382. /* disable the interrupts */
  2383. DP(BNX2X_MSG_IOV, "disabling igu\n");
  2384. bnx2x_vf_igu_disable(bp, vf);
  2385. /* disable the VF */
  2386. DP(BNX2X_MSG_IOV, "clearing qtbl\n");
  2387. bnx2x_vf_clr_qtbl(bp, vf);
  2388. goto op_done;
  2389. default:
  2390. bnx2x_vfop_default(state);
  2391. }
  2392. op_err:
  2393. BNX2X_ERR("VF[%d] CLOSE error: rc %d\n", vf->abs_vfid, vfop->rc);
  2394. op_done:
  2395. vf->state = VF_ACQUIRED;
  2396. DP(BNX2X_MSG_IOV, "set state to acquired\n");
  2397. bnx2x_vfop_end(bp, vf, vfop);
  2398. }
  2399. int bnx2x_vfop_close_cmd(struct bnx2x *bp,
  2400. struct bnx2x_virtf *vf,
  2401. struct bnx2x_vfop_cmd *cmd)
  2402. {
  2403. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  2404. if (vfop) {
  2405. vfop->args.qx.qid = -1; /* loop */
  2406. bnx2x_vfop_opset(BNX2X_VFOP_CLOSE_QUEUES,
  2407. bnx2x_vfop_close, cmd->done);
  2408. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_close,
  2409. cmd->block);
  2410. }
  2411. return -ENOMEM;
  2412. }
  2413. /* VF release can be called either: 1. The VF was acquired but
  2414. * not enabled 2. the vf was enabled or in the process of being
  2415. * enabled
  2416. */
  2417. static void bnx2x_vfop_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
  2418. {
  2419. struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf);
  2420. struct bnx2x_vfop_cmd cmd = {
  2421. .done = bnx2x_vfop_release,
  2422. .block = false,
  2423. };
  2424. DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc);
  2425. if (vfop->rc < 0)
  2426. goto op_err;
  2427. DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
  2428. vf->state == VF_FREE ? "Free" :
  2429. vf->state == VF_ACQUIRED ? "Acquired" :
  2430. vf->state == VF_ENABLED ? "Enabled" :
  2431. vf->state == VF_RESET ? "Reset" :
  2432. "Unknown");
  2433. switch (vf->state) {
  2434. case VF_ENABLED:
  2435. vfop->rc = bnx2x_vfop_close_cmd(bp, vf, &cmd);
  2436. if (vfop->rc)
  2437. goto op_err;
  2438. return;
  2439. case VF_ACQUIRED:
  2440. DP(BNX2X_MSG_IOV, "about to free resources\n");
  2441. bnx2x_vf_free_resc(bp, vf);
  2442. DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc);
  2443. goto op_done;
  2444. case VF_FREE:
  2445. case VF_RESET:
  2446. /* do nothing */
  2447. goto op_done;
  2448. default:
  2449. bnx2x_vfop_default(vf->state);
  2450. }
  2451. op_err:
  2452. BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, vfop->rc);
  2453. op_done:
  2454. bnx2x_vfop_end(bp, vf, vfop);
  2455. }
  2456. int bnx2x_vfop_release_cmd(struct bnx2x *bp,
  2457. struct bnx2x_virtf *vf,
  2458. struct bnx2x_vfop_cmd *cmd)
  2459. {
  2460. struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf);
  2461. if (vfop) {
  2462. bnx2x_vfop_opset(-1, /* use vf->state */
  2463. bnx2x_vfop_release, cmd->done);
  2464. return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_release,
  2465. cmd->block);
  2466. }
  2467. return -ENOMEM;
  2468. }
  2469. /* VF release ~ VF close + VF release-resources
  2470. * Release is the ultimate SW shutdown and is called whenever an
  2471. * irrecoverable error is encountered.
  2472. */
  2473. void bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf, bool block)
  2474. {
  2475. struct bnx2x_vfop_cmd cmd = {
  2476. .done = NULL,
  2477. .block = block,
  2478. };
  2479. int rc;
  2480. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
  2481. rc = bnx2x_vfop_release_cmd(bp, vf, &cmd);
  2482. if (rc)
  2483. WARN(rc,
  2484. "VF[%d] Failed to allocate resources for release op- rc=%d\n",
  2485. vf->abs_vfid, rc);
  2486. }
  2487. static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp,
  2488. struct bnx2x_virtf *vf, u32 *sbdf)
  2489. {
  2490. *sbdf = vf->devfn | (vf->bus << 8);
  2491. }
  2492. static inline void bnx2x_vf_get_bars(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2493. struct bnx2x_vf_bar_info *bar_info)
  2494. {
  2495. int n;
  2496. bar_info->nr_bars = bp->vfdb->sriov.nres;
  2497. for (n = 0; n < bar_info->nr_bars; n++)
  2498. bar_info->bars[n] = vf->bars[n];
  2499. }
  2500. void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2501. enum channel_tlvs tlv)
  2502. {
  2503. /* lock the channel */
  2504. mutex_lock(&vf->op_mutex);
  2505. /* record the locking op */
  2506. vf->op_current = tlv;
  2507. /* log the lock */
  2508. DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
  2509. vf->abs_vfid, tlv);
  2510. }
  2511. void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
  2512. enum channel_tlvs expected_tlv)
  2513. {
  2514. WARN(expected_tlv != vf->op_current,
  2515. "lock mismatch: expected %d found %d", expected_tlv,
  2516. vf->op_current);
  2517. /* lock the channel */
  2518. mutex_unlock(&vf->op_mutex);
  2519. /* log the unlock */
  2520. DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
  2521. vf->abs_vfid, vf->op_current);
  2522. /* record the locking op */
  2523. vf->op_current = CHANNEL_TLV_NONE;
  2524. }
  2525. int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
  2526. {
  2527. struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
  2528. DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
  2529. num_vfs_param, BNX2X_NR_VIRTFN(bp));
  2530. /* HW channel is only operational when PF is up */
  2531. if (bp->state != BNX2X_STATE_OPEN) {
  2532. BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
  2533. return -EINVAL;
  2534. }
  2535. /* we are always bound by the total_vfs in the configuration space */
  2536. if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
  2537. BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
  2538. num_vfs_param, BNX2X_NR_VIRTFN(bp));
  2539. num_vfs_param = BNX2X_NR_VIRTFN(bp);
  2540. }
  2541. bp->requested_nr_virtfn = num_vfs_param;
  2542. if (num_vfs_param == 0) {
  2543. pci_disable_sriov(dev);
  2544. return 0;
  2545. } else {
  2546. return bnx2x_enable_sriov(bp);
  2547. }
  2548. }
  2549. int bnx2x_enable_sriov(struct bnx2x *bp)
  2550. {
  2551. int rc = 0, req_vfs = bp->requested_nr_virtfn;
  2552. rc = pci_enable_sriov(bp->pdev, req_vfs);
  2553. if (rc) {
  2554. BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
  2555. return rc;
  2556. }
  2557. DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
  2558. return req_vfs;
  2559. }
  2560. void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
  2561. {
  2562. int vfidx;
  2563. struct pf_vf_bulletin_content *bulletin;
  2564. DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
  2565. for_each_vf(bp, vfidx) {
  2566. bulletin = BP_VF_BULLETIN(bp, vfidx);
  2567. if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN)
  2568. bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0);
  2569. }
  2570. }
  2571. void bnx2x_disable_sriov(struct bnx2x *bp)
  2572. {
  2573. pci_disable_sriov(bp->pdev);
  2574. }
  2575. static int bnx2x_vf_ndo_sanity(struct bnx2x *bp, int vfidx,
  2576. struct bnx2x_virtf *vf)
  2577. {
  2578. if (bp->state != BNX2X_STATE_OPEN) {
  2579. BNX2X_ERR("vf ndo called though PF is down\n");
  2580. return -EINVAL;
  2581. }
  2582. if (!IS_SRIOV(bp)) {
  2583. BNX2X_ERR("vf ndo called though sriov is disabled\n");
  2584. return -EINVAL;
  2585. }
  2586. if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
  2587. BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
  2588. vfidx, BNX2X_NR_VIRTFN(bp));
  2589. return -EINVAL;
  2590. }
  2591. if (!vf) {
  2592. BNX2X_ERR("vf ndo called but vf was null. vfidx was %d\n",
  2593. vfidx);
  2594. return -EINVAL;
  2595. }
  2596. return 0;
  2597. }
  2598. int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
  2599. struct ifla_vf_info *ivi)
  2600. {
  2601. struct bnx2x *bp = netdev_priv(dev);
  2602. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2603. struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj);
  2604. struct bnx2x_vlan_mac_obj *vlan_obj = &bnx2x_vfq(vf, 0, vlan_obj);
  2605. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2606. int rc;
  2607. /* sanity */
  2608. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2609. if (rc)
  2610. return rc;
  2611. if (!mac_obj || !vlan_obj || !bulletin) {
  2612. BNX2X_ERR("VF partially initialized\n");
  2613. return -EINVAL;
  2614. }
  2615. ivi->vf = vfidx;
  2616. ivi->qos = 0;
  2617. ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */
  2618. ivi->spoofchk = 1; /*always enabled */
  2619. if (vf->state == VF_ENABLED) {
  2620. /* mac and vlan are in vlan_mac objects */
  2621. mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
  2622. 0, ETH_ALEN);
  2623. vlan_obj->get_n_elements(bp, vlan_obj, 1, (u8 *)&ivi->vlan,
  2624. 0, VLAN_HLEN);
  2625. } else {
  2626. /* mac */
  2627. if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
  2628. /* mac configured by ndo so its in bulletin board */
  2629. memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
  2630. else
  2631. /* function has not been loaded yet. Show mac as 0s */
  2632. memset(&ivi->mac, 0, ETH_ALEN);
  2633. /* vlan */
  2634. if (bulletin->valid_bitmap & (1 << VLAN_VALID))
  2635. /* vlan configured by ndo so its in bulletin board */
  2636. memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
  2637. else
  2638. /* function has not been loaded yet. Show vlans as 0s */
  2639. memset(&ivi->vlan, 0, VLAN_HLEN);
  2640. }
  2641. return 0;
  2642. }
  2643. /* New mac for VF. Consider these cases:
  2644. * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
  2645. * supply at acquire.
  2646. * 2. VF has already been acquired but has not yet initialized - store in local
  2647. * bulletin board. mac will be posted on VF bulletin board after VF init. VF
  2648. * will configure this mac when it is ready.
  2649. * 3. VF has already initialized but has not yet setup a queue - post the new
  2650. * mac on VF's bulletin board right now. VF will configure this mac when it
  2651. * is ready.
  2652. * 4. VF has already set a queue - delete any macs already configured for this
  2653. * queue and manually config the new mac.
  2654. * In any event, once this function has been called refuse any attempts by the
  2655. * VF to configure any mac for itself except for this mac. In case of a race
  2656. * where the VF fails to see the new post on its bulletin board before sending a
  2657. * mac configuration request, the PF will simply fail the request and VF can try
  2658. * again after consulting its bulletin board.
  2659. */
  2660. int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
  2661. {
  2662. struct bnx2x *bp = netdev_priv(dev);
  2663. int rc, q_logical_state;
  2664. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2665. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2666. /* sanity */
  2667. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2668. if (rc)
  2669. return rc;
  2670. if (!is_valid_ether_addr(mac)) {
  2671. BNX2X_ERR("mac address invalid\n");
  2672. return -EINVAL;
  2673. }
  2674. /* update PF's copy of the VF's bulletin. Will no longer accept mac
  2675. * configuration requests from vf unless match this mac
  2676. */
  2677. bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
  2678. memcpy(bulletin->mac, mac, ETH_ALEN);
  2679. /* Post update on VF's bulletin board */
  2680. rc = bnx2x_post_vf_bulletin(bp, vfidx);
  2681. if (rc) {
  2682. BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
  2683. return rc;
  2684. }
  2685. /* is vf initialized and queue set up? */
  2686. q_logical_state =
  2687. bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj));
  2688. if (vf->state == VF_ENABLED &&
  2689. q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  2690. /* configure the mac in device on this vf's queue */
  2691. unsigned long ramrod_flags = 0;
  2692. struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj);
  2693. /* must lock vfpf channel to protect against vf flows */
  2694. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
  2695. /* remove existing eth macs */
  2696. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
  2697. if (rc) {
  2698. BNX2X_ERR("failed to delete eth macs\n");
  2699. return -EINVAL;
  2700. }
  2701. /* remove existing uc list macs */
  2702. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
  2703. if (rc) {
  2704. BNX2X_ERR("failed to delete uc_list macs\n");
  2705. return -EINVAL;
  2706. }
  2707. /* configure the new mac to device */
  2708. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2709. bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
  2710. BNX2X_ETH_MAC, &ramrod_flags);
  2711. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
  2712. }
  2713. return 0;
  2714. }
  2715. int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos)
  2716. {
  2717. struct bnx2x *bp = netdev_priv(dev);
  2718. int rc, q_logical_state;
  2719. struct bnx2x_virtf *vf = BP_VF(bp, vfidx);
  2720. struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx);
  2721. /* sanity */
  2722. rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf);
  2723. if (rc)
  2724. return rc;
  2725. if (vlan > 4095) {
  2726. BNX2X_ERR("illegal vlan value %d\n", vlan);
  2727. return -EINVAL;
  2728. }
  2729. DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
  2730. vfidx, vlan, 0);
  2731. /* update PF's copy of the VF's bulletin. No point in posting the vlan
  2732. * to the VF since it doesn't have anything to do with it. But it useful
  2733. * to store it here in case the VF is not up yet and we can only
  2734. * configure the vlan later when it does.
  2735. */
  2736. bulletin->valid_bitmap |= 1 << VLAN_VALID;
  2737. bulletin->vlan = vlan;
  2738. /* is vf initialized and queue set up? */
  2739. q_logical_state =
  2740. bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj));
  2741. if (vf->state == VF_ENABLED &&
  2742. q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
  2743. /* configure the vlan in device on this vf's queue */
  2744. unsigned long ramrod_flags = 0;
  2745. unsigned long vlan_mac_flags = 0;
  2746. struct bnx2x_vlan_mac_obj *vlan_obj =
  2747. &bnx2x_vfq(vf, 0, vlan_obj);
  2748. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  2749. struct bnx2x_queue_state_params q_params = {NULL};
  2750. struct bnx2x_queue_update_params *update_params;
  2751. memset(&ramrod_param, 0, sizeof(ramrod_param));
  2752. /* must lock vfpf channel to protect against vf flows */
  2753. bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
  2754. /* remove existing vlans */
  2755. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2756. rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
  2757. &ramrod_flags);
  2758. if (rc) {
  2759. BNX2X_ERR("failed to delete vlans\n");
  2760. return -EINVAL;
  2761. }
  2762. /* send queue update ramrod to configure default vlan and silent
  2763. * vlan removal
  2764. */
  2765. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  2766. q_params.cmd = BNX2X_Q_CMD_UPDATE;
  2767. q_params.q_obj = &bnx2x_vfq(vf, 0, sp_obj);
  2768. update_params = &q_params.params.update;
  2769. __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
  2770. &update_params->update_flags);
  2771. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
  2772. &update_params->update_flags);
  2773. if (vlan == 0) {
  2774. /* if vlan is 0 then we want to leave the VF traffic
  2775. * untagged, and leave the incoming traffic untouched
  2776. * (i.e. do not remove any vlan tags).
  2777. */
  2778. __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
  2779. &update_params->update_flags);
  2780. __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  2781. &update_params->update_flags);
  2782. } else {
  2783. /* configure the new vlan to device */
  2784. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  2785. ramrod_param.vlan_mac_obj = vlan_obj;
  2786. ramrod_param.ramrod_flags = ramrod_flags;
  2787. ramrod_param.user_req.u.vlan.vlan = vlan;
  2788. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  2789. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  2790. if (rc) {
  2791. BNX2X_ERR("failed to configure vlan\n");
  2792. return -EINVAL;
  2793. }
  2794. /* configure default vlan to vf queue and set silent
  2795. * vlan removal (the vf remains unaware of this vlan).
  2796. */
  2797. update_params = &q_params.params.update;
  2798. __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
  2799. &update_params->update_flags);
  2800. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  2801. &update_params->update_flags);
  2802. update_params->def_vlan = vlan;
  2803. }
  2804. /* Update the Queue state */
  2805. rc = bnx2x_queue_state_change(bp, &q_params);
  2806. if (rc) {
  2807. BNX2X_ERR("Failed to configure default VLAN\n");
  2808. return rc;
  2809. }
  2810. /* clear the flag indicating that this VF needs its vlan
  2811. * (will only be set if the HV configured th Vlan before vf was
  2812. * and we were called because the VF came up later
  2813. */
  2814. vf->cfg_flags &= ~VF_CFG_VLAN;
  2815. bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
  2816. }
  2817. return 0;
  2818. }
  2819. /* crc is the first field in the bulletin board. Compute the crc over the
  2820. * entire bulletin board excluding the crc field itself. Use the length field
  2821. * as the Bulletin Board was posted by a PF with possibly a different version
  2822. * from the vf which will sample it. Therefore, the length is computed by the
  2823. * PF and the used blindly by the VF.
  2824. */
  2825. u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp,
  2826. struct pf_vf_bulletin_content *bulletin)
  2827. {
  2828. return crc32(BULLETIN_CRC_SEED,
  2829. ((u8 *)bulletin) + sizeof(bulletin->crc),
  2830. bulletin->length - sizeof(bulletin->crc));
  2831. }
  2832. /* Check for new posts on the bulletin board */
  2833. enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
  2834. {
  2835. struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content;
  2836. int attempts;
  2837. /* bulletin board hasn't changed since last sample */
  2838. if (bp->old_bulletin.version == bulletin.version)
  2839. return PFVF_BULLETIN_UNCHANGED;
  2840. /* validate crc of new bulletin board */
  2841. if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) {
  2842. /* sampling structure in mid post may result with corrupted data
  2843. * validate crc to ensure coherency.
  2844. */
  2845. for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
  2846. bulletin = bp->pf2vf_bulletin->content;
  2847. if (bulletin.crc == bnx2x_crc_vf_bulletin(bp,
  2848. &bulletin))
  2849. break;
  2850. BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
  2851. bulletin.crc,
  2852. bnx2x_crc_vf_bulletin(bp, &bulletin));
  2853. }
  2854. if (attempts >= BULLETIN_ATTEMPTS) {
  2855. BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
  2856. attempts);
  2857. return PFVF_BULLETIN_CRC_ERR;
  2858. }
  2859. }
  2860. /* the mac address in bulletin board is valid and is new */
  2861. if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID &&
  2862. memcmp(bulletin.mac, bp->old_bulletin.mac, ETH_ALEN)) {
  2863. /* update new mac to net device */
  2864. memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN);
  2865. }
  2866. /* the vlan in bulletin board is valid and is new */
  2867. if (bulletin.valid_bitmap & 1 << VLAN_VALID)
  2868. memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN);
  2869. /* copy new bulletin board to bp */
  2870. bp->old_bulletin = bulletin;
  2871. return PFVF_BULLETIN_UPDATED;
  2872. }
  2873. void bnx2x_timer_sriov(struct bnx2x *bp)
  2874. {
  2875. bnx2x_sample_bulletin(bp);
  2876. /* if channel is down we need to self destruct */
  2877. if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) {
  2878. smp_mb__before_clear_bit();
  2879. set_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
  2880. &bp->sp_rtnl_state);
  2881. smp_mb__after_clear_bit();
  2882. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2883. }
  2884. }
  2885. void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
  2886. {
  2887. /* vf doorbells are embedded within the regview */
  2888. return bp->regview + PXP_VF_ADDR_DB_START;
  2889. }
  2890. int bnx2x_vf_pci_alloc(struct bnx2x *bp)
  2891. {
  2892. mutex_init(&bp->vf2pf_mutex);
  2893. /* allocate vf2pf mailbox for vf to pf channel */
  2894. BNX2X_PCI_ALLOC(bp->vf2pf_mbox, &bp->vf2pf_mbox_mapping,
  2895. sizeof(struct bnx2x_vf_mbx_msg));
  2896. /* allocate pf 2 vf bulletin board */
  2897. BNX2X_PCI_ALLOC(bp->pf2vf_bulletin, &bp->pf2vf_bulletin_mapping,
  2898. sizeof(union pf_vf_bulletin));
  2899. return 0;
  2900. alloc_mem_err:
  2901. BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
  2902. sizeof(struct bnx2x_vf_mbx_msg));
  2903. BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
  2904. sizeof(union pf_vf_bulletin));
  2905. return -ENOMEM;
  2906. }
  2907. int bnx2x_open_epilog(struct bnx2x *bp)
  2908. {
  2909. /* Enable sriov via delayed work. This must be done via delayed work
  2910. * because it causes the probe of the vf devices to be run, which invoke
  2911. * register_netdevice which must have rtnl lock taken. As we are holding
  2912. * the lock right now, that could only work if the probe would not take
  2913. * the lock. However, as the probe of the vf may be called from other
  2914. * contexts as well (such as passthrough to vm fails) it can't assume
  2915. * the lock is being held for it. Using delayed work here allows the
  2916. * probe code to simply take the lock (i.e. wait for it to be released
  2917. * if it is being held). We only want to do this if the number of VFs
  2918. * was set before PF driver was loaded.
  2919. */
  2920. if (IS_SRIOV(bp) && BNX2X_NR_VIRTFN(bp)) {
  2921. smp_mb__before_clear_bit();
  2922. set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state);
  2923. smp_mb__after_clear_bit();
  2924. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2925. }
  2926. return 0;
  2927. }
  2928. void bnx2x_iov_channel_down(struct bnx2x *bp)
  2929. {
  2930. int vf_idx;
  2931. struct pf_vf_bulletin_content *bulletin;
  2932. if (!IS_SRIOV(bp))
  2933. return;
  2934. for_each_vf(bp, vf_idx) {
  2935. /* locate this VFs bulletin board and update the channel down
  2936. * bit
  2937. */
  2938. bulletin = BP_VF_BULLETIN(bp, vf_idx);
  2939. bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
  2940. /* update vf bulletin board */
  2941. bnx2x_post_vf_bulletin(bp, vf_idx);
  2942. }
  2943. }