mmzone.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. NR_ANON_PAGES, /* Mapped anonymous pages */
  44. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  45. only modified from process context */
  46. NR_FILE_PAGES,
  47. NR_SLAB, /* Pages used by slab allocator */
  48. NR_PAGETABLE, /* used for pagetables */
  49. NR_VM_ZONE_STAT_ITEMS };
  50. struct per_cpu_pages {
  51. int count; /* number of pages in the list */
  52. int high; /* high watermark, emptying needed */
  53. int batch; /* chunk size for buddy add/remove */
  54. struct list_head list; /* the list of pages */
  55. };
  56. struct per_cpu_pageset {
  57. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  58. #ifdef CONFIG_SMP
  59. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  60. #endif
  61. #ifdef CONFIG_NUMA
  62. unsigned long numa_hit; /* allocated in intended node */
  63. unsigned long numa_miss; /* allocated in non intended node */
  64. unsigned long numa_foreign; /* was intended here, hit elsewhere */
  65. unsigned long interleave_hit; /* interleaver prefered this zone */
  66. unsigned long local_node; /* allocation from local node */
  67. unsigned long other_node; /* allocation from other node */
  68. #endif
  69. } ____cacheline_aligned_in_smp;
  70. #ifdef CONFIG_NUMA
  71. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  72. #else
  73. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  74. #endif
  75. #define ZONE_DMA 0
  76. #define ZONE_DMA32 1
  77. #define ZONE_NORMAL 2
  78. #define ZONE_HIGHMEM 3
  79. #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
  80. #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
  81. /*
  82. * When a memory allocation must conform to specific limitations (such
  83. * as being suitable for DMA) the caller will pass in hints to the
  84. * allocator in the gfp_mask, in the zone modifier bits. These bits
  85. * are used to select a priority ordered list of memory zones which
  86. * match the requested limits. GFP_ZONEMASK defines which bits within
  87. * the gfp_mask should be considered as zone modifiers. Each valid
  88. * combination of the zone modifier bits has a corresponding list
  89. * of zones (in node_zonelists). Thus for two zone modifiers there
  90. * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
  91. * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
  92. * combinations of zone modifiers in "zone modifier space".
  93. *
  94. * As an optimisation any zone modifier bits which are only valid when
  95. * no other zone modifier bits are set (loners) should be placed in
  96. * the highest order bits of this field. This allows us to reduce the
  97. * extent of the zonelists thus saving space. For example in the case
  98. * of three zone modifier bits, we could require up to eight zonelists.
  99. * If the left most zone modifier is a "loner" then the highest valid
  100. * zonelist would be four allowing us to allocate only five zonelists.
  101. * Use the first form for GFP_ZONETYPES when the left most bit is not
  102. * a "loner", otherwise use the second.
  103. *
  104. * NOTE! Make sure this matches the zones in <linux/gfp.h>
  105. */
  106. #define GFP_ZONEMASK 0x07
  107. /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
  108. #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
  109. /*
  110. * On machines where it is needed (eg PCs) we divide physical memory
  111. * into multiple physical zones. On a 32bit PC we have 4 zones:
  112. *
  113. * ZONE_DMA < 16 MB ISA DMA capable memory
  114. * ZONE_DMA32 0 MB Empty
  115. * ZONE_NORMAL 16-896 MB direct mapped by the kernel
  116. * ZONE_HIGHMEM > 896 MB only page cache and user processes
  117. */
  118. struct zone {
  119. /* Fields commonly accessed by the page allocator */
  120. unsigned long free_pages;
  121. unsigned long pages_min, pages_low, pages_high;
  122. /*
  123. * We don't know if the memory that we're going to allocate will be freeable
  124. * or/and it will be released eventually, so to avoid totally wasting several
  125. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  126. * to run OOM on the lower zones despite there's tons of freeable ram
  127. * on the higher zones). This array is recalculated at runtime if the
  128. * sysctl_lowmem_reserve_ratio sysctl changes.
  129. */
  130. unsigned long lowmem_reserve[MAX_NR_ZONES];
  131. #ifdef CONFIG_NUMA
  132. struct per_cpu_pageset *pageset[NR_CPUS];
  133. #else
  134. struct per_cpu_pageset pageset[NR_CPUS];
  135. #endif
  136. /*
  137. * free areas of different sizes
  138. */
  139. spinlock_t lock;
  140. #ifdef CONFIG_MEMORY_HOTPLUG
  141. /* see spanned/present_pages for more description */
  142. seqlock_t span_seqlock;
  143. #endif
  144. struct free_area free_area[MAX_ORDER];
  145. ZONE_PADDING(_pad1_)
  146. /* Fields commonly accessed by the page reclaim scanner */
  147. spinlock_t lru_lock;
  148. struct list_head active_list;
  149. struct list_head inactive_list;
  150. unsigned long nr_scan_active;
  151. unsigned long nr_scan_inactive;
  152. unsigned long nr_active;
  153. unsigned long nr_inactive;
  154. unsigned long pages_scanned; /* since last reclaim */
  155. int all_unreclaimable; /* All pages pinned */
  156. /* A count of how many reclaimers are scanning this zone */
  157. atomic_t reclaim_in_progress;
  158. /* Zone statistics */
  159. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  160. /*
  161. * prev_priority holds the scanning priority for this zone. It is
  162. * defined as the scanning priority at which we achieved our reclaim
  163. * target at the previous try_to_free_pages() or balance_pgdat()
  164. * invokation.
  165. *
  166. * We use prev_priority as a measure of how much stress page reclaim is
  167. * under - it drives the swappiness decision: whether to unmap mapped
  168. * pages.
  169. *
  170. * temp_priority is used to remember the scanning priority at which
  171. * this zone was successfully refilled to free_pages == pages_high.
  172. *
  173. * Access to both these fields is quite racy even on uniprocessor. But
  174. * it is expected to average out OK.
  175. */
  176. int temp_priority;
  177. int prev_priority;
  178. ZONE_PADDING(_pad2_)
  179. /* Rarely used or read-mostly fields */
  180. /*
  181. * wait_table -- the array holding the hash table
  182. * wait_table_hash_nr_entries -- the size of the hash table array
  183. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  184. *
  185. * The purpose of all these is to keep track of the people
  186. * waiting for a page to become available and make them
  187. * runnable again when possible. The trouble is that this
  188. * consumes a lot of space, especially when so few things
  189. * wait on pages at a given time. So instead of using
  190. * per-page waitqueues, we use a waitqueue hash table.
  191. *
  192. * The bucket discipline is to sleep on the same queue when
  193. * colliding and wake all in that wait queue when removing.
  194. * When something wakes, it must check to be sure its page is
  195. * truly available, a la thundering herd. The cost of a
  196. * collision is great, but given the expected load of the
  197. * table, they should be so rare as to be outweighed by the
  198. * benefits from the saved space.
  199. *
  200. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  201. * primary users of these fields, and in mm/page_alloc.c
  202. * free_area_init_core() performs the initialization of them.
  203. */
  204. wait_queue_head_t * wait_table;
  205. unsigned long wait_table_hash_nr_entries;
  206. unsigned long wait_table_bits;
  207. /*
  208. * Discontig memory support fields.
  209. */
  210. struct pglist_data *zone_pgdat;
  211. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  212. unsigned long zone_start_pfn;
  213. /*
  214. * zone_start_pfn, spanned_pages and present_pages are all
  215. * protected by span_seqlock. It is a seqlock because it has
  216. * to be read outside of zone->lock, and it is done in the main
  217. * allocator path. But, it is written quite infrequently.
  218. *
  219. * The lock is declared along with zone->lock because it is
  220. * frequently read in proximity to zone->lock. It's good to
  221. * give them a chance of being in the same cacheline.
  222. */
  223. unsigned long spanned_pages; /* total size, including holes */
  224. unsigned long present_pages; /* amount of memory (excluding holes) */
  225. /*
  226. * rarely used fields:
  227. */
  228. char *name;
  229. } ____cacheline_internodealigned_in_smp;
  230. /*
  231. * The "priority" of VM scanning is how much of the queues we will scan in one
  232. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  233. * queues ("queue_length >> 12") during an aging round.
  234. */
  235. #define DEF_PRIORITY 12
  236. /*
  237. * One allocation request operates on a zonelist. A zonelist
  238. * is a list of zones, the first one is the 'goal' of the
  239. * allocation, the other zones are fallback zones, in decreasing
  240. * priority.
  241. *
  242. * Right now a zonelist takes up less than a cacheline. We never
  243. * modify it apart from boot-up, and only a few indices are used,
  244. * so despite the zonelist table being relatively big, the cache
  245. * footprint of this construct is very small.
  246. */
  247. struct zonelist {
  248. struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
  249. };
  250. /*
  251. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  252. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  253. * zone denotes.
  254. *
  255. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  256. * it's memory layout.
  257. *
  258. * Memory statistics and page replacement data structures are maintained on a
  259. * per-zone basis.
  260. */
  261. struct bootmem_data;
  262. typedef struct pglist_data {
  263. struct zone node_zones[MAX_NR_ZONES];
  264. struct zonelist node_zonelists[GFP_ZONETYPES];
  265. int nr_zones;
  266. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  267. struct page *node_mem_map;
  268. #endif
  269. struct bootmem_data *bdata;
  270. #ifdef CONFIG_MEMORY_HOTPLUG
  271. /*
  272. * Must be held any time you expect node_start_pfn, node_present_pages
  273. * or node_spanned_pages stay constant. Holding this will also
  274. * guarantee that any pfn_valid() stays that way.
  275. *
  276. * Nests above zone->lock and zone->size_seqlock.
  277. */
  278. spinlock_t node_size_lock;
  279. #endif
  280. unsigned long node_start_pfn;
  281. unsigned long node_present_pages; /* total number of physical pages */
  282. unsigned long node_spanned_pages; /* total size of physical page
  283. range, including holes */
  284. int node_id;
  285. wait_queue_head_t kswapd_wait;
  286. struct task_struct *kswapd;
  287. int kswapd_max_order;
  288. } pg_data_t;
  289. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  290. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  291. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  292. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  293. #else
  294. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  295. #endif
  296. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  297. #include <linux/memory_hotplug.h>
  298. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  299. unsigned long *free, struct pglist_data *pgdat);
  300. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  301. unsigned long *free);
  302. void build_all_zonelists(void);
  303. void wakeup_kswapd(struct zone *zone, int order);
  304. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  305. int classzone_idx, int alloc_flags);
  306. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  307. unsigned long size);
  308. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  309. void memory_present(int nid, unsigned long start, unsigned long end);
  310. #else
  311. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  312. #endif
  313. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  314. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  315. #endif
  316. /*
  317. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  318. */
  319. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  320. static inline int populated_zone(struct zone *zone)
  321. {
  322. return (!!zone->present_pages);
  323. }
  324. static inline int is_highmem_idx(int idx)
  325. {
  326. return (idx == ZONE_HIGHMEM);
  327. }
  328. static inline int is_normal_idx(int idx)
  329. {
  330. return (idx == ZONE_NORMAL);
  331. }
  332. /**
  333. * is_highmem - helper function to quickly check if a struct zone is a
  334. * highmem zone or not. This is an attempt to keep references
  335. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  336. * @zone - pointer to struct zone variable
  337. */
  338. static inline int is_highmem(struct zone *zone)
  339. {
  340. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  341. }
  342. static inline int is_normal(struct zone *zone)
  343. {
  344. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  345. }
  346. static inline int is_dma32(struct zone *zone)
  347. {
  348. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  349. }
  350. static inline int is_dma(struct zone *zone)
  351. {
  352. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  353. }
  354. /* These two functions are used to setup the per zone pages min values */
  355. struct ctl_table;
  356. struct file;
  357. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  358. void __user *, size_t *, loff_t *);
  359. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  360. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  361. void __user *, size_t *, loff_t *);
  362. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  363. void __user *, size_t *, loff_t *);
  364. #include <linux/topology.h>
  365. /* Returns the number of the current Node. */
  366. #ifndef numa_node_id
  367. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  368. #endif
  369. #ifndef CONFIG_NEED_MULTIPLE_NODES
  370. extern struct pglist_data contig_page_data;
  371. #define NODE_DATA(nid) (&contig_page_data)
  372. #define NODE_MEM_MAP(nid) mem_map
  373. #define MAX_NODES_SHIFT 1
  374. #else /* CONFIG_NEED_MULTIPLE_NODES */
  375. #include <asm/mmzone.h>
  376. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  377. extern struct pglist_data *first_online_pgdat(void);
  378. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  379. extern struct zone *next_zone(struct zone *zone);
  380. /**
  381. * for_each_pgdat - helper macro to iterate over all nodes
  382. * @pgdat - pointer to a pg_data_t variable
  383. */
  384. #define for_each_online_pgdat(pgdat) \
  385. for (pgdat = first_online_pgdat(); \
  386. pgdat; \
  387. pgdat = next_online_pgdat(pgdat))
  388. /**
  389. * for_each_zone - helper macro to iterate over all memory zones
  390. * @zone - pointer to struct zone variable
  391. *
  392. * The user only needs to declare the zone variable, for_each_zone
  393. * fills it in.
  394. */
  395. #define for_each_zone(zone) \
  396. for (zone = (first_online_pgdat())->node_zones; \
  397. zone; \
  398. zone = next_zone(zone))
  399. #ifdef CONFIG_SPARSEMEM
  400. #include <asm/sparsemem.h>
  401. #endif
  402. #if BITS_PER_LONG == 32
  403. /*
  404. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  405. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  406. */
  407. #define FLAGS_RESERVED 9
  408. #elif BITS_PER_LONG == 64
  409. /*
  410. * with 64 bit flags field, there's plenty of room.
  411. */
  412. #define FLAGS_RESERVED 32
  413. #else
  414. #error BITS_PER_LONG not defined
  415. #endif
  416. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  417. #define early_pfn_to_nid(nid) (0UL)
  418. #endif
  419. #ifdef CONFIG_FLATMEM
  420. #define pfn_to_nid(pfn) (0)
  421. #endif
  422. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  423. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  424. #ifdef CONFIG_SPARSEMEM
  425. /*
  426. * SECTION_SHIFT #bits space required to store a section #
  427. *
  428. * PA_SECTION_SHIFT physical address to/from section number
  429. * PFN_SECTION_SHIFT pfn to/from section number
  430. */
  431. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  432. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  433. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  434. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  435. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  436. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  437. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  438. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  439. #endif
  440. struct page;
  441. struct mem_section {
  442. /*
  443. * This is, logically, a pointer to an array of struct
  444. * pages. However, it is stored with some other magic.
  445. * (see sparse.c::sparse_init_one_section())
  446. *
  447. * Additionally during early boot we encode node id of
  448. * the location of the section here to guide allocation.
  449. * (see sparse.c::memory_present())
  450. *
  451. * Making it a UL at least makes someone do a cast
  452. * before using it wrong.
  453. */
  454. unsigned long section_mem_map;
  455. };
  456. #ifdef CONFIG_SPARSEMEM_EXTREME
  457. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  458. #else
  459. #define SECTIONS_PER_ROOT 1
  460. #endif
  461. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  462. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  463. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  464. #ifdef CONFIG_SPARSEMEM_EXTREME
  465. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  466. #else
  467. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  468. #endif
  469. static inline struct mem_section *__nr_to_section(unsigned long nr)
  470. {
  471. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  472. return NULL;
  473. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  474. }
  475. extern int __section_nr(struct mem_section* ms);
  476. /*
  477. * We use the lower bits of the mem_map pointer to store
  478. * a little bit of information. There should be at least
  479. * 3 bits here due to 32-bit alignment.
  480. */
  481. #define SECTION_MARKED_PRESENT (1UL<<0)
  482. #define SECTION_HAS_MEM_MAP (1UL<<1)
  483. #define SECTION_MAP_LAST_BIT (1UL<<2)
  484. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  485. #define SECTION_NID_SHIFT 2
  486. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  487. {
  488. unsigned long map = section->section_mem_map;
  489. map &= SECTION_MAP_MASK;
  490. return (struct page *)map;
  491. }
  492. static inline int valid_section(struct mem_section *section)
  493. {
  494. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  495. }
  496. static inline int section_has_mem_map(struct mem_section *section)
  497. {
  498. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  499. }
  500. static inline int valid_section_nr(unsigned long nr)
  501. {
  502. return valid_section(__nr_to_section(nr));
  503. }
  504. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  505. {
  506. return __nr_to_section(pfn_to_section_nr(pfn));
  507. }
  508. static inline int pfn_valid(unsigned long pfn)
  509. {
  510. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  511. return 0;
  512. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  513. }
  514. /*
  515. * These are _only_ used during initialisation, therefore they
  516. * can use __initdata ... They could have names to indicate
  517. * this restriction.
  518. */
  519. #ifdef CONFIG_NUMA
  520. #define pfn_to_nid(pfn) \
  521. ({ \
  522. unsigned long __pfn_to_nid_pfn = (pfn); \
  523. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  524. })
  525. #else
  526. #define pfn_to_nid(pfn) (0)
  527. #endif
  528. #define early_pfn_valid(pfn) pfn_valid(pfn)
  529. void sparse_init(void);
  530. #else
  531. #define sparse_init() do {} while (0)
  532. #define sparse_index_init(_sec, _nid) do {} while (0)
  533. #endif /* CONFIG_SPARSEMEM */
  534. #ifndef early_pfn_valid
  535. #define early_pfn_valid(pfn) (1)
  536. #endif
  537. void memory_present(int nid, unsigned long start, unsigned long end);
  538. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  539. #endif /* !__ASSEMBLY__ */
  540. #endif /* __KERNEL__ */
  541. #endif /* _LINUX_MMZONE_H */