hw-me.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. /*
  2. *
  3. * Intel Management Engine Interface (Intel MEI) Linux driver
  4. * Copyright (c) 2003-2012, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/pci.h>
  17. #include <linux/kthread.h>
  18. #include <linux/interrupt.h>
  19. #include "mei_dev.h"
  20. #include "hw-me.h"
  21. #include "hbm.h"
  22. /**
  23. * mei_me_reg_read - Reads 32bit data from the mei device
  24. *
  25. * @dev: the device structure
  26. * @offset: offset from which to read the data
  27. *
  28. * returns register value (u32)
  29. */
  30. static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  31. unsigned long offset)
  32. {
  33. return ioread32(hw->mem_addr + offset);
  34. }
  35. /**
  36. * mei_me_reg_write - Writes 32bit data to the mei device
  37. *
  38. * @dev: the device structure
  39. * @offset: offset from which to write the data
  40. * @value: register value to write (u32)
  41. */
  42. static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  43. unsigned long offset, u32 value)
  44. {
  45. iowrite32(value, hw->mem_addr + offset);
  46. }
  47. /**
  48. * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  49. * read window register
  50. *
  51. * @dev: the device structure
  52. *
  53. * returns ME_CB_RW register value (u32)
  54. */
  55. static u32 mei_me_mecbrw_read(const struct mei_device *dev)
  56. {
  57. return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  58. }
  59. /**
  60. * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  61. *
  62. * @dev: the device structure
  63. *
  64. * returns ME_CSR_HA register value (u32)
  65. */
  66. static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
  67. {
  68. return mei_me_reg_read(hw, ME_CSR_HA);
  69. }
  70. /**
  71. * mei_hcsr_read - Reads 32bit data from the host CSR
  72. *
  73. * @dev: the device structure
  74. *
  75. * returns H_CSR register value (u32)
  76. */
  77. static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
  78. {
  79. return mei_me_reg_read(hw, H_CSR);
  80. }
  81. /**
  82. * mei_hcsr_set - writes H_CSR register to the mei device,
  83. * and ignores the H_IS bit for it is write-one-to-zero.
  84. *
  85. * @dev: the device structure
  86. */
  87. static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
  88. {
  89. hcsr &= ~H_IS;
  90. mei_me_reg_write(hw, H_CSR, hcsr);
  91. }
  92. /**
  93. * mei_me_hw_config - configure hw dependent settings
  94. *
  95. * @dev: mei device
  96. */
  97. static void mei_me_hw_config(struct mei_device *dev)
  98. {
  99. u32 hcsr = mei_hcsr_read(to_me_hw(dev));
  100. /* Doesn't change in runtime */
  101. dev->hbuf_depth = (hcsr & H_CBD) >> 24;
  102. }
  103. /**
  104. * mei_clear_interrupts - clear and stop interrupts
  105. *
  106. * @dev: the device structure
  107. */
  108. static void mei_me_intr_clear(struct mei_device *dev)
  109. {
  110. struct mei_me_hw *hw = to_me_hw(dev);
  111. u32 hcsr = mei_hcsr_read(hw);
  112. if ((hcsr & H_IS) == H_IS)
  113. mei_me_reg_write(hw, H_CSR, hcsr);
  114. }
  115. /**
  116. * mei_me_intr_enable - enables mei device interrupts
  117. *
  118. * @dev: the device structure
  119. */
  120. static void mei_me_intr_enable(struct mei_device *dev)
  121. {
  122. struct mei_me_hw *hw = to_me_hw(dev);
  123. u32 hcsr = mei_hcsr_read(hw);
  124. hcsr |= H_IE;
  125. mei_hcsr_set(hw, hcsr);
  126. }
  127. /**
  128. * mei_disable_interrupts - disables mei device interrupts
  129. *
  130. * @dev: the device structure
  131. */
  132. static void mei_me_intr_disable(struct mei_device *dev)
  133. {
  134. struct mei_me_hw *hw = to_me_hw(dev);
  135. u32 hcsr = mei_hcsr_read(hw);
  136. hcsr &= ~H_IE;
  137. mei_hcsr_set(hw, hcsr);
  138. }
  139. /**
  140. * mei_me_hw_reset_release - release device from the reset
  141. *
  142. * @dev: the device structure
  143. */
  144. static void mei_me_hw_reset_release(struct mei_device *dev)
  145. {
  146. struct mei_me_hw *hw = to_me_hw(dev);
  147. u32 hcsr = mei_hcsr_read(hw);
  148. hcsr |= H_IG;
  149. hcsr &= ~H_RST;
  150. mei_hcsr_set(hw, hcsr);
  151. }
  152. /**
  153. * mei_me_hw_reset - resets fw via mei csr register.
  154. *
  155. * @dev: the device structure
  156. * @intr_enable: if interrupt should be enabled after reset.
  157. */
  158. static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
  159. {
  160. struct mei_me_hw *hw = to_me_hw(dev);
  161. u32 hcsr = mei_hcsr_read(hw);
  162. dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
  163. hcsr |= (H_RST | H_IG);
  164. if (intr_enable)
  165. hcsr |= H_IE;
  166. else
  167. hcsr |= ~H_IE;
  168. mei_hcsr_set(hw, hcsr);
  169. if (dev->dev_state == MEI_DEV_POWER_DOWN)
  170. mei_me_hw_reset_release(dev);
  171. dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
  172. return 0;
  173. }
  174. /**
  175. * mei_me_host_set_ready - enable device
  176. *
  177. * @dev - mei device
  178. * returns bool
  179. */
  180. static void mei_me_host_set_ready(struct mei_device *dev)
  181. {
  182. struct mei_me_hw *hw = to_me_hw(dev);
  183. hw->host_hw_state |= H_IE | H_IG | H_RDY;
  184. mei_hcsr_set(hw, hw->host_hw_state);
  185. }
  186. /**
  187. * mei_me_host_is_ready - check whether the host has turned ready
  188. *
  189. * @dev - mei device
  190. * returns bool
  191. */
  192. static bool mei_me_host_is_ready(struct mei_device *dev)
  193. {
  194. struct mei_me_hw *hw = to_me_hw(dev);
  195. hw->host_hw_state = mei_hcsr_read(hw);
  196. return (hw->host_hw_state & H_RDY) == H_RDY;
  197. }
  198. /**
  199. * mei_me_hw_is_ready - check whether the me(hw) has turned ready
  200. *
  201. * @dev - mei device
  202. * returns bool
  203. */
  204. static bool mei_me_hw_is_ready(struct mei_device *dev)
  205. {
  206. struct mei_me_hw *hw = to_me_hw(dev);
  207. hw->me_hw_state = mei_me_mecsr_read(hw);
  208. return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
  209. }
  210. static int mei_me_hw_ready_wait(struct mei_device *dev)
  211. {
  212. int err;
  213. if (mei_me_hw_is_ready(dev))
  214. return 0;
  215. mutex_unlock(&dev->device_lock);
  216. err = wait_event_interruptible_timeout(dev->wait_hw_ready,
  217. dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT);
  218. mutex_lock(&dev->device_lock);
  219. if (!err && !dev->recvd_hw_ready) {
  220. dev_err(&dev->pdev->dev,
  221. "wait hw ready failed. status = 0x%x\n", err);
  222. return -ETIMEDOUT;
  223. }
  224. dev->recvd_hw_ready = false;
  225. return 0;
  226. }
  227. static int mei_me_hw_start(struct mei_device *dev)
  228. {
  229. int ret = mei_me_hw_ready_wait(dev);
  230. if (ret)
  231. return ret;
  232. dev_dbg(&dev->pdev->dev, "hw is ready\n");
  233. mei_me_host_set_ready(dev);
  234. return ret;
  235. }
  236. /**
  237. * mei_hbuf_filled_slots - gets number of device filled buffer slots
  238. *
  239. * @dev: the device structure
  240. *
  241. * returns number of filled slots
  242. */
  243. static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
  244. {
  245. struct mei_me_hw *hw = to_me_hw(dev);
  246. char read_ptr, write_ptr;
  247. hw->host_hw_state = mei_hcsr_read(hw);
  248. read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
  249. write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
  250. return (unsigned char) (write_ptr - read_ptr);
  251. }
  252. /**
  253. * mei_me_hbuf_is_empty - checks if host buffer is empty.
  254. *
  255. * @dev: the device structure
  256. *
  257. * returns true if empty, false - otherwise.
  258. */
  259. static bool mei_me_hbuf_is_empty(struct mei_device *dev)
  260. {
  261. return mei_hbuf_filled_slots(dev) == 0;
  262. }
  263. /**
  264. * mei_me_hbuf_empty_slots - counts write empty slots.
  265. *
  266. * @dev: the device structure
  267. *
  268. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
  269. */
  270. static int mei_me_hbuf_empty_slots(struct mei_device *dev)
  271. {
  272. unsigned char filled_slots, empty_slots;
  273. filled_slots = mei_hbuf_filled_slots(dev);
  274. empty_slots = dev->hbuf_depth - filled_slots;
  275. /* check for overflow */
  276. if (filled_slots > dev->hbuf_depth)
  277. return -EOVERFLOW;
  278. return empty_slots;
  279. }
  280. static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
  281. {
  282. return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
  283. }
  284. /**
  285. * mei_write_message - writes a message to mei device.
  286. *
  287. * @dev: the device structure
  288. * @header: mei HECI header of message
  289. * @buf: message payload will be written
  290. *
  291. * This function returns -EIO if write has failed
  292. */
  293. static int mei_me_write_message(struct mei_device *dev,
  294. struct mei_msg_hdr *header,
  295. unsigned char *buf)
  296. {
  297. struct mei_me_hw *hw = to_me_hw(dev);
  298. unsigned long rem;
  299. unsigned long length = header->length;
  300. u32 *reg_buf = (u32 *)buf;
  301. u32 hcsr;
  302. u32 dw_cnt;
  303. int i;
  304. int empty_slots;
  305. dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
  306. empty_slots = mei_hbuf_empty_slots(dev);
  307. dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
  308. dw_cnt = mei_data2slots(length);
  309. if (empty_slots < 0 || dw_cnt > empty_slots)
  310. return -EIO;
  311. mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
  312. for (i = 0; i < length / 4; i++)
  313. mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
  314. rem = length & 0x3;
  315. if (rem > 0) {
  316. u32 reg = 0;
  317. memcpy(&reg, &buf[length - rem], rem);
  318. mei_me_reg_write(hw, H_CB_WW, reg);
  319. }
  320. hcsr = mei_hcsr_read(hw) | H_IG;
  321. mei_hcsr_set(hw, hcsr);
  322. if (!mei_me_hw_is_ready(dev))
  323. return -EIO;
  324. return 0;
  325. }
  326. /**
  327. * mei_me_count_full_read_slots - counts read full slots.
  328. *
  329. * @dev: the device structure
  330. *
  331. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
  332. */
  333. static int mei_me_count_full_read_slots(struct mei_device *dev)
  334. {
  335. struct mei_me_hw *hw = to_me_hw(dev);
  336. char read_ptr, write_ptr;
  337. unsigned char buffer_depth, filled_slots;
  338. hw->me_hw_state = mei_me_mecsr_read(hw);
  339. buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
  340. read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
  341. write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
  342. filled_slots = (unsigned char) (write_ptr - read_ptr);
  343. /* check for overflow */
  344. if (filled_slots > buffer_depth)
  345. return -EOVERFLOW;
  346. dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
  347. return (int)filled_slots;
  348. }
  349. /**
  350. * mei_me_read_slots - reads a message from mei device.
  351. *
  352. * @dev: the device structure
  353. * @buffer: message buffer will be written
  354. * @buffer_length: message size will be read
  355. */
  356. static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
  357. unsigned long buffer_length)
  358. {
  359. struct mei_me_hw *hw = to_me_hw(dev);
  360. u32 *reg_buf = (u32 *)buffer;
  361. u32 hcsr;
  362. for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
  363. *reg_buf++ = mei_me_mecbrw_read(dev);
  364. if (buffer_length > 0) {
  365. u32 reg = mei_me_mecbrw_read(dev);
  366. memcpy(reg_buf, &reg, buffer_length);
  367. }
  368. hcsr = mei_hcsr_read(hw) | H_IG;
  369. mei_hcsr_set(hw, hcsr);
  370. return 0;
  371. }
  372. /**
  373. * mei_me_irq_quick_handler - The ISR of the MEI device
  374. *
  375. * @irq: The irq number
  376. * @dev_id: pointer to the device structure
  377. *
  378. * returns irqreturn_t
  379. */
  380. irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
  381. {
  382. struct mei_device *dev = (struct mei_device *) dev_id;
  383. struct mei_me_hw *hw = to_me_hw(dev);
  384. u32 csr_reg = mei_hcsr_read(hw);
  385. if ((csr_reg & H_IS) != H_IS)
  386. return IRQ_NONE;
  387. /* clear H_IS bit in H_CSR */
  388. mei_me_reg_write(hw, H_CSR, csr_reg);
  389. return IRQ_WAKE_THREAD;
  390. }
  391. /**
  392. * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
  393. * processing.
  394. *
  395. * @irq: The irq number
  396. * @dev_id: pointer to the device structure
  397. *
  398. * returns irqreturn_t
  399. *
  400. */
  401. irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
  402. {
  403. struct mei_device *dev = (struct mei_device *) dev_id;
  404. struct mei_cl_cb complete_list;
  405. s32 slots;
  406. int rets;
  407. dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
  408. /* initialize our complete list */
  409. mutex_lock(&dev->device_lock);
  410. mei_io_list_init(&complete_list);
  411. /* Ack the interrupt here
  412. * In case of MSI we don't go through the quick handler */
  413. if (pci_dev_msi_enabled(dev->pdev))
  414. mei_clear_interrupts(dev);
  415. /* check if ME wants a reset */
  416. if (!mei_hw_is_ready(dev) &&
  417. dev->dev_state != MEI_DEV_RESETTING &&
  418. dev->dev_state != MEI_DEV_INITIALIZING) {
  419. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  420. mei_reset(dev, 1);
  421. mutex_unlock(&dev->device_lock);
  422. return IRQ_HANDLED;
  423. }
  424. /* check if we need to start the dev */
  425. if (!mei_host_is_ready(dev)) {
  426. if (mei_hw_is_ready(dev)) {
  427. dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
  428. dev->recvd_hw_ready = true;
  429. wake_up_interruptible(&dev->wait_hw_ready);
  430. mutex_unlock(&dev->device_lock);
  431. return IRQ_HANDLED;
  432. } else {
  433. dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
  434. mei_me_hw_reset_release(dev);
  435. mutex_unlock(&dev->device_lock);
  436. return IRQ_HANDLED;
  437. }
  438. }
  439. /* check slots available for reading */
  440. slots = mei_count_full_read_slots(dev);
  441. while (slots > 0) {
  442. /* we have urgent data to send so break the read */
  443. if (dev->wr_ext_msg.hdr.length)
  444. break;
  445. dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
  446. dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
  447. rets = mei_irq_read_handler(dev, &complete_list, &slots);
  448. if (rets)
  449. goto end;
  450. }
  451. rets = mei_irq_write_handler(dev, &complete_list);
  452. end:
  453. dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
  454. dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
  455. mutex_unlock(&dev->device_lock);
  456. mei_irq_compl_handler(dev, &complete_list);
  457. return IRQ_HANDLED;
  458. }
  459. static const struct mei_hw_ops mei_me_hw_ops = {
  460. .host_is_ready = mei_me_host_is_ready,
  461. .hw_is_ready = mei_me_hw_is_ready,
  462. .hw_reset = mei_me_hw_reset,
  463. .hw_config = mei_me_hw_config,
  464. .hw_start = mei_me_hw_start,
  465. .intr_clear = mei_me_intr_clear,
  466. .intr_enable = mei_me_intr_enable,
  467. .intr_disable = mei_me_intr_disable,
  468. .hbuf_free_slots = mei_me_hbuf_empty_slots,
  469. .hbuf_is_ready = mei_me_hbuf_is_empty,
  470. .hbuf_max_len = mei_me_hbuf_max_len,
  471. .write = mei_me_write_message,
  472. .rdbuf_full_slots = mei_me_count_full_read_slots,
  473. .read_hdr = mei_me_mecbrw_read,
  474. .read = mei_me_read_slots
  475. };
  476. /**
  477. * mei_me_dev_init - allocates and initializes the mei device structure
  478. *
  479. * @pdev: The pci device structure
  480. *
  481. * returns The mei_device_device pointer on success, NULL on failure.
  482. */
  483. struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
  484. {
  485. struct mei_device *dev;
  486. dev = kzalloc(sizeof(struct mei_device) +
  487. sizeof(struct mei_me_hw), GFP_KERNEL);
  488. if (!dev)
  489. return NULL;
  490. mei_device_init(dev);
  491. dev->ops = &mei_me_hw_ops;
  492. dev->pdev = pdev;
  493. return dev;
  494. }