nx.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. /**
  2. * Routines supporting the Power 7+ Nest Accelerators driver
  3. *
  4. * Copyright (C) 2011-2012 International Business Machines Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 only.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. *
  19. * Author: Kent Yoder <yoder1@us.ibm.com>
  20. */
  21. #include <crypto/internal/hash.h>
  22. #include <crypto/hash.h>
  23. #include <crypto/aes.h>
  24. #include <crypto/sha.h>
  25. #include <crypto/algapi.h>
  26. #include <crypto/scatterwalk.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/types.h>
  30. #include <linux/mm.h>
  31. #include <linux/crypto.h>
  32. #include <linux/scatterlist.h>
  33. #include <linux/device.h>
  34. #include <linux/of.h>
  35. #include <asm/hvcall.h>
  36. #include <asm/vio.h>
  37. #include "nx_csbcpb.h"
  38. #include "nx.h"
  39. /**
  40. * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
  41. *
  42. * @nx_ctx: the crypto context handle
  43. * @op: PFO operation struct to pass in
  44. * @may_sleep: flag indicating the request can sleep
  45. *
  46. * Make the hcall, retrying while the hardware is busy. If we cannot yield
  47. * the thread, limit the number of retries to 10 here.
  48. */
  49. int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
  50. struct vio_pfo_op *op,
  51. u32 may_sleep)
  52. {
  53. int rc, retries = 10;
  54. struct vio_dev *viodev = nx_driver.viodev;
  55. atomic_inc(&(nx_ctx->stats->sync_ops));
  56. do {
  57. rc = vio_h_cop_sync(viodev, op);
  58. } while ((rc == -EBUSY && !may_sleep && retries--) ||
  59. (rc == -EBUSY && may_sleep && cond_resched()));
  60. if (rc) {
  61. dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
  62. "hcall rc: %ld\n", rc, op->hcall_err);
  63. atomic_inc(&(nx_ctx->stats->errors));
  64. atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
  65. atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
  66. }
  67. return rc;
  68. }
  69. /**
  70. * nx_build_sg_list - build an NX scatter list describing a single buffer
  71. *
  72. * @sg_head: pointer to the first scatter list element to build
  73. * @start_addr: pointer to the linear buffer
  74. * @len: length of the data at @start_addr
  75. * @sgmax: the largest number of scatter list elements we're allowed to create
  76. *
  77. * This function will start writing nx_sg elements at @sg_head and keep
  78. * writing them until all of the data from @start_addr is described or
  79. * until sgmax elements have been written. Scatter list elements will be
  80. * created such that none of the elements describes a buffer that crosses a 4K
  81. * boundary.
  82. */
  83. struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
  84. u8 *start_addr,
  85. unsigned int len,
  86. u32 sgmax)
  87. {
  88. unsigned int sg_len = 0;
  89. struct nx_sg *sg;
  90. u64 sg_addr = (u64)start_addr;
  91. u64 end_addr;
  92. /* determine the start and end for this address range - slightly
  93. * different if this is in VMALLOC_REGION */
  94. if (is_vmalloc_addr(start_addr))
  95. sg_addr = page_to_phys(vmalloc_to_page(start_addr))
  96. + offset_in_page(sg_addr);
  97. else
  98. sg_addr = __pa(sg_addr);
  99. end_addr = sg_addr + len;
  100. /* each iteration will write one struct nx_sg element and add the
  101. * length of data described by that element to sg_len. Once @len bytes
  102. * have been described (or @sgmax elements have been written), the
  103. * loop ends. min_t is used to ensure @end_addr falls on the same page
  104. * as sg_addr, if not, we need to create another nx_sg element for the
  105. * data on the next page */
  106. for (sg = sg_head; sg_len < len; sg++) {
  107. sg->addr = sg_addr;
  108. sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr);
  109. sg->len = sg_addr - sg->addr;
  110. sg_len += sg->len;
  111. if ((sg - sg_head) == sgmax) {
  112. pr_err("nx: scatter/gather list overflow, pid: %d\n",
  113. current->pid);
  114. return NULL;
  115. }
  116. }
  117. /* return the moved sg_head pointer */
  118. return sg;
  119. }
  120. /**
  121. * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
  122. *
  123. * @nx_dst: pointer to the first nx_sg element to write
  124. * @sglen: max number of nx_sg entries we're allowed to write
  125. * @sg_src: pointer to the source linux scatterlist to walk
  126. * @start: number of bytes to fast-forward past at the beginning of @sg_src
  127. * @src_len: number of bytes to walk in @sg_src
  128. */
  129. struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
  130. unsigned int sglen,
  131. struct scatterlist *sg_src,
  132. unsigned int start,
  133. unsigned int src_len)
  134. {
  135. struct scatter_walk walk;
  136. struct nx_sg *nx_sg = nx_dst;
  137. unsigned int n, offset = 0, len = src_len;
  138. char *dst;
  139. /* we need to fast forward through @start bytes first */
  140. for (;;) {
  141. scatterwalk_start(&walk, sg_src);
  142. if (start < offset + sg_src->length)
  143. break;
  144. offset += sg_src->length;
  145. sg_src = scatterwalk_sg_next(sg_src);
  146. }
  147. /* start - offset is the number of bytes to advance in the scatterlist
  148. * element we're currently looking at */
  149. scatterwalk_advance(&walk, start - offset);
  150. while (len && nx_sg) {
  151. n = scatterwalk_clamp(&walk, len);
  152. if (!n) {
  153. scatterwalk_start(&walk, sg_next(walk.sg));
  154. n = scatterwalk_clamp(&walk, len);
  155. }
  156. dst = scatterwalk_map(&walk);
  157. nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen);
  158. len -= n;
  159. scatterwalk_unmap(dst);
  160. scatterwalk_advance(&walk, n);
  161. scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
  162. }
  163. /* return the moved destination pointer */
  164. return nx_sg;
  165. }
  166. /**
  167. * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
  168. * scatterlists based on them.
  169. *
  170. * @nx_ctx: NX crypto context for the lists we're building
  171. * @desc: the block cipher descriptor for the operation
  172. * @dst: destination scatterlist
  173. * @src: source scatterlist
  174. * @nbytes: length of data described in the scatterlists
  175. * @iv: destination for the iv data, if the algorithm requires it
  176. *
  177. * This is common code shared by all the AES algorithms. It uses the block
  178. * cipher walk routines to traverse input and output scatterlists, building
  179. * corresponding NX scatterlists
  180. */
  181. int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
  182. struct blkcipher_desc *desc,
  183. struct scatterlist *dst,
  184. struct scatterlist *src,
  185. unsigned int nbytes,
  186. u8 *iv)
  187. {
  188. struct nx_sg *nx_insg = nx_ctx->in_sg;
  189. struct nx_sg *nx_outsg = nx_ctx->out_sg;
  190. if (iv)
  191. memcpy(iv, desc->info, AES_BLOCK_SIZE);
  192. nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src, 0, nbytes);
  193. nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst, 0, nbytes);
  194. /* these lengths should be negative, which will indicate to phyp that
  195. * the input and output parameters are scatterlists, not linear
  196. * buffers */
  197. nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg);
  198. nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg);
  199. return 0;
  200. }
  201. /**
  202. * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
  203. *
  204. * @nx_ctx: the nx context to initialize
  205. * @function: the function code for the op
  206. */
  207. void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
  208. {
  209. memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
  210. nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
  211. nx_ctx->op.flags = function;
  212. nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
  213. nx_ctx->op.in = __pa(nx_ctx->in_sg);
  214. nx_ctx->op.out = __pa(nx_ctx->out_sg);
  215. if (nx_ctx->csbcpb_aead) {
  216. nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
  217. nx_ctx->op_aead.flags = function;
  218. nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
  219. nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
  220. nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
  221. }
  222. }
  223. static void nx_of_update_status(struct device *dev,
  224. struct property *p,
  225. struct nx_of *props)
  226. {
  227. if (!strncmp(p->value, "okay", p->length)) {
  228. props->status = NX_WAITING;
  229. props->flags |= NX_OF_FLAG_STATUS_SET;
  230. } else {
  231. dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
  232. (char *)p->value);
  233. }
  234. }
  235. static void nx_of_update_sglen(struct device *dev,
  236. struct property *p,
  237. struct nx_of *props)
  238. {
  239. if (p->length != sizeof(props->max_sg_len)) {
  240. dev_err(dev, "%s: unexpected format for "
  241. "ibm,max-sg-len property\n", __func__);
  242. dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
  243. "long, expected %zd bytes\n", __func__,
  244. p->length, sizeof(props->max_sg_len));
  245. return;
  246. }
  247. props->max_sg_len = *(u32 *)p->value;
  248. props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
  249. }
  250. static void nx_of_update_msc(struct device *dev,
  251. struct property *p,
  252. struct nx_of *props)
  253. {
  254. struct msc_triplet *trip;
  255. struct max_sync_cop *msc;
  256. unsigned int bytes_so_far, i, lenp;
  257. msc = (struct max_sync_cop *)p->value;
  258. lenp = p->length;
  259. /* You can't tell if the data read in for this property is sane by its
  260. * size alone. This is because there are sizes embedded in the data
  261. * structure. The best we can do is check lengths as we parse and bail
  262. * as soon as a length error is detected. */
  263. bytes_so_far = 0;
  264. while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
  265. bytes_so_far += sizeof(struct max_sync_cop);
  266. trip = msc->trip;
  267. for (i = 0;
  268. ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
  269. i < msc->triplets;
  270. i++) {
  271. if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
  272. dev_err(dev, "unknown function code/mode "
  273. "combo: %d/%d (ignored)\n", msc->fc,
  274. msc->mode);
  275. goto next_loop;
  276. }
  277. switch (trip->keybitlen) {
  278. case 128:
  279. case 160:
  280. props->ap[msc->fc][msc->mode][0].databytelen =
  281. trip->databytelen;
  282. props->ap[msc->fc][msc->mode][0].sglen =
  283. trip->sglen;
  284. break;
  285. case 192:
  286. props->ap[msc->fc][msc->mode][1].databytelen =
  287. trip->databytelen;
  288. props->ap[msc->fc][msc->mode][1].sglen =
  289. trip->sglen;
  290. break;
  291. case 256:
  292. if (msc->fc == NX_FC_AES) {
  293. props->ap[msc->fc][msc->mode][2].
  294. databytelen = trip->databytelen;
  295. props->ap[msc->fc][msc->mode][2].sglen =
  296. trip->sglen;
  297. } else if (msc->fc == NX_FC_AES_HMAC ||
  298. msc->fc == NX_FC_SHA) {
  299. props->ap[msc->fc][msc->mode][1].
  300. databytelen = trip->databytelen;
  301. props->ap[msc->fc][msc->mode][1].sglen =
  302. trip->sglen;
  303. } else {
  304. dev_warn(dev, "unknown function "
  305. "code/key bit len combo"
  306. ": (%u/256)\n", msc->fc);
  307. }
  308. break;
  309. case 512:
  310. props->ap[msc->fc][msc->mode][2].databytelen =
  311. trip->databytelen;
  312. props->ap[msc->fc][msc->mode][2].sglen =
  313. trip->sglen;
  314. break;
  315. default:
  316. dev_warn(dev, "unknown function code/key bit "
  317. "len combo: (%u/%u)\n", msc->fc,
  318. trip->keybitlen);
  319. break;
  320. }
  321. next_loop:
  322. bytes_so_far += sizeof(struct msc_triplet);
  323. trip++;
  324. }
  325. msc = (struct max_sync_cop *)trip;
  326. }
  327. props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
  328. }
  329. /**
  330. * nx_of_init - read openFirmware values from the device tree
  331. *
  332. * @dev: device handle
  333. * @props: pointer to struct to hold the properties values
  334. *
  335. * Called once at driver probe time, this function will read out the
  336. * openFirmware properties we use at runtime. If all the OF properties are
  337. * acceptable, when we exit this function props->flags will indicate that
  338. * we're ready to register our crypto algorithms.
  339. */
  340. static void nx_of_init(struct device *dev, struct nx_of *props)
  341. {
  342. struct device_node *base_node = dev->of_node;
  343. struct property *p;
  344. p = of_find_property(base_node, "status", NULL);
  345. if (!p)
  346. dev_info(dev, "%s: property 'status' not found\n", __func__);
  347. else
  348. nx_of_update_status(dev, p, props);
  349. p = of_find_property(base_node, "ibm,max-sg-len", NULL);
  350. if (!p)
  351. dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
  352. __func__);
  353. else
  354. nx_of_update_sglen(dev, p, props);
  355. p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
  356. if (!p)
  357. dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
  358. __func__);
  359. else
  360. nx_of_update_msc(dev, p, props);
  361. }
  362. /**
  363. * nx_register_algs - register algorithms with the crypto API
  364. *
  365. * Called from nx_probe()
  366. *
  367. * If all OF properties are in an acceptable state, the driver flags will
  368. * indicate that we're ready and we'll create our debugfs files and register
  369. * out crypto algorithms.
  370. */
  371. static int nx_register_algs(void)
  372. {
  373. int rc = -1;
  374. if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
  375. goto out;
  376. memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
  377. rc = NX_DEBUGFS_INIT(&nx_driver);
  378. if (rc)
  379. goto out;
  380. nx_driver.of.status = NX_OKAY;
  381. rc = crypto_register_alg(&nx_ecb_aes_alg);
  382. if (rc)
  383. goto out;
  384. rc = crypto_register_alg(&nx_cbc_aes_alg);
  385. if (rc)
  386. goto out_unreg_ecb;
  387. rc = crypto_register_alg(&nx_ctr_aes_alg);
  388. if (rc)
  389. goto out_unreg_cbc;
  390. rc = crypto_register_alg(&nx_ctr3686_aes_alg);
  391. if (rc)
  392. goto out_unreg_ctr;
  393. rc = crypto_register_alg(&nx_gcm_aes_alg);
  394. if (rc)
  395. goto out_unreg_ctr3686;
  396. rc = crypto_register_alg(&nx_gcm4106_aes_alg);
  397. if (rc)
  398. goto out_unreg_gcm;
  399. rc = crypto_register_alg(&nx_ccm_aes_alg);
  400. if (rc)
  401. goto out_unreg_gcm4106;
  402. rc = crypto_register_alg(&nx_ccm4309_aes_alg);
  403. if (rc)
  404. goto out_unreg_ccm;
  405. rc = crypto_register_shash(&nx_shash_sha256_alg);
  406. if (rc)
  407. goto out_unreg_ccm4309;
  408. rc = crypto_register_shash(&nx_shash_sha512_alg);
  409. if (rc)
  410. goto out_unreg_s256;
  411. rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
  412. if (rc)
  413. goto out_unreg_s512;
  414. goto out;
  415. out_unreg_s512:
  416. crypto_unregister_shash(&nx_shash_sha512_alg);
  417. out_unreg_s256:
  418. crypto_unregister_shash(&nx_shash_sha256_alg);
  419. out_unreg_ccm4309:
  420. crypto_unregister_alg(&nx_ccm4309_aes_alg);
  421. out_unreg_ccm:
  422. crypto_unregister_alg(&nx_ccm_aes_alg);
  423. out_unreg_gcm4106:
  424. crypto_unregister_alg(&nx_gcm4106_aes_alg);
  425. out_unreg_gcm:
  426. crypto_unregister_alg(&nx_gcm_aes_alg);
  427. out_unreg_ctr3686:
  428. crypto_unregister_alg(&nx_ctr3686_aes_alg);
  429. out_unreg_ctr:
  430. crypto_unregister_alg(&nx_ctr_aes_alg);
  431. out_unreg_cbc:
  432. crypto_unregister_alg(&nx_cbc_aes_alg);
  433. out_unreg_ecb:
  434. crypto_unregister_alg(&nx_ecb_aes_alg);
  435. out:
  436. return rc;
  437. }
  438. /**
  439. * nx_crypto_ctx_init - create and initialize a crypto api context
  440. *
  441. * @nx_ctx: the crypto api context
  442. * @fc: function code for the context
  443. * @mode: the function code specific mode for this context
  444. */
  445. static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
  446. {
  447. if (nx_driver.of.status != NX_OKAY) {
  448. pr_err("Attempt to initialize NX crypto context while device "
  449. "is not available!\n");
  450. return -ENODEV;
  451. }
  452. /* we need an extra page for csbcpb_aead for these modes */
  453. if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
  454. nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
  455. sizeof(struct nx_csbcpb);
  456. else
  457. nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) +
  458. sizeof(struct nx_csbcpb);
  459. nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
  460. if (!nx_ctx->kmem)
  461. return -ENOMEM;
  462. /* the csbcpb and scatterlists must be 4K aligned pages */
  463. nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
  464. (u64)NX_PAGE_SIZE));
  465. nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
  466. nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
  467. if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
  468. nx_ctx->csbcpb_aead =
  469. (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
  470. NX_PAGE_SIZE);
  471. /* give each context a pointer to global stats and their OF
  472. * properties */
  473. nx_ctx->stats = &nx_driver.stats;
  474. memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
  475. sizeof(struct alg_props) * 3);
  476. return 0;
  477. }
  478. /* entry points from the crypto tfm initializers */
  479. int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
  480. {
  481. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  482. NX_MODE_AES_CCM);
  483. }
  484. int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
  485. {
  486. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  487. NX_MODE_AES_GCM);
  488. }
  489. int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
  490. {
  491. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  492. NX_MODE_AES_CTR);
  493. }
  494. int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
  495. {
  496. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  497. NX_MODE_AES_CBC);
  498. }
  499. int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
  500. {
  501. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  502. NX_MODE_AES_ECB);
  503. }
  504. int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
  505. {
  506. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
  507. }
  508. int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
  509. {
  510. return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
  511. NX_MODE_AES_XCBC_MAC);
  512. }
  513. /**
  514. * nx_crypto_ctx_exit - destroy a crypto api context
  515. *
  516. * @tfm: the crypto transform pointer for the context
  517. *
  518. * As crypto API contexts are destroyed, this exit hook is called to free the
  519. * memory associated with it.
  520. */
  521. void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
  522. {
  523. struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
  524. kzfree(nx_ctx->kmem);
  525. nx_ctx->csbcpb = NULL;
  526. nx_ctx->csbcpb_aead = NULL;
  527. nx_ctx->in_sg = NULL;
  528. nx_ctx->out_sg = NULL;
  529. }
  530. static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
  531. {
  532. dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
  533. viodev->name, viodev->resource_id);
  534. if (nx_driver.viodev) {
  535. dev_err(&viodev->dev, "%s: Attempt to register more than one "
  536. "instance of the hardware\n", __func__);
  537. return -EINVAL;
  538. }
  539. nx_driver.viodev = viodev;
  540. nx_of_init(&viodev->dev, &nx_driver.of);
  541. return nx_register_algs();
  542. }
  543. static int nx_remove(struct vio_dev *viodev)
  544. {
  545. dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
  546. viodev->unit_address);
  547. if (nx_driver.of.status == NX_OKAY) {
  548. NX_DEBUGFS_FINI(&nx_driver);
  549. crypto_unregister_alg(&nx_ccm_aes_alg);
  550. crypto_unregister_alg(&nx_ccm4309_aes_alg);
  551. crypto_unregister_alg(&nx_gcm_aes_alg);
  552. crypto_unregister_alg(&nx_gcm4106_aes_alg);
  553. crypto_unregister_alg(&nx_ctr_aes_alg);
  554. crypto_unregister_alg(&nx_ctr3686_aes_alg);
  555. crypto_unregister_alg(&nx_cbc_aes_alg);
  556. crypto_unregister_alg(&nx_ecb_aes_alg);
  557. crypto_unregister_shash(&nx_shash_sha256_alg);
  558. crypto_unregister_shash(&nx_shash_sha512_alg);
  559. crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
  560. }
  561. return 0;
  562. }
  563. /* module wide initialization/cleanup */
  564. static int __init nx_init(void)
  565. {
  566. return vio_register_driver(&nx_driver.viodriver);
  567. }
  568. static void __exit nx_fini(void)
  569. {
  570. vio_unregister_driver(&nx_driver.viodriver);
  571. }
  572. static struct vio_device_id nx_crypto_driver_ids[] = {
  573. { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
  574. { "", "" }
  575. };
  576. MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
  577. /* driver state structure */
  578. struct nx_crypto_driver nx_driver = {
  579. .viodriver = {
  580. .id_table = nx_crypto_driver_ids,
  581. .probe = nx_probe,
  582. .remove = nx_remove,
  583. .name = NX_NAME,
  584. },
  585. };
  586. module_init(nx_init);
  587. module_exit(nx_fini);
  588. MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
  589. MODULE_DESCRIPTION(NX_STRING);
  590. MODULE_LICENSE("GPL");
  591. MODULE_VERSION(NX_VERSION);