perf_counter.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
  6. *
  7. * For licencing details see kernel-base/COPYING
  8. */
  9. #include <linux/perf_counter.h>
  10. #include <linux/capability.h>
  11. #include <linux/notifier.h>
  12. #include <linux/hardirq.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/module.h>
  15. #include <linux/kdebug.h>
  16. #include <linux/sched.h>
  17. #include <asm/intel_arch_perfmon.h>
  18. #include <asm/apic.h>
  19. static bool perf_counters_initialized __read_mostly;
  20. /*
  21. * Number of (generic) HW counters:
  22. */
  23. static int nr_hw_counters __read_mostly;
  24. static u32 perf_counter_mask __read_mostly;
  25. /* No support for fixed function counters yet */
  26. #define MAX_HW_COUNTERS 8
  27. struct cpu_hw_counters {
  28. struct perf_counter *counters[MAX_HW_COUNTERS];
  29. unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)];
  30. };
  31. /*
  32. * Intel PerfMon v3. Used on Core2 and later.
  33. */
  34. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
  35. const int intel_perfmon_event_map[] =
  36. {
  37. [PERF_COUNT_CYCLES] = 0x003c,
  38. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  39. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  40. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  41. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  42. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  43. };
  44. const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map);
  45. /*
  46. * Setup the hardware configuration for a given hw_event_type
  47. */
  48. int hw_perf_counter_init(struct perf_counter *counter)
  49. {
  50. struct hw_perf_counter *hwc = &counter->hw;
  51. u32 hw_event_type = counter->event.hw_event_type;
  52. if (unlikely(!perf_counters_initialized))
  53. return -EINVAL;
  54. /*
  55. * Count user events, and generate PMC IRQs:
  56. * (keep 'enabled' bit clear for now)
  57. */
  58. hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT;
  59. /*
  60. * If privileged enough, count OS events too, and allow
  61. * NMI events as well:
  62. */
  63. hwc->nmi = 0;
  64. if (capable(CAP_SYS_ADMIN)) {
  65. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  66. if (hw_event_type & PERF_COUNT_NMI)
  67. hwc->nmi = 1;
  68. }
  69. hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0;
  70. hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0;
  71. hwc->irq_period = counter->event.hw_event_period;
  72. /*
  73. * Intel PMCs cannot be accessed sanely above 32 bit width,
  74. * so we install an artificial 1<<31 period regardless of
  75. * the generic counter period:
  76. */
  77. if (!hwc->irq_period)
  78. hwc->irq_period = 0x7FFFFFFF;
  79. hwc->next_count = -((s32) hwc->irq_period);
  80. /*
  81. * Raw event type provide the config in the event structure
  82. */
  83. hw_event_type &= ~PERF_COUNT_NMI;
  84. if (hw_event_type == PERF_COUNT_RAW) {
  85. hwc->config |= counter->event.hw_raw_ctrl;
  86. } else {
  87. if (hw_event_type >= max_intel_perfmon_events)
  88. return -EINVAL;
  89. /*
  90. * The generic map:
  91. */
  92. hwc->config |= intel_perfmon_event_map[hw_event_type];
  93. }
  94. counter->wakeup_pending = 0;
  95. return 0;
  96. }
  97. void hw_perf_enable_all(void)
  98. {
  99. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0);
  100. }
  101. void hw_perf_restore_ctrl(u64 ctrl)
  102. {
  103. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0);
  104. }
  105. EXPORT_SYMBOL_GPL(hw_perf_restore_ctrl);
  106. u64 hw_perf_disable_all(void)
  107. {
  108. u64 ctrl;
  109. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  110. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
  111. return ctrl;
  112. }
  113. EXPORT_SYMBOL_GPL(hw_perf_disable_all);
  114. static inline void
  115. __hw_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx)
  116. {
  117. wrmsr(hwc->config_base + idx, hwc->config, 0);
  118. }
  119. static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]);
  120. static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx)
  121. {
  122. per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count;
  123. wrmsr(hwc->counter_base + idx, hwc->next_count, 0);
  124. }
  125. static void __hw_perf_counter_enable(struct hw_perf_counter *hwc, int idx)
  126. {
  127. wrmsr(hwc->config_base + idx,
  128. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0);
  129. }
  130. void hw_perf_counter_enable(struct perf_counter *counter)
  131. {
  132. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  133. struct hw_perf_counter *hwc = &counter->hw;
  134. int idx = hwc->idx;
  135. /* Try to get the previous counter again */
  136. if (test_and_set_bit(idx, cpuc->used)) {
  137. idx = find_first_zero_bit(cpuc->used, nr_hw_counters);
  138. set_bit(idx, cpuc->used);
  139. hwc->idx = idx;
  140. }
  141. perf_counters_lapic_init(hwc->nmi);
  142. __hw_perf_counter_disable(hwc, idx);
  143. cpuc->counters[idx] = counter;
  144. __hw_perf_counter_set_period(hwc, idx);
  145. __hw_perf_counter_enable(hwc, idx);
  146. }
  147. #ifdef CONFIG_X86_64
  148. static inline void atomic64_counter_set(struct perf_counter *counter, u64 val)
  149. {
  150. atomic64_set(&counter->count, val);
  151. }
  152. static inline u64 atomic64_counter_read(struct perf_counter *counter)
  153. {
  154. return atomic64_read(&counter->count);
  155. }
  156. #else
  157. /*
  158. * Todo: add proper atomic64_t support to 32-bit x86:
  159. */
  160. static inline void atomic64_counter_set(struct perf_counter *counter, u64 val64)
  161. {
  162. u32 *val32 = (void *)&val64;
  163. atomic_set(counter->count32 + 0, *(val32 + 0));
  164. atomic_set(counter->count32 + 1, *(val32 + 1));
  165. }
  166. static inline u64 atomic64_counter_read(struct perf_counter *counter)
  167. {
  168. return atomic_read(counter->count32 + 0) |
  169. (u64) atomic_read(counter->count32 + 1) << 32;
  170. }
  171. #endif
  172. static void __hw_perf_save_counter(struct perf_counter *counter,
  173. struct hw_perf_counter *hwc, int idx)
  174. {
  175. s64 raw = -1;
  176. s64 delta;
  177. /*
  178. * Get the raw hw counter value:
  179. */
  180. rdmsrl(hwc->counter_base + idx, raw);
  181. /*
  182. * Rebase it to zero (it started counting at -irq_period),
  183. * to see the delta since ->prev_count:
  184. */
  185. delta = (s64)hwc->irq_period + (s64)(s32)raw;
  186. atomic64_counter_set(counter, hwc->prev_count + delta);
  187. /*
  188. * Adjust the ->prev_count offset - if we went beyond
  189. * irq_period of units, then we got an IRQ and the counter
  190. * was set back to -irq_period:
  191. */
  192. while (delta >= (s64)hwc->irq_period) {
  193. hwc->prev_count += hwc->irq_period;
  194. delta -= (s64)hwc->irq_period;
  195. }
  196. /*
  197. * Calculate the next raw counter value we'll write into
  198. * the counter at the next sched-in time:
  199. */
  200. delta -= (s64)hwc->irq_period;
  201. hwc->next_count = (s32)delta;
  202. }
  203. void perf_counter_print_debug(void)
  204. {
  205. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count;
  206. int cpu, idx;
  207. if (!nr_hw_counters)
  208. return;
  209. local_irq_disable();
  210. cpu = smp_processor_id();
  211. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  212. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  213. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  214. printk(KERN_INFO "\n");
  215. printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  216. printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status);
  217. printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow);
  218. for (idx = 0; idx < nr_hw_counters; idx++) {
  219. rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
  220. rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count);
  221. next_count = per_cpu(prev_next_count[idx], cpu);
  222. printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n",
  223. cpu, idx, pmc_ctrl);
  224. printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n",
  225. cpu, idx, pmc_count);
  226. printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n",
  227. cpu, idx, next_count);
  228. }
  229. local_irq_enable();
  230. }
  231. void hw_perf_counter_disable(struct perf_counter *counter)
  232. {
  233. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  234. struct hw_perf_counter *hwc = &counter->hw;
  235. unsigned int idx = hwc->idx;
  236. __hw_perf_counter_disable(hwc, idx);
  237. clear_bit(idx, cpuc->used);
  238. cpuc->counters[idx] = NULL;
  239. __hw_perf_save_counter(counter, hwc, idx);
  240. }
  241. void hw_perf_counter_read(struct perf_counter *counter)
  242. {
  243. struct hw_perf_counter *hwc = &counter->hw;
  244. unsigned long addr = hwc->counter_base + hwc->idx;
  245. s64 offs, val = -1LL;
  246. s32 val32;
  247. /* Careful: NMI might modify the counter offset */
  248. do {
  249. offs = hwc->prev_count;
  250. rdmsrl(addr, val);
  251. } while (offs != hwc->prev_count);
  252. val32 = (s32) val;
  253. val = (s64)hwc->irq_period + (s64)val32;
  254. atomic64_counter_set(counter, hwc->prev_count + val);
  255. }
  256. static void perf_store_irq_data(struct perf_counter *counter, u64 data)
  257. {
  258. struct perf_data *irqdata = counter->irqdata;
  259. if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
  260. irqdata->overrun++;
  261. } else {
  262. u64 *p = (u64 *) &irqdata->data[irqdata->len];
  263. *p = data;
  264. irqdata->len += sizeof(u64);
  265. }
  266. }
  267. /*
  268. * NMI-safe enable method:
  269. */
  270. static void perf_save_and_restart(struct perf_counter *counter)
  271. {
  272. struct hw_perf_counter *hwc = &counter->hw;
  273. int idx = hwc->idx;
  274. u64 pmc_ctrl;
  275. rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
  276. __hw_perf_save_counter(counter, hwc, idx);
  277. __hw_perf_counter_set_period(hwc, idx);
  278. if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE)
  279. __hw_perf_counter_enable(hwc, idx);
  280. }
  281. static void
  282. perf_handle_group(struct perf_counter *leader, u64 *status, u64 *overflown)
  283. {
  284. struct perf_counter_context *ctx = leader->ctx;
  285. struct perf_counter *counter;
  286. int bit;
  287. list_for_each_entry(counter, &ctx->counters, list) {
  288. if (counter->record_type != PERF_RECORD_SIMPLE ||
  289. counter == leader)
  290. continue;
  291. if (counter->active) {
  292. /*
  293. * When counter was not in the overflow mask, we have to
  294. * read it from hardware. We read it as well, when it
  295. * has not been read yet and clear the bit in the
  296. * status mask.
  297. */
  298. bit = counter->hw.idx;
  299. if (!test_bit(bit, (unsigned long *) overflown) ||
  300. test_bit(bit, (unsigned long *) status)) {
  301. clear_bit(bit, (unsigned long *) status);
  302. perf_save_and_restart(counter);
  303. }
  304. }
  305. perf_store_irq_data(leader, counter->event.hw_event_type);
  306. perf_store_irq_data(leader, atomic64_counter_read(counter));
  307. }
  308. }
  309. /*
  310. * This handler is triggered by the local APIC, so the APIC IRQ handling
  311. * rules apply:
  312. */
  313. static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi)
  314. {
  315. int bit, cpu = smp_processor_id();
  316. u64 ack, status, saved_global;
  317. struct cpu_hw_counters *cpuc;
  318. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global);
  319. /* Disable counters globally */
  320. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
  321. ack_APIC_irq();
  322. cpuc = &per_cpu(cpu_hw_counters, cpu);
  323. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  324. if (!status)
  325. goto out;
  326. again:
  327. ack = status;
  328. for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) {
  329. struct perf_counter *counter = cpuc->counters[bit];
  330. clear_bit(bit, (unsigned long *) &status);
  331. if (!counter)
  332. continue;
  333. perf_save_and_restart(counter);
  334. switch (counter->record_type) {
  335. case PERF_RECORD_SIMPLE:
  336. continue;
  337. case PERF_RECORD_IRQ:
  338. perf_store_irq_data(counter, instruction_pointer(regs));
  339. break;
  340. case PERF_RECORD_GROUP:
  341. perf_store_irq_data(counter,
  342. counter->event.hw_event_type);
  343. perf_store_irq_data(counter,
  344. atomic64_counter_read(counter));
  345. perf_handle_group(counter, &status, &ack);
  346. break;
  347. }
  348. /*
  349. * From NMI context we cannot call into the scheduler to
  350. * do a task wakeup - but we mark these counters as
  351. * wakeup_pending and initate a wakeup callback:
  352. */
  353. if (nmi) {
  354. counter->wakeup_pending = 1;
  355. set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
  356. } else {
  357. wake_up(&counter->waitq);
  358. }
  359. }
  360. wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0);
  361. /*
  362. * Repeat if there is more work to be done:
  363. */
  364. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  365. if (status)
  366. goto again;
  367. out:
  368. /*
  369. * Restore - do not reenable when global enable is off:
  370. */
  371. wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0);
  372. }
  373. void smp_perf_counter_interrupt(struct pt_regs *regs)
  374. {
  375. irq_enter();
  376. #ifdef CONFIG_X86_64
  377. add_pda(apic_perf_irqs, 1);
  378. #else
  379. per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++;
  380. #endif
  381. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  382. __smp_perf_counter_interrupt(regs, 0);
  383. irq_exit();
  384. }
  385. /*
  386. * This handler is triggered by NMI contexts:
  387. */
  388. void perf_counter_notify(struct pt_regs *regs)
  389. {
  390. struct cpu_hw_counters *cpuc;
  391. unsigned long flags;
  392. int bit, cpu;
  393. local_irq_save(flags);
  394. cpu = smp_processor_id();
  395. cpuc = &per_cpu(cpu_hw_counters, cpu);
  396. for_each_bit(bit, cpuc->used, nr_hw_counters) {
  397. struct perf_counter *counter = cpuc->counters[bit];
  398. if (!counter)
  399. continue;
  400. if (counter->wakeup_pending) {
  401. counter->wakeup_pending = 0;
  402. wake_up(&counter->waitq);
  403. }
  404. }
  405. local_irq_restore(flags);
  406. }
  407. void __cpuinit perf_counters_lapic_init(int nmi)
  408. {
  409. u32 apic_val;
  410. if (!perf_counters_initialized)
  411. return;
  412. /*
  413. * Enable the performance counter vector in the APIC LVT:
  414. */
  415. apic_val = apic_read(APIC_LVTERR);
  416. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  417. if (nmi)
  418. apic_write(APIC_LVTPC, APIC_DM_NMI);
  419. else
  420. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  421. apic_write(APIC_LVTERR, apic_val);
  422. }
  423. static int __kprobes
  424. perf_counter_nmi_handler(struct notifier_block *self,
  425. unsigned long cmd, void *__args)
  426. {
  427. struct die_args *args = __args;
  428. struct pt_regs *regs;
  429. if (likely(cmd != DIE_NMI_IPI))
  430. return NOTIFY_DONE;
  431. regs = args->regs;
  432. apic_write(APIC_LVTPC, APIC_DM_NMI);
  433. __smp_perf_counter_interrupt(regs, 1);
  434. return NOTIFY_STOP;
  435. }
  436. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  437. .notifier_call = perf_counter_nmi_handler
  438. };
  439. void __init init_hw_perf_counters(void)
  440. {
  441. union cpuid10_eax eax;
  442. unsigned int unused;
  443. unsigned int ebx;
  444. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  445. return;
  446. /*
  447. * Check whether the Architectural PerfMon supports
  448. * Branch Misses Retired Event or not.
  449. */
  450. cpuid(10, &(eax.full), &ebx, &unused, &unused);
  451. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  452. return;
  453. printk(KERN_INFO "Intel Performance Monitoring support detected.\n");
  454. printk(KERN_INFO "... version: %d\n", eax.split.version_id);
  455. printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters);
  456. nr_hw_counters = eax.split.num_counters;
  457. if (nr_hw_counters > MAX_HW_COUNTERS) {
  458. nr_hw_counters = MAX_HW_COUNTERS;
  459. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  460. nr_hw_counters, MAX_HW_COUNTERS);
  461. }
  462. perf_counter_mask = (1 << nr_hw_counters) - 1;
  463. perf_max_counters = nr_hw_counters;
  464. printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width);
  465. printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length);
  466. perf_counters_lapic_init(0);
  467. register_die_notifier(&perf_counter_nmi_notifier);
  468. perf_counters_initialized = true;
  469. }