fsl_dma.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <sound/core.h>
  22. #include <sound/pcm.h>
  23. #include <sound/pcm_params.h>
  24. #include <sound/soc.h>
  25. #include <asm/io.h>
  26. #include "fsl_dma.h"
  27. /*
  28. * The formats that the DMA controller supports, which is anything
  29. * that is 8, 16, or 32 bits.
  30. */
  31. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  32. SNDRV_PCM_FMTBIT_U8 | \
  33. SNDRV_PCM_FMTBIT_S16_LE | \
  34. SNDRV_PCM_FMTBIT_S16_BE | \
  35. SNDRV_PCM_FMTBIT_U16_LE | \
  36. SNDRV_PCM_FMTBIT_U16_BE | \
  37. SNDRV_PCM_FMTBIT_S24_LE | \
  38. SNDRV_PCM_FMTBIT_S24_BE | \
  39. SNDRV_PCM_FMTBIT_U24_LE | \
  40. SNDRV_PCM_FMTBIT_U24_BE | \
  41. SNDRV_PCM_FMTBIT_S32_LE | \
  42. SNDRV_PCM_FMTBIT_S32_BE | \
  43. SNDRV_PCM_FMTBIT_U32_LE | \
  44. SNDRV_PCM_FMTBIT_U32_BE)
  45. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  46. SNDRV_PCM_RATE_CONTINUOUS)
  47. /* DMA global data. This structure is used by fsl_dma_open() to determine
  48. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  49. * not allow the machine driver to provide this information to the PCM
  50. * driver in advance, and there's no way to differentiate between the two
  51. * DMA controllers. So for now, this driver only supports one SSI device
  52. * using two DMA channels. We cannot support multiple DMA devices.
  53. *
  54. * ssi_stx_phys: bus address of SSI STX register
  55. * ssi_srx_phys: bus address of SSI SRX register
  56. * dma_channel: pointer to the DMA channel's registers
  57. * irq: IRQ for this DMA channel
  58. * assigned: set to 1 if that DMA channel is assigned to a substream
  59. */
  60. static struct {
  61. dma_addr_t ssi_stx_phys;
  62. dma_addr_t ssi_srx_phys;
  63. struct ccsr_dma_channel __iomem *dma_channel[2];
  64. unsigned int irq[2];
  65. unsigned int assigned[2];
  66. } dma_global_data;
  67. /*
  68. * The number of DMA links to use. Two is the bare minimum, but if you
  69. * have really small links you might need more.
  70. */
  71. #define NUM_DMA_LINKS 2
  72. /** fsl_dma_private: p-substream DMA data
  73. *
  74. * Each substream has a 1-to-1 association with a DMA channel.
  75. *
  76. * The link[] array is first because it needs to be aligned on a 32-byte
  77. * boundary, so putting it first will ensure alignment without padding the
  78. * structure.
  79. *
  80. * @link[]: array of link descriptors
  81. * @controller_id: which DMA controller (0, 1, ...)
  82. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  83. * @dma_channel: pointer to the DMA channel's registers
  84. * @irq: IRQ for this DMA channel
  85. * @substream: pointer to the substream object, needed by the ISR
  86. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  87. * @ld_buf_phys: physical address of the LD buffer
  88. * @current_link: index into link[] of the link currently being processed
  89. * @dma_buf_phys: physical address of the DMA buffer
  90. * @dma_buf_next: physical address of the next period to process
  91. * @dma_buf_end: physical address of the byte after the end of the DMA
  92. * @buffer period_size: the size of a single period
  93. * @num_periods: the number of periods in the DMA buffer
  94. */
  95. struct fsl_dma_private {
  96. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  97. unsigned int controller_id;
  98. unsigned int channel_id;
  99. struct ccsr_dma_channel __iomem *dma_channel;
  100. unsigned int irq;
  101. struct snd_pcm_substream *substream;
  102. dma_addr_t ssi_sxx_phys;
  103. dma_addr_t ld_buf_phys;
  104. unsigned int current_link;
  105. dma_addr_t dma_buf_phys;
  106. dma_addr_t dma_buf_next;
  107. dma_addr_t dma_buf_end;
  108. size_t period_size;
  109. unsigned int num_periods;
  110. };
  111. /**
  112. * fsl_dma_hardare: define characteristics of the PCM hardware.
  113. *
  114. * The PCM hardware is the Freescale DMA controller. This structure defines
  115. * the capabilities of that hardware.
  116. *
  117. * Since the sampling rate and data format are not controlled by the DMA
  118. * controller, we specify no limits for those values. The only exception is
  119. * period_bytes_min, which is set to a reasonably low value to prevent the
  120. * DMA controller from generating too many interrupts per second.
  121. *
  122. * Since each link descriptor has a 32-bit byte count field, we set
  123. * period_bytes_max to the largest 32-bit number. We also have no maximum
  124. * number of periods.
  125. *
  126. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  127. * limitation in the SSI driver requires the sample rates for playback and
  128. * capture to be the same.
  129. */
  130. static const struct snd_pcm_hardware fsl_dma_hardware = {
  131. .info = SNDRV_PCM_INFO_INTERLEAVED |
  132. SNDRV_PCM_INFO_MMAP |
  133. SNDRV_PCM_INFO_MMAP_VALID |
  134. SNDRV_PCM_INFO_JOINT_DUPLEX,
  135. .formats = FSLDMA_PCM_FORMATS,
  136. .rates = FSLDMA_PCM_RATES,
  137. .rate_min = 5512,
  138. .rate_max = 192000,
  139. .period_bytes_min = 512, /* A reasonable limit */
  140. .period_bytes_max = (u32) -1,
  141. .periods_min = NUM_DMA_LINKS,
  142. .periods_max = (unsigned int) -1,
  143. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  144. };
  145. /**
  146. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  147. *
  148. * This function should be called by the ISR whenever the DMA controller
  149. * halts data transfer.
  150. */
  151. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  152. {
  153. unsigned long flags;
  154. snd_pcm_stream_lock_irqsave(substream, flags);
  155. if (snd_pcm_running(substream))
  156. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  157. snd_pcm_stream_unlock_irqrestore(substream, flags);
  158. }
  159. /**
  160. * fsl_dma_update_pointers - update LD pointers to point to the next period
  161. *
  162. * As each period is completed, this function changes the the link
  163. * descriptor pointers for that period to point to the next period.
  164. */
  165. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  166. {
  167. struct fsl_dma_link_descriptor *link =
  168. &dma_private->link[dma_private->current_link];
  169. /* Update our link descriptors to point to the next period */
  170. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  171. link->source_addr =
  172. cpu_to_be32(dma_private->dma_buf_next);
  173. else
  174. link->dest_addr =
  175. cpu_to_be32(dma_private->dma_buf_next);
  176. /* Update our variables for next time */
  177. dma_private->dma_buf_next += dma_private->period_size;
  178. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  179. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  180. if (++dma_private->current_link >= NUM_DMA_LINKS)
  181. dma_private->current_link = 0;
  182. }
  183. /**
  184. * fsl_dma_isr: interrupt handler for the DMA controller
  185. *
  186. * @irq: IRQ of the DMA channel
  187. * @dev_id: pointer to the dma_private structure for this DMA channel
  188. */
  189. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  190. {
  191. struct fsl_dma_private *dma_private = dev_id;
  192. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  193. irqreturn_t ret = IRQ_NONE;
  194. u32 sr, sr2 = 0;
  195. /* We got an interrupt, so read the status register to see what we
  196. were interrupted for.
  197. */
  198. sr = in_be32(&dma_channel->sr);
  199. if (sr & CCSR_DMA_SR_TE) {
  200. dev_err(dma_private->substream->pcm->card->dev,
  201. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  202. dma_private->controller_id,
  203. dma_private->channel_id, irq);
  204. fsl_dma_abort_stream(dma_private->substream);
  205. sr2 |= CCSR_DMA_SR_TE;
  206. ret = IRQ_HANDLED;
  207. }
  208. if (sr & CCSR_DMA_SR_CH)
  209. ret = IRQ_HANDLED;
  210. if (sr & CCSR_DMA_SR_PE) {
  211. dev_err(dma_private->substream->pcm->card->dev,
  212. "DMA%u programming error (channel=%u irq=%u)\n",
  213. dma_private->controller_id,
  214. dma_private->channel_id, irq);
  215. fsl_dma_abort_stream(dma_private->substream);
  216. sr2 |= CCSR_DMA_SR_PE;
  217. ret = IRQ_HANDLED;
  218. }
  219. if (sr & CCSR_DMA_SR_EOLNI) {
  220. sr2 |= CCSR_DMA_SR_EOLNI;
  221. ret = IRQ_HANDLED;
  222. }
  223. if (sr & CCSR_DMA_SR_CB)
  224. ret = IRQ_HANDLED;
  225. if (sr & CCSR_DMA_SR_EOSI) {
  226. struct snd_pcm_substream *substream = dma_private->substream;
  227. /* Tell ALSA we completed a period. */
  228. snd_pcm_period_elapsed(substream);
  229. /*
  230. * Update our link descriptors to point to the next period. We
  231. * only need to do this if the number of periods is not equal to
  232. * the number of links.
  233. */
  234. if (dma_private->num_periods != NUM_DMA_LINKS)
  235. fsl_dma_update_pointers(dma_private);
  236. sr2 |= CCSR_DMA_SR_EOSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. if (sr & CCSR_DMA_SR_EOLSI) {
  240. sr2 |= CCSR_DMA_SR_EOLSI;
  241. ret = IRQ_HANDLED;
  242. }
  243. /* Clear the bits that we set */
  244. if (sr2)
  245. out_be32(&dma_channel->sr, sr2);
  246. return ret;
  247. }
  248. /**
  249. * fsl_dma_new: initialize this PCM driver.
  250. *
  251. * This function is called when the codec driver calls snd_soc_new_pcms(),
  252. * once for each .dai_link in the machine driver's snd_soc_machine
  253. * structure.
  254. */
  255. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  256. struct snd_pcm *pcm)
  257. {
  258. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  259. int ret;
  260. if (!card->dev->dma_mask)
  261. card->dev->dma_mask = &fsl_dma_dmamask;
  262. if (!card->dev->coherent_dma_mask)
  263. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  264. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  265. fsl_dma_hardware.buffer_bytes_max,
  266. &pcm->streams[0].substream->dma_buffer);
  267. if (ret) {
  268. dev_err(card->dev,
  269. "Can't allocate playback DMA buffer (size=%u)\n",
  270. fsl_dma_hardware.buffer_bytes_max);
  271. return -ENOMEM;
  272. }
  273. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  274. fsl_dma_hardware.buffer_bytes_max,
  275. &pcm->streams[1].substream->dma_buffer);
  276. if (ret) {
  277. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  278. dev_err(card->dev,
  279. "Can't allocate capture DMA buffer (size=%u)\n",
  280. fsl_dma_hardware.buffer_bytes_max);
  281. return -ENOMEM;
  282. }
  283. return 0;
  284. }
  285. /**
  286. * fsl_dma_open: open a new substream.
  287. *
  288. * Each substream has its own DMA buffer.
  289. */
  290. static int fsl_dma_open(struct snd_pcm_substream *substream)
  291. {
  292. struct snd_pcm_runtime *runtime = substream->runtime;
  293. struct fsl_dma_private *dma_private;
  294. dma_addr_t ld_buf_phys;
  295. unsigned int channel;
  296. int ret = 0;
  297. /*
  298. * Reject any DMA buffer whose size is not a multiple of the period
  299. * size. We need to make sure that the DMA buffer can be evenly divided
  300. * into periods.
  301. */
  302. ret = snd_pcm_hw_constraint_integer(runtime,
  303. SNDRV_PCM_HW_PARAM_PERIODS);
  304. if (ret < 0) {
  305. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  306. return ret;
  307. }
  308. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  309. if (dma_global_data.assigned[channel]) {
  310. dev_err(substream->pcm->card->dev,
  311. "DMA channel already assigned\n");
  312. return -EBUSY;
  313. }
  314. dma_private = dma_alloc_coherent(substream->pcm->dev,
  315. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  316. if (!dma_private) {
  317. dev_err(substream->pcm->card->dev,
  318. "can't allocate DMA private data\n");
  319. return -ENOMEM;
  320. }
  321. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  322. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  323. else
  324. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  325. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  326. dma_private->irq = dma_global_data.irq[channel];
  327. dma_private->substream = substream;
  328. dma_private->ld_buf_phys = ld_buf_phys;
  329. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  330. /* We only support one DMA controller for now */
  331. dma_private->controller_id = 0;
  332. dma_private->channel_id = channel;
  333. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  334. if (ret) {
  335. dev_err(substream->pcm->card->dev,
  336. "can't register ISR for IRQ %u (ret=%i)\n",
  337. dma_private->irq, ret);
  338. dma_free_coherent(substream->pcm->dev,
  339. sizeof(struct fsl_dma_private),
  340. dma_private, dma_private->ld_buf_phys);
  341. return ret;
  342. }
  343. dma_global_data.assigned[channel] = 1;
  344. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  345. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  346. runtime->private_data = dma_private;
  347. return 0;
  348. }
  349. /**
  350. * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
  351. *
  352. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  353. * descriptors that ping-pong from one period to the next. For example, if
  354. * there are six periods and two link descriptors, this is how they look
  355. * before playback starts:
  356. *
  357. * The last link descriptor
  358. * ____________ points back to the first
  359. * | |
  360. * V |
  361. * ___ ___ |
  362. * | |->| |->|
  363. * |___| |___|
  364. * | |
  365. * | |
  366. * V V
  367. * _________________________________________
  368. * | | | | | | | The DMA buffer is
  369. * | | | | | | | divided into 6 parts
  370. * |______|______|______|______|______|______|
  371. *
  372. * and here's how they look after the first period is finished playing:
  373. *
  374. * ____________
  375. * | |
  376. * V |
  377. * ___ ___ |
  378. * | |->| |->|
  379. * |___| |___|
  380. * | |
  381. * |______________
  382. * | |
  383. * V V
  384. * _________________________________________
  385. * | | | | | | |
  386. * | | | | | | |
  387. * |______|______|______|______|______|______|
  388. *
  389. * The first link descriptor now points to the third period. The DMA
  390. * controller is currently playing the second period. When it finishes, it
  391. * will jump back to the first descriptor and play the third period.
  392. *
  393. * There are four reasons we do this:
  394. *
  395. * 1. The only way to get the DMA controller to automatically restart the
  396. * transfer when it gets to the end of the buffer is to use chaining
  397. * mode. Basic direct mode doesn't offer that feature.
  398. * 2. We need to receive an interrupt at the end of every period. The DMA
  399. * controller can generate an interrupt at the end of every link transfer
  400. * (aka segment). Making each period into a DMA segment will give us the
  401. * interrupts we need.
  402. * 3. By creating only two link descriptors, regardless of the number of
  403. * periods, we do not need to reallocate the link descriptors if the
  404. * number of periods changes.
  405. * 4. All of the audio data is still stored in a single, contiguous DMA
  406. * buffer, which is what ALSA expects. We're just dividing it into
  407. * contiguous parts, and creating a link descriptor for each one.
  408. *
  409. * Note that due to a quirk of the SSI's STX register, the target address
  410. * for the DMA operations depends on the sample size. So we don't program
  411. * the dest_addr (for playback -- source_addr for capture) fields in the
  412. * link descriptors here. We do that in fsl_dma_prepare()
  413. */
  414. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  415. struct snd_pcm_hw_params *hw_params)
  416. {
  417. struct snd_pcm_runtime *runtime = substream->runtime;
  418. struct fsl_dma_private *dma_private = runtime->private_data;
  419. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  420. dma_addr_t temp_addr; /* Pointer to next period */
  421. u64 temp_link; /* Pointer to next link descriptor */
  422. u32 mr; /* Temporary variable for MR register */
  423. unsigned int i;
  424. /* Get all the parameters we need */
  425. size_t buffer_size = params_buffer_bytes(hw_params);
  426. size_t period_size = params_period_bytes(hw_params);
  427. /* Initialize our DMA tracking variables */
  428. dma_private->period_size = period_size;
  429. dma_private->num_periods = params_periods(hw_params);
  430. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  431. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  432. (NUM_DMA_LINKS * period_size);
  433. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  434. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  435. /*
  436. * Initialize each link descriptor.
  437. *
  438. * The actual address in STX0 (destination for playback, source for
  439. * capture) is based on the sample size, but we don't know the sample
  440. * size in this function, so we'll have to adjust that later. See
  441. * comments in fsl_dma_prepare().
  442. *
  443. * The DMA controller does not have a cache, so the CPU does not
  444. * need to tell it to flush its cache. However, the DMA
  445. * controller does need to tell the CPU to flush its cache.
  446. * That's what the SNOOP bit does.
  447. *
  448. * Also, even though the DMA controller supports 36-bit addressing, for
  449. * simplicity we currently support only 32-bit addresses for the audio
  450. * buffer itself.
  451. */
  452. temp_addr = substream->dma_buffer.addr;
  453. temp_link = dma_private->ld_buf_phys +
  454. sizeof(struct fsl_dma_link_descriptor);
  455. for (i = 0; i < NUM_DMA_LINKS; i++) {
  456. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  457. link->count = cpu_to_be32(period_size);
  458. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  459. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  460. link->next = cpu_to_be64(temp_link);
  461. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  462. link->source_addr = cpu_to_be32(temp_addr);
  463. else
  464. link->dest_addr = cpu_to_be32(temp_addr);
  465. temp_addr += period_size;
  466. temp_link += sizeof(struct fsl_dma_link_descriptor);
  467. }
  468. /* The last link descriptor points to the first */
  469. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  470. /* Tell the DMA controller where the first link descriptor is */
  471. out_be32(&dma_channel->clndar,
  472. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  473. out_be32(&dma_channel->eclndar,
  474. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  475. /* The manual says the BCR must be clear before enabling EMP */
  476. out_be32(&dma_channel->bcr, 0);
  477. /*
  478. * Program the mode register for interrupts, external master control,
  479. * and source/destination hold. Also clear the Channel Abort bit.
  480. */
  481. mr = in_be32(&dma_channel->mr) &
  482. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  483. /*
  484. * We want External Master Start and External Master Pause enabled,
  485. * because the SSI is controlling the DMA controller. We want the DMA
  486. * controller to be set up in advance, and then we signal only the SSI
  487. * to start transfering.
  488. *
  489. * We want End-Of-Segment Interrupts enabled, because this will generate
  490. * an interrupt at the end of each segment (each link descriptor
  491. * represents one segment). Each DMA segment is the same thing as an
  492. * ALSA period, so this is how we get an interrupt at the end of every
  493. * period.
  494. *
  495. * We want Error Interrupt enabled, so that we can get an error if
  496. * the DMA controller is mis-programmed somehow.
  497. */
  498. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  499. CCSR_DMA_MR_EMS_EN;
  500. /* For playback, we want the destination address to be held. For
  501. capture, set the source address to be held. */
  502. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  503. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  504. out_be32(&dma_channel->mr, mr);
  505. return 0;
  506. }
  507. /**
  508. * fsl_dma_prepare - prepare the DMA registers for playback.
  509. *
  510. * This function is called after the specifics of the audio data are known,
  511. * i.e. snd_pcm_runtime is initialized.
  512. *
  513. * In this function, we finish programming the registers of the DMA
  514. * controller that are dependent on the sample size.
  515. *
  516. * One of the drawbacks with big-endian is that when copying integers of
  517. * different sizes to a fixed-sized register, the address to which the
  518. * integer must be copied is dependent on the size of the integer.
  519. *
  520. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  521. * integer, then X should be copied to address P. However, if X is a 16-bit
  522. * integer, then it should be copied to P+2. If X is an 8-bit register,
  523. * then it should be copied to P+3.
  524. *
  525. * So for playback of 8-bit samples, the DMA controller must transfer single
  526. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  527. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  528. *
  529. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  530. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  531. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  532. * 24-bit data must be padded to 32 bits.
  533. */
  534. static int fsl_dma_prepare(struct snd_pcm_substream *substream)
  535. {
  536. struct snd_pcm_runtime *runtime = substream->runtime;
  537. struct fsl_dma_private *dma_private = runtime->private_data;
  538. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  539. u32 mr;
  540. unsigned int i;
  541. dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
  542. unsigned int frame_size; /* Number of bytes per frame */
  543. ssi_sxx_phys = dma_private->ssi_sxx_phys;
  544. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  545. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  546. switch (runtime->sample_bits) {
  547. case 8:
  548. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  549. ssi_sxx_phys += 3;
  550. break;
  551. case 16:
  552. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  553. ssi_sxx_phys += 2;
  554. break;
  555. case 32:
  556. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  557. break;
  558. default:
  559. dev_err(substream->pcm->card->dev,
  560. "unsupported sample size %u\n", runtime->sample_bits);
  561. return -EINVAL;
  562. }
  563. frame_size = runtime->frame_bits / 8;
  564. /*
  565. * BWC should always be a multiple of the frame size. BWC determines
  566. * how many bytes are sent/received before the DMA controller checks the
  567. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  568. * hold three frames, so we want to send two frames at a time. For
  569. * capture, the receive FIFO is triggered when it contains one frame, so
  570. * we want to receive one frame at a time.
  571. */
  572. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  573. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  574. else
  575. mr |= CCSR_DMA_MR_BWC(frame_size);
  576. out_be32(&dma_channel->mr, mr);
  577. /*
  578. * Program the address of the DMA transfer to/from the SSI.
  579. */
  580. for (i = 0; i < NUM_DMA_LINKS; i++) {
  581. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  582. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  583. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  584. else
  585. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  586. }
  587. return 0;
  588. }
  589. /**
  590. * fsl_dma_pointer: determine the current position of the DMA transfer
  591. *
  592. * This function is called by ALSA when ALSA wants to know where in the
  593. * stream buffer the hardware currently is.
  594. *
  595. * For playback, the SAR register contains the physical address of the most
  596. * recent DMA transfer. For capture, the value is in the DAR register.
  597. *
  598. * The base address of the buffer is stored in the source_addr field of the
  599. * first link descriptor.
  600. */
  601. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  602. {
  603. struct snd_pcm_runtime *runtime = substream->runtime;
  604. struct fsl_dma_private *dma_private = runtime->private_data;
  605. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  606. dma_addr_t position;
  607. snd_pcm_uframes_t frames;
  608. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  609. position = in_be32(&dma_channel->sar);
  610. else
  611. position = in_be32(&dma_channel->dar);
  612. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  613. /*
  614. * If the current address is just past the end of the buffer, wrap it
  615. * around.
  616. */
  617. if (frames == runtime->buffer_size)
  618. frames = 0;
  619. return frames;
  620. }
  621. /**
  622. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  623. *
  624. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  625. * registers.
  626. *
  627. * This function can be called multiple times.
  628. */
  629. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  630. {
  631. struct snd_pcm_runtime *runtime = substream->runtime;
  632. struct fsl_dma_private *dma_private = runtime->private_data;
  633. if (dma_private) {
  634. struct ccsr_dma_channel __iomem *dma_channel;
  635. dma_channel = dma_private->dma_channel;
  636. /* Stop the DMA */
  637. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  638. out_be32(&dma_channel->mr, 0);
  639. /* Reset all the other registers */
  640. out_be32(&dma_channel->sr, -1);
  641. out_be32(&dma_channel->clndar, 0);
  642. out_be32(&dma_channel->eclndar, 0);
  643. out_be32(&dma_channel->satr, 0);
  644. out_be32(&dma_channel->sar, 0);
  645. out_be32(&dma_channel->datr, 0);
  646. out_be32(&dma_channel->dar, 0);
  647. out_be32(&dma_channel->bcr, 0);
  648. out_be32(&dma_channel->nlndar, 0);
  649. out_be32(&dma_channel->enlndar, 0);
  650. }
  651. return 0;
  652. }
  653. /**
  654. * fsl_dma_close: close the stream.
  655. */
  656. static int fsl_dma_close(struct snd_pcm_substream *substream)
  657. {
  658. struct snd_pcm_runtime *runtime = substream->runtime;
  659. struct fsl_dma_private *dma_private = runtime->private_data;
  660. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  661. if (dma_private) {
  662. if (dma_private->irq)
  663. free_irq(dma_private->irq, dma_private);
  664. if (dma_private->ld_buf_phys) {
  665. dma_unmap_single(substream->pcm->dev,
  666. dma_private->ld_buf_phys,
  667. sizeof(dma_private->link), DMA_TO_DEVICE);
  668. }
  669. /* Deallocate the fsl_dma_private structure */
  670. dma_free_coherent(substream->pcm->dev,
  671. sizeof(struct fsl_dma_private),
  672. dma_private, dma_private->ld_buf_phys);
  673. substream->runtime->private_data = NULL;
  674. }
  675. dma_global_data.assigned[dir] = 0;
  676. return 0;
  677. }
  678. /*
  679. * Remove this PCM driver.
  680. */
  681. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  682. {
  683. struct snd_pcm_substream *substream;
  684. unsigned int i;
  685. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  686. substream = pcm->streams[i].substream;
  687. if (substream) {
  688. snd_dma_free_pages(&substream->dma_buffer);
  689. substream->dma_buffer.area = NULL;
  690. substream->dma_buffer.addr = 0;
  691. }
  692. }
  693. }
  694. static struct snd_pcm_ops fsl_dma_ops = {
  695. .open = fsl_dma_open,
  696. .close = fsl_dma_close,
  697. .ioctl = snd_pcm_lib_ioctl,
  698. .hw_params = fsl_dma_hw_params,
  699. .hw_free = fsl_dma_hw_free,
  700. .prepare = fsl_dma_prepare,
  701. .pointer = fsl_dma_pointer,
  702. };
  703. struct snd_soc_platform fsl_soc_platform = {
  704. .name = "fsl-dma",
  705. .pcm_ops = &fsl_dma_ops,
  706. .pcm_new = fsl_dma_new,
  707. .pcm_free = fsl_dma_free_dma_buffers,
  708. };
  709. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  710. /**
  711. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  712. *
  713. * This function is called by the ASoC fabric driver to give us the DMA and
  714. * SSI channel information.
  715. *
  716. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  717. * data when a substream is created, so for now we need to store this data
  718. * into a global variable. This means that we can only support one DMA
  719. * controller, and hence only one SSI.
  720. */
  721. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  722. {
  723. static int initialized;
  724. /* We only support one DMA controller for now */
  725. if (initialized)
  726. return 0;
  727. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  728. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  729. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  730. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  731. dma_global_data.irq[0] = dma_info->dma_irq[0];
  732. dma_global_data.irq[1] = dma_info->dma_irq[1];
  733. dma_global_data.assigned[0] = 0;
  734. dma_global_data.assigned[1] = 0;
  735. initialized = 1;
  736. return 1;
  737. }
  738. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  739. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  740. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  741. MODULE_LICENSE("GPL");