cpufreq_governor.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*
  2. * drivers/cpufreq/cpufreq_governor.c
  3. *
  4. * CPUFREQ governors common code
  5. *
  6. * Copyright (C) 2001 Russell King
  7. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  8. * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
  9. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  10. * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. */
  16. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17. #include <asm/cputime.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/export.h>
  21. #include <linux/kernel_stat.h>
  22. #include <linux/mutex.h>
  23. #include <linux/slab.h>
  24. #include <linux/types.h>
  25. #include <linux/workqueue.h>
  26. #include "cpufreq_governor.h"
  27. static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
  28. {
  29. if (have_governor_per_policy())
  30. return dbs_data->cdata->attr_group_gov_pol;
  31. else
  32. return dbs_data->cdata->attr_group_gov_sys;
  33. }
  34. void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
  35. {
  36. struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  37. struct od_dbs_tuners *od_tuners = dbs_data->tuners;
  38. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  39. struct cpufreq_policy *policy;
  40. unsigned int max_load = 0;
  41. unsigned int ignore_nice;
  42. unsigned int j;
  43. if (dbs_data->cdata->governor == GOV_ONDEMAND)
  44. ignore_nice = od_tuners->ignore_nice;
  45. else
  46. ignore_nice = cs_tuners->ignore_nice;
  47. policy = cdbs->cur_policy;
  48. /* Get Absolute Load */
  49. for_each_cpu(j, policy->cpus) {
  50. struct cpu_dbs_common_info *j_cdbs;
  51. u64 cur_wall_time, cur_idle_time;
  52. unsigned int idle_time, wall_time;
  53. unsigned int load;
  54. int io_busy = 0;
  55. j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
  56. /*
  57. * For the purpose of ondemand, waiting for disk IO is
  58. * an indication that you're performance critical, and
  59. * not that the system is actually idle. So do not add
  60. * the iowait time to the cpu idle time.
  61. */
  62. if (dbs_data->cdata->governor == GOV_ONDEMAND)
  63. io_busy = od_tuners->io_is_busy;
  64. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
  65. wall_time = (unsigned int)
  66. (cur_wall_time - j_cdbs->prev_cpu_wall);
  67. j_cdbs->prev_cpu_wall = cur_wall_time;
  68. idle_time = (unsigned int)
  69. (cur_idle_time - j_cdbs->prev_cpu_idle);
  70. j_cdbs->prev_cpu_idle = cur_idle_time;
  71. if (ignore_nice) {
  72. u64 cur_nice;
  73. unsigned long cur_nice_jiffies;
  74. cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
  75. cdbs->prev_cpu_nice;
  76. /*
  77. * Assumption: nice time between sampling periods will
  78. * be less than 2^32 jiffies for 32 bit sys
  79. */
  80. cur_nice_jiffies = (unsigned long)
  81. cputime64_to_jiffies64(cur_nice);
  82. cdbs->prev_cpu_nice =
  83. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  84. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  85. }
  86. if (unlikely(!wall_time || wall_time < idle_time))
  87. continue;
  88. load = 100 * (wall_time - idle_time) / wall_time;
  89. if (load > max_load)
  90. max_load = load;
  91. }
  92. dbs_data->cdata->gov_check_cpu(cpu, max_load);
  93. }
  94. EXPORT_SYMBOL_GPL(dbs_check_cpu);
  95. static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
  96. unsigned int delay)
  97. {
  98. struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  99. mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
  100. }
  101. void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
  102. unsigned int delay, bool all_cpus)
  103. {
  104. int i;
  105. if (!all_cpus) {
  106. __gov_queue_work(smp_processor_id(), dbs_data, delay);
  107. } else {
  108. for_each_cpu(i, policy->cpus)
  109. __gov_queue_work(i, dbs_data, delay);
  110. }
  111. }
  112. EXPORT_SYMBOL_GPL(gov_queue_work);
  113. static inline void gov_cancel_work(struct dbs_data *dbs_data,
  114. struct cpufreq_policy *policy)
  115. {
  116. struct cpu_dbs_common_info *cdbs;
  117. int i;
  118. for_each_cpu(i, policy->cpus) {
  119. cdbs = dbs_data->cdata->get_cpu_cdbs(i);
  120. cancel_delayed_work_sync(&cdbs->work);
  121. }
  122. }
  123. /* Will return if we need to evaluate cpu load again or not */
  124. bool need_load_eval(struct cpu_dbs_common_info *cdbs,
  125. unsigned int sampling_rate)
  126. {
  127. if (policy_is_shared(cdbs->cur_policy)) {
  128. ktime_t time_now = ktime_get();
  129. s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
  130. /* Do nothing if we recently have sampled */
  131. if (delta_us < (s64)(sampling_rate / 2))
  132. return false;
  133. else
  134. cdbs->time_stamp = time_now;
  135. }
  136. return true;
  137. }
  138. EXPORT_SYMBOL_GPL(need_load_eval);
  139. static void set_sampling_rate(struct dbs_data *dbs_data,
  140. unsigned int sampling_rate)
  141. {
  142. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  143. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  144. cs_tuners->sampling_rate = sampling_rate;
  145. } else {
  146. struct od_dbs_tuners *od_tuners = dbs_data->tuners;
  147. od_tuners->sampling_rate = sampling_rate;
  148. }
  149. }
  150. int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  151. struct common_dbs_data *cdata, unsigned int event)
  152. {
  153. struct dbs_data *dbs_data;
  154. struct od_cpu_dbs_info_s *od_dbs_info = NULL;
  155. struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
  156. struct od_ops *od_ops = NULL;
  157. struct od_dbs_tuners *od_tuners = NULL;
  158. struct cs_dbs_tuners *cs_tuners = NULL;
  159. struct cpu_dbs_common_info *cpu_cdbs;
  160. unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
  161. int io_busy = 0;
  162. int rc;
  163. if (have_governor_per_policy())
  164. dbs_data = policy->governor_data;
  165. else
  166. dbs_data = cdata->gdbs_data;
  167. WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
  168. switch (event) {
  169. case CPUFREQ_GOV_POLICY_INIT:
  170. if (have_governor_per_policy()) {
  171. WARN_ON(dbs_data);
  172. } else if (dbs_data) {
  173. dbs_data->usage_count++;
  174. policy->governor_data = dbs_data;
  175. return 0;
  176. }
  177. dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
  178. if (!dbs_data) {
  179. pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
  180. return -ENOMEM;
  181. }
  182. dbs_data->cdata = cdata;
  183. dbs_data->usage_count = 1;
  184. rc = cdata->init(dbs_data);
  185. if (rc) {
  186. pr_err("%s: POLICY_INIT: init() failed\n", __func__);
  187. kfree(dbs_data);
  188. return rc;
  189. }
  190. if (!have_governor_per_policy())
  191. WARN_ON(cpufreq_get_global_kobject());
  192. rc = sysfs_create_group(get_governor_parent_kobj(policy),
  193. get_sysfs_attr(dbs_data));
  194. if (rc) {
  195. cdata->exit(dbs_data);
  196. kfree(dbs_data);
  197. return rc;
  198. }
  199. policy->governor_data = dbs_data;
  200. /* policy latency is in nS. Convert it to uS first */
  201. latency = policy->cpuinfo.transition_latency / 1000;
  202. if (latency == 0)
  203. latency = 1;
  204. /* Bring kernel and HW constraints together */
  205. dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
  206. MIN_LATENCY_MULTIPLIER * latency);
  207. set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
  208. latency * LATENCY_MULTIPLIER));
  209. if ((cdata->governor == GOV_CONSERVATIVE) &&
  210. (!policy->governor->initialized)) {
  211. struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
  212. cpufreq_register_notifier(cs_ops->notifier_block,
  213. CPUFREQ_TRANSITION_NOTIFIER);
  214. }
  215. if (!have_governor_per_policy())
  216. cdata->gdbs_data = dbs_data;
  217. return 0;
  218. case CPUFREQ_GOV_POLICY_EXIT:
  219. if (!--dbs_data->usage_count) {
  220. sysfs_remove_group(get_governor_parent_kobj(policy),
  221. get_sysfs_attr(dbs_data));
  222. if (!have_governor_per_policy())
  223. cpufreq_put_global_kobject();
  224. if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
  225. (policy->governor->initialized == 1)) {
  226. struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
  227. cpufreq_unregister_notifier(cs_ops->notifier_block,
  228. CPUFREQ_TRANSITION_NOTIFIER);
  229. }
  230. cdata->exit(dbs_data);
  231. kfree(dbs_data);
  232. cdata->gdbs_data = NULL;
  233. }
  234. policy->governor_data = NULL;
  235. return 0;
  236. }
  237. cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
  238. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  239. cs_tuners = dbs_data->tuners;
  240. cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
  241. sampling_rate = cs_tuners->sampling_rate;
  242. ignore_nice = cs_tuners->ignore_nice;
  243. } else {
  244. od_tuners = dbs_data->tuners;
  245. od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
  246. sampling_rate = od_tuners->sampling_rate;
  247. ignore_nice = od_tuners->ignore_nice;
  248. od_ops = dbs_data->cdata->gov_ops;
  249. io_busy = od_tuners->io_is_busy;
  250. }
  251. switch (event) {
  252. case CPUFREQ_GOV_START:
  253. if (!policy->cur)
  254. return -EINVAL;
  255. mutex_lock(&dbs_data->mutex);
  256. for_each_cpu(j, policy->cpus) {
  257. struct cpu_dbs_common_info *j_cdbs =
  258. dbs_data->cdata->get_cpu_cdbs(j);
  259. j_cdbs->cpu = j;
  260. j_cdbs->cur_policy = policy;
  261. j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
  262. &j_cdbs->prev_cpu_wall, io_busy);
  263. if (ignore_nice)
  264. j_cdbs->prev_cpu_nice =
  265. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  266. mutex_init(&j_cdbs->timer_mutex);
  267. INIT_DEFERRABLE_WORK(&j_cdbs->work,
  268. dbs_data->cdata->gov_dbs_timer);
  269. }
  270. /*
  271. * conservative does not implement micro like ondemand
  272. * governor, thus we are bound to jiffes/HZ
  273. */
  274. if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
  275. cs_dbs_info->down_skip = 0;
  276. cs_dbs_info->enable = 1;
  277. cs_dbs_info->requested_freq = policy->cur;
  278. } else {
  279. od_dbs_info->rate_mult = 1;
  280. od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
  281. od_ops->powersave_bias_init_cpu(cpu);
  282. }
  283. mutex_unlock(&dbs_data->mutex);
  284. /* Initiate timer time stamp */
  285. cpu_cdbs->time_stamp = ktime_get();
  286. gov_queue_work(dbs_data, policy,
  287. delay_for_sampling_rate(sampling_rate), true);
  288. break;
  289. case CPUFREQ_GOV_STOP:
  290. if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
  291. cs_dbs_info->enable = 0;
  292. gov_cancel_work(dbs_data, policy);
  293. mutex_lock(&dbs_data->mutex);
  294. mutex_destroy(&cpu_cdbs->timer_mutex);
  295. cpu_cdbs->cur_policy = NULL;
  296. mutex_unlock(&dbs_data->mutex);
  297. break;
  298. case CPUFREQ_GOV_LIMITS:
  299. mutex_lock(&cpu_cdbs->timer_mutex);
  300. if (policy->max < cpu_cdbs->cur_policy->cur)
  301. __cpufreq_driver_target(cpu_cdbs->cur_policy,
  302. policy->max, CPUFREQ_RELATION_H);
  303. else if (policy->min > cpu_cdbs->cur_policy->cur)
  304. __cpufreq_driver_target(cpu_cdbs->cur_policy,
  305. policy->min, CPUFREQ_RELATION_L);
  306. dbs_check_cpu(dbs_data, cpu);
  307. mutex_unlock(&cpu_cdbs->timer_mutex);
  308. break;
  309. }
  310. return 0;
  311. }
  312. EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);