setup.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. int acpi_numa __initdata;
  71. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  72. int bootloader_type;
  73. unsigned long saved_video_mode;
  74. /*
  75. * Early DMI memory
  76. */
  77. int dmi_alloc_index;
  78. char dmi_alloc_data[DMI_MAX_DATA];
  79. /*
  80. * Setup options
  81. */
  82. struct screen_info screen_info;
  83. EXPORT_SYMBOL(screen_info);
  84. struct sys_desc_table_struct {
  85. unsigned short length;
  86. unsigned char table[0];
  87. };
  88. struct edid_info edid_info;
  89. EXPORT_SYMBOL_GPL(edid_info);
  90. struct e820map e820;
  91. extern int root_mountflags;
  92. char command_line[COMMAND_LINE_SIZE];
  93. struct resource standard_io_resources[] = {
  94. { .name = "dma1", .start = 0x00, .end = 0x1f,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "pic1", .start = 0x20, .end = 0x21,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer0", .start = 0x40, .end = 0x43,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "timer1", .start = 0x50, .end = 0x53,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  110. { .name = "fpu", .start = 0xf0, .end = 0xff,
  111. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  112. };
  113. #define STANDARD_IO_RESOURCES \
  114. (sizeof standard_io_resources / sizeof standard_io_resources[0])
  115. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  116. struct resource data_resource = {
  117. .name = "Kernel data",
  118. .start = 0,
  119. .end = 0,
  120. .flags = IORESOURCE_RAM,
  121. };
  122. struct resource code_resource = {
  123. .name = "Kernel code",
  124. .start = 0,
  125. .end = 0,
  126. .flags = IORESOURCE_RAM,
  127. };
  128. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  129. static struct resource system_rom_resource = {
  130. .name = "System ROM",
  131. .start = 0xf0000,
  132. .end = 0xfffff,
  133. .flags = IORESOURCE_ROM,
  134. };
  135. static struct resource extension_rom_resource = {
  136. .name = "Extension ROM",
  137. .start = 0xe0000,
  138. .end = 0xeffff,
  139. .flags = IORESOURCE_ROM,
  140. };
  141. static struct resource adapter_rom_resources[] = {
  142. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  143. .flags = IORESOURCE_ROM },
  144. { .name = "Adapter ROM", .start = 0, .end = 0,
  145. .flags = IORESOURCE_ROM },
  146. { .name = "Adapter ROM", .start = 0, .end = 0,
  147. .flags = IORESOURCE_ROM },
  148. { .name = "Adapter ROM", .start = 0, .end = 0,
  149. .flags = IORESOURCE_ROM },
  150. { .name = "Adapter ROM", .start = 0, .end = 0,
  151. .flags = IORESOURCE_ROM },
  152. { .name = "Adapter ROM", .start = 0, .end = 0,
  153. .flags = IORESOURCE_ROM }
  154. };
  155. #define ADAPTER_ROM_RESOURCES \
  156. (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
  157. static struct resource video_rom_resource = {
  158. .name = "Video ROM",
  159. .start = 0xc0000,
  160. .end = 0xc7fff,
  161. .flags = IORESOURCE_ROM,
  162. };
  163. static struct resource video_ram_resource = {
  164. .name = "Video RAM area",
  165. .start = 0xa0000,
  166. .end = 0xbffff,
  167. .flags = IORESOURCE_RAM,
  168. };
  169. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  170. static int __init romchecksum(unsigned char *rom, unsigned long length)
  171. {
  172. unsigned char *p, sum = 0;
  173. for (p = rom; p < rom + length; p++)
  174. sum += *p;
  175. return sum == 0;
  176. }
  177. static void __init probe_roms(void)
  178. {
  179. unsigned long start, length, upper;
  180. unsigned char *rom;
  181. int i;
  182. /* video rom */
  183. upper = adapter_rom_resources[0].start;
  184. for (start = video_rom_resource.start; start < upper; start += 2048) {
  185. rom = isa_bus_to_virt(start);
  186. if (!romsignature(rom))
  187. continue;
  188. video_rom_resource.start = start;
  189. /* 0 < length <= 0x7f * 512, historically */
  190. length = rom[2] * 512;
  191. /* if checksum okay, trust length byte */
  192. if (length && romchecksum(rom, length))
  193. video_rom_resource.end = start + length - 1;
  194. request_resource(&iomem_resource, &video_rom_resource);
  195. break;
  196. }
  197. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  198. if (start < upper)
  199. start = upper;
  200. /* system rom */
  201. request_resource(&iomem_resource, &system_rom_resource);
  202. upper = system_rom_resource.start;
  203. /* check for extension rom (ignore length byte!) */
  204. rom = isa_bus_to_virt(extension_rom_resource.start);
  205. if (romsignature(rom)) {
  206. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  207. if (romchecksum(rom, length)) {
  208. request_resource(&iomem_resource, &extension_rom_resource);
  209. upper = extension_rom_resource.start;
  210. }
  211. }
  212. /* check for adapter roms on 2k boundaries */
  213. for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
  214. rom = isa_bus_to_virt(start);
  215. if (!romsignature(rom))
  216. continue;
  217. /* 0 < length <= 0x7f * 512, historically */
  218. length = rom[2] * 512;
  219. /* but accept any length that fits if checksum okay */
  220. if (!length || start + length > upper || !romchecksum(rom, length))
  221. continue;
  222. adapter_rom_resources[i].start = start;
  223. adapter_rom_resources[i].end = start + length - 1;
  224. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  225. start = adapter_rom_resources[i++].end & ~2047UL;
  226. }
  227. }
  228. #ifdef CONFIG_PROC_VMCORE
  229. /* elfcorehdr= specifies the location of elf core header
  230. * stored by the crashed kernel. This option will be passed
  231. * by kexec loader to the capture kernel.
  232. */
  233. static int __init setup_elfcorehdr(char *arg)
  234. {
  235. char *end;
  236. if (!arg)
  237. return -EINVAL;
  238. elfcorehdr_addr = memparse(arg, &end);
  239. return end > arg ? 0 : -EINVAL;
  240. }
  241. early_param("elfcorehdr", setup_elfcorehdr);
  242. #endif
  243. #ifndef CONFIG_NUMA
  244. static void __init
  245. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  246. {
  247. unsigned long bootmap_size, bootmap;
  248. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  249. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  250. if (bootmap == -1L)
  251. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  252. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  253. e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
  254. reserve_bootmem(bootmap, bootmap_size);
  255. }
  256. #endif
  257. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  258. struct edd edd;
  259. #ifdef CONFIG_EDD_MODULE
  260. EXPORT_SYMBOL(edd);
  261. #endif
  262. /**
  263. * copy_edd() - Copy the BIOS EDD information
  264. * from boot_params into a safe place.
  265. *
  266. */
  267. static inline void copy_edd(void)
  268. {
  269. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  270. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  271. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  272. edd.edd_info_nr = EDD_NR;
  273. }
  274. #else
  275. static inline void copy_edd(void)
  276. {
  277. }
  278. #endif
  279. #define EBDA_ADDR_POINTER 0x40E
  280. unsigned __initdata ebda_addr;
  281. unsigned __initdata ebda_size;
  282. static void discover_ebda(void)
  283. {
  284. /*
  285. * there is a real-mode segmented pointer pointing to the
  286. * 4K EBDA area at 0x40E
  287. */
  288. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  289. ebda_addr <<= 4;
  290. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  291. /* Round EBDA up to pages */
  292. if (ebda_size == 0)
  293. ebda_size = 1;
  294. ebda_size <<= 10;
  295. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  296. if (ebda_size > 64*1024)
  297. ebda_size = 64*1024;
  298. }
  299. void __init setup_arch(char **cmdline_p)
  300. {
  301. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  302. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  303. screen_info = SCREEN_INFO;
  304. edid_info = EDID_INFO;
  305. saved_video_mode = SAVED_VIDEO_MODE;
  306. bootloader_type = LOADER_TYPE;
  307. #ifdef CONFIG_BLK_DEV_RAM
  308. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  309. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  310. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  311. #endif
  312. setup_memory_region();
  313. copy_edd();
  314. if (!MOUNT_ROOT_RDONLY)
  315. root_mountflags &= ~MS_RDONLY;
  316. init_mm.start_code = (unsigned long) &_text;
  317. init_mm.end_code = (unsigned long) &_etext;
  318. init_mm.end_data = (unsigned long) &_edata;
  319. init_mm.brk = (unsigned long) &_end;
  320. code_resource.start = virt_to_phys(&_text);
  321. code_resource.end = virt_to_phys(&_etext)-1;
  322. data_resource.start = virt_to_phys(&_etext);
  323. data_resource.end = virt_to_phys(&_edata)-1;
  324. early_identify_cpu(&boot_cpu_data);
  325. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  326. *cmdline_p = command_line;
  327. parse_early_param();
  328. finish_e820_parsing();
  329. /*
  330. * partially used pages are not usable - thus
  331. * we are rounding upwards:
  332. */
  333. end_pfn = e820_end_of_ram();
  334. num_physpages = end_pfn;
  335. check_efer();
  336. discover_ebda();
  337. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  338. dmi_scan_machine();
  339. zap_low_mappings(0);
  340. #ifdef CONFIG_ACPI
  341. /*
  342. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  343. * Call this early for SRAT node setup.
  344. */
  345. acpi_boot_table_init();
  346. #endif
  347. /* How many end-of-memory variables you have, grandma! */
  348. max_low_pfn = end_pfn;
  349. max_pfn = end_pfn;
  350. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  351. #ifdef CONFIG_ACPI_NUMA
  352. /*
  353. * Parse SRAT to discover nodes.
  354. */
  355. acpi_numa_init();
  356. #endif
  357. #ifdef CONFIG_NUMA
  358. numa_initmem_init(0, end_pfn);
  359. #else
  360. contig_initmem_init(0, end_pfn);
  361. #endif
  362. /* Reserve direct mapping */
  363. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  364. (table_end - table_start) << PAGE_SHIFT);
  365. /* reserve kernel */
  366. reserve_bootmem_generic(__pa_symbol(&_text),
  367. __pa_symbol(&_end) - __pa_symbol(&_text));
  368. /*
  369. * reserve physical page 0 - it's a special BIOS page on many boxes,
  370. * enabling clean reboots, SMP operation, laptop functions.
  371. */
  372. reserve_bootmem_generic(0, PAGE_SIZE);
  373. /* reserve ebda region */
  374. if (ebda_addr)
  375. reserve_bootmem_generic(ebda_addr, ebda_size);
  376. #ifdef CONFIG_SMP
  377. /*
  378. * But first pinch a few for the stack/trampoline stuff
  379. * FIXME: Don't need the extra page at 4K, but need to fix
  380. * trampoline before removing it. (see the GDT stuff)
  381. */
  382. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  383. /* Reserve SMP trampoline */
  384. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  385. #endif
  386. #ifdef CONFIG_ACPI_SLEEP
  387. /*
  388. * Reserve low memory region for sleep support.
  389. */
  390. acpi_reserve_bootmem();
  391. #endif
  392. /*
  393. * Find and reserve possible boot-time SMP configuration:
  394. */
  395. find_smp_config();
  396. #ifdef CONFIG_BLK_DEV_INITRD
  397. if (LOADER_TYPE && INITRD_START) {
  398. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  399. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  400. initrd_start =
  401. INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
  402. initrd_end = initrd_start+INITRD_SIZE;
  403. }
  404. else {
  405. printk(KERN_ERR "initrd extends beyond end of memory "
  406. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  407. (unsigned long)(INITRD_START + INITRD_SIZE),
  408. (unsigned long)(end_pfn << PAGE_SHIFT));
  409. initrd_start = 0;
  410. }
  411. }
  412. #endif
  413. #ifdef CONFIG_KEXEC
  414. if (crashk_res.start != crashk_res.end) {
  415. reserve_bootmem_generic(crashk_res.start,
  416. crashk_res.end - crashk_res.start + 1);
  417. }
  418. #endif
  419. paging_init();
  420. early_quirks();
  421. /*
  422. * set this early, so we dont allocate cpu0
  423. * if MADT list doesnt list BSP first
  424. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  425. */
  426. cpu_set(0, cpu_present_map);
  427. #ifdef CONFIG_ACPI
  428. /*
  429. * Read APIC and some other early information from ACPI tables.
  430. */
  431. acpi_boot_init();
  432. #endif
  433. init_cpu_to_node();
  434. /*
  435. * get boot-time SMP configuration:
  436. */
  437. if (smp_found_config)
  438. get_smp_config();
  439. init_apic_mappings();
  440. /*
  441. * Request address space for all standard RAM and ROM resources
  442. * and also for regions reported as reserved by the e820.
  443. */
  444. probe_roms();
  445. e820_reserve_resources();
  446. request_resource(&iomem_resource, &video_ram_resource);
  447. {
  448. unsigned i;
  449. /* request I/O space for devices used on all i[345]86 PCs */
  450. for (i = 0; i < STANDARD_IO_RESOURCES; i++)
  451. request_resource(&ioport_resource, &standard_io_resources[i]);
  452. }
  453. e820_setup_gap();
  454. #ifdef CONFIG_VT
  455. #if defined(CONFIG_VGA_CONSOLE)
  456. conswitchp = &vga_con;
  457. #elif defined(CONFIG_DUMMY_CONSOLE)
  458. conswitchp = &dummy_con;
  459. #endif
  460. #endif
  461. }
  462. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  463. {
  464. unsigned int *v;
  465. if (c->extended_cpuid_level < 0x80000004)
  466. return 0;
  467. v = (unsigned int *) c->x86_model_id;
  468. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  469. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  470. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  471. c->x86_model_id[48] = 0;
  472. return 1;
  473. }
  474. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  475. {
  476. unsigned int n, dummy, eax, ebx, ecx, edx;
  477. n = c->extended_cpuid_level;
  478. if (n >= 0x80000005) {
  479. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  480. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  481. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  482. c->x86_cache_size=(ecx>>24)+(edx>>24);
  483. /* On K8 L1 TLB is inclusive, so don't count it */
  484. c->x86_tlbsize = 0;
  485. }
  486. if (n >= 0x80000006) {
  487. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  488. ecx = cpuid_ecx(0x80000006);
  489. c->x86_cache_size = ecx >> 16;
  490. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  491. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  492. c->x86_cache_size, ecx & 0xFF);
  493. }
  494. if (n >= 0x80000007)
  495. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  496. if (n >= 0x80000008) {
  497. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  498. c->x86_virt_bits = (eax >> 8) & 0xff;
  499. c->x86_phys_bits = eax & 0xff;
  500. }
  501. }
  502. #ifdef CONFIG_NUMA
  503. static int nearby_node(int apicid)
  504. {
  505. int i;
  506. for (i = apicid - 1; i >= 0; i--) {
  507. int node = apicid_to_node[i];
  508. if (node != NUMA_NO_NODE && node_online(node))
  509. return node;
  510. }
  511. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  512. int node = apicid_to_node[i];
  513. if (node != NUMA_NO_NODE && node_online(node))
  514. return node;
  515. }
  516. return first_node(node_online_map); /* Shouldn't happen */
  517. }
  518. #endif
  519. /*
  520. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  521. * Assumes number of cores is a power of two.
  522. */
  523. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  524. {
  525. #ifdef CONFIG_SMP
  526. unsigned bits;
  527. #ifdef CONFIG_NUMA
  528. int cpu = smp_processor_id();
  529. int node = 0;
  530. unsigned apicid = hard_smp_processor_id();
  531. #endif
  532. unsigned ecx = cpuid_ecx(0x80000008);
  533. c->x86_max_cores = (ecx & 0xff) + 1;
  534. /* CPU telling us the core id bits shift? */
  535. bits = (ecx >> 12) & 0xF;
  536. /* Otherwise recompute */
  537. if (bits == 0) {
  538. while ((1 << bits) < c->x86_max_cores)
  539. bits++;
  540. }
  541. /* Low order bits define the core id (index of core in socket) */
  542. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  543. /* Convert the APIC ID into the socket ID */
  544. c->phys_proc_id = phys_pkg_id(bits);
  545. #ifdef CONFIG_NUMA
  546. node = c->phys_proc_id;
  547. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  548. node = apicid_to_node[apicid];
  549. if (!node_online(node)) {
  550. /* Two possibilities here:
  551. - The CPU is missing memory and no node was created.
  552. In that case try picking one from a nearby CPU
  553. - The APIC IDs differ from the HyperTransport node IDs
  554. which the K8 northbridge parsing fills in.
  555. Assume they are all increased by a constant offset,
  556. but in the same order as the HT nodeids.
  557. If that doesn't result in a usable node fall back to the
  558. path for the previous case. */
  559. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  560. if (ht_nodeid >= 0 &&
  561. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  562. node = apicid_to_node[ht_nodeid];
  563. /* Pick a nearby node */
  564. if (!node_online(node))
  565. node = nearby_node(apicid);
  566. }
  567. numa_set_node(cpu, node);
  568. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  569. #endif
  570. #endif
  571. }
  572. static void __init init_amd(struct cpuinfo_x86 *c)
  573. {
  574. unsigned level;
  575. #ifdef CONFIG_SMP
  576. unsigned long value;
  577. /*
  578. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  579. * bit 6 of msr C001_0015
  580. *
  581. * Errata 63 for SH-B3 steppings
  582. * Errata 122 for all steppings (F+ have it disabled by default)
  583. */
  584. if (c->x86 == 15) {
  585. rdmsrl(MSR_K8_HWCR, value);
  586. value |= 1 << 6;
  587. wrmsrl(MSR_K8_HWCR, value);
  588. }
  589. #endif
  590. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  591. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  592. clear_bit(0*32+31, &c->x86_capability);
  593. /* On C+ stepping K8 rep microcode works well for copy/memset */
  594. level = cpuid_eax(1);
  595. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  596. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  597. /* Enable workaround for FXSAVE leak */
  598. if (c->x86 >= 6)
  599. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  600. level = get_model_name(c);
  601. if (!level) {
  602. switch (c->x86) {
  603. case 15:
  604. /* Should distinguish Models here, but this is only
  605. a fallback anyways. */
  606. strcpy(c->x86_model_id, "Hammer");
  607. break;
  608. }
  609. }
  610. display_cacheinfo(c);
  611. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  612. if (c->x86_power & (1<<8))
  613. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  614. /* Multi core CPU? */
  615. if (c->extended_cpuid_level >= 0x80000008)
  616. amd_detect_cmp(c);
  617. /* Fix cpuid4 emulation for more */
  618. num_cache_leaves = 3;
  619. }
  620. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  621. {
  622. #ifdef CONFIG_SMP
  623. u32 eax, ebx, ecx, edx;
  624. int index_msb, core_bits;
  625. cpuid(1, &eax, &ebx, &ecx, &edx);
  626. if (!cpu_has(c, X86_FEATURE_HT))
  627. return;
  628. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  629. goto out;
  630. smp_num_siblings = (ebx & 0xff0000) >> 16;
  631. if (smp_num_siblings == 1) {
  632. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  633. } else if (smp_num_siblings > 1 ) {
  634. if (smp_num_siblings > NR_CPUS) {
  635. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  636. smp_num_siblings = 1;
  637. return;
  638. }
  639. index_msb = get_count_order(smp_num_siblings);
  640. c->phys_proc_id = phys_pkg_id(index_msb);
  641. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  642. index_msb = get_count_order(smp_num_siblings) ;
  643. core_bits = get_count_order(c->x86_max_cores);
  644. c->cpu_core_id = phys_pkg_id(index_msb) &
  645. ((1 << core_bits) - 1);
  646. }
  647. out:
  648. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  649. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  650. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  651. }
  652. #endif
  653. }
  654. /*
  655. * find out the number of processor cores on the die
  656. */
  657. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  658. {
  659. unsigned int eax, t;
  660. if (c->cpuid_level < 4)
  661. return 1;
  662. cpuid_count(4, 0, &eax, &t, &t, &t);
  663. if (eax & 0x1f)
  664. return ((eax >> 26) + 1);
  665. else
  666. return 1;
  667. }
  668. static void srat_detect_node(void)
  669. {
  670. #ifdef CONFIG_NUMA
  671. unsigned node;
  672. int cpu = smp_processor_id();
  673. int apicid = hard_smp_processor_id();
  674. /* Don't do the funky fallback heuristics the AMD version employs
  675. for now. */
  676. node = apicid_to_node[apicid];
  677. if (node == NUMA_NO_NODE)
  678. node = first_node(node_online_map);
  679. numa_set_node(cpu, node);
  680. if (acpi_numa > 0)
  681. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  682. #endif
  683. }
  684. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  685. {
  686. /* Cache sizes */
  687. unsigned n;
  688. init_intel_cacheinfo(c);
  689. if (c->cpuid_level > 9 ) {
  690. unsigned eax = cpuid_eax(10);
  691. /* Check for version and the number of counters */
  692. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  693. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  694. }
  695. n = c->extended_cpuid_level;
  696. if (n >= 0x80000008) {
  697. unsigned eax = cpuid_eax(0x80000008);
  698. c->x86_virt_bits = (eax >> 8) & 0xff;
  699. c->x86_phys_bits = eax & 0xff;
  700. /* CPUID workaround for Intel 0F34 CPU */
  701. if (c->x86_vendor == X86_VENDOR_INTEL &&
  702. c->x86 == 0xF && c->x86_model == 0x3 &&
  703. c->x86_mask == 0x4)
  704. c->x86_phys_bits = 36;
  705. }
  706. if (c->x86 == 15)
  707. c->x86_cache_alignment = c->x86_clflush_size * 2;
  708. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  709. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  710. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  711. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  712. c->x86_max_cores = intel_num_cpu_cores(c);
  713. srat_detect_node();
  714. }
  715. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  716. {
  717. char *v = c->x86_vendor_id;
  718. if (!strcmp(v, "AuthenticAMD"))
  719. c->x86_vendor = X86_VENDOR_AMD;
  720. else if (!strcmp(v, "GenuineIntel"))
  721. c->x86_vendor = X86_VENDOR_INTEL;
  722. else
  723. c->x86_vendor = X86_VENDOR_UNKNOWN;
  724. }
  725. struct cpu_model_info {
  726. int vendor;
  727. int family;
  728. char *model_names[16];
  729. };
  730. /* Do some early cpuid on the boot CPU to get some parameter that are
  731. needed before check_bugs. Everything advanced is in identify_cpu
  732. below. */
  733. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  734. {
  735. u32 tfms;
  736. c->loops_per_jiffy = loops_per_jiffy;
  737. c->x86_cache_size = -1;
  738. c->x86_vendor = X86_VENDOR_UNKNOWN;
  739. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  740. c->x86_vendor_id[0] = '\0'; /* Unset */
  741. c->x86_model_id[0] = '\0'; /* Unset */
  742. c->x86_clflush_size = 64;
  743. c->x86_cache_alignment = c->x86_clflush_size;
  744. c->x86_max_cores = 1;
  745. c->extended_cpuid_level = 0;
  746. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  747. /* Get vendor name */
  748. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  749. (unsigned int *)&c->x86_vendor_id[0],
  750. (unsigned int *)&c->x86_vendor_id[8],
  751. (unsigned int *)&c->x86_vendor_id[4]);
  752. get_cpu_vendor(c);
  753. /* Initialize the standard set of capabilities */
  754. /* Note that the vendor-specific code below might override */
  755. /* Intel-defined flags: level 0x00000001 */
  756. if (c->cpuid_level >= 0x00000001) {
  757. __u32 misc;
  758. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  759. &c->x86_capability[0]);
  760. c->x86 = (tfms >> 8) & 0xf;
  761. c->x86_model = (tfms >> 4) & 0xf;
  762. c->x86_mask = tfms & 0xf;
  763. if (c->x86 == 0xf)
  764. c->x86 += (tfms >> 20) & 0xff;
  765. if (c->x86 >= 0x6)
  766. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  767. if (c->x86_capability[0] & (1<<19))
  768. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  769. } else {
  770. /* Have CPUID level 0 only - unheard of */
  771. c->x86 = 4;
  772. }
  773. #ifdef CONFIG_SMP
  774. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  775. #endif
  776. }
  777. /*
  778. * This does the hard work of actually picking apart the CPU stuff...
  779. */
  780. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  781. {
  782. int i;
  783. u32 xlvl;
  784. early_identify_cpu(c);
  785. /* AMD-defined flags: level 0x80000001 */
  786. xlvl = cpuid_eax(0x80000000);
  787. c->extended_cpuid_level = xlvl;
  788. if ((xlvl & 0xffff0000) == 0x80000000) {
  789. if (xlvl >= 0x80000001) {
  790. c->x86_capability[1] = cpuid_edx(0x80000001);
  791. c->x86_capability[6] = cpuid_ecx(0x80000001);
  792. }
  793. if (xlvl >= 0x80000004)
  794. get_model_name(c); /* Default name */
  795. }
  796. /* Transmeta-defined flags: level 0x80860001 */
  797. xlvl = cpuid_eax(0x80860000);
  798. if ((xlvl & 0xffff0000) == 0x80860000) {
  799. /* Don't set x86_cpuid_level here for now to not confuse. */
  800. if (xlvl >= 0x80860001)
  801. c->x86_capability[2] = cpuid_edx(0x80860001);
  802. }
  803. c->apicid = phys_pkg_id(0);
  804. /*
  805. * Vendor-specific initialization. In this section we
  806. * canonicalize the feature flags, meaning if there are
  807. * features a certain CPU supports which CPUID doesn't
  808. * tell us, CPUID claiming incorrect flags, or other bugs,
  809. * we handle them here.
  810. *
  811. * At the end of this section, c->x86_capability better
  812. * indicate the features this CPU genuinely supports!
  813. */
  814. switch (c->x86_vendor) {
  815. case X86_VENDOR_AMD:
  816. init_amd(c);
  817. break;
  818. case X86_VENDOR_INTEL:
  819. init_intel(c);
  820. break;
  821. case X86_VENDOR_UNKNOWN:
  822. default:
  823. display_cacheinfo(c);
  824. break;
  825. }
  826. select_idle_routine(c);
  827. detect_ht(c);
  828. /*
  829. * On SMP, boot_cpu_data holds the common feature set between
  830. * all CPUs; so make sure that we indicate which features are
  831. * common between the CPUs. The first time this routine gets
  832. * executed, c == &boot_cpu_data.
  833. */
  834. if (c != &boot_cpu_data) {
  835. /* AND the already accumulated flags with these */
  836. for (i = 0 ; i < NCAPINTS ; i++)
  837. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  838. }
  839. #ifdef CONFIG_X86_MCE
  840. mcheck_init(c);
  841. #endif
  842. if (c == &boot_cpu_data)
  843. mtrr_bp_init();
  844. else
  845. mtrr_ap_init();
  846. #ifdef CONFIG_NUMA
  847. numa_add_cpu(smp_processor_id());
  848. #endif
  849. }
  850. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  851. {
  852. if (c->x86_model_id[0])
  853. printk("%s", c->x86_model_id);
  854. if (c->x86_mask || c->cpuid_level >= 0)
  855. printk(" stepping %02x\n", c->x86_mask);
  856. else
  857. printk("\n");
  858. }
  859. /*
  860. * Get CPU information for use by the procfs.
  861. */
  862. static int show_cpuinfo(struct seq_file *m, void *v)
  863. {
  864. struct cpuinfo_x86 *c = v;
  865. /*
  866. * These flag bits must match the definitions in <asm/cpufeature.h>.
  867. * NULL means this bit is undefined or reserved; either way it doesn't
  868. * have meaning as far as Linux is concerned. Note that it's important
  869. * to realize there is a difference between this table and CPUID -- if
  870. * applications want to get the raw CPUID data, they should access
  871. * /dev/cpu/<cpu_nr>/cpuid instead.
  872. */
  873. static char *x86_cap_flags[] = {
  874. /* Intel-defined */
  875. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  876. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  877. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  878. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  879. /* AMD-defined */
  880. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  881. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  882. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  883. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  884. /* Transmeta-defined */
  885. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  886. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  887. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  888. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  889. /* Other (Linux-defined) */
  890. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  891. "constant_tsc", NULL, NULL,
  892. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  893. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  894. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  895. /* Intel-defined (#2) */
  896. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  897. "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
  898. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  899. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  900. /* VIA/Cyrix/Centaur-defined */
  901. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  902. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  903. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  904. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  905. /* AMD-defined (#2) */
  906. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  907. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  908. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  909. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  910. };
  911. static char *x86_power_flags[] = {
  912. "ts", /* temperature sensor */
  913. "fid", /* frequency id control */
  914. "vid", /* voltage id control */
  915. "ttp", /* thermal trip */
  916. "tm",
  917. "stc",
  918. NULL,
  919. /* nothing */ /* constant_tsc - moved to flags */
  920. };
  921. #ifdef CONFIG_SMP
  922. if (!cpu_online(c-cpu_data))
  923. return 0;
  924. #endif
  925. seq_printf(m,"processor\t: %u\n"
  926. "vendor_id\t: %s\n"
  927. "cpu family\t: %d\n"
  928. "model\t\t: %d\n"
  929. "model name\t: %s\n",
  930. (unsigned)(c-cpu_data),
  931. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  932. c->x86,
  933. (int)c->x86_model,
  934. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  935. if (c->x86_mask || c->cpuid_level >= 0)
  936. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  937. else
  938. seq_printf(m, "stepping\t: unknown\n");
  939. if (cpu_has(c,X86_FEATURE_TSC)) {
  940. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  941. if (!freq)
  942. freq = cpu_khz;
  943. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  944. freq / 1000, (freq % 1000));
  945. }
  946. /* Cache size */
  947. if (c->x86_cache_size >= 0)
  948. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  949. #ifdef CONFIG_SMP
  950. if (smp_num_siblings * c->x86_max_cores > 1) {
  951. int cpu = c - cpu_data;
  952. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  953. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  954. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  955. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  956. }
  957. #endif
  958. seq_printf(m,
  959. "fpu\t\t: yes\n"
  960. "fpu_exception\t: yes\n"
  961. "cpuid level\t: %d\n"
  962. "wp\t\t: yes\n"
  963. "flags\t\t:",
  964. c->cpuid_level);
  965. {
  966. int i;
  967. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  968. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  969. seq_printf(m, " %s", x86_cap_flags[i]);
  970. }
  971. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  972. c->loops_per_jiffy/(500000/HZ),
  973. (c->loops_per_jiffy/(5000/HZ)) % 100);
  974. if (c->x86_tlbsize > 0)
  975. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  976. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  977. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  978. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  979. c->x86_phys_bits, c->x86_virt_bits);
  980. seq_printf(m, "power management:");
  981. {
  982. unsigned i;
  983. for (i = 0; i < 32; i++)
  984. if (c->x86_power & (1 << i)) {
  985. if (i < ARRAY_SIZE(x86_power_flags) &&
  986. x86_power_flags[i])
  987. seq_printf(m, "%s%s",
  988. x86_power_flags[i][0]?" ":"",
  989. x86_power_flags[i]);
  990. else
  991. seq_printf(m, " [%d]", i);
  992. }
  993. }
  994. seq_printf(m, "\n\n");
  995. return 0;
  996. }
  997. static void *c_start(struct seq_file *m, loff_t *pos)
  998. {
  999. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  1000. }
  1001. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1002. {
  1003. ++*pos;
  1004. return c_start(m, pos);
  1005. }
  1006. static void c_stop(struct seq_file *m, void *v)
  1007. {
  1008. }
  1009. struct seq_operations cpuinfo_op = {
  1010. .start =c_start,
  1011. .next = c_next,
  1012. .stop = c_stop,
  1013. .show = show_cpuinfo,
  1014. };
  1015. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1016. #include <linux/platform_device.h>
  1017. static __init int add_pcspkr(void)
  1018. {
  1019. struct platform_device *pd;
  1020. int ret;
  1021. pd = platform_device_alloc("pcspkr", -1);
  1022. if (!pd)
  1023. return -ENOMEM;
  1024. ret = platform_device_add(pd);
  1025. if (ret)
  1026. platform_device_put(pd);
  1027. return ret;
  1028. }
  1029. device_initcall(add_pcspkr);
  1030. #endif