dm-thin.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  25. "A percentage of time allocated for copy on write");
  26. /*
  27. * The block size of the device holding pool data must be
  28. * between 64KB and 1GB.
  29. */
  30. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  31. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  32. /*
  33. * Device id is restricted to 24 bits.
  34. */
  35. #define MAX_DEV_ID ((1 << 24) - 1)
  36. /*
  37. * How do we handle breaking sharing of data blocks?
  38. * =================================================
  39. *
  40. * We use a standard copy-on-write btree to store the mappings for the
  41. * devices (note I'm talking about copy-on-write of the metadata here, not
  42. * the data). When you take an internal snapshot you clone the root node
  43. * of the origin btree. After this there is no concept of an origin or a
  44. * snapshot. They are just two device trees that happen to point to the
  45. * same data blocks.
  46. *
  47. * When we get a write in we decide if it's to a shared data block using
  48. * some timestamp magic. If it is, we have to break sharing.
  49. *
  50. * Let's say we write to a shared block in what was the origin. The
  51. * steps are:
  52. *
  53. * i) plug io further to this physical block. (see bio_prison code).
  54. *
  55. * ii) quiesce any read io to that shared data block. Obviously
  56. * including all devices that share this block. (see dm_deferred_set code)
  57. *
  58. * iii) copy the data block to a newly allocate block. This step can be
  59. * missed out if the io covers the block. (schedule_copy).
  60. *
  61. * iv) insert the new mapping into the origin's btree
  62. * (process_prepared_mapping). This act of inserting breaks some
  63. * sharing of btree nodes between the two devices. Breaking sharing only
  64. * effects the btree of that specific device. Btrees for the other
  65. * devices that share the block never change. The btree for the origin
  66. * device as it was after the last commit is untouched, ie. we're using
  67. * persistent data structures in the functional programming sense.
  68. *
  69. * v) unplug io to this physical block, including the io that triggered
  70. * the breaking of sharing.
  71. *
  72. * Steps (ii) and (iii) occur in parallel.
  73. *
  74. * The metadata _doesn't_ need to be committed before the io continues. We
  75. * get away with this because the io is always written to a _new_ block.
  76. * If there's a crash, then:
  77. *
  78. * - The origin mapping will point to the old origin block (the shared
  79. * one). This will contain the data as it was before the io that triggered
  80. * the breaking of sharing came in.
  81. *
  82. * - The snap mapping still points to the old block. As it would after
  83. * the commit.
  84. *
  85. * The downside of this scheme is the timestamp magic isn't perfect, and
  86. * will continue to think that data block in the snapshot device is shared
  87. * even after the write to the origin has broken sharing. I suspect data
  88. * blocks will typically be shared by many different devices, so we're
  89. * breaking sharing n + 1 times, rather than n, where n is the number of
  90. * devices that reference this data block. At the moment I think the
  91. * benefits far, far outweigh the disadvantages.
  92. */
  93. /*----------------------------------------------------------------*/
  94. /*
  95. * Key building.
  96. */
  97. static void build_data_key(struct dm_thin_device *td,
  98. dm_block_t b, struct dm_cell_key *key)
  99. {
  100. key->virtual = 0;
  101. key->dev = dm_thin_dev_id(td);
  102. key->block = b;
  103. }
  104. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  105. struct dm_cell_key *key)
  106. {
  107. key->virtual = 1;
  108. key->dev = dm_thin_dev_id(td);
  109. key->block = b;
  110. }
  111. /*----------------------------------------------------------------*/
  112. /*
  113. * A pool device ties together a metadata device and a data device. It
  114. * also provides the interface for creating and destroying internal
  115. * devices.
  116. */
  117. struct dm_thin_new_mapping;
  118. /*
  119. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  120. */
  121. enum pool_mode {
  122. PM_WRITE, /* metadata may be changed */
  123. PM_READ_ONLY, /* metadata may not be changed */
  124. PM_FAIL, /* all I/O fails */
  125. };
  126. struct pool_features {
  127. enum pool_mode mode;
  128. bool zero_new_blocks:1;
  129. bool discard_enabled:1;
  130. bool discard_passdown:1;
  131. };
  132. struct thin_c;
  133. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  134. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  135. struct pool {
  136. struct list_head list;
  137. struct dm_target *ti; /* Only set if a pool target is bound */
  138. struct mapped_device *pool_md;
  139. struct block_device *md_dev;
  140. struct dm_pool_metadata *pmd;
  141. dm_block_t low_water_blocks;
  142. uint32_t sectors_per_block;
  143. int sectors_per_block_shift;
  144. struct pool_features pf;
  145. unsigned low_water_triggered:1; /* A dm event has been sent */
  146. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  147. struct dm_bio_prison *prison;
  148. struct dm_kcopyd_client *copier;
  149. struct workqueue_struct *wq;
  150. struct work_struct worker;
  151. struct delayed_work waker;
  152. unsigned long last_commit_jiffies;
  153. unsigned ref_count;
  154. spinlock_t lock;
  155. struct bio_list deferred_bios;
  156. struct bio_list deferred_flush_bios;
  157. struct list_head prepared_mappings;
  158. struct list_head prepared_discards;
  159. struct bio_list retry_on_resume_list;
  160. struct dm_deferred_set *shared_read_ds;
  161. struct dm_deferred_set *all_io_ds;
  162. struct dm_thin_new_mapping *next_mapping;
  163. mempool_t *mapping_pool;
  164. process_bio_fn process_bio;
  165. process_bio_fn process_discard;
  166. process_mapping_fn process_prepared_mapping;
  167. process_mapping_fn process_prepared_discard;
  168. };
  169. static enum pool_mode get_pool_mode(struct pool *pool);
  170. static void set_pool_mode(struct pool *pool, enum pool_mode mode);
  171. /*
  172. * Target context for a pool.
  173. */
  174. struct pool_c {
  175. struct dm_target *ti;
  176. struct pool *pool;
  177. struct dm_dev *data_dev;
  178. struct dm_dev *metadata_dev;
  179. struct dm_target_callbacks callbacks;
  180. dm_block_t low_water_blocks;
  181. struct pool_features requested_pf; /* Features requested during table load */
  182. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  183. };
  184. /*
  185. * Target context for a thin.
  186. */
  187. struct thin_c {
  188. struct dm_dev *pool_dev;
  189. struct dm_dev *origin_dev;
  190. dm_thin_id dev_id;
  191. struct pool *pool;
  192. struct dm_thin_device *td;
  193. };
  194. /*----------------------------------------------------------------*/
  195. /*
  196. * A global list of pools that uses a struct mapped_device as a key.
  197. */
  198. static struct dm_thin_pool_table {
  199. struct mutex mutex;
  200. struct list_head pools;
  201. } dm_thin_pool_table;
  202. static void pool_table_init(void)
  203. {
  204. mutex_init(&dm_thin_pool_table.mutex);
  205. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  206. }
  207. static void __pool_table_insert(struct pool *pool)
  208. {
  209. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  210. list_add(&pool->list, &dm_thin_pool_table.pools);
  211. }
  212. static void __pool_table_remove(struct pool *pool)
  213. {
  214. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  215. list_del(&pool->list);
  216. }
  217. static struct pool *__pool_table_lookup(struct mapped_device *md)
  218. {
  219. struct pool *pool = NULL, *tmp;
  220. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  221. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  222. if (tmp->pool_md == md) {
  223. pool = tmp;
  224. break;
  225. }
  226. }
  227. return pool;
  228. }
  229. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  230. {
  231. struct pool *pool = NULL, *tmp;
  232. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  233. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  234. if (tmp->md_dev == md_dev) {
  235. pool = tmp;
  236. break;
  237. }
  238. }
  239. return pool;
  240. }
  241. /*----------------------------------------------------------------*/
  242. struct dm_thin_endio_hook {
  243. struct thin_c *tc;
  244. struct dm_deferred_entry *shared_read_entry;
  245. struct dm_deferred_entry *all_io_entry;
  246. struct dm_thin_new_mapping *overwrite_mapping;
  247. };
  248. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  249. {
  250. struct bio *bio;
  251. struct bio_list bios;
  252. bio_list_init(&bios);
  253. bio_list_merge(&bios, master);
  254. bio_list_init(master);
  255. while ((bio = bio_list_pop(&bios))) {
  256. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  257. if (h->tc == tc)
  258. bio_endio(bio, DM_ENDIO_REQUEUE);
  259. else
  260. bio_list_add(master, bio);
  261. }
  262. }
  263. static void requeue_io(struct thin_c *tc)
  264. {
  265. struct pool *pool = tc->pool;
  266. unsigned long flags;
  267. spin_lock_irqsave(&pool->lock, flags);
  268. __requeue_bio_list(tc, &pool->deferred_bios);
  269. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  270. spin_unlock_irqrestore(&pool->lock, flags);
  271. }
  272. /*
  273. * This section of code contains the logic for processing a thin device's IO.
  274. * Much of the code depends on pool object resources (lists, workqueues, etc)
  275. * but most is exclusively called from the thin target rather than the thin-pool
  276. * target.
  277. */
  278. static bool block_size_is_power_of_two(struct pool *pool)
  279. {
  280. return pool->sectors_per_block_shift >= 0;
  281. }
  282. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  283. {
  284. struct pool *pool = tc->pool;
  285. sector_t block_nr = bio->bi_sector;
  286. if (block_size_is_power_of_two(pool))
  287. block_nr >>= pool->sectors_per_block_shift;
  288. else
  289. (void) sector_div(block_nr, pool->sectors_per_block);
  290. return block_nr;
  291. }
  292. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  293. {
  294. struct pool *pool = tc->pool;
  295. sector_t bi_sector = bio->bi_sector;
  296. bio->bi_bdev = tc->pool_dev->bdev;
  297. if (block_size_is_power_of_two(pool))
  298. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  299. (bi_sector & (pool->sectors_per_block - 1));
  300. else
  301. bio->bi_sector = (block * pool->sectors_per_block) +
  302. sector_div(bi_sector, pool->sectors_per_block);
  303. }
  304. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  305. {
  306. bio->bi_bdev = tc->origin_dev->bdev;
  307. }
  308. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  309. {
  310. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  311. dm_thin_changed_this_transaction(tc->td);
  312. }
  313. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  314. {
  315. struct dm_thin_endio_hook *h;
  316. if (bio->bi_rw & REQ_DISCARD)
  317. return;
  318. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  319. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  320. }
  321. static void issue(struct thin_c *tc, struct bio *bio)
  322. {
  323. struct pool *pool = tc->pool;
  324. unsigned long flags;
  325. if (!bio_triggers_commit(tc, bio)) {
  326. generic_make_request(bio);
  327. return;
  328. }
  329. /*
  330. * Complete bio with an error if earlier I/O caused changes to
  331. * the metadata that can't be committed e.g, due to I/O errors
  332. * on the metadata device.
  333. */
  334. if (dm_thin_aborted_changes(tc->td)) {
  335. bio_io_error(bio);
  336. return;
  337. }
  338. /*
  339. * Batch together any bios that trigger commits and then issue a
  340. * single commit for them in process_deferred_bios().
  341. */
  342. spin_lock_irqsave(&pool->lock, flags);
  343. bio_list_add(&pool->deferred_flush_bios, bio);
  344. spin_unlock_irqrestore(&pool->lock, flags);
  345. }
  346. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  347. {
  348. remap_to_origin(tc, bio);
  349. issue(tc, bio);
  350. }
  351. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  352. dm_block_t block)
  353. {
  354. remap(tc, bio, block);
  355. issue(tc, bio);
  356. }
  357. /*
  358. * wake_worker() is used when new work is queued and when pool_resume is
  359. * ready to continue deferred IO processing.
  360. */
  361. static void wake_worker(struct pool *pool)
  362. {
  363. queue_work(pool->wq, &pool->worker);
  364. }
  365. /*----------------------------------------------------------------*/
  366. /*
  367. * Bio endio functions.
  368. */
  369. struct dm_thin_new_mapping {
  370. struct list_head list;
  371. unsigned quiesced:1;
  372. unsigned prepared:1;
  373. unsigned pass_discard:1;
  374. struct thin_c *tc;
  375. dm_block_t virt_block;
  376. dm_block_t data_block;
  377. struct dm_bio_prison_cell *cell, *cell2;
  378. int err;
  379. /*
  380. * If the bio covers the whole area of a block then we can avoid
  381. * zeroing or copying. Instead this bio is hooked. The bio will
  382. * still be in the cell, so care has to be taken to avoid issuing
  383. * the bio twice.
  384. */
  385. struct bio *bio;
  386. bio_end_io_t *saved_bi_end_io;
  387. };
  388. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  389. {
  390. struct pool *pool = m->tc->pool;
  391. if (m->quiesced && m->prepared) {
  392. list_add(&m->list, &pool->prepared_mappings);
  393. wake_worker(pool);
  394. }
  395. }
  396. static void copy_complete(int read_err, unsigned long write_err, void *context)
  397. {
  398. unsigned long flags;
  399. struct dm_thin_new_mapping *m = context;
  400. struct pool *pool = m->tc->pool;
  401. m->err = read_err || write_err ? -EIO : 0;
  402. spin_lock_irqsave(&pool->lock, flags);
  403. m->prepared = 1;
  404. __maybe_add_mapping(m);
  405. spin_unlock_irqrestore(&pool->lock, flags);
  406. }
  407. static void overwrite_endio(struct bio *bio, int err)
  408. {
  409. unsigned long flags;
  410. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  411. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  412. struct pool *pool = m->tc->pool;
  413. m->err = err;
  414. spin_lock_irqsave(&pool->lock, flags);
  415. m->prepared = 1;
  416. __maybe_add_mapping(m);
  417. spin_unlock_irqrestore(&pool->lock, flags);
  418. }
  419. /*----------------------------------------------------------------*/
  420. /*
  421. * Workqueue.
  422. */
  423. /*
  424. * Prepared mapping jobs.
  425. */
  426. /*
  427. * This sends the bios in the cell back to the deferred_bios list.
  428. */
  429. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  430. {
  431. struct pool *pool = tc->pool;
  432. unsigned long flags;
  433. spin_lock_irqsave(&pool->lock, flags);
  434. dm_cell_release(cell, &pool->deferred_bios);
  435. spin_unlock_irqrestore(&tc->pool->lock, flags);
  436. wake_worker(pool);
  437. }
  438. /*
  439. * Same as cell_defer except it omits the original holder of the cell.
  440. */
  441. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  442. {
  443. struct pool *pool = tc->pool;
  444. unsigned long flags;
  445. spin_lock_irqsave(&pool->lock, flags);
  446. dm_cell_release_no_holder(cell, &pool->deferred_bios);
  447. spin_unlock_irqrestore(&pool->lock, flags);
  448. wake_worker(pool);
  449. }
  450. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  451. {
  452. if (m->bio)
  453. m->bio->bi_end_io = m->saved_bi_end_io;
  454. dm_cell_error(m->cell);
  455. list_del(&m->list);
  456. mempool_free(m, m->tc->pool->mapping_pool);
  457. }
  458. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  459. {
  460. struct thin_c *tc = m->tc;
  461. struct bio *bio;
  462. int r;
  463. bio = m->bio;
  464. if (bio)
  465. bio->bi_end_io = m->saved_bi_end_io;
  466. if (m->err) {
  467. dm_cell_error(m->cell);
  468. goto out;
  469. }
  470. /*
  471. * Commit the prepared block into the mapping btree.
  472. * Any I/O for this block arriving after this point will get
  473. * remapped to it directly.
  474. */
  475. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  476. if (r) {
  477. DMERR_LIMIT("dm_thin_insert_block() failed");
  478. dm_cell_error(m->cell);
  479. goto out;
  480. }
  481. /*
  482. * Release any bios held while the block was being provisioned.
  483. * If we are processing a write bio that completely covers the block,
  484. * we already processed it so can ignore it now when processing
  485. * the bios in the cell.
  486. */
  487. if (bio) {
  488. cell_defer_no_holder(tc, m->cell);
  489. bio_endio(bio, 0);
  490. } else
  491. cell_defer(tc, m->cell);
  492. out:
  493. list_del(&m->list);
  494. mempool_free(m, tc->pool->mapping_pool);
  495. }
  496. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  497. {
  498. struct thin_c *tc = m->tc;
  499. bio_io_error(m->bio);
  500. cell_defer_no_holder(tc, m->cell);
  501. cell_defer_no_holder(tc, m->cell2);
  502. mempool_free(m, tc->pool->mapping_pool);
  503. }
  504. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  505. {
  506. struct thin_c *tc = m->tc;
  507. inc_all_io_entry(tc->pool, m->bio);
  508. cell_defer_no_holder(tc, m->cell);
  509. cell_defer_no_holder(tc, m->cell2);
  510. if (m->pass_discard)
  511. remap_and_issue(tc, m->bio, m->data_block);
  512. else
  513. bio_endio(m->bio, 0);
  514. mempool_free(m, tc->pool->mapping_pool);
  515. }
  516. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  517. {
  518. int r;
  519. struct thin_c *tc = m->tc;
  520. r = dm_thin_remove_block(tc->td, m->virt_block);
  521. if (r)
  522. DMERR_LIMIT("dm_thin_remove_block() failed");
  523. process_prepared_discard_passdown(m);
  524. }
  525. static void process_prepared(struct pool *pool, struct list_head *head,
  526. process_mapping_fn *fn)
  527. {
  528. unsigned long flags;
  529. struct list_head maps;
  530. struct dm_thin_new_mapping *m, *tmp;
  531. INIT_LIST_HEAD(&maps);
  532. spin_lock_irqsave(&pool->lock, flags);
  533. list_splice_init(head, &maps);
  534. spin_unlock_irqrestore(&pool->lock, flags);
  535. list_for_each_entry_safe(m, tmp, &maps, list)
  536. (*fn)(m);
  537. }
  538. /*
  539. * Deferred bio jobs.
  540. */
  541. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  542. {
  543. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  544. }
  545. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  546. {
  547. return (bio_data_dir(bio) == WRITE) &&
  548. io_overlaps_block(pool, bio);
  549. }
  550. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  551. bio_end_io_t *fn)
  552. {
  553. *save = bio->bi_end_io;
  554. bio->bi_end_io = fn;
  555. }
  556. static int ensure_next_mapping(struct pool *pool)
  557. {
  558. if (pool->next_mapping)
  559. return 0;
  560. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  561. return pool->next_mapping ? 0 : -ENOMEM;
  562. }
  563. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  564. {
  565. struct dm_thin_new_mapping *r = pool->next_mapping;
  566. BUG_ON(!pool->next_mapping);
  567. pool->next_mapping = NULL;
  568. return r;
  569. }
  570. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  571. struct dm_dev *origin, dm_block_t data_origin,
  572. dm_block_t data_dest,
  573. struct dm_bio_prison_cell *cell, struct bio *bio)
  574. {
  575. int r;
  576. struct pool *pool = tc->pool;
  577. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  578. INIT_LIST_HEAD(&m->list);
  579. m->quiesced = 0;
  580. m->prepared = 0;
  581. m->tc = tc;
  582. m->virt_block = virt_block;
  583. m->data_block = data_dest;
  584. m->cell = cell;
  585. m->err = 0;
  586. m->bio = NULL;
  587. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  588. m->quiesced = 1;
  589. /*
  590. * IO to pool_dev remaps to the pool target's data_dev.
  591. *
  592. * If the whole block of data is being overwritten, we can issue the
  593. * bio immediately. Otherwise we use kcopyd to clone the data first.
  594. */
  595. if (io_overwrites_block(pool, bio)) {
  596. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  597. h->overwrite_mapping = m;
  598. m->bio = bio;
  599. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  600. inc_all_io_entry(pool, bio);
  601. remap_and_issue(tc, bio, data_dest);
  602. } else {
  603. struct dm_io_region from, to;
  604. from.bdev = origin->bdev;
  605. from.sector = data_origin * pool->sectors_per_block;
  606. from.count = pool->sectors_per_block;
  607. to.bdev = tc->pool_dev->bdev;
  608. to.sector = data_dest * pool->sectors_per_block;
  609. to.count = pool->sectors_per_block;
  610. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  611. 0, copy_complete, m);
  612. if (r < 0) {
  613. mempool_free(m, pool->mapping_pool);
  614. DMERR_LIMIT("dm_kcopyd_copy() failed");
  615. dm_cell_error(cell);
  616. }
  617. }
  618. }
  619. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  620. dm_block_t data_origin, dm_block_t data_dest,
  621. struct dm_bio_prison_cell *cell, struct bio *bio)
  622. {
  623. schedule_copy(tc, virt_block, tc->pool_dev,
  624. data_origin, data_dest, cell, bio);
  625. }
  626. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  627. dm_block_t data_dest,
  628. struct dm_bio_prison_cell *cell, struct bio *bio)
  629. {
  630. schedule_copy(tc, virt_block, tc->origin_dev,
  631. virt_block, data_dest, cell, bio);
  632. }
  633. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  634. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  635. struct bio *bio)
  636. {
  637. struct pool *pool = tc->pool;
  638. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  639. INIT_LIST_HEAD(&m->list);
  640. m->quiesced = 1;
  641. m->prepared = 0;
  642. m->tc = tc;
  643. m->virt_block = virt_block;
  644. m->data_block = data_block;
  645. m->cell = cell;
  646. m->err = 0;
  647. m->bio = NULL;
  648. /*
  649. * If the whole block of data is being overwritten or we are not
  650. * zeroing pre-existing data, we can issue the bio immediately.
  651. * Otherwise we use kcopyd to zero the data first.
  652. */
  653. if (!pool->pf.zero_new_blocks)
  654. process_prepared_mapping(m);
  655. else if (io_overwrites_block(pool, bio)) {
  656. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  657. h->overwrite_mapping = m;
  658. m->bio = bio;
  659. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  660. inc_all_io_entry(pool, bio);
  661. remap_and_issue(tc, bio, data_block);
  662. } else {
  663. int r;
  664. struct dm_io_region to;
  665. to.bdev = tc->pool_dev->bdev;
  666. to.sector = data_block * pool->sectors_per_block;
  667. to.count = pool->sectors_per_block;
  668. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  669. if (r < 0) {
  670. mempool_free(m, pool->mapping_pool);
  671. DMERR_LIMIT("dm_kcopyd_zero() failed");
  672. dm_cell_error(cell);
  673. }
  674. }
  675. }
  676. static int commit(struct pool *pool)
  677. {
  678. int r;
  679. r = dm_pool_commit_metadata(pool->pmd);
  680. if (r)
  681. DMERR_LIMIT("commit failed: error = %d", r);
  682. return r;
  683. }
  684. /*
  685. * A non-zero return indicates read_only or fail_io mode.
  686. * Many callers don't care about the return value.
  687. */
  688. static int commit_or_fallback(struct pool *pool)
  689. {
  690. int r;
  691. if (get_pool_mode(pool) != PM_WRITE)
  692. return -EINVAL;
  693. r = commit(pool);
  694. if (r)
  695. set_pool_mode(pool, PM_READ_ONLY);
  696. return r;
  697. }
  698. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  699. {
  700. int r;
  701. dm_block_t free_blocks;
  702. unsigned long flags;
  703. struct pool *pool = tc->pool;
  704. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  705. if (r)
  706. return r;
  707. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  708. DMWARN("%s: reached low water mark, sending event.",
  709. dm_device_name(pool->pool_md));
  710. spin_lock_irqsave(&pool->lock, flags);
  711. pool->low_water_triggered = 1;
  712. spin_unlock_irqrestore(&pool->lock, flags);
  713. dm_table_event(pool->ti->table);
  714. }
  715. if (!free_blocks) {
  716. if (pool->no_free_space)
  717. return -ENOSPC;
  718. else {
  719. /*
  720. * Try to commit to see if that will free up some
  721. * more space.
  722. */
  723. (void) commit_or_fallback(pool);
  724. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  725. if (r)
  726. return r;
  727. /*
  728. * If we still have no space we set a flag to avoid
  729. * doing all this checking and return -ENOSPC.
  730. */
  731. if (!free_blocks) {
  732. DMWARN("%s: no free space available.",
  733. dm_device_name(pool->pool_md));
  734. spin_lock_irqsave(&pool->lock, flags);
  735. pool->no_free_space = 1;
  736. spin_unlock_irqrestore(&pool->lock, flags);
  737. return -ENOSPC;
  738. }
  739. }
  740. }
  741. r = dm_pool_alloc_data_block(pool->pmd, result);
  742. if (r)
  743. return r;
  744. return 0;
  745. }
  746. /*
  747. * If we have run out of space, queue bios until the device is
  748. * resumed, presumably after having been reloaded with more space.
  749. */
  750. static void retry_on_resume(struct bio *bio)
  751. {
  752. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  753. struct thin_c *tc = h->tc;
  754. struct pool *pool = tc->pool;
  755. unsigned long flags;
  756. spin_lock_irqsave(&pool->lock, flags);
  757. bio_list_add(&pool->retry_on_resume_list, bio);
  758. spin_unlock_irqrestore(&pool->lock, flags);
  759. }
  760. static void no_space(struct dm_bio_prison_cell *cell)
  761. {
  762. struct bio *bio;
  763. struct bio_list bios;
  764. bio_list_init(&bios);
  765. dm_cell_release(cell, &bios);
  766. while ((bio = bio_list_pop(&bios)))
  767. retry_on_resume(bio);
  768. }
  769. static void process_discard(struct thin_c *tc, struct bio *bio)
  770. {
  771. int r;
  772. unsigned long flags;
  773. struct pool *pool = tc->pool;
  774. struct dm_bio_prison_cell *cell, *cell2;
  775. struct dm_cell_key key, key2;
  776. dm_block_t block = get_bio_block(tc, bio);
  777. struct dm_thin_lookup_result lookup_result;
  778. struct dm_thin_new_mapping *m;
  779. build_virtual_key(tc->td, block, &key);
  780. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  781. return;
  782. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  783. switch (r) {
  784. case 0:
  785. /*
  786. * Check nobody is fiddling with this pool block. This can
  787. * happen if someone's in the process of breaking sharing
  788. * on this block.
  789. */
  790. build_data_key(tc->td, lookup_result.block, &key2);
  791. if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  792. cell_defer_no_holder(tc, cell);
  793. break;
  794. }
  795. if (io_overlaps_block(pool, bio)) {
  796. /*
  797. * IO may still be going to the destination block. We must
  798. * quiesce before we can do the removal.
  799. */
  800. m = get_next_mapping(pool);
  801. m->tc = tc;
  802. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  803. m->virt_block = block;
  804. m->data_block = lookup_result.block;
  805. m->cell = cell;
  806. m->cell2 = cell2;
  807. m->err = 0;
  808. m->bio = bio;
  809. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  810. spin_lock_irqsave(&pool->lock, flags);
  811. list_add(&m->list, &pool->prepared_discards);
  812. spin_unlock_irqrestore(&pool->lock, flags);
  813. wake_worker(pool);
  814. }
  815. } else {
  816. inc_all_io_entry(pool, bio);
  817. cell_defer_no_holder(tc, cell);
  818. cell_defer_no_holder(tc, cell2);
  819. /*
  820. * The DM core makes sure that the discard doesn't span
  821. * a block boundary. So we submit the discard of a
  822. * partial block appropriately.
  823. */
  824. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  825. remap_and_issue(tc, bio, lookup_result.block);
  826. else
  827. bio_endio(bio, 0);
  828. }
  829. break;
  830. case -ENODATA:
  831. /*
  832. * It isn't provisioned, just forget it.
  833. */
  834. cell_defer_no_holder(tc, cell);
  835. bio_endio(bio, 0);
  836. break;
  837. default:
  838. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  839. __func__, r);
  840. cell_defer_no_holder(tc, cell);
  841. bio_io_error(bio);
  842. break;
  843. }
  844. }
  845. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  846. struct dm_cell_key *key,
  847. struct dm_thin_lookup_result *lookup_result,
  848. struct dm_bio_prison_cell *cell)
  849. {
  850. int r;
  851. dm_block_t data_block;
  852. r = alloc_data_block(tc, &data_block);
  853. switch (r) {
  854. case 0:
  855. schedule_internal_copy(tc, block, lookup_result->block,
  856. data_block, cell, bio);
  857. break;
  858. case -ENOSPC:
  859. no_space(cell);
  860. break;
  861. default:
  862. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  863. __func__, r);
  864. dm_cell_error(cell);
  865. break;
  866. }
  867. }
  868. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  869. dm_block_t block,
  870. struct dm_thin_lookup_result *lookup_result)
  871. {
  872. struct dm_bio_prison_cell *cell;
  873. struct pool *pool = tc->pool;
  874. struct dm_cell_key key;
  875. /*
  876. * If cell is already occupied, then sharing is already in the process
  877. * of being broken so we have nothing further to do here.
  878. */
  879. build_data_key(tc->td, lookup_result->block, &key);
  880. if (dm_bio_detain(pool->prison, &key, bio, &cell))
  881. return;
  882. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  883. break_sharing(tc, bio, block, &key, lookup_result, cell);
  884. else {
  885. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  886. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  887. inc_all_io_entry(pool, bio);
  888. cell_defer_no_holder(tc, cell);
  889. remap_and_issue(tc, bio, lookup_result->block);
  890. }
  891. }
  892. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  893. struct dm_bio_prison_cell *cell)
  894. {
  895. int r;
  896. dm_block_t data_block;
  897. /*
  898. * Remap empty bios (flushes) immediately, without provisioning.
  899. */
  900. if (!bio->bi_size) {
  901. inc_all_io_entry(tc->pool, bio);
  902. cell_defer_no_holder(tc, cell);
  903. remap_and_issue(tc, bio, 0);
  904. return;
  905. }
  906. /*
  907. * Fill read bios with zeroes and complete them immediately.
  908. */
  909. if (bio_data_dir(bio) == READ) {
  910. zero_fill_bio(bio);
  911. cell_defer_no_holder(tc, cell);
  912. bio_endio(bio, 0);
  913. return;
  914. }
  915. r = alloc_data_block(tc, &data_block);
  916. switch (r) {
  917. case 0:
  918. if (tc->origin_dev)
  919. schedule_external_copy(tc, block, data_block, cell, bio);
  920. else
  921. schedule_zero(tc, block, data_block, cell, bio);
  922. break;
  923. case -ENOSPC:
  924. no_space(cell);
  925. break;
  926. default:
  927. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  928. __func__, r);
  929. set_pool_mode(tc->pool, PM_READ_ONLY);
  930. dm_cell_error(cell);
  931. break;
  932. }
  933. }
  934. static void process_bio(struct thin_c *tc, struct bio *bio)
  935. {
  936. int r;
  937. dm_block_t block = get_bio_block(tc, bio);
  938. struct dm_bio_prison_cell *cell;
  939. struct dm_cell_key key;
  940. struct dm_thin_lookup_result lookup_result;
  941. /*
  942. * If cell is already occupied, then the block is already
  943. * being provisioned so we have nothing further to do here.
  944. */
  945. build_virtual_key(tc->td, block, &key);
  946. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  947. return;
  948. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  949. switch (r) {
  950. case 0:
  951. if (lookup_result.shared) {
  952. process_shared_bio(tc, bio, block, &lookup_result);
  953. cell_defer_no_holder(tc, cell);
  954. } else {
  955. inc_all_io_entry(tc->pool, bio);
  956. cell_defer_no_holder(tc, cell);
  957. remap_and_issue(tc, bio, lookup_result.block);
  958. }
  959. break;
  960. case -ENODATA:
  961. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  962. inc_all_io_entry(tc->pool, bio);
  963. cell_defer_no_holder(tc, cell);
  964. remap_to_origin_and_issue(tc, bio);
  965. } else
  966. provision_block(tc, bio, block, cell);
  967. break;
  968. default:
  969. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  970. __func__, r);
  971. cell_defer_no_holder(tc, cell);
  972. bio_io_error(bio);
  973. break;
  974. }
  975. }
  976. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  977. {
  978. int r;
  979. int rw = bio_data_dir(bio);
  980. dm_block_t block = get_bio_block(tc, bio);
  981. struct dm_thin_lookup_result lookup_result;
  982. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  983. switch (r) {
  984. case 0:
  985. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  986. bio_io_error(bio);
  987. else {
  988. inc_all_io_entry(tc->pool, bio);
  989. remap_and_issue(tc, bio, lookup_result.block);
  990. }
  991. break;
  992. case -ENODATA:
  993. if (rw != READ) {
  994. bio_io_error(bio);
  995. break;
  996. }
  997. if (tc->origin_dev) {
  998. inc_all_io_entry(tc->pool, bio);
  999. remap_to_origin_and_issue(tc, bio);
  1000. break;
  1001. }
  1002. zero_fill_bio(bio);
  1003. bio_endio(bio, 0);
  1004. break;
  1005. default:
  1006. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1007. __func__, r);
  1008. bio_io_error(bio);
  1009. break;
  1010. }
  1011. }
  1012. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1013. {
  1014. bio_io_error(bio);
  1015. }
  1016. static int need_commit_due_to_time(struct pool *pool)
  1017. {
  1018. return jiffies < pool->last_commit_jiffies ||
  1019. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1020. }
  1021. static void process_deferred_bios(struct pool *pool)
  1022. {
  1023. unsigned long flags;
  1024. struct bio *bio;
  1025. struct bio_list bios;
  1026. bio_list_init(&bios);
  1027. spin_lock_irqsave(&pool->lock, flags);
  1028. bio_list_merge(&bios, &pool->deferred_bios);
  1029. bio_list_init(&pool->deferred_bios);
  1030. spin_unlock_irqrestore(&pool->lock, flags);
  1031. while ((bio = bio_list_pop(&bios))) {
  1032. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1033. struct thin_c *tc = h->tc;
  1034. /*
  1035. * If we've got no free new_mapping structs, and processing
  1036. * this bio might require one, we pause until there are some
  1037. * prepared mappings to process.
  1038. */
  1039. if (ensure_next_mapping(pool)) {
  1040. spin_lock_irqsave(&pool->lock, flags);
  1041. bio_list_merge(&pool->deferred_bios, &bios);
  1042. spin_unlock_irqrestore(&pool->lock, flags);
  1043. break;
  1044. }
  1045. if (bio->bi_rw & REQ_DISCARD)
  1046. pool->process_discard(tc, bio);
  1047. else
  1048. pool->process_bio(tc, bio);
  1049. }
  1050. /*
  1051. * If there are any deferred flush bios, we must commit
  1052. * the metadata before issuing them.
  1053. */
  1054. bio_list_init(&bios);
  1055. spin_lock_irqsave(&pool->lock, flags);
  1056. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1057. bio_list_init(&pool->deferred_flush_bios);
  1058. spin_unlock_irqrestore(&pool->lock, flags);
  1059. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1060. return;
  1061. if (commit_or_fallback(pool)) {
  1062. while ((bio = bio_list_pop(&bios)))
  1063. bio_io_error(bio);
  1064. return;
  1065. }
  1066. pool->last_commit_jiffies = jiffies;
  1067. while ((bio = bio_list_pop(&bios)))
  1068. generic_make_request(bio);
  1069. }
  1070. static void do_worker(struct work_struct *ws)
  1071. {
  1072. struct pool *pool = container_of(ws, struct pool, worker);
  1073. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1074. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1075. process_deferred_bios(pool);
  1076. }
  1077. /*
  1078. * We want to commit periodically so that not too much
  1079. * unwritten data builds up.
  1080. */
  1081. static void do_waker(struct work_struct *ws)
  1082. {
  1083. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1084. wake_worker(pool);
  1085. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1086. }
  1087. /*----------------------------------------------------------------*/
  1088. static enum pool_mode get_pool_mode(struct pool *pool)
  1089. {
  1090. return pool->pf.mode;
  1091. }
  1092. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1093. {
  1094. int r;
  1095. pool->pf.mode = mode;
  1096. switch (mode) {
  1097. case PM_FAIL:
  1098. DMERR("switching pool to failure mode");
  1099. pool->process_bio = process_bio_fail;
  1100. pool->process_discard = process_bio_fail;
  1101. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1102. pool->process_prepared_discard = process_prepared_discard_fail;
  1103. break;
  1104. case PM_READ_ONLY:
  1105. DMERR("switching pool to read-only mode");
  1106. r = dm_pool_abort_metadata(pool->pmd);
  1107. if (r) {
  1108. DMERR("aborting transaction failed");
  1109. set_pool_mode(pool, PM_FAIL);
  1110. } else {
  1111. dm_pool_metadata_read_only(pool->pmd);
  1112. pool->process_bio = process_bio_read_only;
  1113. pool->process_discard = process_discard;
  1114. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1115. pool->process_prepared_discard = process_prepared_discard_passdown;
  1116. }
  1117. break;
  1118. case PM_WRITE:
  1119. pool->process_bio = process_bio;
  1120. pool->process_discard = process_discard;
  1121. pool->process_prepared_mapping = process_prepared_mapping;
  1122. pool->process_prepared_discard = process_prepared_discard;
  1123. break;
  1124. }
  1125. }
  1126. /*----------------------------------------------------------------*/
  1127. /*
  1128. * Mapping functions.
  1129. */
  1130. /*
  1131. * Called only while mapping a thin bio to hand it over to the workqueue.
  1132. */
  1133. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1134. {
  1135. unsigned long flags;
  1136. struct pool *pool = tc->pool;
  1137. spin_lock_irqsave(&pool->lock, flags);
  1138. bio_list_add(&pool->deferred_bios, bio);
  1139. spin_unlock_irqrestore(&pool->lock, flags);
  1140. wake_worker(pool);
  1141. }
  1142. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1143. {
  1144. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1145. h->tc = tc;
  1146. h->shared_read_entry = NULL;
  1147. h->all_io_entry = NULL;
  1148. h->overwrite_mapping = NULL;
  1149. }
  1150. /*
  1151. * Non-blocking function called from the thin target's map function.
  1152. */
  1153. static int thin_bio_map(struct dm_target *ti, struct bio *bio)
  1154. {
  1155. int r;
  1156. struct thin_c *tc = ti->private;
  1157. dm_block_t block = get_bio_block(tc, bio);
  1158. struct dm_thin_device *td = tc->td;
  1159. struct dm_thin_lookup_result result;
  1160. struct dm_bio_prison_cell *cell1, *cell2;
  1161. struct dm_cell_key key;
  1162. thin_hook_bio(tc, bio);
  1163. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1164. bio_io_error(bio);
  1165. return DM_MAPIO_SUBMITTED;
  1166. }
  1167. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1168. thin_defer_bio(tc, bio);
  1169. return DM_MAPIO_SUBMITTED;
  1170. }
  1171. r = dm_thin_find_block(td, block, 0, &result);
  1172. /*
  1173. * Note that we defer readahead too.
  1174. */
  1175. switch (r) {
  1176. case 0:
  1177. if (unlikely(result.shared)) {
  1178. /*
  1179. * We have a race condition here between the
  1180. * result.shared value returned by the lookup and
  1181. * snapshot creation, which may cause new
  1182. * sharing.
  1183. *
  1184. * To avoid this always quiesce the origin before
  1185. * taking the snap. You want to do this anyway to
  1186. * ensure a consistent application view
  1187. * (i.e. lockfs).
  1188. *
  1189. * More distant ancestors are irrelevant. The
  1190. * shared flag will be set in their case.
  1191. */
  1192. thin_defer_bio(tc, bio);
  1193. return DM_MAPIO_SUBMITTED;
  1194. }
  1195. build_virtual_key(tc->td, block, &key);
  1196. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
  1197. return DM_MAPIO_SUBMITTED;
  1198. build_data_key(tc->td, result.block, &key);
  1199. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
  1200. cell_defer_no_holder(tc, cell1);
  1201. return DM_MAPIO_SUBMITTED;
  1202. }
  1203. inc_all_io_entry(tc->pool, bio);
  1204. cell_defer_no_holder(tc, cell2);
  1205. cell_defer_no_holder(tc, cell1);
  1206. remap(tc, bio, result.block);
  1207. return DM_MAPIO_REMAPPED;
  1208. case -ENODATA:
  1209. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1210. /*
  1211. * This block isn't provisioned, and we have no way
  1212. * of doing so. Just error it.
  1213. */
  1214. bio_io_error(bio);
  1215. return DM_MAPIO_SUBMITTED;
  1216. }
  1217. /* fall through */
  1218. case -EWOULDBLOCK:
  1219. /*
  1220. * In future, the failed dm_thin_find_block above could
  1221. * provide the hint to load the metadata into cache.
  1222. */
  1223. thin_defer_bio(tc, bio);
  1224. return DM_MAPIO_SUBMITTED;
  1225. default:
  1226. /*
  1227. * Must always call bio_io_error on failure.
  1228. * dm_thin_find_block can fail with -EINVAL if the
  1229. * pool is switched to fail-io mode.
  1230. */
  1231. bio_io_error(bio);
  1232. return DM_MAPIO_SUBMITTED;
  1233. }
  1234. }
  1235. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1236. {
  1237. int r;
  1238. unsigned long flags;
  1239. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1240. spin_lock_irqsave(&pt->pool->lock, flags);
  1241. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1242. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1243. if (!r) {
  1244. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1245. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1246. }
  1247. return r;
  1248. }
  1249. static void __requeue_bios(struct pool *pool)
  1250. {
  1251. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1252. bio_list_init(&pool->retry_on_resume_list);
  1253. }
  1254. /*----------------------------------------------------------------
  1255. * Binding of control targets to a pool object
  1256. *--------------------------------------------------------------*/
  1257. static bool data_dev_supports_discard(struct pool_c *pt)
  1258. {
  1259. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1260. return q && blk_queue_discard(q);
  1261. }
  1262. /*
  1263. * If discard_passdown was enabled verify that the data device
  1264. * supports discards. Disable discard_passdown if not.
  1265. */
  1266. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1267. {
  1268. struct pool *pool = pt->pool;
  1269. struct block_device *data_bdev = pt->data_dev->bdev;
  1270. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1271. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1272. const char *reason = NULL;
  1273. char buf[BDEVNAME_SIZE];
  1274. if (!pt->adjusted_pf.discard_passdown)
  1275. return;
  1276. if (!data_dev_supports_discard(pt))
  1277. reason = "discard unsupported";
  1278. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1279. reason = "max discard sectors smaller than a block";
  1280. else if (data_limits->discard_granularity > block_size)
  1281. reason = "discard granularity larger than a block";
  1282. else if (block_size & (data_limits->discard_granularity - 1))
  1283. reason = "discard granularity not a factor of block size";
  1284. if (reason) {
  1285. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1286. pt->adjusted_pf.discard_passdown = false;
  1287. }
  1288. }
  1289. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1290. {
  1291. struct pool_c *pt = ti->private;
  1292. /*
  1293. * We want to make sure that degraded pools are never upgraded.
  1294. */
  1295. enum pool_mode old_mode = pool->pf.mode;
  1296. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1297. if (old_mode > new_mode)
  1298. new_mode = old_mode;
  1299. pool->ti = ti;
  1300. pool->low_water_blocks = pt->low_water_blocks;
  1301. pool->pf = pt->adjusted_pf;
  1302. set_pool_mode(pool, new_mode);
  1303. return 0;
  1304. }
  1305. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1306. {
  1307. if (pool->ti == ti)
  1308. pool->ti = NULL;
  1309. }
  1310. /*----------------------------------------------------------------
  1311. * Pool creation
  1312. *--------------------------------------------------------------*/
  1313. /* Initialize pool features. */
  1314. static void pool_features_init(struct pool_features *pf)
  1315. {
  1316. pf->mode = PM_WRITE;
  1317. pf->zero_new_blocks = true;
  1318. pf->discard_enabled = true;
  1319. pf->discard_passdown = true;
  1320. }
  1321. static void __pool_destroy(struct pool *pool)
  1322. {
  1323. __pool_table_remove(pool);
  1324. if (dm_pool_metadata_close(pool->pmd) < 0)
  1325. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1326. dm_bio_prison_destroy(pool->prison);
  1327. dm_kcopyd_client_destroy(pool->copier);
  1328. if (pool->wq)
  1329. destroy_workqueue(pool->wq);
  1330. if (pool->next_mapping)
  1331. mempool_free(pool->next_mapping, pool->mapping_pool);
  1332. mempool_destroy(pool->mapping_pool);
  1333. dm_deferred_set_destroy(pool->shared_read_ds);
  1334. dm_deferred_set_destroy(pool->all_io_ds);
  1335. kfree(pool);
  1336. }
  1337. static struct kmem_cache *_new_mapping_cache;
  1338. static struct pool *pool_create(struct mapped_device *pool_md,
  1339. struct block_device *metadata_dev,
  1340. unsigned long block_size,
  1341. int read_only, char **error)
  1342. {
  1343. int r;
  1344. void *err_p;
  1345. struct pool *pool;
  1346. struct dm_pool_metadata *pmd;
  1347. bool format_device = read_only ? false : true;
  1348. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1349. if (IS_ERR(pmd)) {
  1350. *error = "Error creating metadata object";
  1351. return (struct pool *)pmd;
  1352. }
  1353. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1354. if (!pool) {
  1355. *error = "Error allocating memory for pool";
  1356. err_p = ERR_PTR(-ENOMEM);
  1357. goto bad_pool;
  1358. }
  1359. pool->pmd = pmd;
  1360. pool->sectors_per_block = block_size;
  1361. if (block_size & (block_size - 1))
  1362. pool->sectors_per_block_shift = -1;
  1363. else
  1364. pool->sectors_per_block_shift = __ffs(block_size);
  1365. pool->low_water_blocks = 0;
  1366. pool_features_init(&pool->pf);
  1367. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1368. if (!pool->prison) {
  1369. *error = "Error creating pool's bio prison";
  1370. err_p = ERR_PTR(-ENOMEM);
  1371. goto bad_prison;
  1372. }
  1373. pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1374. if (IS_ERR(pool->copier)) {
  1375. r = PTR_ERR(pool->copier);
  1376. *error = "Error creating pool's kcopyd client";
  1377. err_p = ERR_PTR(r);
  1378. goto bad_kcopyd_client;
  1379. }
  1380. /*
  1381. * Create singlethreaded workqueue that will service all devices
  1382. * that use this metadata.
  1383. */
  1384. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1385. if (!pool->wq) {
  1386. *error = "Error creating pool's workqueue";
  1387. err_p = ERR_PTR(-ENOMEM);
  1388. goto bad_wq;
  1389. }
  1390. INIT_WORK(&pool->worker, do_worker);
  1391. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1392. spin_lock_init(&pool->lock);
  1393. bio_list_init(&pool->deferred_bios);
  1394. bio_list_init(&pool->deferred_flush_bios);
  1395. INIT_LIST_HEAD(&pool->prepared_mappings);
  1396. INIT_LIST_HEAD(&pool->prepared_discards);
  1397. pool->low_water_triggered = 0;
  1398. pool->no_free_space = 0;
  1399. bio_list_init(&pool->retry_on_resume_list);
  1400. pool->shared_read_ds = dm_deferred_set_create();
  1401. if (!pool->shared_read_ds) {
  1402. *error = "Error creating pool's shared read deferred set";
  1403. err_p = ERR_PTR(-ENOMEM);
  1404. goto bad_shared_read_ds;
  1405. }
  1406. pool->all_io_ds = dm_deferred_set_create();
  1407. if (!pool->all_io_ds) {
  1408. *error = "Error creating pool's all io deferred set";
  1409. err_p = ERR_PTR(-ENOMEM);
  1410. goto bad_all_io_ds;
  1411. }
  1412. pool->next_mapping = NULL;
  1413. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1414. _new_mapping_cache);
  1415. if (!pool->mapping_pool) {
  1416. *error = "Error creating pool's mapping mempool";
  1417. err_p = ERR_PTR(-ENOMEM);
  1418. goto bad_mapping_pool;
  1419. }
  1420. pool->ref_count = 1;
  1421. pool->last_commit_jiffies = jiffies;
  1422. pool->pool_md = pool_md;
  1423. pool->md_dev = metadata_dev;
  1424. __pool_table_insert(pool);
  1425. return pool;
  1426. bad_mapping_pool:
  1427. dm_deferred_set_destroy(pool->all_io_ds);
  1428. bad_all_io_ds:
  1429. dm_deferred_set_destroy(pool->shared_read_ds);
  1430. bad_shared_read_ds:
  1431. destroy_workqueue(pool->wq);
  1432. bad_wq:
  1433. dm_kcopyd_client_destroy(pool->copier);
  1434. bad_kcopyd_client:
  1435. dm_bio_prison_destroy(pool->prison);
  1436. bad_prison:
  1437. kfree(pool);
  1438. bad_pool:
  1439. if (dm_pool_metadata_close(pmd))
  1440. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1441. return err_p;
  1442. }
  1443. static void __pool_inc(struct pool *pool)
  1444. {
  1445. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1446. pool->ref_count++;
  1447. }
  1448. static void __pool_dec(struct pool *pool)
  1449. {
  1450. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1451. BUG_ON(!pool->ref_count);
  1452. if (!--pool->ref_count)
  1453. __pool_destroy(pool);
  1454. }
  1455. static struct pool *__pool_find(struct mapped_device *pool_md,
  1456. struct block_device *metadata_dev,
  1457. unsigned long block_size, int read_only,
  1458. char **error, int *created)
  1459. {
  1460. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1461. if (pool) {
  1462. if (pool->pool_md != pool_md) {
  1463. *error = "metadata device already in use by a pool";
  1464. return ERR_PTR(-EBUSY);
  1465. }
  1466. __pool_inc(pool);
  1467. } else {
  1468. pool = __pool_table_lookup(pool_md);
  1469. if (pool) {
  1470. if (pool->md_dev != metadata_dev) {
  1471. *error = "different pool cannot replace a pool";
  1472. return ERR_PTR(-EINVAL);
  1473. }
  1474. __pool_inc(pool);
  1475. } else {
  1476. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1477. *created = 1;
  1478. }
  1479. }
  1480. return pool;
  1481. }
  1482. /*----------------------------------------------------------------
  1483. * Pool target methods
  1484. *--------------------------------------------------------------*/
  1485. static void pool_dtr(struct dm_target *ti)
  1486. {
  1487. struct pool_c *pt = ti->private;
  1488. mutex_lock(&dm_thin_pool_table.mutex);
  1489. unbind_control_target(pt->pool, ti);
  1490. __pool_dec(pt->pool);
  1491. dm_put_device(ti, pt->metadata_dev);
  1492. dm_put_device(ti, pt->data_dev);
  1493. kfree(pt);
  1494. mutex_unlock(&dm_thin_pool_table.mutex);
  1495. }
  1496. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1497. struct dm_target *ti)
  1498. {
  1499. int r;
  1500. unsigned argc;
  1501. const char *arg_name;
  1502. static struct dm_arg _args[] = {
  1503. {0, 3, "Invalid number of pool feature arguments"},
  1504. };
  1505. /*
  1506. * No feature arguments supplied.
  1507. */
  1508. if (!as->argc)
  1509. return 0;
  1510. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1511. if (r)
  1512. return -EINVAL;
  1513. while (argc && !r) {
  1514. arg_name = dm_shift_arg(as);
  1515. argc--;
  1516. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1517. pf->zero_new_blocks = false;
  1518. else if (!strcasecmp(arg_name, "ignore_discard"))
  1519. pf->discard_enabled = false;
  1520. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1521. pf->discard_passdown = false;
  1522. else if (!strcasecmp(arg_name, "read_only"))
  1523. pf->mode = PM_READ_ONLY;
  1524. else {
  1525. ti->error = "Unrecognised pool feature requested";
  1526. r = -EINVAL;
  1527. break;
  1528. }
  1529. }
  1530. return r;
  1531. }
  1532. /*
  1533. * thin-pool <metadata dev> <data dev>
  1534. * <data block size (sectors)>
  1535. * <low water mark (blocks)>
  1536. * [<#feature args> [<arg>]*]
  1537. *
  1538. * Optional feature arguments are:
  1539. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1540. * ignore_discard: disable discard
  1541. * no_discard_passdown: don't pass discards down to the data device
  1542. */
  1543. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1544. {
  1545. int r, pool_created = 0;
  1546. struct pool_c *pt;
  1547. struct pool *pool;
  1548. struct pool_features pf;
  1549. struct dm_arg_set as;
  1550. struct dm_dev *data_dev;
  1551. unsigned long block_size;
  1552. dm_block_t low_water_blocks;
  1553. struct dm_dev *metadata_dev;
  1554. sector_t metadata_dev_size;
  1555. char b[BDEVNAME_SIZE];
  1556. /*
  1557. * FIXME Remove validation from scope of lock.
  1558. */
  1559. mutex_lock(&dm_thin_pool_table.mutex);
  1560. if (argc < 4) {
  1561. ti->error = "Invalid argument count";
  1562. r = -EINVAL;
  1563. goto out_unlock;
  1564. }
  1565. as.argc = argc;
  1566. as.argv = argv;
  1567. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1568. if (r) {
  1569. ti->error = "Error opening metadata block device";
  1570. goto out_unlock;
  1571. }
  1572. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1573. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1574. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1575. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1576. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1577. if (r) {
  1578. ti->error = "Error getting data device";
  1579. goto out_metadata;
  1580. }
  1581. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1582. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1583. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1584. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1585. ti->error = "Invalid block size";
  1586. r = -EINVAL;
  1587. goto out;
  1588. }
  1589. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1590. ti->error = "Invalid low water mark";
  1591. r = -EINVAL;
  1592. goto out;
  1593. }
  1594. /*
  1595. * Set default pool features.
  1596. */
  1597. pool_features_init(&pf);
  1598. dm_consume_args(&as, 4);
  1599. r = parse_pool_features(&as, &pf, ti);
  1600. if (r)
  1601. goto out;
  1602. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1603. if (!pt) {
  1604. r = -ENOMEM;
  1605. goto out;
  1606. }
  1607. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1608. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1609. if (IS_ERR(pool)) {
  1610. r = PTR_ERR(pool);
  1611. goto out_free_pt;
  1612. }
  1613. /*
  1614. * 'pool_created' reflects whether this is the first table load.
  1615. * Top level discard support is not allowed to be changed after
  1616. * initial load. This would require a pool reload to trigger thin
  1617. * device changes.
  1618. */
  1619. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1620. ti->error = "Discard support cannot be disabled once enabled";
  1621. r = -EINVAL;
  1622. goto out_flags_changed;
  1623. }
  1624. pt->pool = pool;
  1625. pt->ti = ti;
  1626. pt->metadata_dev = metadata_dev;
  1627. pt->data_dev = data_dev;
  1628. pt->low_water_blocks = low_water_blocks;
  1629. pt->adjusted_pf = pt->requested_pf = pf;
  1630. ti->num_flush_bios = 1;
  1631. /*
  1632. * Only need to enable discards if the pool should pass
  1633. * them down to the data device. The thin device's discard
  1634. * processing will cause mappings to be removed from the btree.
  1635. */
  1636. if (pf.discard_enabled && pf.discard_passdown) {
  1637. ti->num_discard_bios = 1;
  1638. /*
  1639. * Setting 'discards_supported' circumvents the normal
  1640. * stacking of discard limits (this keeps the pool and
  1641. * thin devices' discard limits consistent).
  1642. */
  1643. ti->discards_supported = true;
  1644. ti->discard_zeroes_data_unsupported = true;
  1645. }
  1646. ti->private = pt;
  1647. pt->callbacks.congested_fn = pool_is_congested;
  1648. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1649. mutex_unlock(&dm_thin_pool_table.mutex);
  1650. return 0;
  1651. out_flags_changed:
  1652. __pool_dec(pool);
  1653. out_free_pt:
  1654. kfree(pt);
  1655. out:
  1656. dm_put_device(ti, data_dev);
  1657. out_metadata:
  1658. dm_put_device(ti, metadata_dev);
  1659. out_unlock:
  1660. mutex_unlock(&dm_thin_pool_table.mutex);
  1661. return r;
  1662. }
  1663. static int pool_map(struct dm_target *ti, struct bio *bio)
  1664. {
  1665. int r;
  1666. struct pool_c *pt = ti->private;
  1667. struct pool *pool = pt->pool;
  1668. unsigned long flags;
  1669. /*
  1670. * As this is a singleton target, ti->begin is always zero.
  1671. */
  1672. spin_lock_irqsave(&pool->lock, flags);
  1673. bio->bi_bdev = pt->data_dev->bdev;
  1674. r = DM_MAPIO_REMAPPED;
  1675. spin_unlock_irqrestore(&pool->lock, flags);
  1676. return r;
  1677. }
  1678. /*
  1679. * Retrieves the number of blocks of the data device from
  1680. * the superblock and compares it to the actual device size,
  1681. * thus resizing the data device in case it has grown.
  1682. *
  1683. * This both copes with opening preallocated data devices in the ctr
  1684. * being followed by a resume
  1685. * -and-
  1686. * calling the resume method individually after userspace has
  1687. * grown the data device in reaction to a table event.
  1688. */
  1689. static int pool_preresume(struct dm_target *ti)
  1690. {
  1691. int r;
  1692. struct pool_c *pt = ti->private;
  1693. struct pool *pool = pt->pool;
  1694. sector_t data_size = ti->len;
  1695. dm_block_t sb_data_size;
  1696. /*
  1697. * Take control of the pool object.
  1698. */
  1699. r = bind_control_target(pool, ti);
  1700. if (r)
  1701. return r;
  1702. (void) sector_div(data_size, pool->sectors_per_block);
  1703. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1704. if (r) {
  1705. DMERR("failed to retrieve data device size");
  1706. return r;
  1707. }
  1708. if (data_size < sb_data_size) {
  1709. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1710. (unsigned long long)data_size, sb_data_size);
  1711. return -EINVAL;
  1712. } else if (data_size > sb_data_size) {
  1713. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1714. if (r) {
  1715. DMERR("failed to resize data device");
  1716. /* FIXME Stricter than necessary: Rollback transaction instead here */
  1717. set_pool_mode(pool, PM_READ_ONLY);
  1718. return r;
  1719. }
  1720. (void) commit_or_fallback(pool);
  1721. }
  1722. return 0;
  1723. }
  1724. static void pool_resume(struct dm_target *ti)
  1725. {
  1726. struct pool_c *pt = ti->private;
  1727. struct pool *pool = pt->pool;
  1728. unsigned long flags;
  1729. spin_lock_irqsave(&pool->lock, flags);
  1730. pool->low_water_triggered = 0;
  1731. pool->no_free_space = 0;
  1732. __requeue_bios(pool);
  1733. spin_unlock_irqrestore(&pool->lock, flags);
  1734. do_waker(&pool->waker.work);
  1735. }
  1736. static void pool_postsuspend(struct dm_target *ti)
  1737. {
  1738. struct pool_c *pt = ti->private;
  1739. struct pool *pool = pt->pool;
  1740. cancel_delayed_work(&pool->waker);
  1741. flush_workqueue(pool->wq);
  1742. (void) commit_or_fallback(pool);
  1743. }
  1744. static int check_arg_count(unsigned argc, unsigned args_required)
  1745. {
  1746. if (argc != args_required) {
  1747. DMWARN("Message received with %u arguments instead of %u.",
  1748. argc, args_required);
  1749. return -EINVAL;
  1750. }
  1751. return 0;
  1752. }
  1753. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1754. {
  1755. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1756. *dev_id <= MAX_DEV_ID)
  1757. return 0;
  1758. if (warning)
  1759. DMWARN("Message received with invalid device id: %s", arg);
  1760. return -EINVAL;
  1761. }
  1762. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1763. {
  1764. dm_thin_id dev_id;
  1765. int r;
  1766. r = check_arg_count(argc, 2);
  1767. if (r)
  1768. return r;
  1769. r = read_dev_id(argv[1], &dev_id, 1);
  1770. if (r)
  1771. return r;
  1772. r = dm_pool_create_thin(pool->pmd, dev_id);
  1773. if (r) {
  1774. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1775. argv[1]);
  1776. return r;
  1777. }
  1778. return 0;
  1779. }
  1780. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1781. {
  1782. dm_thin_id dev_id;
  1783. dm_thin_id origin_dev_id;
  1784. int r;
  1785. r = check_arg_count(argc, 3);
  1786. if (r)
  1787. return r;
  1788. r = read_dev_id(argv[1], &dev_id, 1);
  1789. if (r)
  1790. return r;
  1791. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1792. if (r)
  1793. return r;
  1794. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1795. if (r) {
  1796. DMWARN("Creation of new snapshot %s of device %s failed.",
  1797. argv[1], argv[2]);
  1798. return r;
  1799. }
  1800. return 0;
  1801. }
  1802. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1803. {
  1804. dm_thin_id dev_id;
  1805. int r;
  1806. r = check_arg_count(argc, 2);
  1807. if (r)
  1808. return r;
  1809. r = read_dev_id(argv[1], &dev_id, 1);
  1810. if (r)
  1811. return r;
  1812. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1813. if (r)
  1814. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1815. return r;
  1816. }
  1817. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1818. {
  1819. dm_thin_id old_id, new_id;
  1820. int r;
  1821. r = check_arg_count(argc, 3);
  1822. if (r)
  1823. return r;
  1824. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1825. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1826. return -EINVAL;
  1827. }
  1828. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1829. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1830. return -EINVAL;
  1831. }
  1832. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1833. if (r) {
  1834. DMWARN("Failed to change transaction id from %s to %s.",
  1835. argv[1], argv[2]);
  1836. return r;
  1837. }
  1838. return 0;
  1839. }
  1840. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1841. {
  1842. int r;
  1843. r = check_arg_count(argc, 1);
  1844. if (r)
  1845. return r;
  1846. (void) commit_or_fallback(pool);
  1847. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1848. if (r)
  1849. DMWARN("reserve_metadata_snap message failed.");
  1850. return r;
  1851. }
  1852. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1853. {
  1854. int r;
  1855. r = check_arg_count(argc, 1);
  1856. if (r)
  1857. return r;
  1858. r = dm_pool_release_metadata_snap(pool->pmd);
  1859. if (r)
  1860. DMWARN("release_metadata_snap message failed.");
  1861. return r;
  1862. }
  1863. /*
  1864. * Messages supported:
  1865. * create_thin <dev_id>
  1866. * create_snap <dev_id> <origin_id>
  1867. * delete <dev_id>
  1868. * trim <dev_id> <new_size_in_sectors>
  1869. * set_transaction_id <current_trans_id> <new_trans_id>
  1870. * reserve_metadata_snap
  1871. * release_metadata_snap
  1872. */
  1873. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1874. {
  1875. int r = -EINVAL;
  1876. struct pool_c *pt = ti->private;
  1877. struct pool *pool = pt->pool;
  1878. if (!strcasecmp(argv[0], "create_thin"))
  1879. r = process_create_thin_mesg(argc, argv, pool);
  1880. else if (!strcasecmp(argv[0], "create_snap"))
  1881. r = process_create_snap_mesg(argc, argv, pool);
  1882. else if (!strcasecmp(argv[0], "delete"))
  1883. r = process_delete_mesg(argc, argv, pool);
  1884. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1885. r = process_set_transaction_id_mesg(argc, argv, pool);
  1886. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1887. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1888. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1889. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1890. else
  1891. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1892. if (!r)
  1893. (void) commit_or_fallback(pool);
  1894. return r;
  1895. }
  1896. static void emit_flags(struct pool_features *pf, char *result,
  1897. unsigned sz, unsigned maxlen)
  1898. {
  1899. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  1900. !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
  1901. DMEMIT("%u ", count);
  1902. if (!pf->zero_new_blocks)
  1903. DMEMIT("skip_block_zeroing ");
  1904. if (!pf->discard_enabled)
  1905. DMEMIT("ignore_discard ");
  1906. if (!pf->discard_passdown)
  1907. DMEMIT("no_discard_passdown ");
  1908. if (pf->mode == PM_READ_ONLY)
  1909. DMEMIT("read_only ");
  1910. }
  1911. /*
  1912. * Status line is:
  1913. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1914. * <used data sectors>/<total data sectors> <held metadata root>
  1915. */
  1916. static void pool_status(struct dm_target *ti, status_type_t type,
  1917. unsigned status_flags, char *result, unsigned maxlen)
  1918. {
  1919. int r;
  1920. unsigned sz = 0;
  1921. uint64_t transaction_id;
  1922. dm_block_t nr_free_blocks_data;
  1923. dm_block_t nr_free_blocks_metadata;
  1924. dm_block_t nr_blocks_data;
  1925. dm_block_t nr_blocks_metadata;
  1926. dm_block_t held_root;
  1927. char buf[BDEVNAME_SIZE];
  1928. char buf2[BDEVNAME_SIZE];
  1929. struct pool_c *pt = ti->private;
  1930. struct pool *pool = pt->pool;
  1931. switch (type) {
  1932. case STATUSTYPE_INFO:
  1933. if (get_pool_mode(pool) == PM_FAIL) {
  1934. DMEMIT("Fail");
  1935. break;
  1936. }
  1937. /* Commit to ensure statistics aren't out-of-date */
  1938. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  1939. (void) commit_or_fallback(pool);
  1940. r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
  1941. if (r) {
  1942. DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
  1943. goto err;
  1944. }
  1945. r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
  1946. if (r) {
  1947. DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
  1948. goto err;
  1949. }
  1950. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1951. if (r) {
  1952. DMERR("dm_pool_get_metadata_dev_size returned %d", r);
  1953. goto err;
  1954. }
  1955. r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
  1956. if (r) {
  1957. DMERR("dm_pool_get_free_block_count returned %d", r);
  1958. goto err;
  1959. }
  1960. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1961. if (r) {
  1962. DMERR("dm_pool_get_data_dev_size returned %d", r);
  1963. goto err;
  1964. }
  1965. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  1966. if (r) {
  1967. DMERR("dm_pool_get_metadata_snap returned %d", r);
  1968. goto err;
  1969. }
  1970. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1971. (unsigned long long)transaction_id,
  1972. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1973. (unsigned long long)nr_blocks_metadata,
  1974. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1975. (unsigned long long)nr_blocks_data);
  1976. if (held_root)
  1977. DMEMIT("%llu ", held_root);
  1978. else
  1979. DMEMIT("- ");
  1980. if (pool->pf.mode == PM_READ_ONLY)
  1981. DMEMIT("ro ");
  1982. else
  1983. DMEMIT("rw ");
  1984. if (!pool->pf.discard_enabled)
  1985. DMEMIT("ignore_discard");
  1986. else if (pool->pf.discard_passdown)
  1987. DMEMIT("discard_passdown");
  1988. else
  1989. DMEMIT("no_discard_passdown");
  1990. break;
  1991. case STATUSTYPE_TABLE:
  1992. DMEMIT("%s %s %lu %llu ",
  1993. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1994. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1995. (unsigned long)pool->sectors_per_block,
  1996. (unsigned long long)pt->low_water_blocks);
  1997. emit_flags(&pt->requested_pf, result, sz, maxlen);
  1998. break;
  1999. }
  2000. return;
  2001. err:
  2002. DMEMIT("Error");
  2003. }
  2004. static int pool_iterate_devices(struct dm_target *ti,
  2005. iterate_devices_callout_fn fn, void *data)
  2006. {
  2007. struct pool_c *pt = ti->private;
  2008. return fn(ti, pt->data_dev, 0, ti->len, data);
  2009. }
  2010. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2011. struct bio_vec *biovec, int max_size)
  2012. {
  2013. struct pool_c *pt = ti->private;
  2014. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2015. if (!q->merge_bvec_fn)
  2016. return max_size;
  2017. bvm->bi_bdev = pt->data_dev->bdev;
  2018. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2019. }
  2020. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2021. {
  2022. struct pool *pool = pt->pool;
  2023. struct queue_limits *data_limits;
  2024. limits->max_discard_sectors = pool->sectors_per_block;
  2025. /*
  2026. * discard_granularity is just a hint, and not enforced.
  2027. */
  2028. if (pt->adjusted_pf.discard_passdown) {
  2029. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2030. limits->discard_granularity = data_limits->discard_granularity;
  2031. } else
  2032. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2033. }
  2034. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2035. {
  2036. struct pool_c *pt = ti->private;
  2037. struct pool *pool = pt->pool;
  2038. blk_limits_io_min(limits, 0);
  2039. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2040. /*
  2041. * pt->adjusted_pf is a staging area for the actual features to use.
  2042. * They get transferred to the live pool in bind_control_target()
  2043. * called from pool_preresume().
  2044. */
  2045. if (!pt->adjusted_pf.discard_enabled)
  2046. return;
  2047. disable_passdown_if_not_supported(pt);
  2048. set_discard_limits(pt, limits);
  2049. }
  2050. static struct target_type pool_target = {
  2051. .name = "thin-pool",
  2052. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2053. DM_TARGET_IMMUTABLE,
  2054. .version = {1, 6, 1},
  2055. .module = THIS_MODULE,
  2056. .ctr = pool_ctr,
  2057. .dtr = pool_dtr,
  2058. .map = pool_map,
  2059. .postsuspend = pool_postsuspend,
  2060. .preresume = pool_preresume,
  2061. .resume = pool_resume,
  2062. .message = pool_message,
  2063. .status = pool_status,
  2064. .merge = pool_merge,
  2065. .iterate_devices = pool_iterate_devices,
  2066. .io_hints = pool_io_hints,
  2067. };
  2068. /*----------------------------------------------------------------
  2069. * Thin target methods
  2070. *--------------------------------------------------------------*/
  2071. static void thin_dtr(struct dm_target *ti)
  2072. {
  2073. struct thin_c *tc = ti->private;
  2074. mutex_lock(&dm_thin_pool_table.mutex);
  2075. __pool_dec(tc->pool);
  2076. dm_pool_close_thin_device(tc->td);
  2077. dm_put_device(ti, tc->pool_dev);
  2078. if (tc->origin_dev)
  2079. dm_put_device(ti, tc->origin_dev);
  2080. kfree(tc);
  2081. mutex_unlock(&dm_thin_pool_table.mutex);
  2082. }
  2083. /*
  2084. * Thin target parameters:
  2085. *
  2086. * <pool_dev> <dev_id> [origin_dev]
  2087. *
  2088. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2089. * dev_id: the internal device identifier
  2090. * origin_dev: a device external to the pool that should act as the origin
  2091. *
  2092. * If the pool device has discards disabled, they get disabled for the thin
  2093. * device as well.
  2094. */
  2095. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2096. {
  2097. int r;
  2098. struct thin_c *tc;
  2099. struct dm_dev *pool_dev, *origin_dev;
  2100. struct mapped_device *pool_md;
  2101. mutex_lock(&dm_thin_pool_table.mutex);
  2102. if (argc != 2 && argc != 3) {
  2103. ti->error = "Invalid argument count";
  2104. r = -EINVAL;
  2105. goto out_unlock;
  2106. }
  2107. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2108. if (!tc) {
  2109. ti->error = "Out of memory";
  2110. r = -ENOMEM;
  2111. goto out_unlock;
  2112. }
  2113. if (argc == 3) {
  2114. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2115. if (r) {
  2116. ti->error = "Error opening origin device";
  2117. goto bad_origin_dev;
  2118. }
  2119. tc->origin_dev = origin_dev;
  2120. }
  2121. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2122. if (r) {
  2123. ti->error = "Error opening pool device";
  2124. goto bad_pool_dev;
  2125. }
  2126. tc->pool_dev = pool_dev;
  2127. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2128. ti->error = "Invalid device id";
  2129. r = -EINVAL;
  2130. goto bad_common;
  2131. }
  2132. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2133. if (!pool_md) {
  2134. ti->error = "Couldn't get pool mapped device";
  2135. r = -EINVAL;
  2136. goto bad_common;
  2137. }
  2138. tc->pool = __pool_table_lookup(pool_md);
  2139. if (!tc->pool) {
  2140. ti->error = "Couldn't find pool object";
  2141. r = -EINVAL;
  2142. goto bad_pool_lookup;
  2143. }
  2144. __pool_inc(tc->pool);
  2145. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2146. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2147. goto bad_thin_open;
  2148. }
  2149. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2150. if (r) {
  2151. ti->error = "Couldn't open thin internal device";
  2152. goto bad_thin_open;
  2153. }
  2154. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2155. if (r)
  2156. goto bad_thin_open;
  2157. ti->num_flush_bios = 1;
  2158. ti->flush_supported = true;
  2159. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2160. /* In case the pool supports discards, pass them on. */
  2161. if (tc->pool->pf.discard_enabled) {
  2162. ti->discards_supported = true;
  2163. ti->num_discard_bios = 1;
  2164. ti->discard_zeroes_data_unsupported = true;
  2165. /* Discard bios must be split on a block boundary */
  2166. ti->split_discard_bios = true;
  2167. }
  2168. dm_put(pool_md);
  2169. mutex_unlock(&dm_thin_pool_table.mutex);
  2170. return 0;
  2171. bad_thin_open:
  2172. __pool_dec(tc->pool);
  2173. bad_pool_lookup:
  2174. dm_put(pool_md);
  2175. bad_common:
  2176. dm_put_device(ti, tc->pool_dev);
  2177. bad_pool_dev:
  2178. if (tc->origin_dev)
  2179. dm_put_device(ti, tc->origin_dev);
  2180. bad_origin_dev:
  2181. kfree(tc);
  2182. out_unlock:
  2183. mutex_unlock(&dm_thin_pool_table.mutex);
  2184. return r;
  2185. }
  2186. static int thin_map(struct dm_target *ti, struct bio *bio)
  2187. {
  2188. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2189. return thin_bio_map(ti, bio);
  2190. }
  2191. static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
  2192. {
  2193. unsigned long flags;
  2194. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2195. struct list_head work;
  2196. struct dm_thin_new_mapping *m, *tmp;
  2197. struct pool *pool = h->tc->pool;
  2198. if (h->shared_read_entry) {
  2199. INIT_LIST_HEAD(&work);
  2200. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2201. spin_lock_irqsave(&pool->lock, flags);
  2202. list_for_each_entry_safe(m, tmp, &work, list) {
  2203. list_del(&m->list);
  2204. m->quiesced = 1;
  2205. __maybe_add_mapping(m);
  2206. }
  2207. spin_unlock_irqrestore(&pool->lock, flags);
  2208. }
  2209. if (h->all_io_entry) {
  2210. INIT_LIST_HEAD(&work);
  2211. dm_deferred_entry_dec(h->all_io_entry, &work);
  2212. if (!list_empty(&work)) {
  2213. spin_lock_irqsave(&pool->lock, flags);
  2214. list_for_each_entry_safe(m, tmp, &work, list)
  2215. list_add(&m->list, &pool->prepared_discards);
  2216. spin_unlock_irqrestore(&pool->lock, flags);
  2217. wake_worker(pool);
  2218. }
  2219. }
  2220. return 0;
  2221. }
  2222. static void thin_postsuspend(struct dm_target *ti)
  2223. {
  2224. if (dm_noflush_suspending(ti))
  2225. requeue_io((struct thin_c *)ti->private);
  2226. }
  2227. /*
  2228. * <nr mapped sectors> <highest mapped sector>
  2229. */
  2230. static void thin_status(struct dm_target *ti, status_type_t type,
  2231. unsigned status_flags, char *result, unsigned maxlen)
  2232. {
  2233. int r;
  2234. ssize_t sz = 0;
  2235. dm_block_t mapped, highest;
  2236. char buf[BDEVNAME_SIZE];
  2237. struct thin_c *tc = ti->private;
  2238. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2239. DMEMIT("Fail");
  2240. return;
  2241. }
  2242. if (!tc->td)
  2243. DMEMIT("-");
  2244. else {
  2245. switch (type) {
  2246. case STATUSTYPE_INFO:
  2247. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2248. if (r) {
  2249. DMERR("dm_thin_get_mapped_count returned %d", r);
  2250. goto err;
  2251. }
  2252. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2253. if (r < 0) {
  2254. DMERR("dm_thin_get_highest_mapped_block returned %d", r);
  2255. goto err;
  2256. }
  2257. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2258. if (r)
  2259. DMEMIT("%llu", ((highest + 1) *
  2260. tc->pool->sectors_per_block) - 1);
  2261. else
  2262. DMEMIT("-");
  2263. break;
  2264. case STATUSTYPE_TABLE:
  2265. DMEMIT("%s %lu",
  2266. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2267. (unsigned long) tc->dev_id);
  2268. if (tc->origin_dev)
  2269. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2270. break;
  2271. }
  2272. }
  2273. return;
  2274. err:
  2275. DMEMIT("Error");
  2276. }
  2277. static int thin_iterate_devices(struct dm_target *ti,
  2278. iterate_devices_callout_fn fn, void *data)
  2279. {
  2280. sector_t blocks;
  2281. struct thin_c *tc = ti->private;
  2282. struct pool *pool = tc->pool;
  2283. /*
  2284. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2285. * we follow a more convoluted path through to the pool's target.
  2286. */
  2287. if (!pool->ti)
  2288. return 0; /* nothing is bound */
  2289. blocks = pool->ti->len;
  2290. (void) sector_div(blocks, pool->sectors_per_block);
  2291. if (blocks)
  2292. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2293. return 0;
  2294. }
  2295. static struct target_type thin_target = {
  2296. .name = "thin",
  2297. .version = {1, 7, 1},
  2298. .module = THIS_MODULE,
  2299. .ctr = thin_ctr,
  2300. .dtr = thin_dtr,
  2301. .map = thin_map,
  2302. .end_io = thin_endio,
  2303. .postsuspend = thin_postsuspend,
  2304. .status = thin_status,
  2305. .iterate_devices = thin_iterate_devices,
  2306. };
  2307. /*----------------------------------------------------------------*/
  2308. static int __init dm_thin_init(void)
  2309. {
  2310. int r;
  2311. pool_table_init();
  2312. r = dm_register_target(&thin_target);
  2313. if (r)
  2314. return r;
  2315. r = dm_register_target(&pool_target);
  2316. if (r)
  2317. goto bad_pool_target;
  2318. r = -ENOMEM;
  2319. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2320. if (!_new_mapping_cache)
  2321. goto bad_new_mapping_cache;
  2322. return 0;
  2323. bad_new_mapping_cache:
  2324. dm_unregister_target(&pool_target);
  2325. bad_pool_target:
  2326. dm_unregister_target(&thin_target);
  2327. return r;
  2328. }
  2329. static void dm_thin_exit(void)
  2330. {
  2331. dm_unregister_target(&thin_target);
  2332. dm_unregister_target(&pool_target);
  2333. kmem_cache_destroy(_new_mapping_cache);
  2334. }
  2335. module_init(dm_thin_init);
  2336. module_exit(dm_thin_exit);
  2337. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2338. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2339. MODULE_LICENSE("GPL");